Antenna Description (47 CFR 15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The Model DR-10000 may be used with the following antennas.

MANUFACTURER	MODEL	TYPE CONNECTOR		GAIN dBi	
Cushcraft	SL6081P48SMM	Patch	SMA	+2	
Nearson Inc.	P-24A48G	Monopole*	SMA	0	

*For antenna specifications, please see the following pages.

The EUT and antenna incorporate standard SMA connectors. Due to the type of installation, this unit will only be professionally installed.

The DR-10000 has been designed exclusively for VitalCom, Inc. VitalCom, Inc. designs and markets medical monitoring equipment to be used in hospital environments and is the only marketer of this product and is the sole installer. The units will not be marketed to the general public.

The DR-10000 are to be installed in the hallway ceilings of hospitals. These units will receive monitoring data from similar radios (FCC ID: BQI OODT-4500) that are attached to patients in the hospital. The system is very complicated and expensive (generally greater than \$100k for a complete installation) and relies on professional installation and upkeep. Trained VitalCom, Inc. personnel will be installing these units and will be solely responsible for their operation.

Frequency Range of Fundamental(s) (47 CFR 15.242(b))

Under all conditions of operation, the fundamental emissions shall be contained within a single television broadcast channel and lie wholly within the frequency range of 174-216 MHz and 470-668 MHz.

The EUT is designed to operate within TV channel 37 on the following frequency list:

608.6656	
608.802133	
608.938667	
609.0752	
609.211733	
609.348267	
609.4848	
609.621333	
609.757867	
609.8944	
610.030933	
610.167467	
610.304	
610.440533	
610.577067	
610.7136	
610.850133	
610.986667	
611.1232	
611.259733	
611.396267	
611.5328	
611.669333	I
611.805867	l
611.9424	
612.078933	l
612.215467	
612.352	ĺ
612.488533	
612.625067	
612.7616	ĺ
612.898133	ĺ
	l

Field Strength of Fundamental Emission (47 CFR 15.242(c))

Measurements were made using a peak detector. Field strength of the peak fundamental emission is shown in Tables 3a through 3c and Figures 3a through 3c. Both Radios were checked (one radio with patch antennas and the other with monopoles). Only the worse case results are shown for each low, middle, and high transmit channel.

TABLE 3a

FIELD STRENGTH OF FUNDAMENTAL EMISSION

Test Date:	June 25, 2000
UST Project:	00-0243
Customer:	VitalCom, Inc.
Model:	DR-10000

Peak Measurement (Low Channel) Highest Emission measured from Patch Antenna, RFA1 Port

FREQ. (MHz)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	QP FCC LIMITS (uV/m) @ 3m
608.695	-34.1	25.1	79,195	200,000

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-34.1 + 25.1 + 107)/20) = 79,195 CONVERSION FROM dBm TO dBuV = 107 dB

Test Results
Reviewed By: _____ Name: ____ Tim R. Johnson

TABLE 3b

FIELD STRENGTH OF FUNDAMENTAL EMISSION

Test Date:	June 26, 2000
UST Project:	00-0243
Customer:	VitalCom, Inc.
Model:	DR-10000

Peak Measurement (Middle Channel) Highest Emission measured from Omni Antenna, RFB1 Port

FREQ. (MHz)	TEST DATA (dBm) @ 3m*	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	AVERAGE FCC LIMITS (uV/m) @ 3m
610.745	-32.5	25.1	95,663	200,000

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-32.5 + 25.1 + 107)/20) = 95,663 CONVERSION FROM dBm TO dBuV = 107 dB

Test Results		
Reviewed By:	Name:	Tim R. Johnson

TABLE 3c

FIELD STRENGTH OF FUNDAMENTAL EMISSION

Test Date:	June 26, 2000
UST Project:	00-0243
Customer:	VitalCom, Inc.
Model:	DR-10000

Peak Measurement (High Channel) Highest Emission measured from Omni Antenna, RFB1 Port

FREQ. (MHz)	TEST DATA (dBm) @ 3m*	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	AVERAGE FCC LIMITS (uV/m) @ 3m
612.805	-35.4	25.2	68,834	200,000

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-35.4 + 25.2 + 107)/20) = 68,834 CONVERSION FROM dBm TO dBuV = 107 dB

Test Results		
Reviewed By:	Name:	Tim R. Johnson

FIGURE 3a

FIELD STRENGTH OF FUNDAMENTAL EMISSION 15.242(c) - LOW CHANNEL

FIGURE 3b

FIELD STRENGTH OF FUNDAMENTAL EMISSION 15.242(c) - MIDDLE CHANNEL

FIGURE 3c

FIELD STRENGTH OF FUNDAMENTAL EMISSION 15.242(c) - HIGH CHANNEL

Field Strength Of Spurious Emissions (47 CFR 15.242(c))

Measurements were made using a peak detector. Field strength of Spurious Emissions are shown in Tables 4a through 4b and Figures 4a through 4d. For comparison to the average limits, duty cycle corrections were made as shown below. Any emission less than 1000 MHz and falling within the restricted bands of 15.205 were not adjusted for averaging and the limits of 15.209 were applied.

Both Radios were checked (one radio with patch antennas and the other with monopoles). The results from each radio were similar, but preliminary data showed that the Radio with the monopole antennas to be worse case. Therefore all results shown are for the radio configured with the monopole antennas (for a low and high channel).

Duty Cycle Correction During 100 msec:

The system is designed that the system hops at 35 msec per channel. The system will only be on one channel in any 100 msec period of time. During this 35 msec per channel, each transmitter is allotted only a small duration of this period (5 msec max).

Therefore the worse case duty cycle is:

Duty Cycle Correction = $20 \log (0.05) = -26.0 dB$

TABLE 5a

FIELD STRENGTH OF SPURIOUS EMISSIONS

Test Date:	July 23, 2000
UST Project:	00-0243
Customer:	VitalCom, Inc.
Model:	DR-10000

Peak Measurements (Low Channel)

FREQ. (MHz.)	TEST DATA (dBm) @ 1m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m
1.148	-66.9	28.4	887.2	5000
1.215	-65.9	28.7	1030.4	5000

Peak Measurements (High Channel)

FREQ. (MHz.)	TEST DATA (dBm) @ 1m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m
1.153	-66.9	28.4	887.2	5000
1.226	-64.1	28.7	1267.7	5000

* - To achieve better dynamic range, all measurements were made a 1 meter

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-66.9 – 9.54 + 28.4 + 107)/20) = 887.2 CONVERSION FROM dBm TO dBuV = 107 dB CONVERSION FROM 1m TO 3m = 20 log (1/3) = -9.54 dB

Test Results
Reviewed By:

Name: <u>Tim R. Johnson</u>

TABLE 5b

FIELD STRENGTH OF SPURIOUS EMISSIONS

Test Date:	July 23, 2000
UST Project:	00-0243
Customer:	VitalCom, Inc.
Model:	DR-10000

Average Measurements (Low Channel)

FREQ. (MHz.)	TEST DATA (dBm) @ 1m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	AVERAGE FCC LIMITS (uV/m) @ 3m
1.148	-92.9	28.4	44.5	500
1.215	-91.9	28.7	51.6	500

Average Measurements (High Channel)

FREQ. (MHz.)	TEST DATA (dBm) @ 1m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	AVERAGE FCC LIMITS (uV/m) @ 3m
1.153	-92.9	28.4	44.5	500
1.226	-90.1	28.7	63.5	500

* - To achieve better dynamic range, all measurements were made a 1 meter ** - Readings adjusted by duty cycle = 20 log (0.05) = -26.0 dB

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-92.9 – 9.54 + 28.4 + 107)/20) = 44.5 CONVERSION FROM dBm TO dBuV = 107 dB

Test Results Reviewed By: _____

Name: <u>Tim R. Johnson</u>

FIGURE 6a

FIGURE 6b

FIGURE 6c

FCC ID: BQI00DR-10000

FIGURE 6d

Radiated Digital Device Emissions (47 CFR 15.109a)

Radiated emissions were evaluated from 30 MHz to 6.5 GHz with the EUT set to a receive mode of operation. Measurements were made with the analyzer's bandwidth set to 120 kHz for measurements below 1 GHz and 1 MHz for measurements above greater than or equal to 1 GHz. Results of these emissions are shown in Tables 5a and 5b.

TABLE 5a

CLASS A RADIATED EMISSIONS

Test Date:	June 17, 2000
UST Project:	00-0243
Customer:	VitalCom, Inc.
Model:	DR-10000

Measurements 30 MHz – 1 GHz

FREQ. (MHz)	TEST DATA (dBm) @ 10m	ANTENNA FACTOR + CABLE ATTEN.	RESULTS (uV/m) @ 10m	LIMITS (uV/m) @ 10m	MARGIN BELOW LIMIT (dB)
240.0	-85.0	14.9	69.8	210.0	9.6
400.0	-87.0	19.8	97.7	210.0	6.6
420.0	-90.0	20.2	72.4	210.0	9.2
440.0	-90.0	20.7	76.9	210.0	8.7
450.0	-88.0	21.0	100.0	210.0	6.4
520.0	-88.0	22.8	123.3	210.0	4.6
540.0	-90.0	22.9	99.1	210.0	6.5

SAMPLE CALCULATIONS:

RESULTS uV/m @ 10m = Antilog ((-85.0 + 14.9 + 107)/20) = 69.8 CONVERSION FROM dBm TO dBuV = 107 dB

Test Results

Reviewed By: _____ Name: ____ Tim R. Johnson

TABLE 5b

CLASS A RADIATED EMISSIONS

Test Date:	June 19, 2000
UST Project:	00-0243
Customer:	VitalCom, Inc.
Model:	DR-10000

Peak Measurements >1 GHz

FREQ. (GHz)	TEST DATA (dBm) @ 3m	AMP GAIN (dB)	ANT. FACTOR (dB)	CABLE LOSS (dB)	RESULTS (uV/m) @ 10m	FCC LIMITS (uV/m) @ 10m	MARGIN BELOW LIMIT (dB)
1.000	-48.8	35.9	25.2	2.3	92.7	300.0	10.2
1.064	-53.1	35.8	25.4	2.4	58.7	300.0	14.1
1.620	-53.1	35.2	27.5	3.1	87.2	300.0	10.7
3.248	-55.0	34.8	32.6	4.7	160.7	300.0	5.4

SAMPLE CALCULATIONS:

RESULTS uV/m @ 10m = Antilog ((-48.8 - 35.9 + 25.2 + 2.3 -10.46 + 107)/20) = 92.7 CONVERSION FROM dBm TO dBuV = 107 dB CONVERSION FROM 3m to 10m = -10.46

Test Results
Reviewed By
Signature: _____ Name: _____ Tim R. Johnson

Power Line Conducted Emissions for Digital Device, Transmitter, and Receiver FCC Section 15.107 & 15.207

The conducted voltage measurements have been carried out in accordance with FCC Section 15.107, with a spectrum analyzer connected to a LISN and the EUT placed into an idle condition or a continuous mode of receive. The results are given in Table 6.

TABLE 6

CONDUCTED EMISSIONS DATA

CLASS B

Test Date:	June 12, 2000
UST Project:	00-0243
Customer:	VitalCom, Inc.
Model:	DR-10000

FREQ. (MHz)	TEST (d	DATA Bm)	RESULTS (uV)		FCC LIMITS	MARGIN BELOW	MARGIN BELOW
	PHASE	NEUTRAL	PHASE	NEUIRAL	(uV)	LIMII (dB) PHASE	LIMII (dB) NEUTRAL
0.93	-73.5	-72.4	47.3	53.7	250.0	14.5	13.3
4.0	-66.1	-74.4	110.9	42.7	250.0	7.1	15.4
8.2	-70.6	-75.4	66.1	38.0	250.0	11.6	16.4
11.2	-73.2	-75.6	49.0	37.2	250.0	14.2	16.5
27.9	-77.5	-78.8	29.9	25.7	250.0	18.4	19.8

SAMPLE CALCULATIONS:

RESULTS uV = Antilog ((-73.5 + 107)/20) = 47.3 CONVERSION FROM dBm TO dBuV = 107 dB

Tested Results Reviewed By Signature:

Signature: _____ Name: _____ Tim R. Johnson