APPLICATION CERTIFICATION FCC Part 15B On Behalf of Kintech Co. Ltd

Tablet PC

Model No.: PC7021, PC7021ME, PC7023ME, KW-PC7005C,

PC7023, KW-PC7023C, KW-PC7024C, KW-PC7025C, KW-PC7026C, KW-PC7027C, KW-PC7028C, KW-PC7029C, KW-PC7030C, KW-PC7031C, KW-PC7032C, KW-PC7033C,

KW-PC7034C, KW-PC7035C, KW-PC7021C, KW-PC7022C

FCC ID: BRCPC7023ME

Prepared for : Kintech Co. Ltd

Address : 1F-5F, Bldg 22, Chen Tian Industrial Zone, Xi Xiang Bao

An District, Shenzhen, Guang Dong, China

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20130025 Date of Test : Jan 6- Jan 16, 2013

Date of Report : Jan 16, 2013

Page

TABLE OF CONTENTS

r		8-
Test Re	eport Certification	
1. GE	NERAL INFORMATION	4
1.1.	Description of Device (EUT).	4
1.2.	Accessory and Auxiliary Equipment	5
	Description of Test Facility	

Measurement Uncertainty......6

Block Diagram of Test Setup......21

Test Procedure 23

Description

1.4.

6.1. 6.2.

6.3.

6.4.

6.5. 6.6.

Test Report Certification

Applicant : Kintech Co. Ltd

Manufacturer : Kintech Co. Ltd

EUT Description: Tablet PC

(A) MODEL NO.: PC7021, PC7023, PC7021ME, PC7023ME,

KW-PC7005C,KW-PC7021C, KW-PC7022C, KW-PC702 3C, KW-PC7024C, KW-PC7025C, KW-PC7026C, KW-PC 7027C, KW-PC7028C, KW-PC7029C, KW-PC7030C, KW-PC7031C, KW-PC7032C, KW-PC7033C, KW-PC7034C,

KW-PC7035C

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 3.7V (Li-polymer battery) & AC 120V/60Hz (Adapter input)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart B ANSI C63.4: 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart B limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	Jan 6- Jan 16, 2013	
Prepared by :	Terry. Young	
	(Terry. Yang, Engineer)	
Approved & Authorized Signer:	Lemil	
	(Sean Liu, Manager)	

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Tablet PC

Model Number : PC7021,PC7023,PC7021ME, PC7023ME, KW-PC7005C,

KW-PC7021C, KW-PC7022C, KW-PC7023C, KW-PC70 24C, KW-PC7025C, KW-PC7026C, KW-PC7027C, KW-PC7028C, KW-PC7029C, KW-PC7030C, KW-PC7031C, KW-PC7032C, KW-PC7033C, KW-PC7034C, KW-PC70

35C

Note: These models are identical in interior structure, electrical circuits and components, and just model names, the plastics appearances such as color, shape are different for the marketing requirement. So we prepare PC7023ME

for test only

Power Supply : Model number: JKY0212-0502000UL

Input: 100-240VAC ~ 50/60Hz 0.3A MAX

Output: 5.0V 2000mA

Highest operation

Applicant

frequency of the EUT:

: Kintech Co. Ltd

1GHz

Address : 1F-5F, Bldg 22, Chen Tian Industrial Zone, Xi Xiang Bao

An District, Shenzhen, Guang Dong, China

Manufacturer : Kintech Co. Ltd

Address : 1F-5F, Bldg 22, Chen Tian Industrial Zone, Xi Xiang Bao

An District, Shenzhen, Guang Dong, China

Date of sample received: Jan 6, 2013

Date of Test : Jan 6- Jan 16, 2013

1.2. Accessory and Auxiliary Equipment

Notebook PC : Manufacturer: Lenovo

M/N: 4290-RT8

S/N: R9-FW93G 11/08

Printer : Manufacturer: Canon

Model No.: BJC-1000SP

1.3.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

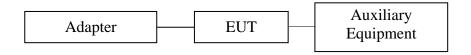
(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated date	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 12, 2013	Jan. 12, 2014
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 12, 2013	Jan. 12, 2014
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 12, 2013	Jan. 12, 2014
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 12, 2013	Jan. 12, 2014
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 12, 2013	Jan. 12, 2014
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 12, 2013	Jan. 12, 2014
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 12, 2013	Jan. 12, 2014
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 12, 2013	Jan. 12, 2014
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 12, 2013	Jan. 12, 2014
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 12, 2013	Jan. 12, 2014

3. OPERATION OF EUT DURING TESTING


3.1.Operating Mode

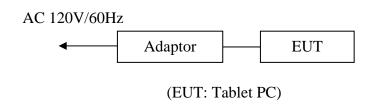
The modes are used: 1) Charging+Playing

2) Transfer data

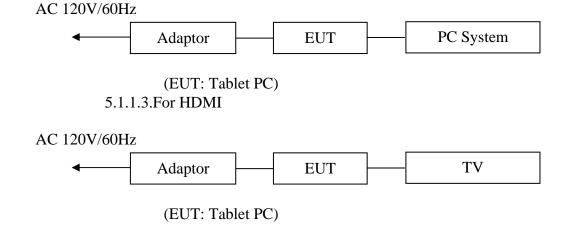
3) Charging+ HDMI

3.2.Configuration and peripherals

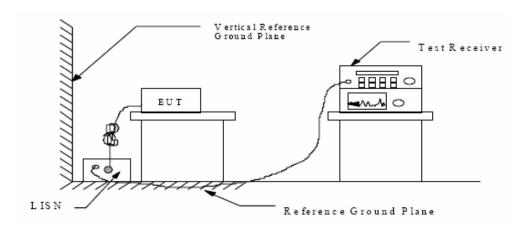
(EUT: Tablet PC)


4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.107	Conducted Emission Test	Compliant
Section 15.109	Radiated Emission Test	Compliant


5. CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.107(A)

5.1.Block Diagram of Test Setup


5.1.1.Block diagram of connection between the EUT and simulators5.1.1.1.For Charging&Playing

5.1.1.2.For Transfer data

5.1.2. Shielding Room Test Setup Diagram

(EUT: Tablet PC)

5.2. The Emission Limit

5.2.1.Conducted Emission Measurement Limits According to Section 15.107(a)

Frequency	Limit dB(μV)					
(MHz)	Quasi-peak Level	Average Level				
0.15 - 0.50	66.0 - 56.0 *	56.0 – 46.0 *				
0.50 - 5.00	56.0	46.0				
5.00 - 30.00	60.0	50.0				

^{*} Decreases with the logarithm of the frequency.

5.3. Configuration of EUT on Measurement

The following equipment are installed on the Conducted Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.Tablet PC (EUT)

Model Number : PC7023ME

Serial Number : N/A

Manufacturer : Kintech Co. Ltd

5.4. Operating Condition of EUT

5.4.1. Setup the EUT and simulator as shown as Section 5.1.

5.4.2. Turn on the power of all equipment.

5.4.3.Let the EUT work in modes (Charging &Playing, Transfer data) and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9 kHz.

The frequency range from 150 kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS.

Date of Test: Jan 16, 2013

The frequency range from 150 kHz to 30MHz is checked.

Temperature:

EUT:	Tal	blet PC			Humidit	y:	50%			
Model No.:						AC 120V/60Hz				
Test Mode:			Test Engineer: $\overline{\underline{T}}$							
			•		_					
MEASUREME	CNT	RESULT:	"RY01	116-1_	fin"					
1/16/2013	2:2	21PM								
		Level dBµV					ector	Lin	e PE	
0.1809	57	59.30	11.2	64	5.1	l QP		L1	GND	
4.5000	21	59.30 33.10 30.50	11.4	56	22.9	9 QP		L1	GND	
5.3855	70	30.50	11.4	60	29.5	5 QP		L1	GND	
MEASUREME	ENT	RESULT	: "RY01	116-1_	fin2"					
1/16/2013	2:2	21PM		_						
Frequen	су	Level	Transd	Limit	Margin	n Det	ector	Lin	e PE	
M	Ηz	dΒμV	dB	dΒμV	dI	3				
0.1795	18	43.70	11.2	55	10.8	3 AV		L1	GND	
1.1909	35	25.20 22.40	11.3	46	20.8	3 AV		L1		
5.3214	56	22.40	11.4	50	27.6	6 AV		L1	GND	
MEASUREME	ENT	RESULT:	"RY01	16-2_f	in"					
1/16/2013										
		Level dBµV				Detec	tor I	ine	PE	
0.1752	69	58.80	11.2	65	5.9	OP	N	ſ	GND	
4.4110	91	58.80 33.20	11.4	56	22.8	QP	N	ſ	GND	
5.3855	70	30.50	11.4	60	29.5	QP	N	Ī	GND	
MEASUREME	CNT	RESULT:	"RY01	16-2 f	in2"					
										
1/16/2013 Frequen		Level	Transd	T.imit	Margin	Detec	tor T	ine	PE	
M	Hz	dBµV	dB	dBµV	dB	20000	501 1	.2110		
0 1745	71	41.70	11 2	55	13 0	Δ77	N	ſ	GND	
0.9298	18	23.80	11.3	46	22.2	AV	N		GND	

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

50

27.5 AV

11.4

22.50

5.154195

GND

Date of Test:	Jan 16, 2013	Temperature:	25°C
EUT:	Tablet PC	Humidity:	50%
Model No.:	PC7023ME	Power Supply:	AC 120V/60Hz
Test Mode:	Transfer data	Test Engineer:	Ricky

AE A CLIDENENIO	DWCIII M.	UDV01	160 6	: "			
<i>TEASUREMENT</i>		"RIUI	16-9_1	in"			
/16/2013 2:4							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.223595	46.30	11.2	63	16.4	OP	L1	GND
1.259390	32.40	11.3	56	23.6	QP	L1	GND
0.223595 1.259390 16.273093	35.70	11.5	60	24.3	QP	L1	GND
EASUREMENT	RESULT:	"RY01	16-9_£	in2"			
/16/2013 2:4	16PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.221817	44.30	11.2	53	8.5	AV	L1	GND
1.284780	28.80	11.3	46	17.2	AV	L1	GND
1.284780 16.469152	28.60	11.5	50	21.4	AV	L1 L1	GND
EASUREMENT	RESULT	: "RY01	16-10	_fin"			
/16/2013 2:4							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
						NT	GND
0.222704	46.60	11.2	63	16.1	QP	IN	GIND
0.222704 1.284780	46.60 32.20	11.2 11.3	63 56	16.1 23.8	QP QP	N	
0.222704 1.284780 17.208463	46.60 32.20 33.60	11.2 11.3 11.5	63 56 60	16.1 23.8 26.4	QP QP QP	N	
0.222704 1.284780 17.208463	32.20 33.60	11.3 11.5	56 60	23.8 26.4	QP QP QP	N	GND
1.284780 17.208463 IEASUREMENT /16/2013 2:-	32.20 33.60 RESULT	11.3 11.5	56 60 .16-10_	23.8 26.4 _fin2"	QP QP	N N	GND GND
1.284780 17.208463 IEASUREMENT /16/2013 2:4 Frequency	32.20 33.60 RESULT	11.3 11.5 : "RY01	56 60 1 6-10 Limit	23.8 26.4 _fin2" _Margin	QP QP Detector	N N	GND GND
1.284780 17.208463 EASUREMENT /16/2013 2:4 Frequency	32.20 33.60 RESULT	11.3 11.5 : "RY01	56 60 1 6-10 Limit	23.8 26.4 _fin2" _Margin	QP QP Detector	N N	GND GND
1.284780 17.208463 EASUREMENT /16/2013 2:- Frequency MHz	32.20 33.60 RESULT 49PM Level dBµV	11.3 11.5 : "RY01 Transd dB	56 60 16-10_ Limit dBµV	23.8 26.4 fin2" Margin dB	QP QP Detector	N N Line	GND GND
1.284780 17.208463 EASUREMENT /16/2013 2:4 Frequency	32.20 33.60 RESULT 49PM Level dBµV 44.30 28.70	11.3 11.5 : "RY01 Transd dB 11.2 11.3	56 60 16-10_ Limit dBµV 53 46	23.8 26.4 fin2" Margin dB 8.4 17.3	QP QP Detector	N N	GND GND

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

Date of Test:	Jan 16, 2013	Temperature:	25°C
EUT:	Tablet PC	Humidity:	50%
Model No.:	PC7023ME	Power Supply:	AC 120V/60Hz
Test Mode:	HDMI	Test Engineer:	Ricky

<i>TEASUREMENT</i>	RESULT	: "RY01	16-5_f	in"			
1/16/2013 2:3							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.178091	55.50	11.2	65	9.1	QP	L1	
4.341214 5.133660	32.80	11.4	56	23.2	QP	L1	GND
5.133660	31.20	11.4	60	28.8	ÕЪ	L1	GND
MEASUREMENT	RESULT	: "RY01	16-5_f	in2"			
1/16/2013 2:3							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.173876		11.2	55	15.0	AV	L1	GND
0.929818 5.237158	25.60	11.3	46	20.4 27.4	AV	L1 L1	GND
3.237130	22.00	11.4	30	27.4	AV	ш	GND
MEASUREMENT	RESULT	: "RY01	16-6_1	fin"			
1/16/2013 2:3							
Frequency MHz	Level dBµV				Detector	Line	PE
0.169760 0.911443	55.90	11.2	65	9.1	QP	N	
0.911443 5.174811		11.3 11.4				N N	GND GND
3.174011	30.90	11.4	00	29.1	Q.F	14	GND
MEASUREMENT	RESULT	: "RY01	16-6_1	in2"			
1/16/2013 2:3							
Frequency MH7	Level dBµV			_	Detector	Line	PE
P111 Z	αυμν	uБ	αвμν	αь			
	39 50	11.2	55	15.2	AV	N	GND
0.174571 0.983264				20.2		N	GND

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

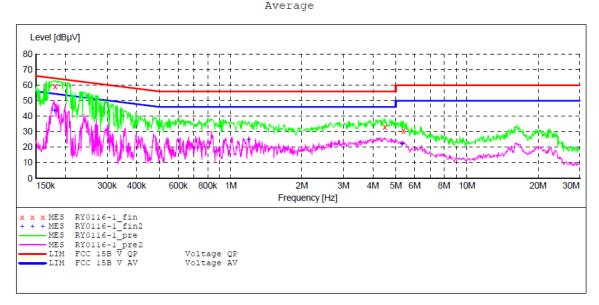
CONDUCTED EMISSION STANDARD FCC Part 15B

EUT: Tablet PC M/N:PC7023ME

Manufacturer: Kintech CO.. Ltd Operating Condition: Charging+Playing Test Site: 1#Shielding Room

Operator: Ricky

Test Specification: L 230V/50Hz


Comment:

Start of Test: 1/16/2013 / 2:18:59PM

SCAN TABLE: "V 150K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

MEASUREMENT RESULT: "RY0116-1 fin"

1/	/16/2013 2:	21PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dBuV	dB	dBuV	dB			
	0.180957	59.30	11.2	64	5.1	OP	L1	GND
	4.500021	33.10	11.4	56	22.9	OP	L1	GND
	5.385570				29.5	~	L1	GND
	3.303370	30.30	11.4	00	23.3	Žτ.	шт	GND

MEASUREMENT RESULT: "RY0116-1 fin2"

1/16/2013 2:	21PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.179518	43.70	11.2	55	10.8	AV	L1	GND
1.190935	25.20	11.3	46	20.8	AV	L1	GND
5.321456	22.40	11.4	50	27.6	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC Part 15B

Tablet PC M/N:PC7023ME

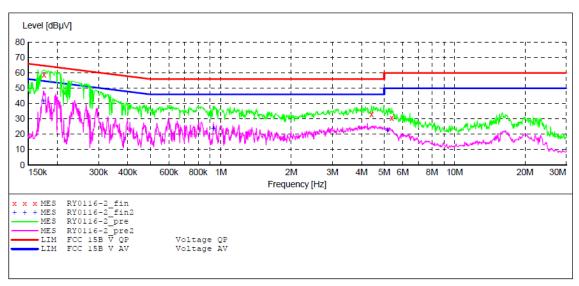
Manufacturer: Kintech Co., Ltd Operating Condition: Charging+playing Test Site: 1#Shielding Room

Ricky Operator:

Test Specification: N 230V/50Hz

Comment:

Start of Test: 1/16/2013 / 2:22:12PM


SCAN TABLE: "V 150K-30MHz fin"

SUB STD VTERM2 1.70 Short Description:

Detector Meas. IF Time Bandw. Start Stop Step Transducer

Frequency Frequency Width 150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0116-2 fin"

1/16/2013 2:24PM

_	/10/2013 2.2	4 L L1						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.175269	58.80	11.2	65	5.9	QP	N	GND
	4.411091	33.20	11.4	56	22.8	QP	N	GND
	5.385570	30.50	11.4	60	29.5	QP	N	GND

MEASUREMENT RESULT: "RY0116-2 fin2"

1/16/2013 2:24PM

Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.174571	41.70	11.2	55	13.0	AV	N	GND
0.929818	23.80	11.3	46	22.2	AV	N	GND
5.154195	22.50	11.4	50	27.5	AV	N	GND

CONDUCTED EMISSION STANDARD FCC Part 15B

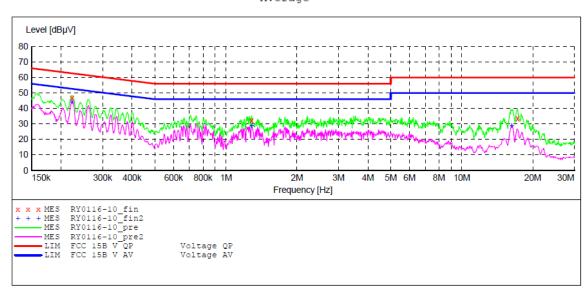
EUT: Tablet PC M/N:PC7023ME

Manufacturer: Kintech Co., Ltd Operating Condition: Transfer data+SD Test Site: 1#Shielding Room

Operator: Ricky
Test Specification: N 230V/50Hz

Comment:

Start of Test: 1/16/2013 / 2:47:08PM


SCAN TABLE: "V 150K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

Detector Meas. IF Time Bandw. Start Stop Step Frequency Frequency Width 150.0 kHz 30.0 MHz 0.8 % Transducer

QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0116-10 fin"

1/16/2013	2:49	PM						
Freque	ncy	Level	Transd	Limit	Margin	Detector	Line	PE
1	MHz	dΒμV	dB	dΒμV	dB			
0 222	704	46 60	11.2	62	16 1	OB	N	GND
						~	IN	
1.284	780	32.20	11.3	56	23.8	QP	N	GND
17.208	463	33.60	11.5	60	26.4	QP	N	GND

MEASUREMENT RESULT: "RY0116-10 fin2"

1/16/2013	2:49PM						
Frequen	cy Level	l Transd	Limit	Margin	Detector	Line	PE
M	Hz dBμ√	V dB	dΒμV	dB			
0.2227	04 44.30	0 11.2	53	8.4	AV	N	GND
1.2847	80 28.70	0 11.3	46	17.3	AV	N	GND
16.2730	93 28.90	0 11.5	50	21.1	AV	N	GND

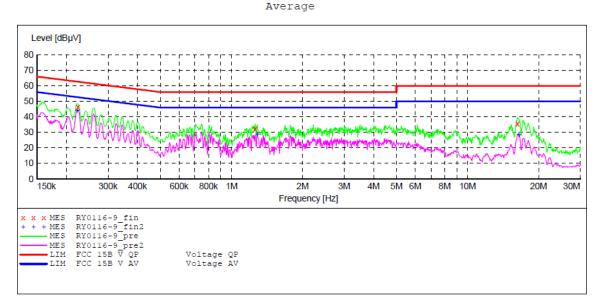
CONDUCTED EMISSION STANDARD FCC Part 15B

EUT: Tablet PC M/N:PC7023ME

Manufacturer: Kintech Co., Ltd Operating Condition: Transfer data+SD Test Site: 1#Shielding Room

Operator: Ricky

Test Specification: L 230V/50Hz


Comment:

Start of Test: 1/16/2013 / 2:44:35PM

SCAN TABLE: "V 150K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

MEASUREMENT RESULT: "RY0116-9_fin"

1	/16/2013 2:	46PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.223595	46.30	11.2	63	16.4	QP	L1	GND
	1.259390	32.40	11.3	56	23.6	QP	L1	GND
	16.273093	35.70	11.5	60	24.3	QP	L1	GND

MEASUREMENT RESULT: "RY0116-9 fin2"

1/16/2013 2:4	l6PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµ∇	dB	dΒμV	dB			
0.221817	44.30	11.2	53	8.5	AV	L1	GND
1.284780	28.80	11.3	46	17.2	AV	L1	GND
16.469152	28.60	11.5	50	21.4	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC Part 15B

Tablet PC M/N:PC7023ME

Manufacturer: Kintech CO., Ltd

Operating Condition: HDMI

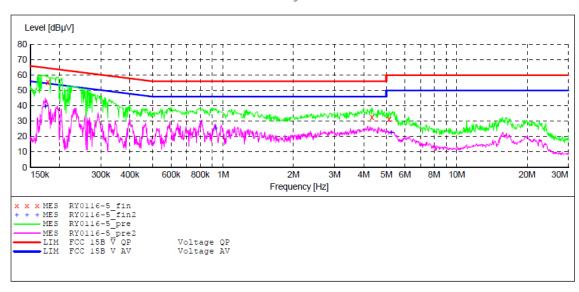
Test Site: 1#Shielding Room

Operator: Ricky

Test Specification: L 230V/50Hz

Comment:

Start of Test: 1/16/2013 / 2:30:40PM


SCAN TABLE: "V 150K-30MHz fin"

SUB STD VTERM2 1.70 Short Description:

Detector Meas. IF Time Bandw. Start Stop Step Transducer

Frequency Frequency Width 150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0116-5 fin"

1/16/2013 2:33PM

± /	10/2013 2.3.	JIH						
	Frequency MHz		Transd dB		_	Detector	Line	PE
	0.178091	55.50	11.2	65	9.1	QP	L1	GND
	4.341214	32.80	11.4	56	23.2	QP	L1	GND
	5.133660	31.20	11.4	60	28.8	QP	L1	GND

MEASUREMENT RESULT: "RY0116-5 fin2"

1/16/2013 2:33PM

Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.173876	39.80	11.2	55	15.0	AV	L1	GND
0.929818	25.60	11.3	46	20.4	AV	L1	GND
5.237158	22.60	11.4	50	27.4	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC Part 15B

Tablet PC M/N:PC7023ME

Manufacturer: Kintech CO., Ltd

Operating Condition: HDMI

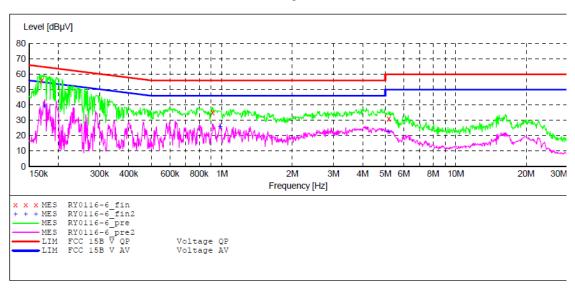
Test Site: 1#Shielding Room

Operator: Ricky
Test Specification: N 230V/50Hz

Comment:

Start of Test: 1/16/2013 / 2:33:51PM

SCAN TABLE: "V 150K-30MHz fin"


Short Description: SUB STD VTERM2 1.70

Detector Meas. IF Time Bandw. Stop Start Step Transducer

Frequency Frequency Width

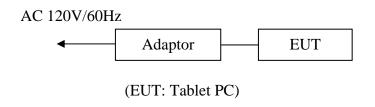
150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0116-6 fin"

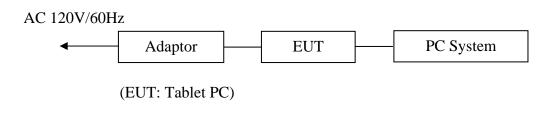
1/16/2013 2	:35PM						
Frequency MHz			Limit dBuV	Margin dB	Detector	Line	PE
0 160760	EE 00	11 0		0 1	0.0		CNID
0.169760	55.90	11.2			~	N N	GND GND
	30.00				~-	N	GND

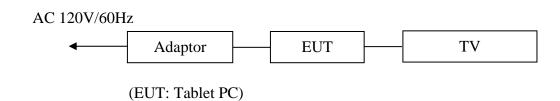
MEASUREMENT RESULT: "RY0116-6 fin2"

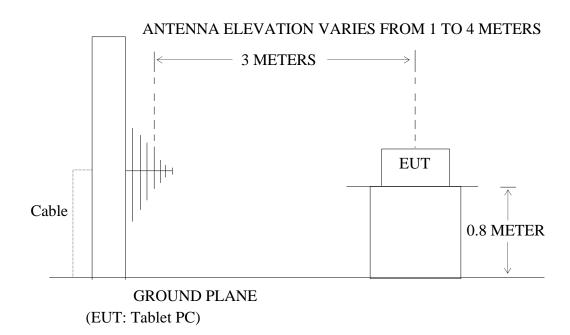

1/16/2013 2:3	5PM						
Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.174571	39.50	11.2	55	15.2	AV	N	GND
0.983264	25.80	11.3	46	20.2	AV	N	GND
5 133660	22 60	11 4	5.0	27 4	Δ77	N	GND

6. RADIATED EMISSION FOR FCC PART 15 SECTION 15.109(A)

6.1.Block Diagram of Test Setup


6.1.1.Block diagram of connection between the EUT and simulators


6.1.1.1.For Charing&Playing


6.1.1.2.For Transfer data

6.1.1.3.For HDMI

6.1.2.Semi-Anechoic Chamber Test Setup Diagram

6.2. The Emission Limit For Section 15.109 (a)

6.2.1.Radiation Emission Measurement Limits According to Section 15.109 (a).

	Lir	nit
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value $(dB\mu V/m)$
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

6.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.3.1.Tablet PC (EUT)

Model Number : PC7023ME

Serial Number : N/A

Manufacturer : Kintech Co. Ltd

6.4. Operating Condition of EUT

6.4.1. Setup the EUT and simulator as shown as Section 6.1.

6.4.2. Turn on the power of all equipment.

6.4.3. Let the EUT work in (Charging& Playing, Transfer data, HDMI) mode measure it.

6.5. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement.

The bandwidth of test receiver is set at 120 kHz in 30-1000MHz and 1MHz in above 1000MHz.

The frequency range from 30MHz to 5000MHz is checked.

6.6. The Emission Measurement Result **PASS.**

Date of Test: Jan 16, 2013 Temperature: 25°C

EUT: Tablet PC Humidity: 50%

Model No.: PC7023ME Power Supply: AC 120V/60Hz

Test Mode: Charging&Playing Test Engineer: Tom

Frequency: 30	-1000N	IHz											
Polarization													
	No.	Freq. (MHz)		Read (dBu\	_		actor (dB)	l	Result IBuV/m)	Lim (dBu\		Margin (dB)	Detector
Horizontal	1	236.79	928	12.2	23	1	5.34		27.57	46.0	00	-18.43	QP
Horizontai	2	332.95	36	15.	16	1	7.81		32.97	46.0	00	-13.03	QP
	3	672.31	104	12.4	46	2	24.53		36.99	46.0	00	-9.01	QP
	No.	Freq. (MHz)		Reading (dBuV/m)			actor (dB)		Result BuV/m)	Lim (dBu\/		Margin (dB)	Detector
Vertical	1 148.3951 18.98 11.51 30.49 43.50 -13.01 QP												QP
Vertical	2 236.7928 11.35 15.34 26.69 46.00 -19.31 C											QP	
	3	332.95	36	10.7	72	1	7.81		28.53	46.0	00	-17.47	QP
Frequency: 1	000-500	00MHz										•	
Polarization													
	No.	Freq. (MHz)		ading uV/m)	Facto (dB)		Resul (dBuV/r	-	Limit (dBuV/m)	Margin (dB)	Detec	ctor	
	1	1068.970		3.53	-12.6		50.87		74.00	-23.13			
II	2	1068.970		0.12	-12.6		47.46		54.00	-6.54	AV		
Horizontal	3	1169.790		9.55	-12.5		47.05		74.00	-26.95			
	4	1169.790		3.33	-12.5		43.83		54.00	-10.17	AV		
	5	1476.030		3.32	-11.5		54.77		74.00	-19.23	pea		
	6	1476.030		2.55	-11.5		51.00		54.00	-3.00	AV	G	
No. Freq. Reading (dBuV/m) (dB) (dBuV/m) (dB) (dBuV/m) (dB) (Detector													
	1	1068.970	65	5.90	-12.6	66	53.24		74.00	-20.76			
**	2	1068.970	62	2.41	-12.6	66	49.75	5	54.00	-4.25	AV	G	
Vertical	3	1476.030	66	3.16	-11.5	55	54.61		74.00	-19.39	pea		
	4	1476.030	62	2.55	-11.5	55	51.00)	54.00	-3.00	AV	G	
	5	1773.968	61	1.87	-10.2	25	51.62	2	74.00	-22.38	pea	ak	
	6	1773.968	57	7.87	-10.2	25	47.62	2	54.00	-6.38	AV	G	

Date of Test:Jan 16, 2013Temperature:25°CEUT:Tablet PCHumidity:50%Model No.:PC7023MEPower Supply:AC 120V/60HzTest Mode:Transfer dataTest Engineer:Ricky

Frequency: 30	-1000IV.	ІПΖ										
Polarization												
	No.	Freq. (MHz)	1	ading uV/m)		actor (dB)		Result IBuV/m)	Lim (dBuV		Margin (dB)	Detector
Horizontal	1	143.77	60 2	3.93	,	11.48		35.41	43.5	50	-8.09	QP
Tiorizontai	2	231.03	98 2	5.46	,	15.08		40.54	46.0	00	-5.46	QP
	3	584.16	11 1	7.29	2	23.42		40.71	46.0	00	-5.29	QP
	No.	Freq. (MHz)		ading uV/m)		actor (dB)		Result IBuV/m)	Lim (dBuV		Margin (dB)	Detector
Vertical	1	123.61	49 2	5.60	•	13.23		38.83	43.5	50	-4.67	QP
, 6101601	2	357.19	23 2	2.27	•	18.49		40.76	46.0	00	-5.24	QP
	3	878.09	31 1	4.03	2	27.70		41.73	46.0	00	-4.27	QP
Frequency: 1	000-500	00MHz										
Polarization												
	No.	Freq. (MHz)	Reading (dBuV/n	n) (dB)	Result (dBuV/n		Limit (dBuV/m)	Margin (dB)	Dete	ctor	
	1	1032.978	62.50	-12.		49.91		74.00	-24.09	'		
II a mi m a m 4 a 1	2	1032.978	59.12	-12.		46.53		54.00	-7.47	A۷		
Horizontal	3	1476.030	66.82	-11.		55.27		74.00	-18.73	pe		
	4	1476.030	62.03	-11.		50.48		54.00	-3.52	A۷		
	5	1773.968	54.04	-10.		43.79		74.00	-30.21	pe		
	6	1773.968	51.88	-10.		41.63		54.00	-12.37	A۷	/G	
	No.	Freq. (MHz)	Reading (dBuV/m	•		Result (dBuV/m		Limit (dBuV/m)	Margin (dB)	Dete	ctor	
	1	1032.978	66.56	-12.	59	53.97		74.00	-20.03	pea		
Mantinal	2	1032.978	62.94	-12.		50.35		54.00	-3.65	A۷		
Vertical	3	1476.030	65.66	-11.		54.11		74.00	-19.89	pea		
	4	1476.030	62.31	-11.		50.76		54.00	-3.24	A۷	G	
	5	2418.776	59.78	-7.4		52.37		74.00	-21.63	pea		
	6	2418.776	56.48	-7.4	1	49.07	Ī	54.00	-4.93	AV	G'	

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss (if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

3. The spectral diagrams are attached as below display the measurement of peak values.

Date of Test:Jan 16, 2013Temperature:25°CEUT:Tablet PCHumidity:50%Model No.:PC7023MEPower Supply:AC 120V/60HzTest Mode:HDMITest Engineer:Ricky

Polarization													
	No.	Freq.		Read	ling	F	actor		Result	Lim		Margin	Detector
	140.	(MHz)		(dBu\	//m)		(dB)	(0	dBuV/m)	(dBu√	//m)	(dB)	
Horizontal	1	143.77	60	23.9	93	1	11.48		35.41	43.	50	-8.09	QP
	2	231.03	98	25.4	46	,	15.08		40.54	46.0	00	-5.46	QP
	3	584.16	11	17.2	29	2	23.42		40.71	46.0	00	-5.29	QP
	No.	Freq.		Read	ling	F	actor		Result	Lim		Margin	Detector
	140.	(MHz)		(dBu\	//m)		(dB)	(0	BuV/m)	(dBu√	//m)	(dB)	Detector
Vertical	1	123.61	49	25.	30	•	13.23		38.83	43.	50	-4.67	QP
Vorticul	2	357.19	23	22.	27	,	18.49		40.76	46.0	00	-5.24	QP
	3	878.09	31	14.0	03	2	27.70		41.73	46.0	00	-4.27	QP
Frequency: 1	000-500	00MHz	-						'			ı	
Polarization													
	No.	Freq. (MHz)		ading uV/m)	Facto (dB)		Result (dBuV/r		Limit (dBuV/m)	Margin (dB)	Detec	tor	
	1	1068.970		1.53	-12.6	6	48.87		74.00	-25.13	pea	ak	
TT 4 - 1	2	1068.970		8.05	-12.6		45.39		54.00	-8.61	AV		
Horizontal	3	1476.030		5.82	-11.5		54.27		74.00	-19.73	pea		
	4	1476.030		2.42	-11.5		50.87		54.00	-3.13	AV	_	
	5	1773.968		1.04	-10.2		50.79		74.00	-23.21	pea		
	6	1773.968		8.36	-10.2		48.11		54.00	-5.89	AV	G	
	No.	Freq. (MHz)	(dB	ading uV/m)	Facto (dB)		Result (dBuV/n		Limit (dBuV/m)	Margin (dB)	Detec	tor	
	1	1476.030		5.16	-11.5		53.61		74.00	-20.39	pea		
3 7 1	2	1476.030		2.33	-11.5		50.78		54.00	-3.22	AV	_	
Vertical	3	1773.968		3.87	-10.2		53.62		74.00	-20.38	pea		
	4	1773.968		0.59	-10.2		50.34		54.00	-3.66	AV	_	
	5	2418.776		1.28	-7.4		53.87		74.00	-20.13	pea		
	6	2418.776	58	8.31	-7.4	1	50.90		54.00	-3.10	AV	C	

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss (if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

3. The spectral diagrams are attached as below display the measurement of peak values.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

1000.0 MHz

Job No.: ricky #71

Note:

10

0.0

30.000

50

40

60

70 80

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC

Mode: Charging+plaing

Model: PC7023ME

Manufacturer: Kintech Co., Ltd

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 21:28:33

Engineer Signature: Ricky

Distance: 3m

	1	1 1	į.	1		limit1:	
60			 	 	 		
50					 		
10				 	 	3	

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	236.7928	12.23	15.34	27.57	46.00	-18.43	QP			
2	332.9536	15.16	17.81	32.97	46.00	-13.03	QP			
3	672.3104	12.46	24.53	36.99	46.00	-9.01	QP		201	

300

400

500

600 700

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #72

Standard: FCC Class B 3M Radiated

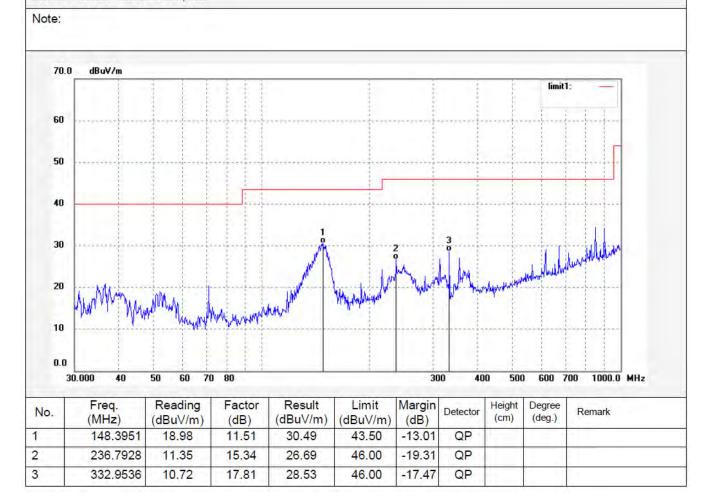
Test item: Radiation Test

Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC

Mode: Charging+plaing

Model: PC7023ME


Manufacturer: Kintech Co., Ltd

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 21:29:35

Engineer Signature: Ricky

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #76

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

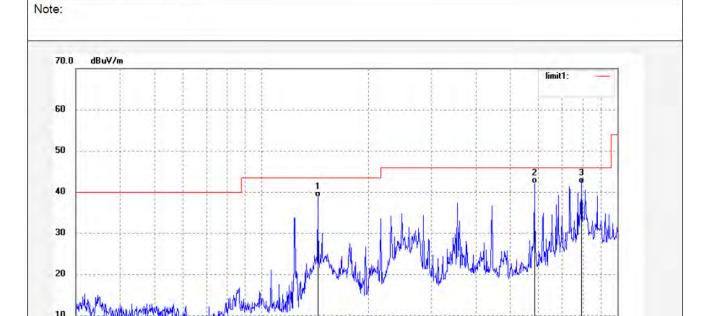
Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC

Mode: HDMI

Model: PC7023ME

Manufacturer: Kintech Co., Ltd


Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 21:44:58

Engineer Signature: Ricky

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	143.7760	27.30	11.48	38.78	43,50	-4.72	QP				
2	584.1611	18.61	23.42	42.03	46.00	-3.97	QP		4 - 4		
3	793.0281	15.49	26.68	42.17	46.00	-3.83	QP				

30.000

60

70 80

600 700

1000.0 MHz

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #77

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

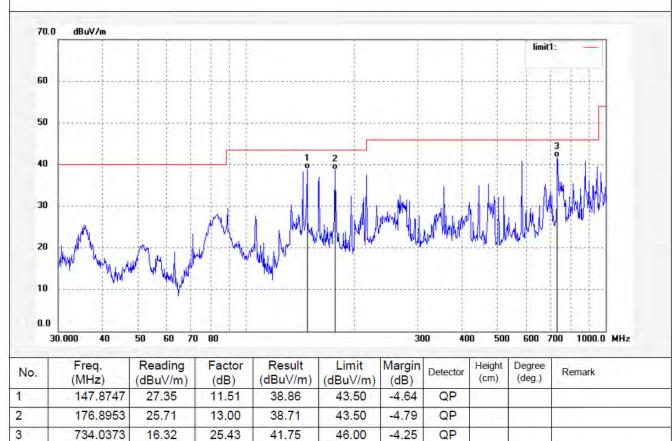
Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC

Mode: HDMI

Model: PC7023ME

Manufacturer: Kintech Co., Ltd


Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 21:46:20

Engineer Signature: Ricky

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #80

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

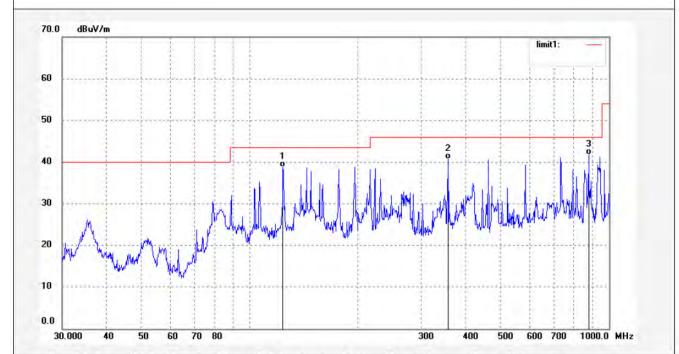
Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC

Mode: Transfer data

Model: PC7023ME

Note:


Manufacturer: Kintech Co., Ltdl

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 21:52:39

Engineer Signature: Ricky

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	123.6149	25.60	13.23	38.83	43.50	-4.67	QP	1+ 11			
2	357.1923	22.27	18.49	40.76	46.00	-5.24	QP				
3	878.0931	14.03	27.70	41.73	46.00	-4.27	QP				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #81

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC

Mode: Transfer data

Model: PC7023ME

Note:

Manufacturer: Kintech Co., Ltd

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 21:53:59

Engineer Signature: Ricky

							j.		limit*	lo –	
60											
50						ļ		-			4
40					1	2	-	-	3		
30					<u>.</u>					ilii. L	M
20					MALLY		MANAMIN		May "phase		
10	popular popula	AND AND IN	rhapha ^{MA} N	W LAMP A							
0.0							1				

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	143.7760	23.93	11.48	35.41	43.50	-8.09	QP			
2	231.0398	25.46	15.08	40.54	46.00	-5.46	QP			
3	584.1611	17.29	23.42	40.71	46.00	-5.29	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #84 Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC Mode: Charging+ playing

Model:

PC7023ME Manufacturer: Kintech Co., Ltd Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 22:21:06

Engineer Signature: Ricky

		i i	1 6	mit1:
		1	1	mit2:
70				
		1 1 1 1 4		
5				1
50 3				
40				alada seda berlijan diri
WIND THE REPORT OF THE PARTY OF	her of white they beginned about manager	aposterio ampiritari de la como con describido	Way Harry Land Market Land	and all all all
30 """ "" "" "" "" "" "" " " " " " " " "	Analytic at 1 at 11 in 11 in			
20		······		

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1068.970	63,53	-12.66	50.87	74.00	-23.13	peak			
2	1068.970	60.12	-12.66	47.46	54.00	-6.54	AVG			
3	1169.790	59.55	-12.50	47.05	74.00	-26.95	peak			
4	1169.790	56.33	-12.50	43.83	54.00	-10.17	AVG			
5	1476.030	66.32	-11.55	54.77	74.00	-19.23	peak			
6	1476.030	62.55	-11.55	51.00	54.00	-3.00	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

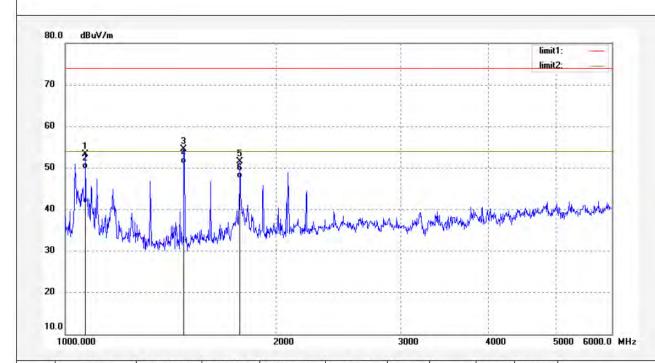
Job No.: ricky #85 Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC

Mode: Charging+ playing
Model: PC7023ME

Manufacturer: Kintech Co., Ltd


Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 22:25:54

Engineer Signature: Ricky

N	0	t	$^{\sim}$	•
1 4	_	•	·	٠

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	1068.970	65.90	-12.66	53.24	74.00	-20.76	peak				7
2	1068.970	62.41	-12.66	49.75	54.00	-4.25	AVG				
3	1476.030	66.16	-11.55	54.61	74.00	-19.39	peak				
4	1476.030	62.55	-11.55	51.00	54.00	-3.00	AVG				-
5	1773.968	61.87	-10.25	51.62	74.00	-22.38	peak				
6	1773.968	57.87	-10.25	47.62	54.00	-6.38	AVG				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

5000 6000.0 MHz

Job No.: ricky #88 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC Mode: HDMI

Model: PC7023ME

Note:

30

20

1000.000

Manufacturer: Kintech Co., Ltd

Polarization: Horizontal
Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 22:21:06

Engineer Signature: Ricky

			limit1: — limit2: —
70		 +	
60	******************	 	
	3		
50 1		 	4

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	1068.970	61.53	-12.66	48.87	74.00	-25.13	peak	11		1	
2	1068.970	58.05	-12.66	45.39	54.00	-8.61	AVG				
3	1476.030	65.82	-11,55	54.27	74.00	-19.73	peak				
4	1476.030	62.42	-11.55	50.87	54.00	-3.13	AVG				
5	1773.968	61.04	-10.25	50.79	74.00	-23.21	peak	TIE			
6	1773.968	58.36	-10.25	48.11	54.00	-5.89	AVG]-	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #89

Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC

Mode: Model: **PC7023ME**

Manufacturer: Kintech Co., Ltd

HDMI

Note:

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 22:25:54

Engineer Signature: Ricky

Distance: 3m

				ů,					limit1 limit2		
70						-		-			
60		**********									
50			3	-	5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			*********	
40	1						4	Claurine.	majorahan	Nggaldang Plangladanda	
	W 1897 W	i I nil	in half	WWW ILA	Mary Mary Mary	Mules Wall	HINNING PARTY.	A although a		- 1	
30	# , MA , PM	Kapalapapal Malapapa		MANAGE PARTIES	ha madaanaan	valey with his	HINNAND.	ץ זון יין יין			
30 20	# 'W	hage Languar Allegania		www.lipli-val-iv-		va.heyepirilgi	Mary Mile Angeles.	y in the second	1		
	o '**' \	typlanethlikere		www.llhvoler	The market and the state of the	vi, high phillips	muniditi nabih.	WIN WHI Y	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
20	0 000.000	tragological della progra		2000	The manifest control of	3000		4000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5000 6000.0	
20 10.0		Reading (dBuV/m)	Factor (dB)	2000 Result (dBuV/m)	Limit (dBuV/m)	3000 Margin (dB)	Detector		1		
20 10.0	Freq.		The second secon	Result		Margin		4000 Height	5 Degree	5000 6000.0	
20 10.0	Freq. (MHz)	(dBuV/m)	(dB)	Result (dBuV/m)	(dBuV/m)	Margin (dB)	Detector	4000 Height	5 Degree	5000 6000.0	
20	Freq. (MHz) 1476.030	(dBuV/m) 65.16	(dB) -11.55	Result (dBuV/m) 53.61	(dBuV/m) 74.00	Margin (dB) -20.39	Detector peak	4000 Height	5 Degree	5000 6000.0	

74.00

54.00

-20.13

-3.10

peak

AVG

5

6

2418.776

2418.776

61.28

58.31

-7.41

-7.41

53.87

50.90

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

5000 6000.0 MHz

Job No.: ricky #90 Standard: FCC PK

Test item: Radiation Test
Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC

Mode: Transfer data

Model: PC7023ME

Note:

Manufacturer: Kintech Co., Ltd

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 22:21:06

Engineer Signature: Ricky

Distance: 3m

						limit1: limit2:	
0							
50	3						
io 1		5					
o		, i	d. h. hare married	ريوالها والمعالم الماليان المالية	many Mynorial (gradings)	dippyphoral addition	hallon an
10	JAS malachan Allthropy property	pishe attern phylos	VII. Main II.		*******		*****

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	1032.978	62.50	-12.59	49.91	74.00	-24.09	peak				
2	1032.978	59.12	-12.59	46.53	54.00	-7.47	AVG				
3	1476.030	66.82	-11.55	55.27	74.00	-18.73	peak				
4	1476.030	62.03	-11.55	50.48	54.00	-3.52	AVG				
5	1773.968	54.04	-10.25	43.79	74.00	-30.21	peak				
6	1773.968	51.88	-10.25	41.63	54.00	-12.37	AVG				

1000.000

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #91 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 26 C / 55 %

EUT: Tablet PC

Mode: Transfer data

Model: PC7023ME

Note:

Manufacturer: Kintech Co., Ltd

PK Power Source: AC 120V/60Hz

Date: 2013/01/16 Time: 22:25:54

Polarization: Vertical

Engineer Signature: Ricky

10.0	2000		4000	5000 6000.0 M
20				
30	Made Att			b.
40	a Law May Judy Jake Jake Jake Jake Jake Jake Jake Jake	ampatamantahanter	washing market	Magadelega Mezadelegade
50				
60 1 3				
70				
	l l		limil Jimil	

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	1032.978	66.56	-12.59	53.97	74.00	-20.03	peak			11	
2	1032.978	62.94	-12.59	50.35	54.00	-3.65	AVG				
3	1476.030	65.66	-11.55	54.11	74.00	-19.89	peak				
4	1476.030	62.31	-11.55	50.76	54.00	-3.24	AVG	11-	-		Ξ
5	2418.776	59.78	-7.41	52.37	74.00	-21.63	peak				
6	2418.776	56.48	-7.41	49.07	54.00	-4.93	AVG	11-		12 ==	