

Data Critical Corporation FCC Part 95H Permissive Change Application

Model DT-7000 (Instrument Transceiver)

UST Project: 03-0377 January 15, 2004

I certify that I am authorized to sign for the manufacturer and that all of the statements in this report and in the Exhibits attached hereto are true and correct to the best of my knowledge and belief:

UNITED STATES TECHNOLOGIES, INC. (AGENT RESPONSIBLE FOR TEST):

By: Name: Louis A. Feudi Title: Operations Manager Date: January 15, 2004 Data Critical Corporation 15222 Del Amo Avenue Tustin, CA 92780 By: _______ Name: ______ Title: ______

Date:

This report shall not be reproduced except in full. This report may be copied in part only with the prior written approval of U.S. Technologies. The results contained in this report are subject to the adequacy and representative character of the sample provided.

MEASUREMENT/TECHNICAL REPORT

Data Critical Corporation

COMPANY NAME:

MODEL:	DT-7000 (Instrument Transceiver)						
FCC ID:	BQI02DT-7000						
DATE:	January 15, 2004						
This report concerns (chec	This report concerns (check one): Original grant Class II changeX						
Equipment type: Instrum	nent Transceiver						
Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? yes No_X_ If yes, defer until: date							
	the Commission by <u>N.A.</u> date nouncement of the product so that the grant can be issued on						
Report prepared by:							
United States 3505 Francis (Alpharetta, GA							
Phone Numbe Fax Number:	er: (770) 740-0717 (770) 740-1508						

TABLE OF CONTENTS

SECTION 1

GENERAL INFORMATION

- 1.1 Product Description
- 1.2 Related Submittal(s)
- 1.3 Descriptions of Changes in Certified Equipment
- 1.4 Copy of Previous Grant

SECTION 2

TESTS AND MEASUREMENTS

- 2.1 Configuration of Tested EUT
- 2.2 Test Facility
- 2.3 Test Equipment
- 2.4 Modifications
- 2.5 Test Procedure and Results
- 2.6 Antenna Description
- 2.7 Field Strength of Fundamental
- 2.8 Peak Radiated Spurious Emissions
- 2.9 Average Radiated Spurious Emissions
- 2.10 Power Line Conducted Emissions for Transmitter
- 2.11 Radiated Emissions for Digital Device & Receiver (if Applicable)
- 2.12 Power Line Conducted for Digital Device & Receiver (if Applicable)

SECTION 3

BLOCK DIAGRAM & SCHEMATICS

SECTION 4

PHOTOGRAPHS

LIST OF FIGURES AND TABLES

FIGURES

 Test Configuration 	ration
--	--------

- 2) Photograph(s) for Spurious and Digital Device Emissions
- 2) Photograph(s) for Sp3) Peak Power Output

TABLES

- 1) EUT and Peripherals
- 2) Test Instruments
- 3) Field Strength of Fundamental
- 4) Peak Radiated Spurious Emissions
- 5) Average Radiated Spurious Emissions
- 6) Conducted Emissions Data (Transmitter)
- 7) Radiated Emissions Data (Digital Device)
- 8) Conducted Emissions Data (Digital Device)

SECTION 1 GENERAL INFORMATION

GENERAL INFORMATION

1.1 Product Description

The Equipment Under Test (EUT) is a Data Critical Corporation Model DT-7000, (Instrument Transceiver).

The Transceiver Model: DT-7000 (EUT) was connected to an AC Adapter via its power port. The EUT was continuously transmitting using proprietary Cirronet Corporation software.

The antenna on the EUT is a standard connector, however, the antenna cannot be changed during normal use of the EUT, To be able to remove the antenna, the user would have to break open the case, remove flex cable, and slide out the PCB (the PCB does not slide out easily) in order to get to the antenna section of the EUT. A user doing this will more than likely break the flex cable, making the EUT stop functioning.

The final radiated data was taken in the transmitting mode.

1.2 Related Submittal(s)/Grant(s)

FCC ID: BQI02DT-7000

1.3 Descriptions of Changes in Certified Equipment

GE has requested to add some additional operating channels to the operating set of the WIT608 radio receiver contained inside of the DT-7000 unit. They have added 2 new channels at the bottom and 5 channels at the top of the 608-614 MHz frequency band.

WIT608 32 channel plan with Crystal frequency=7.3728MHz

Fx := 7.3728

Fref := $\frac{Fx}{54}$

Fref = 0.136533

MHz

 $FirstIF := 520 \cdot Fref$

FirstIF = 70.997333

SecondIF := 18·Fref

SecondIF = 2.4576

SecondLO := 538 Fref

SecondLO = 73.454933

i = 0...38

 $Ch_i := Fref \cdot (4456 + i)$

 $RxCh_i := Fref \cdot (3938 + i)$

 $TxCh_i := Fref \cdot (3920 + i)$

New Expanded WIT608 Channel Frequencies. Proposed new channels are: 0, 1h,22h,23h,24h,25h,26h

Old channel set extended from 2h to 21h (608.6656 MHz to 612.898133 MHz)

i 012.0	90 13.	3 IVIF	12)		
0					
Th					
2h					
3h					
4h					
5h					
6h					
7h					
8h					
9h					
ah					
bh					
ch					
dh					
ch					
fh					
10h					
Hh					
12h					
13h					
14h					
15h					
16h					
17h					
18h					
19h					
Tah					
1bh					
lch					
1 dh					
leh					
1fh					
20h					
21h					
22h					
23h					
24h					
25h					
26h					

Ch, 608.392533 608.529067 608.6656 608.802133 608.938667 609.0752 609.211733 609.348267 609.4848 609.621333 609.757867 609.8944 610.030933 610.167467 610.304 610.440533 610.577067 610,7136 610.850133 610.986667 611.1232 611.259733 611.396267 611.5328 611.669333 611.805867 611.9424 612.078933 612.215467 612.352 612.488533 612.625067 612.7616 612.898133 613.034667 613.1712 613.307733 613.444267

613.5808

1.4 Copy of Previous Grant

TCB GRANT OF EQUIPMENT AUTHORIZATION

TCB

Certification Issued Under the Authority of the Federal Communications Commission By:

> TUV America, Inc. 10040 Mesa Rim Road San Diego, CA 92121

Date of Grant: 12/09/2002

Application Dated: 12/09/2002

Data Critical Corporation 15222 Del Amo Avenue Tustin, CA 92780 United States

Attention: Diana Thorson

NOT TRANSFERABLE

EQUIPMENT AUTHORIZATION is hereby issued to the named GRANTEE, and is VALID ONLY for the equipment identified hereon for use under the Commission's Rules and Regulations listed below.

FCC IDENTIFIER: BQI02DT-7000

Name of Grantee: Data Critical Corporation

Equipment Licensed Non-Broadcast

Class: Station Transmitter

Notes: PATIENTNET

Grant Notes FCC Rule Parts Frequency Range (MHZ) Watts Tolerance Designator 95H 608.72 - 612.8 0.01 50.0 PM 400KD7D

SECTION 2 TESTS AND MEASUREMENTS

TEST AND MEASUREMENTS

2.1 Configuration of Tested System

The sample was tested per ANSI C63.4, Methods of Measurement from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (1992). Conducted and radiated emissions data were taken with the test receiver or spectrum analyzer's resolution bandwidth adjusted to 9 kHz and 120 kHz, respectively. All measurements are peak unless stated otherwise. The video filter associated with the spectrum analyzer was off throughout the evaluation process. Interconnecting cables were manipulated as necessary to maximize emissions. Interconnecting cables were manipulated as necessary to maximize emissions. A block diagram of the tested system is shown in Figure 1. Test configuration photographs for spurious and fundamental emissions are shown in Figure 2a through Figure 2c.

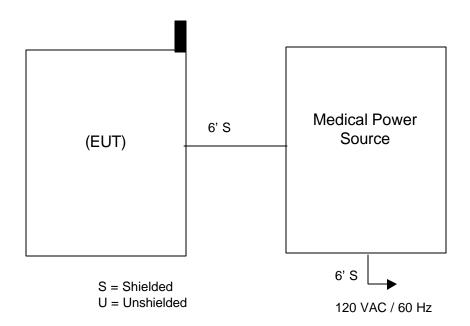
The sample used for testing was received by U.S. Technologies on November 24, 2003 in good condition.

2.2 Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA. This site has been fully described and submitted to the FCC, and accepted in their letter marked 31040/SIT. Additionally this site has also been fully described and submitted to Industry Canada (IC), and has been approved under file number IC2982.

2.3 Test Equipment

Table 2 describes test equipment used to evaluate this product.


2.4 Modifications

No modifications were made by US Tech, to bring the EUT into compliance with FCC Part 95H limits for the transmitter portion of the EUT or the Class B Digital Device Requirements.

FIGURE 1

TEST CONFIGURATION

(RF, RECEIVER, & DIGITAL DEVICE TESTS)

Test Date: November 24, 25, & December 2, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

FIGURE 2a

Photograph(s) for Spurious and Fundamental Emissions (Front)

Test Date: November 24, 25, & December 2, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

FIGURE 2b

Photograph(s) for Spurious and Fundamental Emissions (Back)

Test Date: November 24, 25, & December 2, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

FIGURE 2c

Photograph(s) for Digital Device Conducted Emissions

Not Applicable.
Changes were software related only.
No changes were made to the hardware.

TABLE 1

EUT and Peripherals

(RF TRANSMITTER & RECIEVER/DIGITAL TESTS)

PERIPHERAL MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID:	CABLES P/D
Instrument Transceiver (EUT) Data Critical Corporation	DT-7000	H22M0248G	BQI02DT-7000	6' S
Medical Power Source Jerome Industries	4DKN60-0IM	None	None	6' S Power Cord

TABLE 2 TEST INSTRUMENTS

EQUIPMENT	MODEL NUMBER	MANUFACTURER	SERIAL NUMBER	DATE OF LAST CALIBRATION
SPECTRUM ANALYZER	8558B	HEWLETT-PACKARD	2332A10055	2/28/03
SPECTRUM ANALYZER	8593E	HEWLETT-PACKARD	3205A00124	1/16/03
SIGNAL GENERATOR	8648B	HEWLETT-PACKARD	3642U01679	10/13/03
RF PREAMP	8449B	HEWLETT-PACKARD	3008A00480	6/19/03
HORN ANTENNA	3115	EMCO	9107-3723	7/11/03
LOG PERIODIC ANTENNA	3146	EMCO	3236	12/17/02
CALCULATION PROGRAM	N/A	N/A	Ver. 6.0	N/A

Note: The calibration interval of the above test instruments is 12 months and all calibrations are traceable to NIST/USA.

2.6 Antenna Description (Paragraph 15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The Model DT-7000 incorporates an external antenna only, as described in the previous grant report, and previous section 1.1 of this report.

2.7 Field Strength of Fundamental within the Band 608-614 MHz per FCC Section 95.1115(a)

Peak power within the band 608-614 MHz has been measured with a spectrum analyzer. Peak measurements were made using a peak or quasi-peak detector. Average emissions are not considered applicable since the measurement was below 1000 MHz.

The results of the measurements for peak fundamental emissions are given in Table 3 and Figure 3.

Table 3a FIELD STRENGTH OF FUNDAMENTAL EMISSION

Test Date: November 25, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

QP Measurement

Highest Emission measured from Radio

FREQ. (MHz)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	QP FCC LIMITS (uV/m) @ 3m	Margin (dB)
608.32	-29.8*	25.7	139,634.2	200,000	3.12

^{* -} Quasi-Peak Measurement

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-29.8 + 25.7 + 107)/20) = 139,634.2 CONVERSION FROM dBm TO dBuV = 107 dB

Tested by Signature: David Blethen

Table 3b FIELD STRENGTH OF FUNDAMENTAL EMISSION

Test Date: November 25, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

QP Measurement

Highest Emission measured from Radio

FREQ. (MHz)	TEST DATA (dBm) @ 3m*	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	QP FCC LIMITS (uV/m) @ 3m	Margin (dB)
611.15	-27.49*	25.7	182,890.0	200,000	0.78

^{* -} Quasi-Peak Measurement

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-27.49 + 25.7 + 107)/20) = 182,890.0 CONVERSION FROM dBm TO dBuV = 107 dB

Tested by Signature: David Blethen

Table 3c FIELD STRENGTH OF FUNDAMENTAL EMISSION

Test Date: November 25, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

QP Measurement

Highest Emission measured from Radio

FREQ. (MHz)	TEST DATA (dBm) @ 3m*	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	QP FCC LIMITS (uV/m) @ 3m	Margin (dB)
613.55	-29.8*	25.8	140,646.8	200,000	3.06

^{* -} Quasi-Peak Measurement

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-29.8 + 25.8 + 107)/20) = 140,646.8 CONVERSION FROM dBm TO dBuV = 107 dB

Tested by
Signature: David Blethen

2.8 Peak Radiated Spurious Emissions in the Frequency Range 30 - 10000 MHz (FCC Section 95.1115(b))

A preliminary scan was performed on the EUT to determine frequencies that were caused by the transmitter portion of the product. Radiated measurements below 1 GHz were tested with a RBW = 120 kHz. Radiated measurements above 1 GHz were measured using a RBW = VBW = 1 MHz. The results of peak radiated spurious emissions are given in Table and Figure 4.

TABLE 4a

FIELD STRENGTH OF SPURIOUS EMISSIONS 2nd Harmonic

Test Date: November 24, 2003; December 3, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

Peak Measurements

FREQ. (GHz.)	TEST DATA (dBm) @ 3m	AMP GAIN (dB)	ANTENNA FACTOR (dB)	CABLE LOSS (dB)	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m	Margin (dB)
1.22718	-29.71	36.2	26.7	2.8	3377.2	**	**
1.22225	-32.25	36.2	26.7	2.8	2516.4	**	**
1.21675	-34.42	36.2	26.7	2.8	1956.2	**	**

** - Not Applicable - For all peak harmonics measurements, no peak limits are specified above 1 GHz for FCC Part 95H. Peak measurements have been provided for derivation of Average Spurious Emissions measurement.

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-29.71 - 36.2 + 26.7 + 2.8 + 107)/20) = 3377.2 CONVERSION FROM dBm TO dBuV = 107 dB

Tested by	9740.11	
Signature:	Lavel Blethe Name:	David Blethen

TABLE 4b

FIELD STRENGTH OF SPURIOUS EMISSIONS 3rd Harmonic

Test Date: November 24, 2003; December 3, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

Peak Measurements

FREQ. (GHz.)	TEST DATA (dBm) @ 3m	AMP GAIN (dB)	ANTENNA FACTOR (dB)	CABLE LOSS (dB)	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m	Margin (dB)
1.84092	-38.22	35.4	28.3	3.0	1724.3	**	**
1.83324	-40.61	35.4	28.3	3.0	1303.3	**	**
1.82498	-38.52	35.4	28.3	3.0	1649.5	**	**

^{** -} Not Applicable - For all peak harmonics measurements, no peak limits are specified above 1 GHz for FCC Part 95H. Peak measurements have been provided for derivation of Average Spurious Emissions measurement.

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-38.22 - 35.4 + 28.3 + 3.0 + 107)/20) = 1724.3 CONVERSION FROM dBm TO dBuV = 107 dB

Tested by	9540	
Signature:	Lavid P. Blether Na	me: David Blethen

TABLE 4c

FIELD STRENGTH OF SPURIOUS EMISSIONS 4th Harmonic

Test Date: November 24, 2003; December 3, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

Peak Measurements

FREQ. (GHz.)	TEST DATA (dBm) @ 3m	AMP GAIN (dB)	ANTENNA FACTOR (dB)	CABLE LOSS (dB)	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m	Margin (dB)
2.45434	-46.49	35.2	29.0	3.6	780.8	**	**
2.44475	-47.05	35.2	29.0	3.5	731.1	**	**
2.43355	-43.73	35.2	29.0	3.5	1069.8	**	**

** - Not Applicable - For all peak harmonics measurements, no peak limits are specified above 1 GHz for FCC Part 95H. Peak measurements have been provided for derivation of Average Spurious Emissions measurement.

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-46.49 - 35.2 + 29.0 + 3.6 + 107)/20) = 780.8 CONVERSION FROM dBm TO dBuV = 107 dB

Tested by	9540	
Signature:	Land P. Glethe Name:	David Blethen

2.9 Average Spurious Emission in the Frequency Range 30 - 10000 MHz (FCC Section 95.1115(b))

The Average measurement was derived from applying any possible duty cycle correction to the peak reading. The results of average radiated spurious emissions are given in Table and Figure 5.

Part 15.1115(b)(2) stipulates using an average detector. However the emissions of this device are considered pulsed in nature due to the frequency hopping nature of the TX. The FCC has historically not accepted average measurements on pulsed transmitters. Therefore the measurements device was corrected for duty cycle as normally acceptable to the FCC for testing of other types of transmitter with pulsed emissions.

Duty Cycle Correction During 100 msec:

The system is designed that the system hops at 35 msec per channel. The system will only be on one channel in any 100 msec period of time. During this 35 msec per channel, each transmitter is allotted only a small duration of this period (5 msec max).

Therefore the worse case duty cycle is:

Duty Cycle Correction = $20 \log (0.05) = -26.0 \text{ dB}$

TABLE 5a FIELD STRENGTH OF SPURIOUS EMISSIONS 2nd Harmonic

Test Date: November 24, 2003; December 3, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

0.

Model: DT-7000

Average Measurements

FREQ. (GHz.)	TEST DATA (dBm) @ 3m	AMP GAIN (dB)	ANTENNA FACTOR (dB)	CABLE LOSS (dB)	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m	Margin (dB)
1.2271	-59.21	36.2	26.7	2.8	113.1	500	12.9
1.2222	-60.49	36.2	26.7	2.8	97.4	500	14.21
1.21676	-63.03	36.2	26.7	2.8	72.6	500	16.76

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-59.21 - 36.2 + 26.7 + 2.8 + 107)/20) = 113.1 CONVERSION FROM dBm TO dBuV = 107 dB

Tested by:	Land P. Blettrem Nama	
Signature:	Name:	David Blether

TABLE 5b FIELD STRENGTH OF SPURIOUS EMISSIONS 3rd Harmonic

Test Date: November 24, 2003; December 3, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

Average Measurements

FREQ. (GHz.)	TEST DATA (dBm) @ 3m	AMP GAIN (dB)	ANTENNA FACTOR (dB)	CABLE LOSS (dB)	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m	Margin (dB)
1.84092	-64.52	35.4	28.3	3.0	86.4	500	15.25
1.83324	-66.61	35.4	28.3	3.0	65.3	500	17.68
1.82498	-64.52	35.4	28.3	3.0	82.7	500	15.63

SAMPLE CALCULATIONS:

02.

RESULTS uV/m @ 3m = Antilog ((-64.52 - 35.4 + 28.3 + 3.0 + 107)/20) = 86.4 CONVERSION FROM dBm TO dBuV = 107 dB

Tested by:	Land P. Blettrem Nama	
Signature:	Name:	David Blethen

TABLE 5c FIELD STRENGTH OF SPURIOUS EMISSIONS 4th Harmonic

Test Date: November 24, 2003; December 3, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

Average Measurements

FREQ. (GHz.)	TEST DATA (dBm) @ 3m	AMP GAIN (dB)	ANTENNA FACTOR (dB)	CABLE LOSS (dB)	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m	Margin (dB)
2.45434	-72.49	35.2	29.0	3.6	39.1	500	22.13
2.44475	-73.05	35.2	29.0	3.5	36.6	500	22.71
2.43355	-69.73	35.2	29.0	3.5	53.6	500	19.40

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-72.49 - 35.2 + 29.0 + 3.0 + 107)/20) = 39.1 CONVERSION FROM dBm TO dBuV = 107 dB

Tested by:	Lavid B. Blettren		
Signature: _	No Burnen	ame:	David Blethen

0110

2.10 Power Line Conducted Emissions for Transmitter FCC Section 15.207

The conducted voltage measurements have been carried out in accordance with FCC Section 15.207, with a spectrum analyzer connected to a LISN and the EUT placed into a continuous mode of transmit. The results are given in Table 6.

Table 6. Conducted Emissions Data Class B

Test Date: November 24, 25, & December 2, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Product: DT-7000

Frequency (MHz)	Test Data (dBm) Phase Neutral	RESULTS (uV) Phase Neutral	FCC Limits (uV)
--------------------	-------------------------------------	-------------------------------	--------------------

Conducted Emissions were considered not applicable since the changes were only software related, no hardware changes were made.

Tested by Signature: David Blethen

2.11 Radiated Emissions (47 CFR 15.109a)

Radiated emissions were evaluated from 30 to 5000 MHz. Measurements were made with the analyzer's bandwidth set to 120 kHz measurements made less than 1 GHz and 1 MHz are shown in Table 7a. Measurements made over 1 GHz results are shown in Table 7b.

Table 7a. Radiated Emissions Data

Class B

Test Date: November 24, 25, & December 2, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Product: DT-7000

Frequency (MHz) Receiver Reading (dBm) @3m	Correction	Corrected	FCC Limit
	Factor	Reading	(uV/m)
	(dB)	(uV/m)	@3m

Radiated Emissions were considered not applicable since the changes were only software related, no hardware changes were made

Test Results Paud Paul Blethen Name: David Blethen

Table 7b Radiated Emissions Data

Class B

Test Date: November 24, 25, & December 2, 2003

UST Project: 03-0377

Customer: Data Critical Corporation

Model: DT-7000

Measurements >1 GHz

FREQ. (GHz)	TEST DATA (dBm) @ 3m	AMP GAIN (dB)	ANT. FACTOR (dB)	CABLE LOSS (dB)	RESULTS (uV/m) @ 10m	FCC LIMITS (uV/m) @ 3m
----------------	----------------------------	---------------------	------------------------	-----------------------	----------------------------	---------------------------------

Radiated Emissions were considered not applicable since the changes were only software related, no hardware changes were made

Dun		
Test Results Lavel & Blettren		
Signature:	Name:	David Blethen

2.12 Power Line Conducted Emissions for Digital Device FCC Section 15.107

The conducted voltage measurements have been carried out in accordance with FCC Section 15.107, with a spectrum analyzer connected to a LISN and the EUT placed into a continuous mode of transmit. The results are given in Table 8.

Table 8. Conducted Emissions Data – Digital Device Class B

Test Date: November 24, 25, & December 2, 2003

UST Project: 03-0377

Data Critical Corporation Customer:

Product: **DT-7000**

Frequency	Test Data	RESULTS (uV)	FCC Limits
(MHz)	(dBm)	Phase Neutral	(uV)
	Phase Neutral		

Conducted Emissions were considered not applicable since the changes were software related, no hardware changes were made.

Test Results Paud P. Bletten Name: <u>David Blethen</u>

SECTION 4 BLOCK DIAGRAM & SCHEMATICS

BLOCK DIAGRAM & SCHEMATICS

Not Applicable. Changes were software related only, no changes were made to the hardware.

SECTION 4 PHOTOGRAPHS

PHOTOS OF THE TESTED EUT

Not Applicable. Changes were software related only, no changes were made to the hardware.