
TEST REPORT

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090 Page (2) of (61)

REPORT REVISION HISTORY

Date	Revision	Page No
2018-07-06	Originally issued	-

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090 Page (3) of (61)

[Contents]

1. Client information4
2. Laboratory information5
3. Description of E.U.T6
3.1 Basic description6
3.2 General description6
3.3 Ambient Conditions7
3.4 Test frequency7
3.5 Test Voltage7
4. Summary of test results
4.1 Standards & results8
4.2 Measurement Uncertainty8
5. Test results9
5.1 Antenna Requirement9
5.2 Maximum Peak Output Power
5.3 Carrier Frequency Separation
5.4 20 dB Channel Bandwidth18
5.5 Number of Hopping Channels27
5.6 Time of Occupancy(Dwell Time)32
5.7 Spurious Emission, Band edge and Restricted bands44
6. Test equipment used for test61

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090 Page (4) of (61)

1. Client information

Applicant:	MOTREX CO., LTD.		
Address:	(Mullae-dong 3(sam)-ga, Ace High-Tech City B/D), 1-1103, 775,		
Audress.	Gyeongin-ro, Yeongdeungpo-gu, Seoul, Korea		
Telephone number:	+82 (70) 5070 2279		
Contact person:	Yunyoung Kwon / yykwon@motrex.co.kr		

Manufacturer:	MOTREX. CO., LTD.		
Address:	(Mullae-dong 3(sam)-ga, Ace High-Tech City B/D), 1-1103, 775,		
	Gyeongin-ro, Yeongdeungpo-gu, Seoul, Korea		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090 Page (5) of (61)

2. Laboratory information


<u>Address</u>

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea Telephone Number: +82 31 285 0894 Facsimile Number: +82 505 299 8311

FCC Site Designation No: KR0040, FCC Site Registration No: 687132 VCCI Registration No. : R-3327, G-198, C-3706, T-1849 Industry Canada Registration No. : 8035A KOLAS NO.: KT231

SITE MAP

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (6) of (61)

3. Description of E.U.T.

3.1 Basic description

Applicant	MOTREX CO., LTD.
Address of Applicant	(Mullae-dong 3(sam)-ga, Ace High-Tech City B/D), 1-1103, 775, Gyeongin-ro, Yeongdeungpo-gu, Seoul, Korea
Manufacturer	MOTREX CO., LTD.
Address of Manufacturer	(Mullae-dong 3(sam)-ga, Ace High-Tech City B/D), 1-1103, 775, Gyeongin-ro, Yeongdeungpo-gu, Seoul, Korea
Type of equipment	Smart display
Basic Model	MTXNC10BD

3.2 General description

Frequency Range	2 402 Młz ~ 2 480 Młz		
Type of Modulation	GFSK, π/4DQPSK, 8DPSK		
The number of channels	79 ch		
Type of Antenna	Chip Antenna		
Antenna Gain	0 dBi		
Transmit Power	2.74 dBm		
Operation temperature	21 ℃		
Power supply	DC 12.00 V		
Product SW/HW version	COMPACT-AV-73P-REV1.2 / BD-AV-LCD-REV1.0		
Radio SW/HW version	COMPACT-AV-73P-REV1.2 / BD-AV-LCD-REV1.0		
Test SW Version	Bluetooth tester V1.60		
RF power setting in TEST SW	/ Referred the measuring instrument from manufacturer		

Note : The above EUT information was declared by the manufacturer.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

3.3 Ambient Conditions

	Temperature [°C]	Relative humidity [%]
Ambient Conditions	21	65

3.4 Test frequency

	Frequency
Lowest frequency	2 402 M½
Middle frequency	2 441 M½
Highest frequency	2 480 M½

3.5 Test Voltage

Mode			Voltage
Nominal Voltag	ge		DC 12.00 V

- 15.247 Requirements for Bluetooth transmitter

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:
 - 1) This system is hopping pseudo-randomly.
 - 2) Each frequency is used equally on the average by each transmitter.
 - 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
 - 4) The receiver shifts frequencies in synchronization with the transmitted signals.
- 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
- 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (8) of (61)

4. Summary of test results

4.1 Standards & results

FCC Rule	Parameter	Report Section	Test Result	
15.203, 15.247(b)(4)	Antenna Requirement	5.1	С	
15.247(b)(1), (4)	Maximum Peak Output Power	5.2	С	
15.247(a)(1)	Carrier Frequency Separation	5.3	С	
15.247(a)(1)	20dB Channel Bandwidth	5.4	С	
-	Occupied Bandwidth	5.4	С	
15.247(a)(iii) 15.247(b)(1)	Number of Hopping Channel	5.5	С	
15.247(a) (iii)	Time of Occupancy(Dwell Time)	5.6	С	
15.247(d),15.205(a),15.209(a)	Spurious Emission, BandEdge, Restricted Band	5.7	С	
15.207(a)	Conducted Emissions	5.8	NA (Note ₂)	
Note _{1):} C = Complies, NC = Not Complies, NT = Not Tested, NA = Not Applicable				

Note_{2) :} This test is not applicable because the EUT falls into the automotive device and it's not to be Connected to the public utility(AC) power line.

- The general test methods used to test on this device are ANSI C63.10-2013

4.2 Measurement Uncertainty

Measurement Item	Expanded Uncertainty U = kUc (k = 2)	
Conducted RF power	1.44 dB	
Conducted Spurious Emissions	1.52 dB	
	30 Młz ~ 300 Młz:	+4.94 dB, -5.06 dB
	50 mmz ~ 500 mmz.	+4.93 dB, -5.05 dB
Radiated Spurious Emissions	300 MHz ~ 1 000 MHz:	+4.97 dB, -5.08 dB
		+4.84 dB, -4.96 dB
	1 GHz ~ 25 GHz:	+6.03 dB, -6.05 dB
Conducted Emissions	9 kHz ~ 150 kHz:	3.75 dB
	150 kHz ~ 30 MHz:	3.36 dB

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0090 Page (9) of (61)

5. Test results

5.1 Antenna Requirement

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to \$15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result

-Complied

The transmitter has permanently attached Chip Antenna (internal antenna) on PCB.

5.2 Maximum Peak Output Power

5.2.1 Regulation

According to §15.247(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to §15.247(b)(1), for frequency hopping systems operating in the 2 400-2 483.5 Mb band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725-5 850 Mb band: 1 watt. For all other frequency hopping systems in the 2 400-2 483.5 Mb band: 0.125 watts.

According to §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation.

The hopping shall be disabled for this test:

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090 Page (11) of (61)

- a) Use the following spectrum analyzer settings:
 - 1) Span: Approximately five times the 20 ${
 m dB}$ bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW ≥ RBW.
 - 4) Sweep: Auto.
 - 5) Detector function: Peak.
 - 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external attenuators and cables.
- e) A plot of the test results and setup description shall be included in the test report.

NOTE:

A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR18-SRF0090 Page (12) of (61)

KCTL

5.2.3 Test Result

- Complied

- GFSK

Channel	Frequency [ᢂᡌ]	Result [dBm]	Limit [dBm]	Margin [dB]	Average Power [dBm]
Lowest	2 402	0.74	20.97	20.23	-0.88
Middle	2 441	1.44	20.97	19.53	-0.18
Highest	2 480	2.14	20.97	18.83	0.29

- π/4DQPSK

Channel	Frequency [Mb]	Result [dBm]			Average Power [dBm]
Lowest	2 402	1.84	20.97	19.13	-1.48
Middle	2 441	2.24	20.97	18.73	-1.16
Highest	2 480	2.54	20.97	18.43	-0.92
- 8DPSK					

- 8DPSK

Channel	Frequency [Mtz]	Result [dBm]	Limit [dBm]	Margin [dB]	Average Power [dBm]
Lowest	2 402	1.14	20.97	19.83	-2.19
Middle	2 441	2.54	20.97	18.43	-0.93
Highest	2 480	2.74	20.97	18.23	-0.85

NOTE:

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.3 Carrier Frequency Separation

5.3.1 Regulation

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.3.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0090 Page (14) of (61)

5.3.3 Test Result

- Complied

- GFSK

Channel	Frequency [Mtz]	Carrier frequency separation [Mb]	Limit
Lowest	2 402	1.001	0.631
Middle	2 441	1.004	0.641
Highest	2 480	1.001	0.647

- 8DPSK

Channel	Frequency [₩z]	Carrier frequency separation [Mb]	Limit
Lowest	2 402	1.013	0.865
Middle	2 441	1.004	0.809
Highest	2 480	1.001	0.847

NOTE:

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0090 Page (15) of (61)

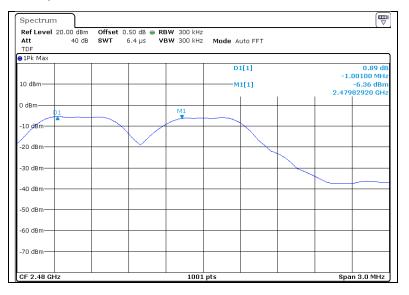
5.3.4 Test Plot

Figure 1. Plot of the Carrier Frequency Separation

- GFSK

Lowest Channel (2 402 Mz)

Middle Channel (2 441 Mb)


Ref Level 2	0.00 dBm	Offset (1.50 dB 👄 R	BW 300 kHz				
Att TDF	40 dB	SWT	6.4 µs 🛛 🗸	' BW 300 kHz	Mode Au	uto FFT		
1Pk Max								
					D1	[1]		-0.02 d 00400 MH
10 dBm					M:	L[1]		-6.86 dBi 82920 GF
D dBm				M1			D1	
-10 dBm				-			-	
						\searrow		
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (16) of (61)

Highest Channel (2 480 Mz)

- 8DPSK

Lowest Channel (2 402 Mbz)

Spectrum										
Ref Level 2		Offset	0.50 dB 👄	RBW	300 kHz					
Att	40 dB	SWT	6.4 µs	VBW	300 kHz	Mode	Auto F	FT		
TDF										
⊖1Pk Max										
						l l	M1[1]		0.40	-4.06 dBr
10 dBm							D1[1]		2.40	1300100 GH -0.29 d
10 00111							01[1]			1.01300 MH
0 dBm					DI				M1	_
					2		+	~		
-10 dBm							-		-	+
-20 dBm							-			
-30 dBm				_			_		_	
_										
-40 dBm				_			_		_	
-50 dBm										
-60 dBm										
oo ubiii										
70 40										
-70 dBm										
CF 2.402 G	17				1001	nte			- Cr	an 3.0 MHz

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (17) of (61)

Middle Channel (2 441 Mz)

Spectrum			
Ref Level 20.00 d8 Att 40 TDF	 RBW 300 kHz VBW 300 kHz 	Mode Auto FFT	
D1Pk Max		D1[1]	-0.11 dB 1.00400 MHz
10 dBm		M1[1]	-7.62 dBm 2.43998400 GHz
0 dBmM1	Dl		
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
CF 2.441 GHz	1001 pt:	s	Span 3.0 MHz

Highest Channel (2 480 Mz)

Spectrum										7
Ref Level			0.50 dB 👄							
Att TDF	40 dB	SWT	6.4 µs	VBW 30)0 kHz	Mode A	uto FFT			
10F 1Pk Max										
JIPK Max				_	_	Di				-0.37 c
						0.	(1)		1.	-0.37 t 00100 MF
10 dBm						M	1[1]			-6.14 dB
									2.478	99600 GH
0 dBm										
	M1				DI					
-10 dBm-					-					
-10 00111										
-20 dBm								\mathbf{i}		
-20 ubiii										
-30 dBm								,		
-40 dBm										
-50 dBm										
-60 dBm			-							
-70 dBm—										
CF 2.48 GH	-				1001	- 4 -		1	0	n 3.0 MHz

5.4 20 dB Channel Bandwidth

5.4.1 Regulation

According to \$15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.4.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

The occupied bandwidth is measured as the width of the spectral envelope of the modulated signal, at an amplitude level reduced from a reference value by a specified ratio (or in decibels, a specified number of dB down from the reference value). Typical ratios, expressed in dB, are -6 dB, -20 dB, and -26 dB, corresponding to 6 dB BW, 20 dB BW, and 26 dB BW, respectively. In this subclause, the ratio is designated by "-xx dB." The reference value is either the level of the unmodulated carrier or the highest level of the spectral envelope of the modulated signal, as stated by the applicable requirement. Some requirements might specify a specific maximum or minimum value for the "-xx dB" bandwidth; other requirements might specify that the "-xx dB" bandwidth be entirely contained within the authorized or designated frequency band.

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and Five times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 % to 5 % of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Steps a) through c) might require iteration to adjust within the specified tolerances.
- e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the −20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
- f) Set detection mode to peak and trace mode to max hold.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090 Page (19) of (61)

- g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
- h) Determine the "-xx dB down amplitude" using [(reference value) xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.
- i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).
- j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.
- k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0090 Page (20) of (61) KCTL

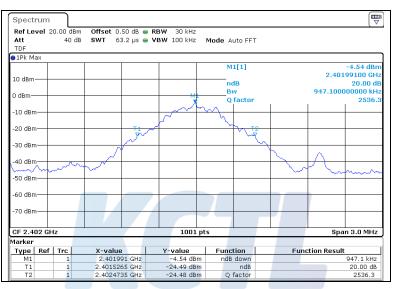
5.4.3 Test Result

- Complied

Mode	Channel	Frequency [Mtz]	20 dB Channel Bandwidth [Mb]	Occupied Bandwidth (99 % BW) [배拉]
	Lowest	2 402	0.947	0.908
GFSK	Middle	2 441	0.962	0.893
	Highest	2 480	0.971	0.890
	Lowest	2 402	1.298	1.217
8DPSK	Middle	2 441	1.214	1.205
	Highest	2 480	1.271	1.208

NOTE:

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.



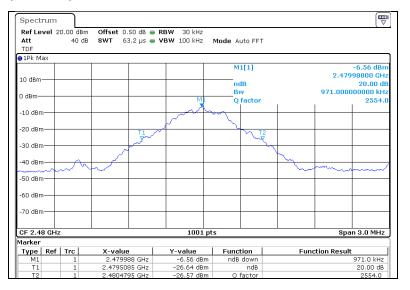
5.4.4 Test Plot

Figure 2. Plot of the 20 dB Channel Bandwidth & Occupied Bandwidth (Conducted)

- GFSK_20 dB Channel Bandwidth

Lowest Channel (2 402 Mz)

Middle Channel (2 441 Mz)


Spectr	um							E □
Ref Lev	el 20	.00 dBm	Offset 0.50 dB	BRBW 30 kHz				
Att TDF		40 dB	SWT 63.2 μs	● VBW 100 kHz	Mode Auto FF1			
∋1Pk Ma	к							
					M1[1]			.45 dBn
10 dBm-							2.44098	
10 0000					ndB			0.00 dE
0 dBm—					Bw		962.000000	
				M	Q factor	1	т т	2537.3
-10 dBm	_				2			
				\sim				
-20 dBm				~~~~				
			T1			7		
-30 dBm	_		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			h		
-40 dBm						1		
-40 aBM							m	
-50 dBm	~~~~	~	~					~~~~~
00 00								
-60 dBm								
-70 dBm								
CF 2.44	1 GHz	2	1	1001	pts		Span 3	.0 MHz
Marker								
Туре	Ref	Trc	X-value	Y-value	Function	Fun	ction Result	
M1		1	2.440982 GHz	-8.45 dBm				2.0 kHz
T1		1	2.4405205 GHz	-28.69 dBm				0.00 dB
T2		1	2.4414825 GHz	-28.42 dBm	n Q factor			2537.3

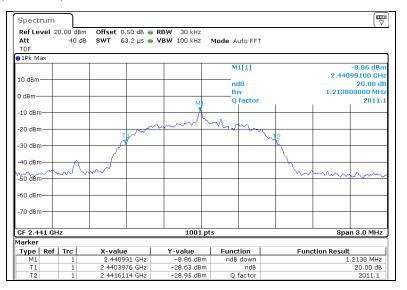
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (22) of (61)

Highest Channel (2 480 Mz)

- 8DPSK_20 dB Channel Bandwidth

Lowest Channel (2 402 Mz)

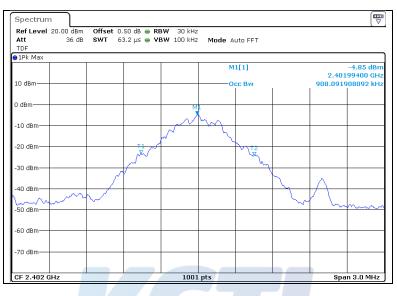


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (23) of (61)

Middle Channel (2 441 Mz)

Highest Channel (2 480 Mz)

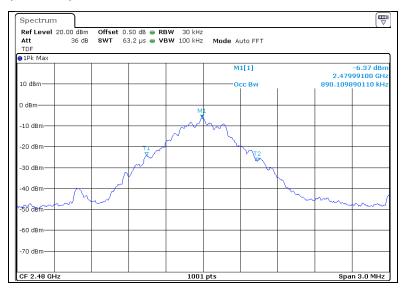

Spectrum						
Ref Level 2 Att TDF	20.00 dBm 40 dB			Mode Auto FFT		
●1Pk Max						
10 dBm				M1[1]		-7.32 dBn 2.47999400 GH 20.00 dB
0 dBm			ML	Bw Q factor	1	1.270700000 MH: 1951.(
-10 dBm				-A.m.		
-20 dBm		TJ			12	
-30 dBm						
-40 dBm 	\sim				h	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60 dBm						
-70 dBm						
CF 2.48 GH	z	1	1001 pt	s		Span 3.0 MHz
Marker	1 = 1					
Type Ref M1	Trc 1	2.479994 GHz	Y-value -7.32 dBm	Function ndB down	Fund	tion Result 1.2707 MHz
T1	1	2.4793437 GHz	-27.32 dBm	nub uown ndB		20.00 dB
T2	1	2.4806144 GHz	-27.33 dBm	Q factor		1951.6

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090 Page (24) of (61)

- GFSK_Occupied Bandwidth

Lowest Channel (2 402 Mtz)

Middle Channel (2 441 Mtz)



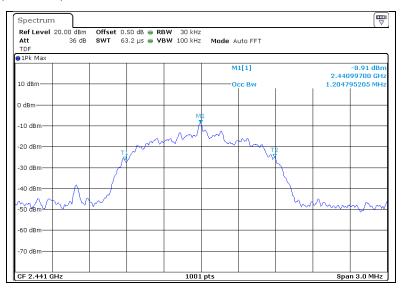
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (25) of (61)

Highest Channel (2 480 Mz)

- 8DPSK_Occupied Bandwidth

Lowest Channel (2 402 Mz)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (26) of (61)

Middle Channel (2 441 Mz)

Highest Channel (2 480 Mz)

Ref Level			0.50 dB 🧉							
Att TDF	36 dB	SWT	63.2 µs e	VBW	100 kHz	Mode A	uto FFT			
1Pk Max										
						M	1[1]			-6.80 dBn
10 dBm						0	cc Bw			99700 GH: 92208 MH:
									112011	
D dBm			_	_						
					M	1				
-10 dBm					\wedge	4 A				
			mor	\sim	10-0	- hr	m			
-20 dBm			T T				4			
-30 dBm								\mathbf{n}		
oo abiii										
-40 dBm	- A-			_						
m	~~ W	\sim						~~~	m	
-50 dBm				-						~~~
60 ID										
-60 dBm										
-70 dBm										

5.5 Number of Hopping Channels

5.5.1 Regulation

According to §15.247(a)(1)(iii), Frequency hopping systems in the 2 400-2 483.5 Mb band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. According to §15.247(b)(1), For frequency hopping systems operating in the 2 400-2 483.5 Mb band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725-5 850 Mb band: 1 watt. For all other frequency hopping systems in the 2 400-2 483.5 Mb band: 0.125 watts.

5.5.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30 % of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

5.5.3 Test Result

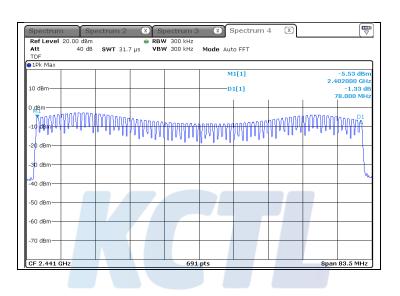
- Complied

Mode	Frequency [Mb]	Number of hopping channel	Limit
GFSK	2 402 – 2 480	79	≥15
8DPSK	2 402 – 2 480	79	≥15

NOTE:

- 1. We took the insertion loss of the cable loss into consideration within the measuring instrument.
- 2. Measurement is made with EUT operating in hopping mode between 79 channels providing a worse case scenario as compared to AFH mode hopping between 20 channels.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr



5.5.4 Test Plot

Figure 3. Plot of the Number of Hopping Channels (Conducted)

Non-AFH Mode

- GFSK

- π/4DQPSK

Spectrum	Spect	rum 2	× s	pectrum 3	x s	pectrum -	4 🛛		
Ref Level 20.0 Att TDF		Offset 0. WT 31		BW 300 kHz BW 300 kHz	Mode A	uto FFT			
1Pk Max						1[1] 1[1]		2.4	-5.22 dBn 02000 GH: -1.71 dE /8.000 MH:
0 dBm X M M -10 dBm	mu	hrun	MANAN	Janda and the loss	uwww	Marray	www	www	Mula
-20 dBm									
-30 dBm	_								
V -40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.441 GHz				691					83.5 MHz

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

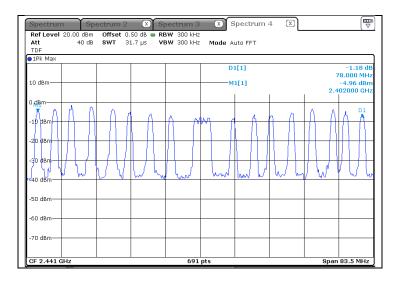
Page (30) of (61)

- 8DPSK

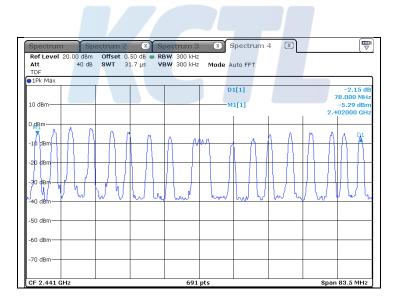
1Pk Max						1[1]			-0.86 dB 8.000 MHz -5.96 dBm 02000 GHz
10 dBm	www	mm	mmy	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	wwww	man	www	www	MWVIA
20 dBm									
30 dBm									-+
40 dBm									
50 dBm									
60 dBm									
70 dBm									

AFH Mode

- GFSK


Spectrum	Sp	ectrum	2 🗶 S	pectrum 3	Spect	rum 4 🗵		[₩
Ref Level 20 Att TDF	.00 dBm 40 dB	Offset SWT	0.50 dB 👄 RI 31.7 μs 🛛 V	3W 300 kH2 3W 300 kH2		т		
10 dBm					D1[1] M1[1]		-1.54 78.000 -3.90 c 2.402000	MH: IBn
0 ki8m -10 d8m -20 d8m -30 d8m -40 d8m			- Mulu					
-50 dBm								
-70 dBm								

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090



Page (31) of (61)

- π/4DQPSK

- 8DPSK

5.6 Time of Occupancy(Dwell Time)

5.6.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2 400-2 483.5 Mb band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.6.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0090 Page (33) of (61)

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR18-SRF0090 Page (34) of (61)

KCTL

5.6.3 Test Result

- Complied

- Non-AFH

Packet type	Frequency [Mt/2]	Reading [ms]	Hopping rate [hop/s]	Number of Channels	Result [s]	Limit [s]
DH1	2 441	0.394	800.000	79	0.126	0.400
DH3	2 441	1.647	400.000	79	0.264	0.400
DH5	2 441	2.903	266.667	79	0.310	0.400
2-DH1	2 441	0.410	800.000	79	0.131	0.400
2-DH3	2 441	1.647	400.000	79	0.264	0.400
2-DH5	2 441	2.903	266.667	79	0.310	0.400
3-DH1	2 441	0.410	800.000	79	0.131	0.400
3-DH3	2 441	1.647	400.000	79	0.264	0.400
3-DH5	2 441	2.903	266.667	79	0.310	0.400
AFH						

- AFH

Packet type	Frequency [Mtz]	Reading [ms]	Hopping rate [hop/s]	Number of Channels	Result [s]	Limit [s]
DH1	2 441	0.394	400.000	20	0.063	0.400
DH3	2 441	1.652	200.000	20	0.132	0.400
DH5	2 441	2.905	133.333	20	0.155	0.400
2-DH1	2 441	0.408	400.000	20	0.065	0.400
2-DH3	2 441	1.657	200.000	20	0.133	0.400
2-DH5	2 441	2.905	133.333	20	0.155	0.400
3-DH1	2 441	0.408	400.000	20	0.065	0.400
3-DH3	2 441	1.657	200.000	20	0.133	0.400
3-DH5	2 441	2.905	133.333	20	0.155	0.400

NOTE 1. Non AFH

Result = Reading x (Hopping rate / Number of channels) x Test Period Hopping rate = 1600/time slot

Test period = 0.4 [seconds / channel] × 79 [channel] = 31.6 [seconds]

NOTE 2. AFH

Result = Reading x (Hopping rate / Number of channels) x Test Period Hopping rate = 800/time slot

Test period = 0.4 [seconds / channel] × 20 [channel] = 8 [seconds]

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090 Page (35) of (61)

5.6.4 Test Plot

Figure 4. Plot of the Time of Occupancy (Conducted)

- GFSK_Non AFH mode

DH1 (2 441 Mb)

Ref Level 10.00 Att	30 dB e SWT				
TRG: VID TDF					
1Pk Max					
			М	1[1]	-7.64 di
0 dBm			n	1[1]	600 -0.34
M1					D1 394.000
	44.000.40	 			
TIRG .	-11.000 dBm				
-20 dBm					
-30 dBm					
\sim $ $					
-40 dBm					In the second
-50 dBm					
-60 dBm					
-70 dBm			_		
-80 dBm					
CF 2.441 GHz		1001	nts		50.0 µs

DH3 (2 441 Mz)

Spectrum		🗴 Spectr		Spectrum 4	X	
	OdBm Offset C 30 dB = SWT					
TRG: VID TDF						
1Pk Max						
				41[1]		-7.51 dB -500 r
0 dBm				01[1]		-0.58 c
M1				1 1	I	1.64700 n
-10 dBm TRG	-11.000 dBm					4
-20 dBm						
-30 dBm						
<u>k</u>						
-40 dBm						
ndudd -						MAN .
-50 dBm						
-60 dBm						
-70 dBm						
-70 ubiii						
-80 dBm						
CF 2.441 GHz			1001 pts			190.0 µs,

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (36) of (61)

DH5 (2 441 Mz)

TRG: VID TDF							
1Pk Max				м	1[1]	-7	.70 dBr
						· · · · · ·	1.99 µ
D dBm				D	1[1]		0.25 d
M1			 		h	 2.9	1273 m
-10 dBm	RG -12.000	dBm					
-20 dBm							
20 00.0							
-30 dBm						 	
-40 dBm ——						 	
population							Yullow
-50 dBm							lh
-60 dBm							
-00 06/11							
-70 dBm							
-80 dBm							

- π/4DQPSK_Non AFH mode

2-DH1 (2 441 Mz)

		fset 0.50 dB 🖷 VT 500 µs						
TRG: VID TDF								
●1Pk Max								
				D	1[1]			3.34 0
0 dBm				M	1[1]			ا 10.000 2.45 dB
o abiii								-1.400
-10 dBm_M				alla centre annes	an at term to the	Altern Col. at the	hand	1
	RG -11.000 dBm		and a dd	Astat Allisullin a	interliente ne ist i des	illi fin ikon olosidi ku		
-20 dBm								1
-20 00111								
-30 dBm								1
-30 ubiii								
1								
-40\d8fft								hense
-50 dBm								
-60 dBm								
-70 dBm								
-80 dBm		1	1	1		1		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (37) of (61)

2-DH3 (2 441 Mz)

Att		● SWT	1.9 ms	VBW 1 MHz				
TRG: VID TDF								
0 dBm						1[1] 1[1]		-7.55 dBn -500 n: -1.48 dE 1.64700 m:
	RG -11.000	dBm	n an	/*** Udle A4747444	loon frontes (and t		ang strategy contr	
-20 dBm								
-30 dBm								
-40 dBm								haup
-50 dBm								
-60 dBm								
-70 dBm								
-80 dBm								

2-DH5 (2 441 Mb)

Spectrum	Spectrum		Spectrum 3	Spectrum	14 🗶	
	0 dBm Offse		RBW 1 MHz			
	30 dB 👄 SWT	3.4 ms	VBW 1 MHz			
TRG: VID TDF		_				
1Pk Max			_			
				M1[1]		-7.84 dBr 1.99 μ
0 dBm				D1[1]		-0.96 d
M1				Diff.		2.90273 m
-10 dBm		manyan			yel generation	D1
TRG	-12.000 dBm					
-20 dBm						
-30 dBm						
-40 dBm						
haland						Vu my
-50 dBm						
-60 dBm						
-70 dBm						
-80 dBm						
00 40.0						

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090 Page (38) of (61) KCTL

- 8DPSK_Non AFH mode

3-DH1 (2 441 Mz)

Ref Level 10.0			-	RBW 1 MHz					
	30 dB (SWT	500 µs	VBW 1 MHz					
TRG: VID TDF									
1Pk Max									
					D	1[1]			3.19 (
0 dBm									410.000 12.33 dB
U UBIII					IVI	1[1]			-1.400
				30 address	ي 0 ، المنتقد ال	Long waters	a sum	Manage and	D1
-10 dBm MTRG	-11.000	dBm			Malla Mala	All how here	all to the state of the state o	anter ante	1
-20 dBm 🕇 👘									
-30 dBm 🕂 👘				-					
N									
-40 CBm									-
-50 dBm									
-60 dBm									
oo abiii									
-70 dBm									
-/ 0 ubiii									
00.10									
-80 dBm									

3-DH3 (2 441 Mb)

Spectrun	Sp	ectrum 2	×s	pectrum 3	XS	pectrum 4	4 X)		
Ref Level	10.00 dBm	Offset (0.50 dB 🗕 I	RBW 1 MHz					
Att		e swt	1.9 ms	/BW 1 MHz					
TRG: VID T	DF								
⊖1Pk Max	1								
					M	1[1]			-7.78 dBi
0 dBm					D	I[1]			-500 r -2.12 d
M1					U.	.[1]		1	64700 m
×		and classic decides cards	and and burners of a	والمعاملة والمعاد	and the other and	Dial a contailead	and all the states and states		
-10 dBm	TRG -11.00	0 dBm	aradi falitate serie	al canadalitatiya	and the second	A nur standet er	navia and a second of the second	the set is the second second	
-20 dBm									
-30 dBm									
- A I -									
-40 dBm									
JAMP .									huy.
-50 dBm									0.10
-60 dBm									
-70 dBm									
-70 0011									
-80 dBm									
-80 uBM									
CF 2.441 (3Hz		1	1001	nts				190.0 µs/

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (39) of (61)

3-DH5 (2 441 Mz)

Att		SWT	3.4 ms 🛛 🗸	BW 1 MHz				
TRG: VID TI	DF							
an k man					M	1[1]		-7.94 dBn
								1.99 µs
0 dBm					D	1[1]		-1.22 dE
M1	~		A state of the Manua		the second second second second		 2 mmmmmmm	.90273 ms
-10 dBm	TRG -12.000) dBm		(III))))))))))))))))))))))))))))))))))	and a second second	and a start of the	- Handrader and	<u>~~</u>
-20 dBm								
-30 dBm								-
1								
-40 dBm—								_
yuun								lotyphicon
-50 dBm								
-60 dBm								
-70 dBm								
-80 dBm								
00 0011								
			1					

- GFSK_AFH mode

DH1 (2 441 Mz)

30 dB 👄 SWT			
	500 μs VBW 1 Ν	1H2	
		•	•
		M1[1]	-7.37 dB
			600
		D1[1]	-0.09
			D1 394.000
-11.000 dBm			
			Underson
	+		
	-11.000 dBm	-11.000 dBm	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (40) of (61)

DH3 (2 441 Mz)

TRG: VID TDF	SWT 1.9 ms	VBW 1 MHz		
1Pk Max				
			D1[1]	-0.16 dl 1.65160 m
) dBm		r	M1[1]	-7.33 dBn 606.70 μ
10 dBm TRG -11.000	dBm	· ···· · · · · · · · · · · · · · · · ·		
20 dBm				
30 dBm				
40 dBm				witten
50 dBm				
60 dBm				
70 dBm				
80 dBm				

DH5 (2 441 Mz)

Spectrum	Spectrum	2 🕱 S	pectrum 3	🗶 Sb	<mark>ectr</mark> um 4	X		
Ref Level 10.			RBW 1 MHz					
Att	30 dB 👄 SWT	3.4 ms	BW 1 MHz					
TRG: VID TDF					_			
JIPK Max				D1[11			-0.15 dB
				DI	11		2	-0.15 uc
0 dBm				M1[1]			-6.90 dBm
M1					-			685.80 µs
-10 dBm	-11.000 dBm					· ·		
IIKO	-11.000 0000							
-20 dBm								
-30 dBm								
-40 dBm								
Wind/								lochor
-50 dBm								00 .
SO GDIT								
-60 dBm								
-00 0011								
-70 dBm								
-/0 0811								
-80 dBm								
-50 UBII								
		1						
CF 2.441 GHz			691 p	ts				340.0 µs/

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (41) of (61)

- π/4DQPSK_AFH mode

2-DH1 (2 441 Mz)

Ref Level 10.0	Spectrum	: 0.50 dB 👄	RBW 1 MHz		Spectrum 4			[9
Att	30 dB 😑 SWT	500 µs	VBW 1 MHz					
TRG: VID TDF								
1Pk Max								
				D	1[1]			-1.30 (
0 dBm				M	1[1]			408.000 -7.40 dB
MI								600
10 d0m			- Mart Mart	an and an and a state of the second sec	และเอาปอน	HANNING THE PARTY	UN MUMP	D1
-10 dBm TRG	-11.000 dBm		prove or as real	dalla diseria.				1
-20 dBm								1
-20 ubm								
-30 dBm								
-30 dBm								
hand								herein
-40 dBin								
-50 dBm								
-60 dBm								
-70 dBm								
-80 dBm								
CF 2.441 GHz			1001	nts			1	50.0 µs.

2-DH3 (2 441 Mz)

Spectrun	Sp	ectrum 2	X SI	bectrum 3	× s	pectrum 4	1 X		2
Ref Level	10.00 dBm	Offset 0).50 dB 🗕 R	BW 1 MHz					
Att		SWT	1.9 ms 🛛 🗸	BW 1 MHz					
TRG: VID T	DF								
⊖1Pk Max									
					D	L[1]			-1.01 c 65730 n
0 dBm					M	1[1]			7.74 dB
M1						-1-1			606.70
-10 dBm	i lav-vir	adr's virtual with	-hdufter	᠃ᡛ᠂ᡝᢇ᠋᠃ᡎ᠈ᡰᡰ᠇ᡀ		-	<mark>Խարս</mark> ատի		mn ¹
10 001	TRG -11.00	0 dBm							
-20 dBm									
-20 ubi i									
-30 dBm									
-30 ubiii-									
M									
-40 dBm									Int.
ofter here.									եսեթ
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm—									
CF 2.441 (1001					90.0 µs/

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (42) of (61)

2-DH5 (2 441 Mz)

Att		🖷 SWT	3.4 ms 🐴	/BW 1 MHz				
TRG: VID TDI 1Pk Max	-							
IFK Max					D	1[1]		-0.54 dE
0 dBm					M	1[1]	2	.90501 m -7.43 dBn 605.80 μ
10 dBm	RG -11.000) dBm	mophino		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		 	
-20 dBm								
-30 dBm								
40 dβm								
-50 dBm								
-60 dBm								
-70 dBm								
-80 dBm								

- 8DPSK_AFH mode

3-DH1 (2 441 Mz)

	00 dBm Offs 30 dB 🔵 SWT		BW 1 MHz					
TRG: VID TDF		000 μυ						
●1Pk Max								
				D	1[1]		4	-1.10 d 08.000 μ
0 dBm				м	1[1]			7.45 dBi
ML						I		600 r
-10 dBm-TRG	-11.000 dBm	~ ~ ~ ~ ~	- y-wide-yes	<u>Marina Jahor</u>	Munulls	and we have	htta and a state of the state o	
-20 dBm								1
-30 dBm								
-40 dBm								in any other
-40 0811								
-50 dBm								
-60 dBm								
-70 dBm								
-80 dBm								

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (43) of (61)

3-DH3 (2 441 Mz)

Att	30 dB 😑 SWT	1.9 ms	VBW 1 MHz					
TRG: VID TDF 1Pk Max								
				D	1[1]			-0.74 d
							1	.65730 m
D dBm M1				M	1[1]			-7.76 dBr 606.70 μ
-10 dBm	-11.000 dBm	-ny-maylrane-m	manus work	un hand	monoupper	whenter	mummillion	
TRO	-11.000 dBm							
-20 dBm								
-30 dBm								
40 dBm								الدهد ل
-50 dBm								blymby
-50 abiii								
-60 dBm			_					
-70 dBm			-			-		
-80 dBm								

3-DH5 (2 441 Mz)

Spectrum	Spectrum	2 🗶 5	pectrum 3	×s	pectrum ·	4 X		
Ref Level 10		et 0.50 dB 😑						
Att	30 dB 👄 SWT	3.4 ms	VBW 1 MHz					
TRG: VID TDF								
JIFK MAA				D1	[1]			-0.38 d
							2	.90501 m
0 dBm				M	1[1]			-7.48 dBr
M1								_ 605.80 μ D1
	G -11.000 dBm	mump	venterer		www.uph	entrandrand.	har	www.
-20 dBm								
-30 dBm								
-40 dBm								
why?								yauge w
-50 dBm								
-60 dBm								
-70 dBm								
-80 dBm								
00 00.0								
CF 2.441 GHz			691 p	ots				340.0 µs/

5.7 Spurious Emission, Band edge and Restricted bands

5.7.1 Regulation

According to §15.247(d), in any 100 kt/z bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kt/z bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to §15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall notexceed the field strength levels specified in the following table:

Frequency (Mb)	Field strength (μ V/m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 -1.705	24 000/F(kHz)	30
1.705 – 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 Mb, 76–88 Mb, 174–216 Mb or 470–806 Mb. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§15.231 and 15.241.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0090 Page (45) of (61)

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
Mb 0.009 - 0.110 0.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475	Mtz 16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9	MHz 399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2690 - 2900 3260 - 3267	
12.57675 - 12.57725 13.36 - 13.41	240 - 285 322 - 335.4	3600 - 4400	Above 38.6

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 Mb, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

5.7.2 Measurement Procedure

The method of measurement used to test this FHSS device is ANSI C63.10-2013.

1) Band-edge Compliance of RF Conducted Emissions

These procedures are applicable for determining compliance at authorized-band band-edges where the requirements are expressed as a value relative to the in-band signal level. Procedures for determining compliance with field strength limits at or close to the band-edges are given in 6.10.6 (see also Table A.2).

Band-edge tests are typically performed as a conducted test but may be performed as Radiated measurements on a test site meeting the specifications in 5.2, at the measurement distances specified in 5.3. The instrumentation shall meet the requirements in 4.1.1 using the bandwidths and detectors Specified in 4.1.4.2.

When performing radiated measurements, the measurement antenna(s) shall meet the specifications in 4.3. The EUT shall be connected to an antenna and operated at the highest power settings following procedures in 6.3.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

For other than frequency-hopping devices, this test sequence shall be performed once. For devices that support frequency hopping, this test sequence shall be performed twice: once with the hopping function turned OFF and then repeated with the hopping function turned ON. The purpose of the test with the hopping function turned on is to confirm that the RF power remains OFF while the device is changing frequencies, and that the oscillator stabilizes at the new frequency before RF power is turned back ON.Overshoot of any oscillator, including phase-lock-loop stabilized oscillators, can cause the device to be temporarily tuned to frequencies outside the authorized band, and it is important that no transmissions occur during such temporary periods. Particular attention to the hopping sequence requirements specified below is needed in the case of adaptive frequency-hopping devices:

- a) Connect the EMI receiver or spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described in step e) (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer).
- b) Set the EUT to the lowest frequency channel (for the hopping on test, the hopping sequence shall include the lowest frequency channel).
- c) Set the EUT to operate at maximum output power and 100 % duty cycle, or equivalent "normal mode of operation" as specified in 6.10.3.
- d) If using the radiated method, then use the applicable procedure(s) of 6.4, 6.5, or 6.6, and orient the EUT and measurement antenna positions to produce the highest emission level.
- e) Perform the test as follows:
 - 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation.
 - 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
 - 3) Attenuation: Auto (at least 10 dB preferred).
 - 4) Sweep time: Coupled.
 - 5) Resolution bandwidth: 100 kHz.
 - 6) Video bandwidth: 300 kHz.
 - 7) Detector: Peak.
 - 8) Trace: Max hold.

- f) Allow the trace to stabilize. For the test with the hopping function turned ON, this can take several minutes to achieve a reasonable probability of intercepting any emissions due to oscillator overshoot.
- g) Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the markerdelta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- h) Repeat step c) through step e) for every applicable modulation.
- i) Set the EUT to the highest frequency channel (for the hopping on test, the hopping sequence shall include the highest frequency channel) and repeat step c) through step d).
- j) The band-edge measurement shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0090 Page (48) of (61)

2) Spurious RF Conducted Emissions:

Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the Maximum transmit powers.

Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 Mb to 10 times the operating frequency in Gb, with a resolution bandwidth of 100 kb, video bandwidth of 300 kb, and a coupled sweep time with a peak detector. The band 30 Mb to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

3) Spurious Radiated Emissions:

- 1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an semi-anechoic chamber at a distance of 3 meters.
- 2. The EUT was placed on the top of the 0.8-meter height, 1 × 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 to 1 000 MHz using the Bi-Log antenna, and from 1 000 MHz to 26 500 MHz using the horn antenna.
- 4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4 × 4 meter in an semi-anechoic chamber. The EUT was tested at a distance 3 meters.
- 5. Each frequency found during preliminary measurements was re-examined and investigated. The testreceiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- 6. The 0.8m height is for below 1 G testing, and 1.5m is for above 1G testing.

The procedure for unwanted emissions measurements below 1 000 ${\rm Mb}$ is as follows:

- a) Follow the requirements in 12.7.4.
- b) Compliance shall be determined using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0090 Page (49) of (61)

- Procedure for peak unwanted emissions measurements above 1 000 Mb

The procedure for peak unwanted emissions measurements above 1 000 Mb is as follows:

- a) Follow the requirements in 12.7.4.
- b) Peak emission levels are measured by setting the instrument as follows:
 - 1) RBW = 1 ₩±.
 - 2) VBW ≥ [3 ₩ RBW].
 - 3) Detector = peak.
 - 4) Sweep time = auto.
 - 5) Trace mode = max hold.
 - 6) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, then the time required for the trace to stabilize will increase by a factor of approximately 1 / D, where *D* is the duty cycle. For example, at 50 % duty cycle, the measurement time will increase by a factor of two, relative to measurement time for continuous transmission.

- Procedures for average unwanted emissions measurements above 1 000 Mb

Method VB-A is averaging using reduced video bandwidth. The procedure for this method is as follows:

- a) RBW = 1 ₩₺.
- b) Video bandwidth:
 - 1) If the EUT is configured to transmit with D \geq 98 %, then set VBW \leq RBW / 100
 - (i.e., 10 kHz), but not less than 10 Hz.

2) If the EUT D is < 98%, then set VBW \ge 1 / T, where T is defined in item a1) of 12.2. c) Video bandwidth mode or display mode:

- 1) The instrument shall be set with video filtering applied in the power domain. Typically, this requires setting the detector mode to RMS (power averaging) and setting the average-VBW type to power (rms).
- 2) As an alternative, the instrument may be set to linear detector mode. Video filtering shall be applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode to accomplish this. Others have a setting for average-VBW type, which can be set to "voltage" regardless of the display mode.
- d) Detector = peak.
- e) Sweep time = auto.
- f) Trace mode = max hold.
- g) Allow max hold to run for at least 50 traces if the transmitted signal is continuous or has at least 98% duty cycle. For lower duty cycles, increase the minimum number of traces by a factor of 1/x, where D is the duty cycle. For example, use at least 200 traces if the duty cycle is 25%. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 50 traces should be averaged.)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

5.7.3 Test Result

- Complied

- 1. Conducted Spurious Emissions was shown in figure 3. Note: We took the insertion loss of the cable into consideration within the measuring instrument.
- 2. Measured value of the Field strength of spurious Emissions (Radiated)
- 3. It tested x,y and z 3 axis each, mentioned only worst case data at this report.

- Below 1 🕀 data (Worst-case: 8DPSK)

Highest Channel (2 480 Mb)

Frequency	Receiver Bandwidth	Pol. [V/H]	Reading	Cable Loss [dB]	Amp Gain [dB]	Antenna Factor [dB]	Factor [dB]	Result [dB(μ <i>N</i> /m)]	Limit [dB(<i>u</i> N/m)]	Margin [dB]	
Quasi-Peak					[ub]	[ub]	[ub]			[ub]	
				Not d	etected						
Quasi-Peak DATA. Emissions below 1 🕮											
46.85	120	V	39.40	1.40	-31.51	15.51	-14.60	24.80	40.00	15.20	
56.19	120	V	37.10	1.55	-29.00	12.95	-14.50	22.60	40.00	17.40	
89.53	120	V	26.20	2.00	-36.42	14.72	-19.70	6.50	43.50	37.00	
136.22	120	V	28.50	2.52	-34.31	17.49	-14.30	14.20	43.50	29.30	
344.04	120	Н	30.90	4.18	-34.58	20.30	-10.10	20.80	46.00	25.20	
494.99	120	V	47.40	5.11	-34.23	23.22	-5.90	41.50	46.00	4.50	

NOTE 1. Factor = Cable loss + Amp gain + Antenna factor

NOTE 2. Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site.

Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

- NOTE 3. Duty Cycle Correction Factor Calculation
 - Worst case : AFH mode
 - Channel hop rate = 800 hops/second
 - Hopping rate for DH5 mode = 133.33 hops/second
 - Time per channel hop = 1 / 133.33 hops/second = 7.50 ms
 - Time to cycle through all channels = 7.50 x 20 channels(AFH mode) = 150 ms
 - Number of times transmitter hits on one channel = 100 ms /
 - Time to cycle through all channels [ms] = 100 ms / 150 ms = 1 time
 - Worst case Dwell time = 7.5 ms
 - Duty Cycle Correction Factor = 20log(7.5 ms/100 ms) = -22.5 dB

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR18-SRF0090

Page (51) of (61)

- Above 1 🕀 data

GFSK_Lowest channel (2 402 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
Peak DATA	Emission	s above	1 GHz								
2 251.56 ¹⁾	1 000	Н	73.01	3.61	-59.03	28.28	-27.14	-	45.87	74.00	28.13
2 310.31 ¹⁾	1 000	Н	73.03	3.65	-59.05	28.39	-27.01	-	46.02	74.00	27.98
2 326.331,2)	1 000	Н	76.68	3.66	-59.09	28.42	-27.01	-	49.68	74.00	24.32
2 551.95	1 000	Н	73.03	3.82	-59.12	28.85	-26.45	-	46.59	74.00	27.41
3 246.09	1 000	Н	70.41	4.30	-59.92	30.36	-25.26	-	45.15	74.00	28.85
4 803.94 ^{1,3)}	1 000	Н	77.08	5.34	-61.69	32.80	-23.55	-	53.53	74.00	20.47
15 102.72	1 000	V	57.85	9.79	-59.77	40.01	-9.97	-	47.88	74.00	26.12
21 567.34	1 000	V	47.93	12.00	-49.48	45.00	7.52	-	55.45	74.00	18.55
25 897.30	1 000	V	44.90	13.60	-46.73	45.70	12.57	-	57.47	74.00	16.53
Average DA	TA. Emissi	ions abc	ove 1 GHz								
2 251.56 ¹⁾	1 000	Н	54.54	3.61	-59.03	28.28	-27.14	-	27.40	54.00	26.60
2 310.31 ¹⁾	1 000	Н	54.22	3.65	-59.05	28.39	-27.01	-	27.21	54.00	26.79
2 326.33 ^{1,2)}	1 000	Н	55.74	3.66	-59.09	28.42	-27.01	-	28.73	54.00	25.27
4 803.94 ^{1,3)}	1 000	Н	77.08	5.34	-61.69	32.80	-23.55	-22.50	31.03	54.00	22.97
¹⁾ Restricted	band										

²⁾ Bandedge

³⁾ Harmonic

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR18-SRF0090

Page (52) of (61)

GFSK_Middle channel (2 441 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
Peak DATA.	Emission	s above	1 GHz								
2 291.32 ¹⁾	1 000	Н	74.95	3.63	-59.02	28.35	-27.04	-	47.91	74.00	26.09
2 364.38 ¹⁾	1 000	Н	77.24	3.68	-59.16	28.49	-26.99	-	50.24	74.00	23.76
2 517.03	1 000	Н	77.78	3.79	-59.08	28.78	-26.51	I	51.27	74.00	22.73
2 592.11	1 000	Н	75.19	3.85	-59.16	28.93	-26.38	-	48.81	74.00	25.19
3 253.75	1 000	V	71.61	4.30	-59.94	30.39	-25.25	I	46.36	74.00	27.64
3 285.94	1 000	Н	79.21	4.32	-60.00	30.47	-25.21	I	53.99	74.00	20.01
4 881.981,2)	1 000	Н	81.02	5.39	-61.23	32.84	-23.00	-	58.03	74.00	15.97
15 007.11	1 000	V	58.93	9.76	-59.88	40.28	-9.84	I	49.09	74.00	24.91
21 686.61	1 000	V	47.23	12.00	-49.46	45.00	7.54	I	54.78	74.00	19.22
25 980.17	1 000	Н	45.89	13.60	-46.54	45.70	12.76	I	58.66	74.00	15.34
Average DA	TA. Emissi	ions abo	ove 1 🕮								
2 291.32 ¹⁾	1 000	Н	55.12	3.63	-59.02	28.35	-27.04	-	28.08	54.00	25.92
2 364.38 ¹⁾	1 000	Н	57.65	3.68	-59.16	28.49	-26.99	-	30.66	54.00	23.34
4 881.98 ^{1,2)}	1 000	Н	81.02	5.39	-61.23	32.84	-23.00	-22.50	35.53	54.00	18.47
¹⁾ Restricted	band										

¹⁾ Restricted band

²⁾ Harmonic

GFSK_Highest channel (2 480 胍)

[MHz] [V/H] [dB(μV)] [dB] [dB]	00 28.32
2 486.09 ^{1,2)} 1 000 H 72.28 3.77 -59.09 28.72 -26.60 - 45.68 74 2 556.48 1 000 H 76.52 3.82 -59.12 28.86 -26.44 - 50.08 74 3 323.05 1 000 H 79.63 4.35 -60.03 30.57 -25.11 - 54.52 74 4 959.98 ^{1,3)} 1 000 H 85.80 5.44 -60.80 32.88 -22.48 - 63.32 74	
2 556.48 1 000 H 76.52 3.82 -59.12 28.86 -26.44 - 50.08 74 3 323.05 1 000 H 79.63 4.35 -60.03 30.57 -25.11 - 54.52 74 4 959.98 ^{1,3)} 1 000 H 85.80 5.44 -60.80 32.88 -22.48 - 63.32 74	
3 323.05 1 000 H 79.63 4.35 -60.03 30.57 -25.11 - 54.52 74 4 959.98 ^{1,3)} 1 000 H 85.80 5.44 -60.80 32.88 -22.48 - 63.32 74	10 23.02
4 959.98 ^{1,3)} 1 000 H 85.80 5.44 -60.80 32.88 -22.48 - 63.32 74	20 23.82
	00 19.48
15 068.28 1 000 V 59.25 9.78 -59.81 40.11 -9.92 - 49.33 74	00 10.68
	24.67
21 784.09 1 000 H 47.51 12.10 -49.54 45.00 7.56 - 55.07 74	00 18.93
25 957.86 1 000 H 45.59 13.60 -46.59 45.70 12.71 - 58.30 74	00 15.70
Average DATA. Emissions above 1 🕮	
2 486.09 ^{1,2)} 1 000 H 54.00 3.77 -59.09 28.72 -26.60 - 27.40 54	00 26.60
4 959.98 ^{1,3)} 1 000 H 85.80 5.44 -60.80 32.88 -22.48 -22.50 40.82 54	=0.00

1) Restricted band

²⁾ Bandedge

³⁾ Harmonic

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR18-SRF0090

Page (53) of (61)

8DPSK Lowest channel (2 402 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(<i>µ</i> V/m)]	[dB]
Peak DATA.	Emission	s above	1 GHz								
1 554.61 ¹⁾	1 000	Н	75.43	3.00	-60.73	26.02	-31.71	-	43.73	74.00	30.27
2 321.89 ^{1,2)}	1 000	V	76.86	3.66	-59.08	28.41	-27.01	-	49.86	74.00	24.14
3 250.31	1 000	V	71.83	4.30	-59.94	30.38	-25.26	-	46.57	74.00	27.43
4 803.93 ^{1,3)}	1 000	Н	67.69	5.34	-61.68	32.80	-23.54	-	44.15	74.00	29.85
16 256.83	1 000	V	59.28	10.20	-57.71	38.22	-9.29	-	49.99	74.00	24.01
21 921.42	1 000	V	49.51	12.10	-49.52	45.00	7.58	-	57.09	74.00	16.91
26 176.47	1 000	Н	45.43	13.70	-46.72	45.70	12.68	-	58.11	74.00	15.89
Average DA	TA. Emissi	ions abc	ove 1 GHz								
1 554.61 ¹⁾	1 000	Н	54.13	3.00	-60.73	26.02	-31.71	-	22.42	54.00	31.58
2 321.89 ^{1,2)}	1 000	V	57.83	3.66	-59.08	28.41	-27.01	-	30.82	54.00	23.18
4 803.93 ^{1,3)}	1 000	Н	61.42	5.34	-61.68	32.80	-23.54	-	37.88	54.00	16.12

1) Restricted band

²⁾ Bandedge

³⁾ Harmonic

8DPSK _Middle channel (2 441 Mb)

				-							
Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
Peak DATA	Emission	s above	1 GHz								
1 434.30	1 000	V	68.78	2.88	-60.80	25.54	-32.38	-	36.40	74.00	37.60
3 280.63	1 000	Н	76.26	4.32	-60.00	30.46	-25.22	-	51.04	74.00	22.96
4 881.931,2)	1 000	Н	73.69	5.39	-61.23	32.84	-23.00	-	50.69	74.00	23.31
16 603.02	1 000	V	61.36	10.30	-58.54	39.19	-9.05	-	52.31	74.00	21.69
21 567.08	1 000	V	47.54	12.00	-49.48	45.00	7.52	-	55.06	74.00	18.94
26 008.06	1 000	Н	45.63	13.70	-46.60	45.70	12.80	-	58.43	74.00	15.57
Average DATA. Emissions above 1 🗄											
4 881.931,2)	1 000	Н	68.29	5.39	-61.23	32.84	-23.00	-	45.29	54.00	8.71
¹⁾ Restricted	¹⁾ Restricted band										

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR18-SRF0090

KCTL Page (54) of (61)

8DPSK_Highest channel (2 480 Mb)

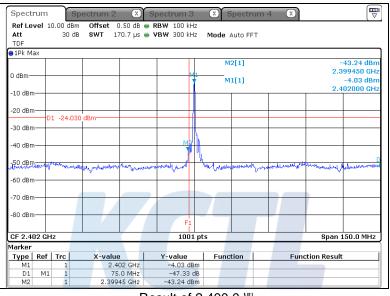
Frequency	Receiver Bandwidth	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	Factor	DCCF	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB]	[dB]	dB(µV/m)]	[dB(µV/m)]	[dB]
Peak DATA.	Emission	s above	1 GHz								
2 484.84 ^{1,2)}	1 000	V	76.11	3.77	-59.10	28.72	-26.61	-	49.50	74.00	24.50
2 559.14	1 000	Н	74.76	3.82	-59.12	28.86	-26.44	I	48.32	74.00	25.68
3 305.39	1 000	V	71.90	4.33	-60.03	30.52	-25.18	I	46.72	74.00	27.28
4 959.94 ^{1,3)}	1 000	Н	81.26	5.44	-60.80	32.88	-22.48	-	58.78	74.00	15.22
14 920.56	1 000	Н	60.01	9.74	-60.10	40.36	-10.00	I	50.01	74.00	23.99
21 677.58	1 000	V	48.09	12.00	-49.46	45.00	7.54	I	55.63	74.00	18.37
26 111.66	1 000	Н	45.07	13.70	-46.68	45.70	12.72	I	57.80	74.00	16.20
Average DA	TA. Emissi	ions abc	ove 1 🕮								
2 484.84 ^{1,2)}	1 000	V	53.72	3.77	-59.10	28.72	-26.61	-	27.11	54.00	26.89
4 959.94 ^{1,3)}	1 000	Н	81.26	5.44	-60.80	32.88	-22.48	-22.50	36.28	54.00	17.72

¹⁾ Restricted band

²⁾ Bandedge

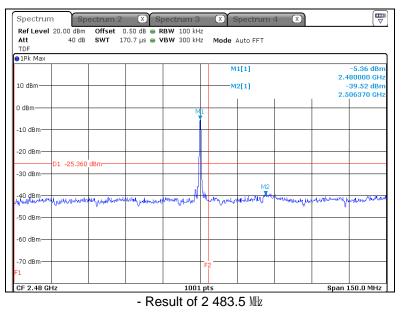
³⁾ Harmonic

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR18-SRF0090 Page (55) of (61)



5.7.4 Test Plot

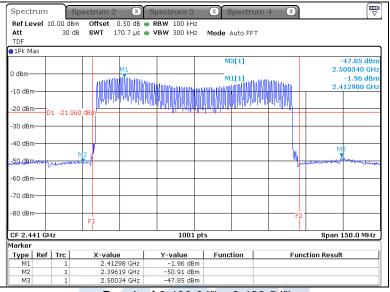
Figure 5. Plot of the Band Edge (Conducted)


- GFSK (Without hopping)

Lowest Channel (2 402 Mz)

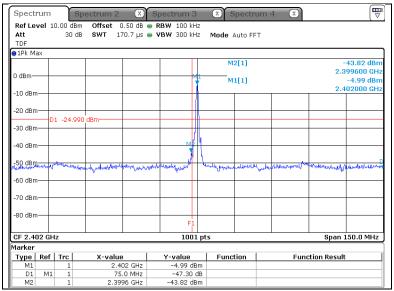
- Result of 2 400.0 Mb

Highest Channel (2 480 Mz)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

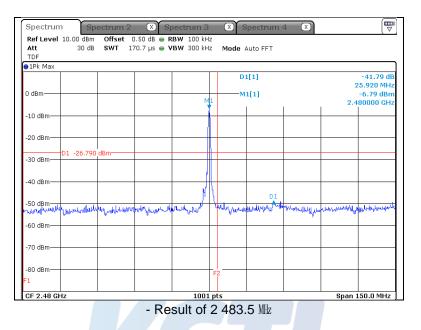
³¹¹ Page (56) of (61)


- GFSK (With hopping)

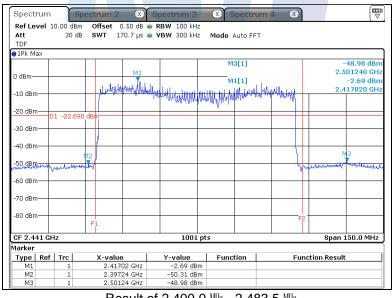
- Result of 2 400.0 Mz - 2 483.5 Mz

- 8DPSK (Without hopping)

Lowest Channel (2 402 Mz)


- Result of 2 400.0 Mb

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090


Page (57) of (61)

KCTL

Highest Channel (2 480 Mz)

- 8DPSK (With hopping)

- Result of 2 400.0 Mz - 2 483.5 Mz

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>

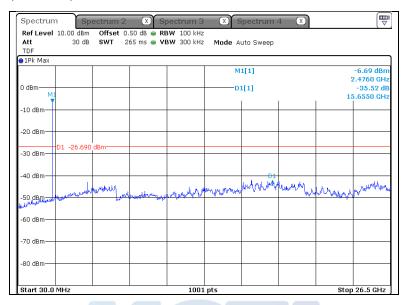
Figure 6. Plot of the Spurious RF conducted emissions

- GFSK

Lowest Channel (2 402 Mz)

Spectrum	Spe	ectrum	2 🗶	Spec	trum 3	× s	pectrum -	4 X		(4
Ref Level 10.00) dBm	Offset	0.50 dB 😑	RBW	100 kHz					
Att	30 dB	SWT	265 ms 👄	VBW	300 kHz	Mode A	uto Sweep			
TDF										
1Pk Max										
						M	1[1]			-4.64 dBi
									1	2.3970 GH
D dBm M1						D	1[1]			-34.55 d
T I								ı	:	2.4060 GF
-10 dBm				_						
-20 dBm										
	24.640	1Bm								
-30 dBm										
-30 UBIII										
	D1									
-40 dBm	+						بانت بعد با	1.1		
	norder	phasesphil				monthing	ያትለባለምሳሳ	and the list	while	and harmon we
-50 dBm	a landa an	<i></i>	104 Marchart	w, dur	MW Y V	0.0			en - MAAA	r•
West of the										
-60 dBm				_						
-70 dBm										
-80 dBm		- <u> </u>			7					
Start 30.0 MHz				_	1001	nts			Ston	26.5 GHz

Middle Channel (2 441 Mz)


Spectrum	Spectrum 2		ctrum 3	XS	pectrum 4	4 X		
Ref Level 10.0 Att TDF		1.50 dB 👄 RBW 265 ms 👄 VBW	/ 100 kHz / 300 kHz	Mode A	uto Sweep			
●1Pk Max				D	L[1]			-34.18 di
0 dBm				M	1[1]			.1120 GH -7.50 dBn .4500 GH
-10 dBm								
-20 dBm								
-30 dBm	27.500 dBm							
-40 dBm	monter and were	y marina the good		ali acathich	Hur number	Variat 1		. hunth
-50 dBm	warren a construction	Huther and the sport	WWW	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~	en a sullaring	100 -
-60 dBm								
-70 dBm								
-80 dBm								
Start 30.0 MHz			1001	nts			Ston	26.5 GHz

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (59) of (61)

Highest Channel (2 480 Mz)

- 8DPSK

Lowest Channel (2 402 Mz)

Spectrum Ref Level 1		Offset		pectrum 3 BW 100 kHz		Spectrum -	4 X		
Att	30 dB			BW 300 kHz		uto Sweep			
TDF	00 00	oni	200 110 - 1	BH SSS KIL	Mode A	uto oweep			
∋1Pk Max									
					M	1[1]			-7.74 dBr
								:	2.3970 GH
0 dBm					D	1[1]			-33.75 di 4.2530 GH
M1						1		1	+.2030 GH
-10 dBm									
-20 dBm					1		1	-	
	1 -27.740	d0 m							
-30 dBm	1 -27.740	ubili							
-40 dBm						<u>D1</u>			
		Consultation		Anyahar	المراقبانية ماني	wanter	under .	Also .	. rubman
-50 dBm	Well Will Com	w	en established	Anyan	in C. Or and		WW	ACO A PARTA	rw -
Wollwarman									
-60 dBm									
-70 dBm									
-80 dBm									

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

Page (60) of (61)


Middle Channel (2 441 Mz)

		-	3W 100 kHz					
30 dB	SWT 2	65 ms 👄 ۷	3W 300 kHz	Mode A	uto Sweep			
				D1	1[1]			-32.50 dB
							14	.2000 GHz
				M	1[1]			-8.24 dBm
						I	2	.4500 GHz
01 00 040	dBrow							
DI -20.240	ubili							
					DI			
					101 440	to a lea		
wherewat	mush	ور الد ومطلبة الدوارين ا	mon	have been all all all all all all all all all al	MM () CHAP . A	mannehr	Mury	Marine
w.B ^r	Q. ·							
	D1 -28.240	D1 -28.240 dBm	D1 -28.240 dBm	D1 -28.240 dBm	D1 -28.240 dBm	D1 -28.240 dBm	D1 -28.240 dBm	D1 -28.240 dBm

Highest Channel (2 480 Mz)

Spectrum	Spectrur	n 2 🛛 🗶 5	pectrum 3	×s	pectrum «	4 🛛 🗙		
Ref Level 10.0 Att TDF	D dBm Offso 30 dB SWT		BW 100 kHz BW 300 kHz	Mode A	uto Sweep			
∋1Pk Max					.[1]			-36.06 dB
0 dBm					1[1]			-30.00 GH; 4.5180 GH; -6.76 dBn 2.4760 GH;
-10 dBm								
-20 dBm								
-30 dBm	26.760 dBm							
-40 dBm		h Lavered pointer Manada			DI.	v. adai		. atilitisaa
-50 dBm	un hand la hand and and and and and and and and and	u ware powerland	and states they	Hay we have	ara Alonda, i	work his	WANNER	Nran
-60 dBm								
-70 dBm								
-80 dBm								
Start 30.0 MHz			1001	nte			Otor	26.5 GHz

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR18-SRF0090

6. Test equipment used for test

	Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
	Spectrum Analyzer	R & S	FSV30	100807	18.08.01
	Spectrum Analyzer	R & S	FSV40	100988	19.01.05
	Wideband Power Sensor	R & S	NRP-Z81	102398	19.01.31
	DC Power Supply	AGILENT	E3632A	MY40016393	18.12.21
	Bluetooth Tester	TESCOM	TC-3000C	3000C000270	18.08.02
	Power Divider	Aeroflex/Weinschel, Inc.	1580-1	RZ184	18.08.02
-	ATTENUATOR	R & S	DNF Dämpfungsglied 10 dB in N-50 Ohm	31212	19.05.14
	EMI TEST RECEIVER	R & S	ESCI	100732	18.08.24
	Bi-Log Antenna	SCHWARZBECK	VULB 9168	440	19.10.23
	Amplifier	SONOMA INSTRUMENT	310N	186280	19.04.05
	Amplifier	SONOMA INSTRUMENT	310N	284608	18.08.24
	ATTENUATOR	Weinschel ENGINEERING	1	AE7348	19.05.14
	Horn antenna	ETS.lindgren	3116	00086632	19.04.20
	Horn antenna	ETS.lindgren	3117	155787	18.10.20
	AMPLIFIER	L-3 Narda-MITEQ	AMF-7D-01001800- 22-10P	2003683	19.05.15
	AMPLIFIER	L-3 Narda-MITEQ	JS44-18004000-33- 8P	2000997	18.08.09
	LOOP Antenna	R & S	HFH2-Z2	892665/035	19.01.25
	Antenna Mast	Innco Systems	MA4640-XP-ET	-	-
	Turn Table	Innco Systems	DT2000	79	-
	Antenna Mast	Innco Systems	MA4000-EP	303	-
	Turn Table	Innco Systems	DT2000	79	-
	Highpass Filter	WT	WT-A1698-HS	WT160411001	19.05.14
	Vector Signal Generator	R & S	SMBV100A	257566	19.01.05
	Signal Generator			100007	19.05.15
	Cable Assembly	RadiAll	2301761768000PJ	1724.659	-
	Cable Assembly	gigalane	RG-400	-	-
	Cable Assembly	HUER+SUHNER	SUCOFLEX 104	MY4342/4	-