TEST REPORT

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-390, Korea TEL: 82 70 5008 1021 FAX: 82 505 299 8311

Report No.: KCTL15-FR0084

Page(1)/(49) Pages

1. Applicant	
Name:	MOTREX CO., LTD.
Address:	(Mullae-dong3(sam)-ga, Ace High-Tech City B/D), 1-1103,
	775, Gyeongjin-ro, Yeongdeungpo-gu, Seoul, Korea
2. Sample Description:	
FCC ID:	BP9-MTXM100GS
Type of equipment:	Smart Display
Basic Model:	MTXM100GS
3. Date of Test:	December 02 ~ December 03, 2015
4. Test method used:	FCC Part 15 Subpart C 15.247
5. Test Results	
Test Item:	Refer to page 7
Result:	Refer to page 8 ~ page 48
Measurement Uncertainty:	Refer to page 7

This result shown in this report refer only to the sample(s) tested unless otherwise stated.

Name: YOO, YOUNG BIN	Name: SON, MIN GI

[Contents]

1. Client information	3
2. Laboratory information	4
3. Description of E.U.T.	5
3.2 General description	5
3.3 Test frequency	6
3.4 Test Voltage	6
4. Summary of test results	7
4.1 Standards & results	7
4.2 Uncertainty	7
5. Test results	8
5.1 Antenna Requirement	8
5.2 Maximum Peak Output Power	9
5.3 Peak Power Spectral Density	11
5.4 6 dB Bandwidth(DTS Channel Bandwidth)	18
5.5 Spurious Emission, Band Edge, and Restricted bands	29
6. Test equipment used for test	49

1. Client information

Applicant: Address: Telephone number: Facsimile number:	MOTREX CO., LTD. (Mullae-dong3(sam)-ga, Ace High-Tech City B/D), 1-1103, 775, Gyeongjin-ro, Yeongdeungpo-gu, Seoul, Korea +81-70-4892-6206 +81-2-6280-1170
Contact person:	Cha Hye Ran / chahyeran@motrex.co.kr
Manufacturer:	MOTREX CO., LTD.
Address:	(Mullae-dong3(sam)-ga, Ace High-Tech City B/D), 1-1103, 775,
	Gyeongjin-ro, Yeongdeungpo-gu, Seoul, Korea

2. Laboratory information

Address

KCTL Ltd.

480-5, Sin-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea Telephone Number: +82-70-5008-1016 Facsimile Number: +82-505-299-8311

Certificate

KOLAS No.: 231 FCC Site Designation No: KR0040 FCC Site Registration No: 687132 VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849 IC Site Registration No.:8035A-2

SITE MAP

KCTL-TIR001-003/0

Page: (4) / (49) Pages

3. Description of E.U.T.

3.1 Basic description

Applicant:	MOTREX CO., LTD.
Address of Applicant	(Mullae-dong3(sam)-ga, Ace High-Tech City B/D), 1-1103, 775, Gyeongjin-ro, Yeongdeungpo-gu, Seoul, Korea
Manufacturer	MOTREX CO., LTD.
Address of Manufacturer	(Mullae-dong3(sam)-ga, Ace High-Tech City B/D), 1-1103, 775, Gyeongjin-ro, Yeongdeungpo-gu, Seoul, Korea
Type of equipment	Smart Display
Basic Model	MTXM100GS
Serial number	N/A

3.2 General description

2 412 Mz ~ 2 462 Mz (802.11b/g/n_HT20), 2 402 Mz ~ 2 480 Mz (Bluetooth)
DSSS (802.11b), OFDM (802.11g/n_HT20), GFSK, π/4DQPSK, 8DPSK (Bluetooth)
11 ch (802.11b/g/n_HT20), 79 ch (Bluetooth)
Chip Antenna
1.99 dBi
15.97 dBm
DC 12.0 V
1.0
1.0
N/A
802.11b: 10 dBm, 802.11g: 10 dBm, 802.11n HT20: 10 dBm

Note : The above EUT information was declared by the manufacturer.

3.3 Test frequency

	Frequency
Low frequency	2 412 MHz
Middle frequency	2 437 MHz
High frequency	2 462 Mtz

3.4 Test Voltage

Mode	Voltage	
Norminal voltage	DC 12.0 V	

KCTL-TIR001-003/0

Page: (6) / (49) Pages

4. Summary of test results

4.1 Standards & results

FCC Rule Reference	IC Rule Reference	Parameter	Report Section	Test Result
15.203, 15.247(b)(4)	-	Antenna Requirement	5.1	С
15.247(b)(3)	RSS-247, 5.4(4)	Maximum Peak Output Power	5.2	С
15.247(e)	RSS-247, 5.2	Peak Power Spectral Density	5.3	С
15.247(a)(2)	RSS-247, 5.2	6 dB Channel Bandwidth	5.4	С
-	RSS-247, 5.2	Occupied Bandwidth	5.4	С
15.247(d), 15.205(a), 15.209(a)	RSS-247, 5.5 RSS-GEN, 8.9, 10	Spurious Emission, Band Edge and Restricted bands	5.5	С
15.207(a)	RSS-GEN, 8.8	Conducted Emissions	5.6	N/A1)

Note: C = complies

NC = Not complies

NT = Not tested

NA = Not Applicable

N/A1): This test is not applicable because the EUT falls into the automotive device and it's not to be connected to the public utility(AC) power line.

* The general test methods used to test this device is ANSI C63.10:2013

4.2 Uncertainty

	30 dB 52 dB + 4.94 dB, - 5.06 dB
	+ 4.94 dB, - 5.06 dB
30 MHz ~ 300 MHz:	,
SO MEZ \sim 300 MEZ:	1 4 02 dD 5 05 dD
	+ 4.93 dB, - 5.05 dB
	+ 4.97 dB, - 5.08 dB
$10 \text{ MHz} \sim 1000 \text{ MHz}$:	+ 4.84 dB, - 4.96 dB
1 GHz ~ 25 GHz:	+ 6.03 dB, - 6.05 dB
9 kHz ~ 150 kHz:	3.75 dB
50 kHz ~ 30 MHz:	3.36 dB
	9 kHz ~ 150 kHz:

KCTL-TIR001-003/0

5. Test results

5.1 Antenna Requirement

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to \$15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result

-Complied

The transmitter has a Chip Antenna. The transmitter has a Internal Antenna which is attached on PCB board permanently.

5.2 Maximum Peak Output Power

5.2.1 Regulation

According to §15.247(b)(3), For systems using digital modulation in the 902-928 Mz, 2 400-2 483.5 Mz, and 5 725-5 850 Mz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2.2 Measurement Procedure

These test measurement settings are specified in section 9.0 of 558074 D01 DTS Meas Guidance.

5.2.2.1 PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

5.2.3 Test Result

- Complied

* 802.11b

Channel	Frequency (Mt/2)	Result (dBm)	Limit (dBm)	Margin (dB)	Avarage Power (dBm)
Low	2 412	9.66	30.00	20.34	6.70
Middle	2 437	9.06	30.00	20.94	6.31
High	2 462	8.66	30.00	21.34	5.81

* 8<u>02.11g</u>

Channel	Frequency (₩z)	Result (dBm)	Limit (dBm)	Margin (dB)	Avarage Power (dBm)
Low	2 412	15.97	30.00	14.03	5.72
Middle	2 437	15.37	30.00	14.63	5.21
High	2 462	15.47	30.00	14.53	5.29

* 802. 11n HT20

Channel	Frequency (Mt/2)	Result (dBm)	Limit (dBm)	Margin (dB)	Avarage Power (dBm)
Low	2 412	15.87	30.00	14.13	5.65
Middle	2 437	15.27	30.00	14.73	5.14
High	2 462	15.37	30.00	14.63	5.21

NOTE:

1. Since the directional gain of Chip Antenna declared by the manufacturer (G_{ANT} =1.99 dBi), does not exceed 6.0 dBi , there was no need to reduce the output power.

2. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.3 Peak Power Spectral Density

5.3.1 Regulation

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3.2 Measurement Procedure

These test measurement settings are specified in section 10.0 of 558074 D01 DTS Meas Guidance.

5.3.2.1 Method PKPSD (peak PSD)

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

1) Set analyzer center frequency to DTS channel center frequency.

2) Set the span to 1.5 times the DTS bandwidth.

3) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.

4) Set the VBW \geq 3 x RBW.

5) Detector = peak.

6) Sweep time = auto couple.

7) Trace mode = max hold.

8) Allow trace to fully stabilize.

9) Use the peak marker function to determine the maximum amplitude level within the RBW.

10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3.3 Test Result

- Complied

* 802.11b

Channel	Result (RBW=100 klz) [dBm]	Result - calculated (RBW=3 kt/z) [dB m]	Limit	Margin [dBm]
Low	-5.25	-20.48		13.25
Middle	-5.22	-20.45	8 dBm/3 kHz	13.22
High	-5.25	-20.48		13.25

* 802.11g

Channel	Result (RBW=100 klz) [dBm]	Result - calculated (RBW=3 klz) [dB m]	Limit	Margin [dBm]
Low	-5.14	-20.37		13.14
Middle	-6.57	-21.80	8 dBm/3 kHz	14.57
High	-6.15	-21.38		14.15

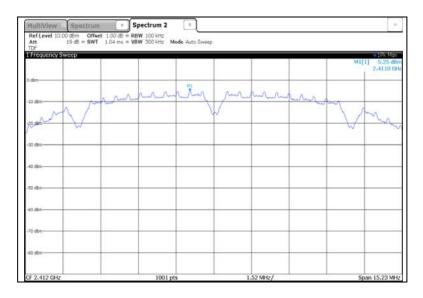
* 802.11n HT20

Channel	Result (RBW=100 klz) [dBm]	Result - calculated (RBW=3 klz) [dB m]	Limit	Margin [dBm]
Low	-5.10	-20.33		13.10
Middle	-7.06	-22.29	8 dBm/3 kHz	15.06
High	-6.66	-21.89		14.66

NOTE:

1. Since the directional gain of the Chip Antenna declared by the manufacturer ($G_{ANT} = 1.99 \text{ dBi}$), does not exceed 6.0 dBi, No needs to reduce the power spectral density.

2. We took the insertion loss of the cable loss into consideration within the measuring instrument.

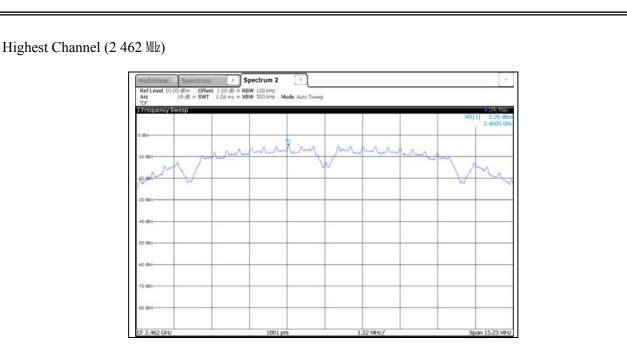


5.3.4 Test Plot

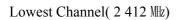
Figure 1. Plot of the Power Density

* 802.11b

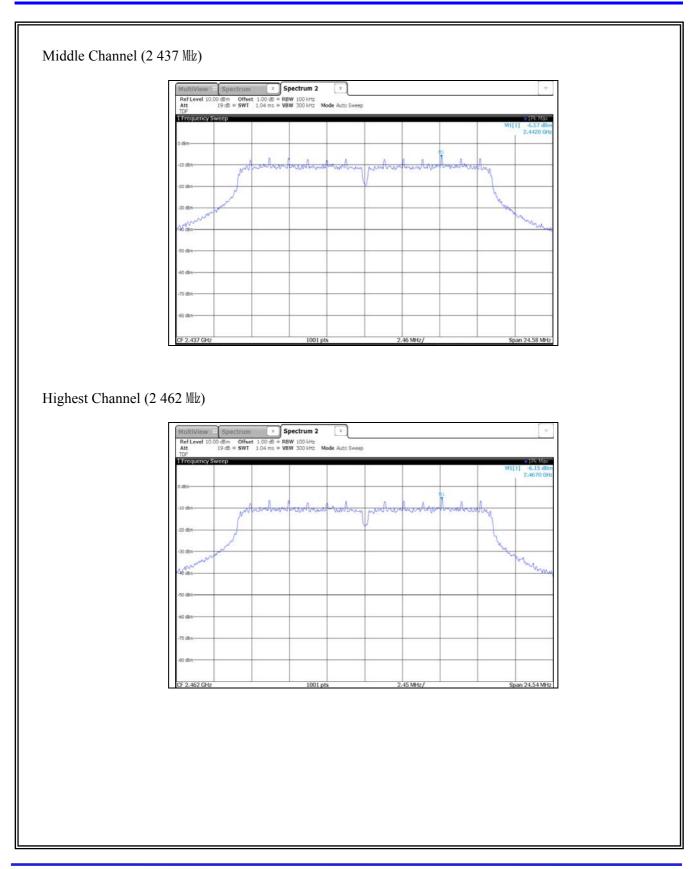
Lowest Channel(2 412 Mz)


Middle Channel (2 437 Mz)

Att 11 TDF	9 d8 = SWT 1.	04 ms = VBV	V 300 kHz N	Iode Auto Swee	p				
1 Frequency Swe	ер	_							IPK Mi
								M1[1] -5.22 d 2.4355 (
0 d8m									
		minu	man	Jung	m	man	hour		
-10 dēm					W			~//	m
79 dem	W							W	
-30 d8m									
-40 dBm									
-50 dBm								-	
-60 dēm					-				
-70 d8m									
-80 d8m-									
-80 d8m					-				

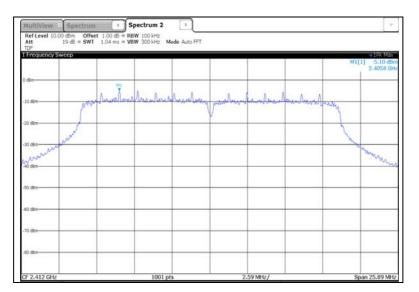

KCTL-TIR001-003/0

Page: (13) / (49) Pages

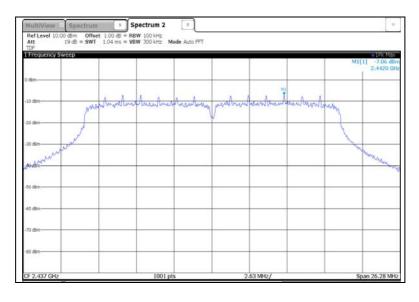

* 802.11g

MultiView 🕀	Spectrum	x Spectrum 2 x		
	dBm Offset 1.00 d 19 dB = SWT 1.04 m	HE = RBW 100 kHz ns = VBW 300 kHz Mode Auto Sw	eep	
Frequency Sw	еер			1Pk Max
				M1[1] -5.14 dB 2,4058 Gł
mit				
10 d8m	And	malassmestrula	an mentrestandant	
10 08/11	Martin			mannen
20 dilm-				6
30 dēm	J			~
30 dēm				manun
40 dBm				
50 dām				
60 dBm				
70 dēm				
90 dBm				

KCTL-TIR001-003/0

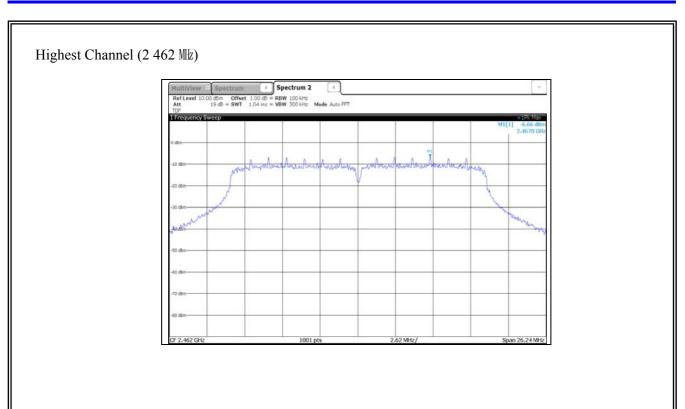


Page: (15) / (49) Pages



* 802.11n HT20

Lowest Channel(2 412 Mz)


Middle Channel (2 437 Mz)

KCTL-TIR001-003/0

Page: (16) / (49) Pages

Page: (17) / (49) Pages

5.4 6 dB Bandwidth(DTS Channel Bandwidth)

5.4.1 Regulation

According to \$15.247(a)(2) Systems using digital modulation techniques may operate in the 902–928 Mz, 2 400–2 483.5 Mz, and 5 725–5 850 Mz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.4.2 Measurement Procedure

These test measurement settings are specified in section 8.0 of 558074 D01 DTS Meas Guidance.

5.4.2.1 DTS Channel Bandwidth-Option 1

- 1) Set RBW = 100 kHz.
- 2) Set the video bandwidth (VBW) \geq 3 x RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.
- 5) Sweep = auto couple.
- 6) Allow the trace to stabilize.
- 7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.4.2.2 DTS Channel Bandwidth Measurement Procedure-Option 2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 x RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

5.4.3 Test Result

- Complied

* 802.11b

Channel	Frequency [Mtz]	6 dB Bandwidth Min. Li [M址] [M址]		Occupied Bandwidth (99 % BW) [Mb]
Low	2 412	10.15	0.50	13.83
Middle	2 437	10.15	0.50	13.79
High	2 462	10.15	0.50	13.71

* 802.11g

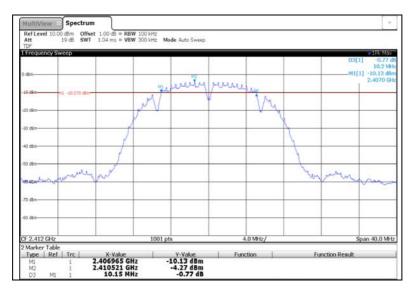
Channel	Frequency [Mtz]	6 dB Bandwidth [Mtz]	Min. Limit [᠋᠋/ᡌ	Occupied Bandwidth (99 % BW) [Mb]	
Low	2 412	16.30	0.50	16.42	
Middle	2 437	16.38	0.50	16.42	
High	2 462	16.36	0.50	16.42	

* 802.11n HT20

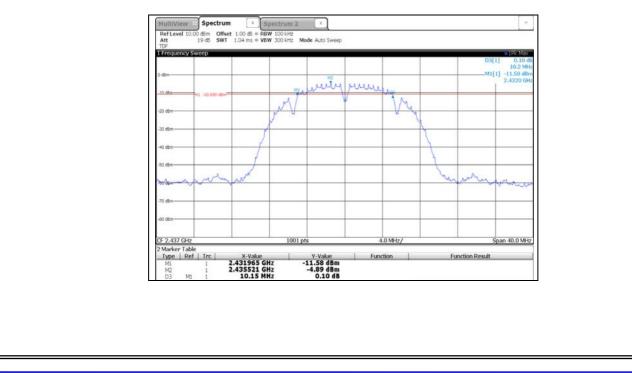
Channel	Frequency [Mtz]	6 dB Bandwidth [Mtz]	Min. Limit [᠋᠋/ᡌ	Occupied Bandwidth (99 % BW) [Mb]	
Low	2 412	17.26	0.50	17.62	
Middle	2 437	17.52	0.50	17.62	
High	2 462	17.49	0.50	17.58	

NOTE:

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.

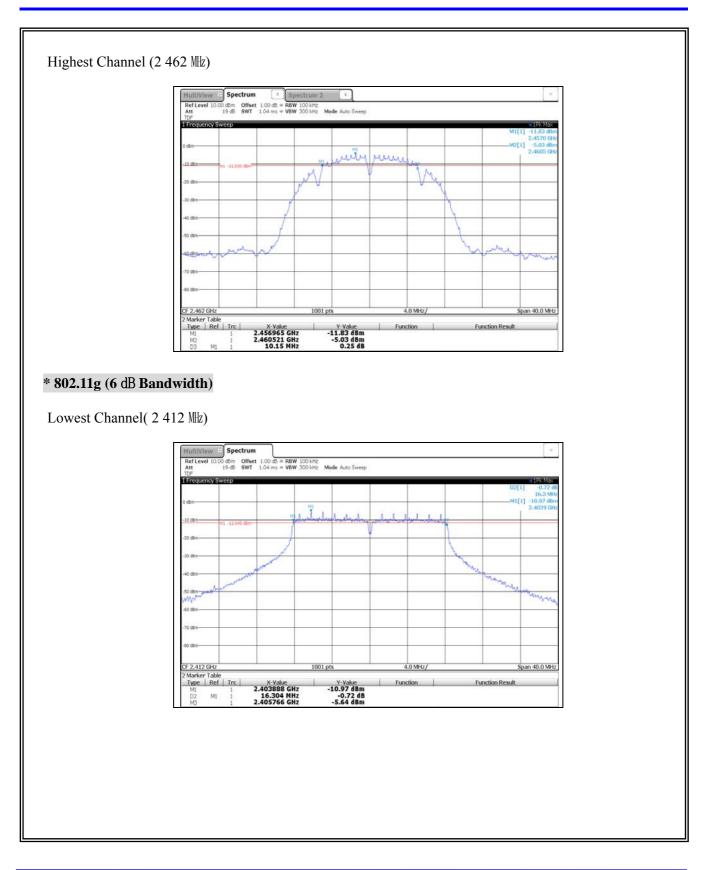


5.4.4 Test Plot

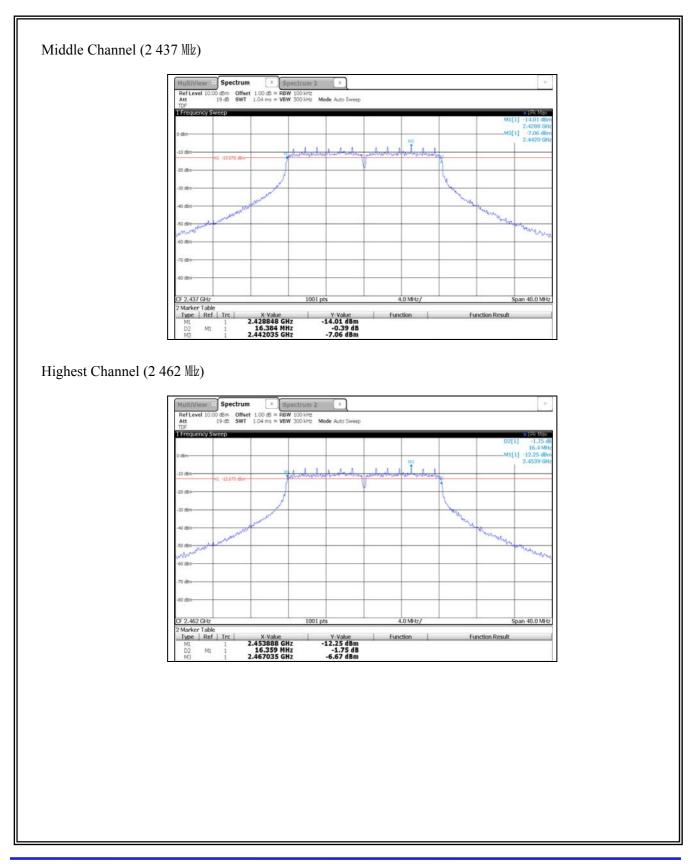

Figure 2. Plot of the 6 dB Bandwidth & Occupied Bandwidth

* 802.11b (6 dB Bandwidth)

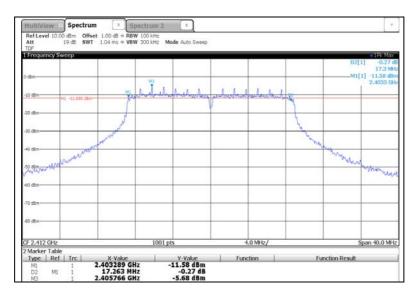
Lowest Channel(2 412 Mz)


Middle Channel (2 437 M₺)

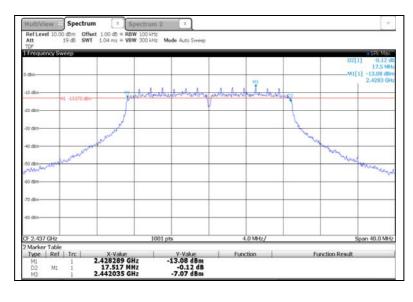
KCTL-TIR001-003/0


Page: (20) / (49) Pages

Page: (21) / (49) Pages

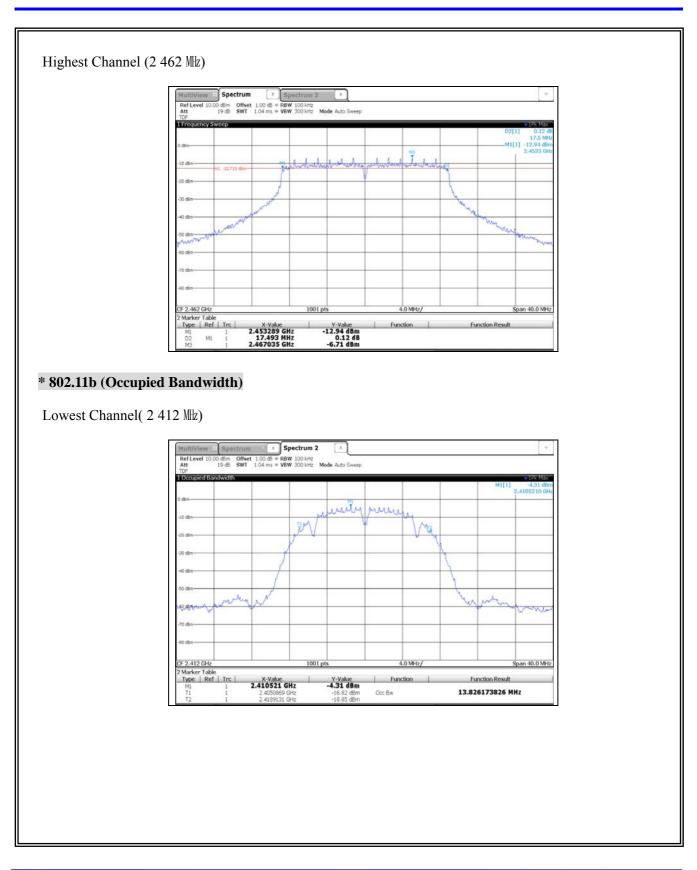


Page: (22) / (49) Pages

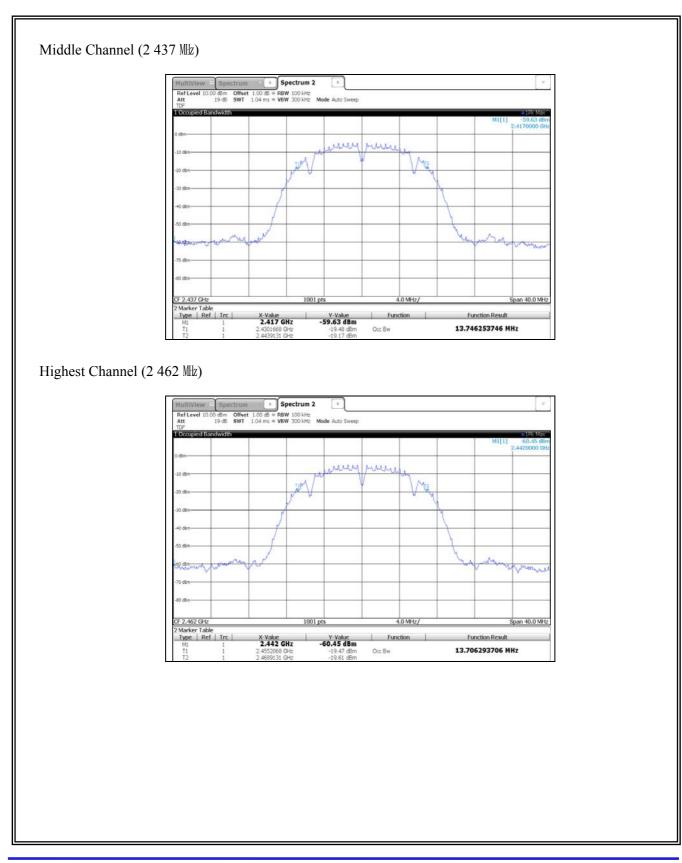


* 802.11n HT20 (6 dB Bandwidth)

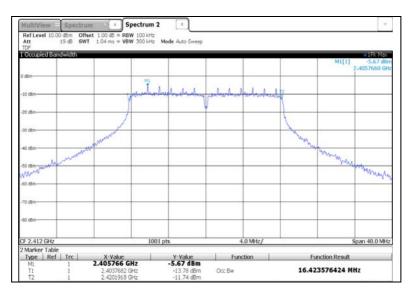
Lowest Channel(2 412 Mz)


Middle Channel (2 437 M₺)

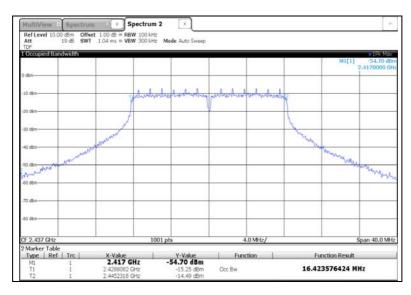
KCTL-TIR001-003/0


Page: (23) / (49) Pages

Page: (24) / (49) Pages

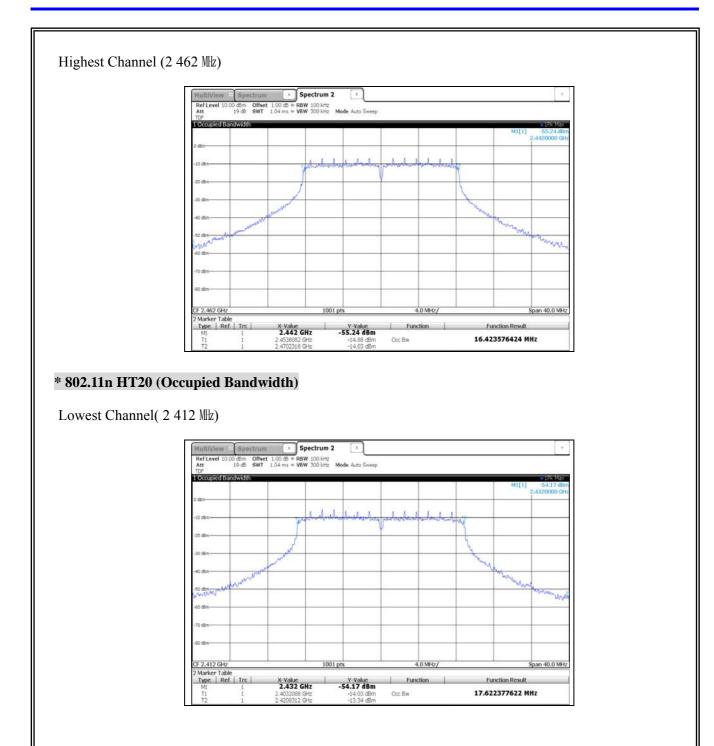


Page: (25) / (49) Pages

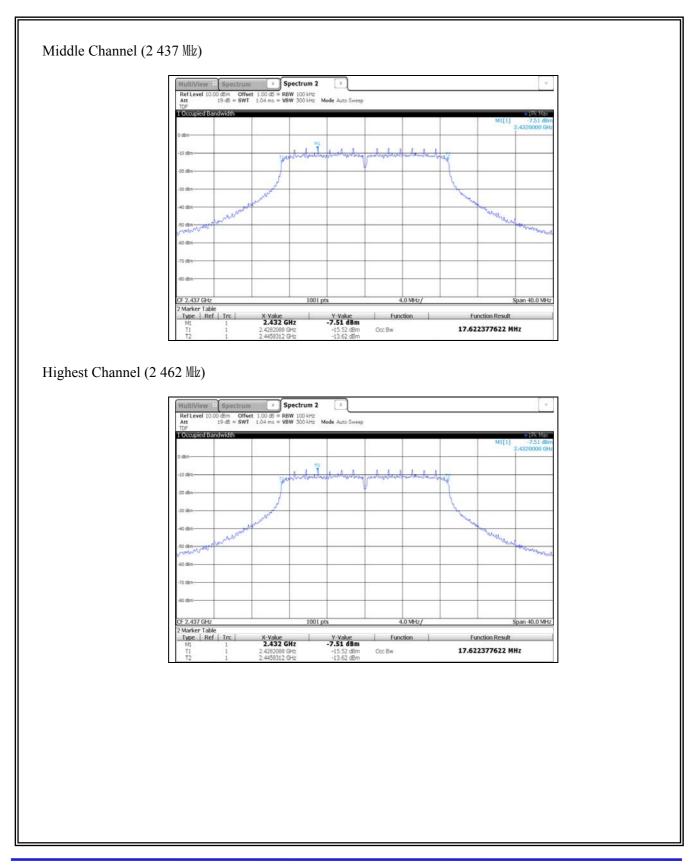


* 802.11g (Occupied Bandwidth)

Lowest Channel(2 412 Mz)


Middle Channel (2 437 Mz)

KCTL-TIR001-003/0


Page: (26) / (49) Pages

Page: (27) / (49) Pages

Page: (28) / (49) Pages

5.5 Spurious Emission, Band Edge, and Restricted bands

5.5.1 Regulation

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

Frequency (Mz)	Field strength ($\mu N/m$)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

According to §15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall notexceed the field strength levels specified in the following table:

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 Mz, 76–88 Mz, 174–216 Mz or 470–806 Mz. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 - 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 - 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 - 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 - 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 - 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 - 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 - 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525 25	$2\ 483.5 - 2\ 500$	17.7 - 21.4
8.376 25 - 8.386 75	156.7 - 156.9	$2\ 690 - 2\ 900$	22.01 - 23.12
8.414 25 - 8.414 75	162.012 5 - 167.17	3 260 - 3 267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 332 - 3 339	31.2 - 31.8
12.519 75 - 12.520 25	240 - 285	3 345.8 - 3 358	36.43 - 36.5
12.576 75 - 12.577 25	322 - 335.4	3 600 - 4 400	Above 38.6
13.36 - 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 Mb, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

5.5.2 Measurement Procedure

5.5.2.1 Band-edge Compliance of RF Conducted Emissions

5.5.2.1.1 Reference Level Measurement

Establish a reference level by using the following procedure:

- 1) Set instrument center frequency to DTS channel center frequency.
- 2) Set the span to ≥ 1.5 times the DTS bandwidth.
- 3) Set the RBW = 100 kHz.
- 4) Set the VBW \geq 3 x RBW.
- 5) Detector = peak.
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum PSD level.

5.5.2.1.2 Emissions Level Measurement

- 1) Set the center frequency and span to encompass frequency range to be measured.
- 2) Set the RBW = 100 kHz.
- 3) Set the VBW \geq 3 x RBW.
- 4) Detector = peak.
- 5) Ensure that the number of measurement points \geq span/RBW
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

5.5.2.2 Conducted Spurious Emissions

Set the spectrum analyzer as follows:

- Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
- 2) RBW = 100 kHz
- 3) VBW \ge RBW
- 4) Sweep = auto
- 5) Detector function = peak
- 6) Trace = max hold
- 7) Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 8) Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

5.5.2.3 Radiated Spurious Emissions

- 1) The preliminary and final rdiated measurements were performed to determine the frequency producing the maximum emissions in at a 10m anechoic chamber. The EUT was tested at a distance 3 meters.
- 2) The EUT was placed on the top of the 0.8-meter height, 1×1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3) The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 to 1 000 MHz using the TRILOG broadband antenna, and from 1 000 MHz to 26 500 MHz using the horn antenna.
- 4) Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

Note

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mz for Peak detection and frequency above 1 Glz.

The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb and the video bandwidth is 1 kbz($\geq 1/T$) for Average detection (AV) at frequency above 1 Gbz. (where T = pulse width)

5.5.3 Test Result

- Complied

- 1. Band edge & Conducted Spurious Emissions was shown in figure 3 & 4. Note: We took the insertion loss of the cable into consideration within the measuring instrument.
- 2. Measured value of the Field strength of spurious Emissions (Radiated)
- 3. It tested x,y and z 3 axis each, mentioned only worst case data at this report.
- * Noise was not measured. (Margin was more than 20 dB) Worst value of noise floor was recorded.

* Below 1 @z data (worst-case: 802.11g)

Lowest Channel (2 412 Mz)

	· /							
Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin	
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu N/m)]$	[dB]	
Quasi-Peak DATA. Emissions below 30 Mz								
Below 30.00	Not Detected	-	-	-	-	-	-	
Quasi-Peak DAT	Quasi-Peak DATA. Emissions below 1 🖟							
80.93	120	Н	50.0	-22.9	27.1	40.0	12.9	
94.87	120	Н	39.2	-18.9	20.3	43.5	23.2	
296.99	120	Н	43.4	-15.2	28.2	46.0	17.8	
Above 300.00	Not Detected	-	-	-	-	-	-	

16.8 17.1

Above 1 🖽 dat	a						
02.11b_Low cha	annel (2 412 Mz)					
Frequency	Receiver Bandwidth	Pol. [V/H]	Reading [dB(µV)]	Factor [dB]	Result $[dB(\mu V/m)]$	Limit [dB(µN/m)]	Margin [dB]
Peak DATA. Em			[uD(µ)]	լայ	[ub(µ//11)]	[uD(µ//III)]	լայ
	1		16.0		10.0	- 1 0	• • •
* 2 312.30	1 000	V	46.8	1.2	48.0	74.0	26.0
Above 3 000.00	Not Detected	-	-	-	-	-	-
Average DATA.	Emissions above	1 GHz					
* 2 312.30	1 000	V	34.1	1.2	35.3	54.0	18.7
Above 3 000.00	Not Detected	-	-	-	-	-	-
02.11b_Middle Frequency	channel (2 437 Receiver Bandwidth	MHz) Pol.	Reading	Factor	Result	Limit	Margin
[MHz]	Bandwidth [kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu N/m)]$	$[dB(\mu N/m)]$	[dB]
Peak DATA. Em							. ,
-	Not Detected	-	-	-	-	-	-
Average DATA.	Emissions above	1 GHz					
-	Not Detected	-	-	-	-	-	-
02.11b_High ch	annel (2 462 Mł	()					
Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	$[dB(\mu N)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu N/m)]$	[dB]
Peak DATA. Em	issions above 1 G	łz					
1 945.45	1 000	Н	52.1	0.0	52.1	74.0	21.9
* 2 488.88	1 000	Н	47.5	1.0	48.5	74.0	25.5
Above	Not	_	_	-	-	_	-

|--|

Detected

1 945.45	1 000	Н	37.2	0.0	37.2	54.0	
* 2 488.88	1 000	Н	35.9	1.0	36.9	54.0	
Above	Not	_	_	_	_		
3 000.00	Detected	-	-	-	-	-	
* This Astanials up	and magthing to d ha	n d					

-

* This Asterisk means restricted band.

KCTL-TIR001-003/0

3 000.00

Frequency	Receiver	Pol.	Reading	Factor	Result	Limit	Margin
[MHz]	Bandwidth	[V/H]	[dB(µN)]	[dB]	$[dB(\mu N/m)]$	$[dB(\mu N/m)]$	[dB]
eak DATA. Emiss			[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[]	[[([(/////]]	[]
* 2 390.00	1 000	V	51.0	1.3	52.3	74.0	21.7
Above	Not						
3 000.00	Detected	-	-	-	-	-	-
verage DATA. En	nissions above 1 GH	;					
* 2 390.00	1 000	V	38.6	1.3	39.9	54.0	14.1
Above	Not	-	-	-	-	-	-
3 000.00	Detected						
This Asterisk me	ans restricted bar	ld.					
2.11g Middle	channel (2 437]	WHz)					
Frequency	Receiver	Pol.	Reading	Factor	Result	Limit	Margin
ſ₩±z]	Bandwidth	[V/H]	[dB(µV)]	[dB]	[dB(µN/m)]	[dB(<i>µ</i> N/m)]	[dB]
			[uD(µv)]	լայ		[ub(µv/III)]	լա
Peak DATA. Emi	issions above 1 🖟	z					
-	Not Detected	-	-	-	-	-	-
verage DATA. I	Emissions above	1 GHz					
-	Not Detected	-	-	-	-	-	-
2.11g High cha	annel (2 462 Mz)					
Frequency	Receiver	Pol.	Reading	Factor	Result	Limit	Margin
ſMHz]	Bandwidth	[V/H]	[dB(µN)]	[dB]	[dB(µV/m)]	[dB(<i>µ</i> V/m)]	[dB]
eak DATA. Emiss							
* 2 483.50	1 000	Н	46.9	1.0	47.9	74.0	26.1
Above	Not	-					
3 000.00	Detected	-	-	-	-	-	-
verage DATA. En	nissions above 1 🕀	5					
* 2 483.50	1 000	Н	35.8	1.0	36.8	54.0	17.2
Above	Not	_	_			_	
3 000.00	Detected	-	-	-	-	-	-

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin
[Młz]	[kHz]	[V/H]	[dB(µN)]	[dB]	[dB(µV/m)]	[dB(µN/m)]	[dB]
eak DATA. Emiss	ions above 1 🖽						
* 2 389.94	1 000	V	53.2	1.3	54.5	74.0	19.5
Above 3 000.00	Not Detected	-	-	-	-	-	-
verage DATA. En	nissions above 1 🕀	z					
* 2 389.94	1 000	V	40.3	1.3	41.6	54.0	12.4
Above	Not Detected	-	-	-	-	-	-
3 000.00		<u> </u>					
This Asterisk m	eans restricted ba		Hz)	I		1	
This Asterisk m			1 z) Reading	Factor	Result	Limit	Margin
This Asterisk m 2. 11n HT20_ I	eans restricted ba Middle channel Receiver	(2 437 M		Factor [dB]	Result [dB(µN/m)]	Limit [dB(µV/m)]	Margin [dB]
This Asterisk m 2. 11n HT20_ I Frequency [Mtz]	eans restricted ba Middle channel Receiver Bandwidth	Pol. [V/H]	Reading				e
This Asterisk m 2. 11n HT20_ I Frequency [Mtz]	eans restricted ba Middle channel Receiver Bandwidth [kltz]	Pol. [V/H]	Reading				e
This Asterisk m 2. 11n HT20_1 Frequency [州社] eak DATA. Emi	eans restricted ba Middle channel Receiver Bandwidth [柮] ssions above 1 G	l (2 437 M Pol. [V/H] kz	Reading				e

802.11n HT20_ High channel (2 462 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin			
[MHz]	[kHz]	[V/H]	$[dB(\mu N)]$	[dB]	$[dB(\mu N/m)]$	$[dB(\mu N/m)]$	[dB]			
Peak DATA. Emissions above 1 🕏										
* 2 483.50	1 000	Н	47.8	1.0	48.8	74.0	25.2			
Above 3 000.00	Not Detected	-	-	-	-	-	-			
Average DATA. Emi	Average DATA. Emissions above 1 Gz									
* 2 483.50	1 000	Н	37.1	1.0	38.1	54.0	15.9			
Above 3 000.00	Not Detected	-	-	-	-	-	-			
* This Asterisk means restricted band.										

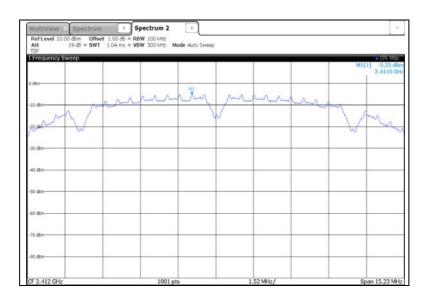
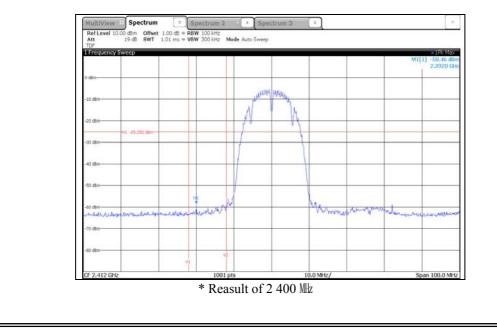

5.5.4 Test Plot

Figure 3. Plot of the Band-edge & Conducted Spurious Emissions

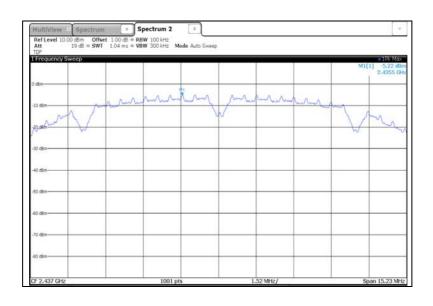

* 802.11b

Lowest Channel (2 412 Mz)

Reference

Band-edge

KCTL-TIR001-003/0

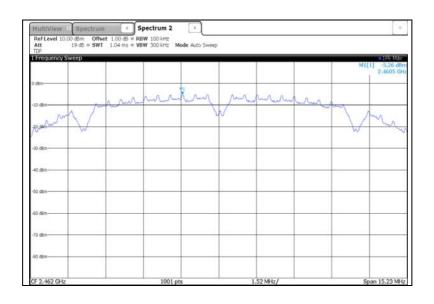

Page: (37) / (49) Pages

0 dim MI [1] 10 dim Image: State states	
I Frequency Sweep	
0 dbn	IPk Max
other Image: Constraint of the second of the s	-59.72 dB
10 8m	3.2130 G
N1 43.500 dm Image: Control of the con	
N1 43.500 dm Image: Control of the con	
20 dan 20	
40 dim	
50 200 - 12 60	
50 200 - 12 60	
50 200 - 12 60	
or an 12	
oo aan 13 Martin Malan Malan Martin Marine Martin Marine Martin Marine Martin Marine Martin Marine Martin Ma	
or an and the way be Manager and the way when a second and the sec	
or an and the way be Manager and the way when a second and the sec	
	May
60 dbm	

Middle Channel (2 437 Mz)

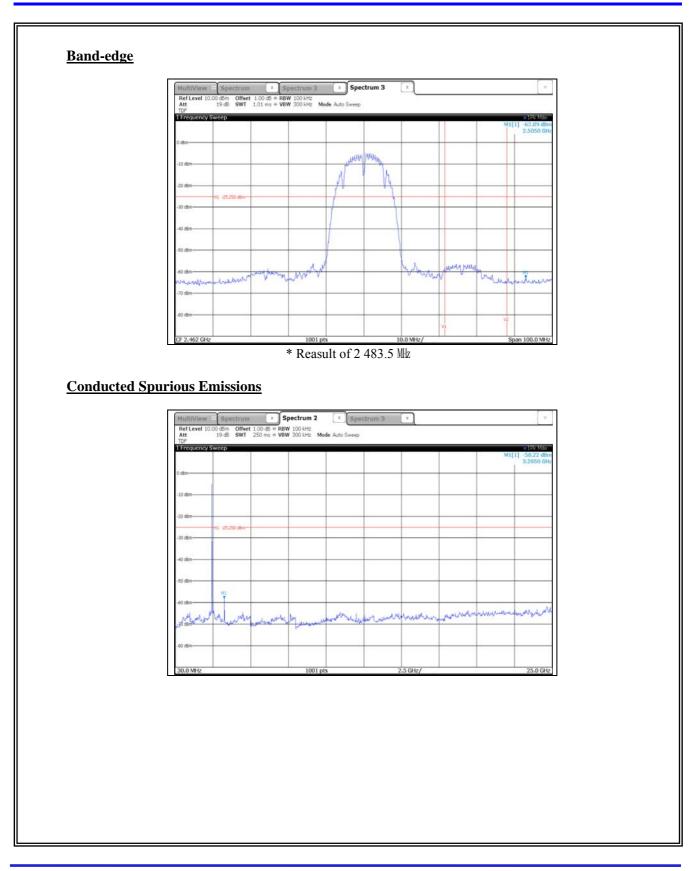
Reference

KCTL-TIR001-003/0


Page: (38) / (49) Pages

MultiView	E Spectrum	* Spectrum 2 X	Spectrum 3 🔹		v
Ref Level 10.0 Att TDF	19 dB SWT 250 ms	RBW 100 kHz VBW 300 kHz Mode Auto S	weep		
Frequency S	weep				M1[1] -58.21 dB 3.2600 GH
9 d8m					-
-10 d&m					
20 d8m					_
-30 d8m	H1 -05-220 dBm				
40 d8m					_
50 d8m					_
-60 dBm	M1		_		
And princed	Mushing	when and when a start of	handenber	a mered and a subjection	and stream
80 d8m					

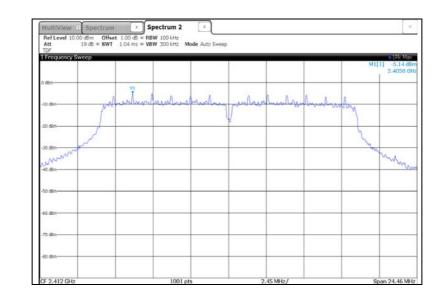
Highest Channel (2 462 ₩z)

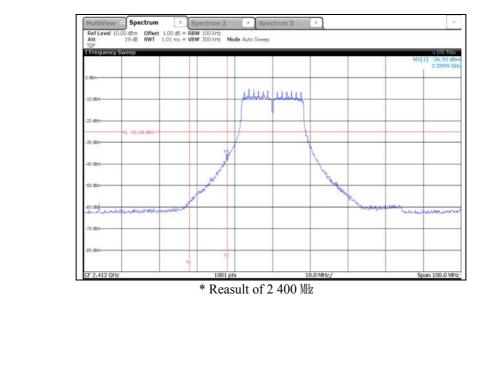

Reference

KCTL-TIR001-003/0

Page: (39) / (49) Pages

KCTL-TIR001-003/0


Page: (40) / (49) Pages

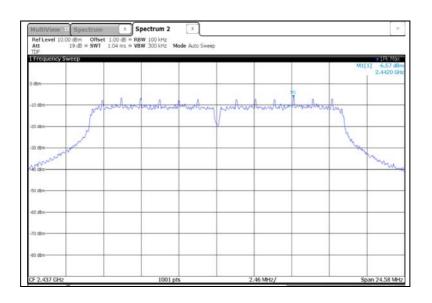

* 802.11g

Lowest Channel (2 412 Mz)

Reference

Band-edge

KCTL-TIR001-003/0

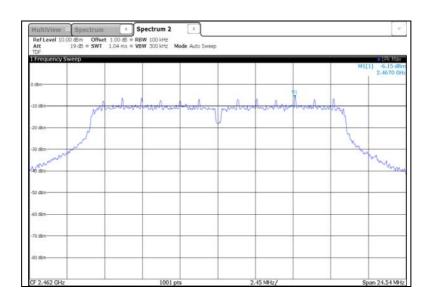

Page: (41) / (49) Pages

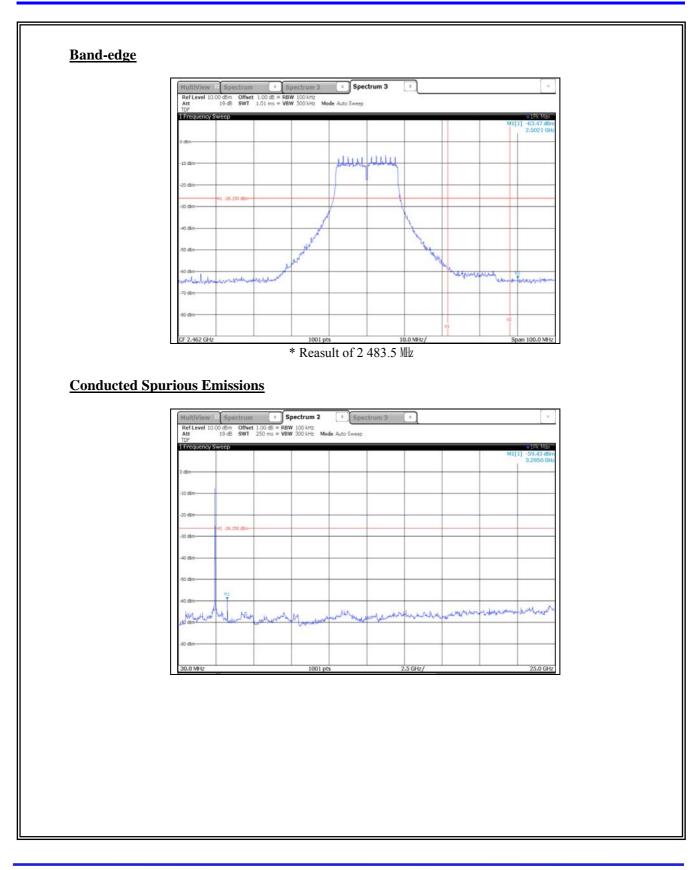
MultiView	Spectrum	x Spectrum 2 x Spe	strum 3 x	~
Ref Level 10.0 Att TDF	0 dBm Offset 1.00 dE 19 dB SWT 250 ms	■ RBW 100 kHz ■ VBW 300 kHz Mode Auto Sweep		
Frequency Sv	veep			IPk Max
				M1[1] -61.39 dB/ 3.2100 GH
0 dêm				3,2100 0
-10 d8m				
-20 dbm	41 -25.140 dam			
-30 dēm	A STANDER			
-40 d8m				
-50 dēm				
-60 džm	MI			
1	by which is	with the manufacture	northeinstructure	un un manus man
NO dbm	When they are	and Barbarran Marine		
-00 d8m				
30.0 MHz		1001 pts	2.5 GHz/	25.0 GH

Middle Channel (2 437 Mz)

Reference

KCTL-TIR001-003/0

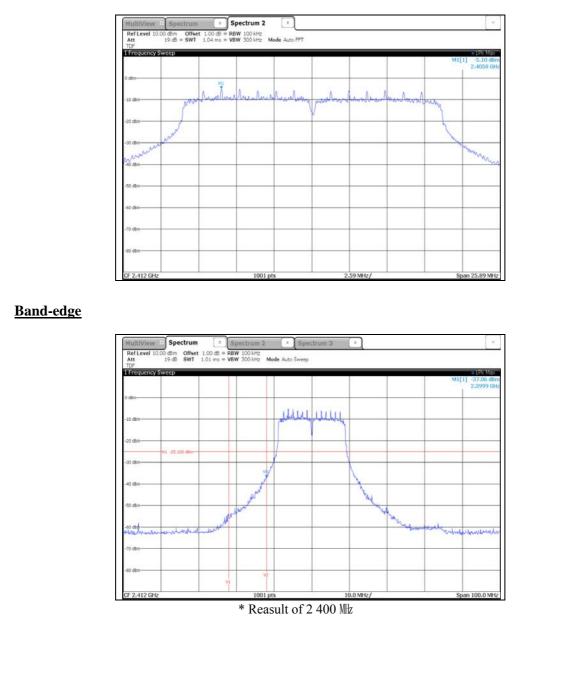

Page: (42) / (49) Pages


MultiView	Spectrum	x Spectrum 2 X Sp	ectrum 3 🔹	
Ref Level 10.0 Att TDF		s = RBW 100 kHz s = VBW 300 kHz Mode Auto Sweep		
Frequency S	weep			1Pk Max
				M1[1] -59.31 dB 3.2600 GF
0 dBm				
10 dēm				
-20 d8m				
-30 dēm	441 -26.570 dēm			
40 dêm				
50 dēm				
60 džm	MI			
	h why .	man by management	mounder ware and	and a contraction of the states of
70 dem	to the second	or between the		
80 dēm				
30.0 MHz		1001 pts	2.5 GHz/	25.0 GH

Highest Channel (2 462 ₩z)

Reference

KCTL-TIR001-003/0

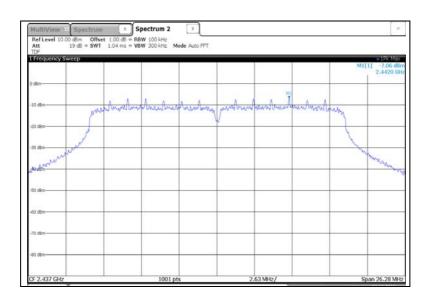

Page: (44) / (49) Pages

* 802.11n HT20

Lowest Channel (2 412 Mz)

Reference

KCTL-TIR001-003/0

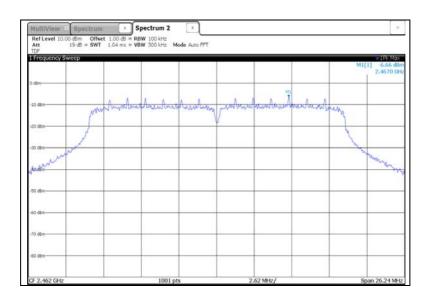

Page: (45) / (49) Pages

MultiView 1	Spectrum	Spectrum 2	× Spe	ctrum 3	т			Ψ.
Ref Level 10.0 Att TDF		00 dB = RBW 100 kHz 0 ms = VBW 300 kHz	Node Auto Sweep					
1 Frequency Sv	weep							IPk Max
							MIL	 -61.46 dBr 3.2100 GH
0 dBm								Constant and
U dem								
-10 d8m								
-20 dēm			-					
	H1 -25.100 dBm		-					-
-30 d8m			-					
-40 d8m			-					
-50 d8m								
-60 d8m-	MI							
1 . A	100		mennihalle	2020	1111	Station and	water a star	Mu Mu M
the stand of the stand	Ma phil	under my much	more marked	pur dustinon	without	Monteres	A address of a survey	dan . Aida
		Charles						
							-	
-80 d8m								
30.0 MHz		1001	pts	2.	5 GHz/		-	25.0 GH

Middle Channel (2 437 Mz)

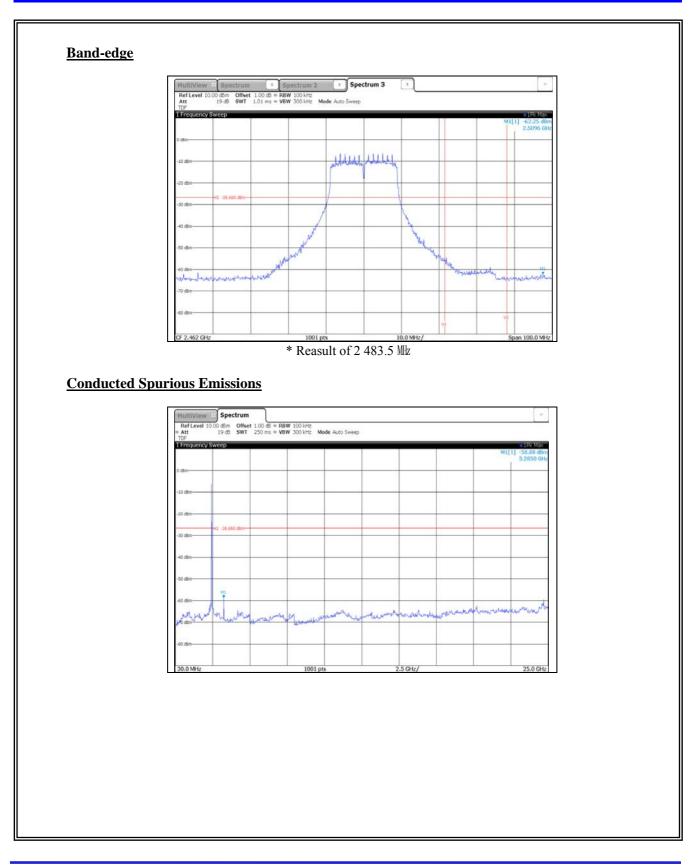
Reference

KCTL-TIR001-003/0


Page: (46) / (49) Pages

Att	19 dB SWT	250 ms # VBW	300 kHz Mod	le Auto Sweep					
Frequency	Sweep			_		_			IPk Max
								M1[1]	-61.46 dB 3.2100 GF
0 d8m									
10 dBm									
-20 dBm									
	H1 -27 060 dBm								
30 dBm									
-40 dBm									
50 dBm									
-60 dām	AT			7.50			1000	and the second	11 1
70 denter days	Whenthe	mundering	4 million	www. and the star	andparter	militare	mound	hypelennine	rowned a
			Withhere		1.1				
-80 dBm									

Highest Channel (2 462 ₩z)


Reference

KCTL-TIR001-003/0

Page: (47) / (49) Pages

KCTL-TIR001-003/0

Page: (48) / (49) Pages

6. Test equipment used for test

	Description	Manufacturer	Model No.	Serial No.	Next Cal Date.
	Spectrum Analyzer	R&S	FSV30	100807	16.09.02
	Spectrum Analyzer	R&S	FSW26	101353	16.07.16
	Signal generator	R & S	SMR40	100007	16.06.15
	Wideband Power Sensor	R&S	NRP-Z81	100677	16.01.26
	DC Power Supply	Agilent	E3632A	MY40027567	16.07.15
	Loop Antenna	R&S	HFH2-Z2	861971/003	17.03.03
•	Bi-Log Antenna	SCHWARZBE CK	VULB9163	552	16.06.14
	Horn Antenna	ETS.lindgren	3115	62589	16.11.12
	Horn Antenna	ETS.lindgren	3116	00086635	16.04.29
	Amplifier	SONOMA INSTRUMENT	310	186280	16.09.01
	Emi Test Receiver	R&S	ESR	101078	16.02.16
	Broadband Preamplifier	SCHWARZBECK	BBV9721	2	16.05.19
	Preamplifier	AGILENT	3008A02343	8449B	16.09.02
	Attenuator	R&S	DNF Dämpfungsglied 10 dB in N-50 Ohm	0001	16.06.15
	Attenuator	AGILENT	8491A	MY52460424	16.07.13
	Highpass Filter	Wainwright Instruments GmbH	WHKX3.0/ 18G-12SS	44	16.02.02
	Test Receiver	R&S	ESCI	100001	16.08.04
	Antenna Mast	Innco Systems	МА4000-ЕР	-	-
	Turn Table	Innco Systems	DT2000	-	-

KCTL-TIR001-003/0