


#### **High Band-edge**

### Highest Channel & Modulation : GFSK



#### Hopping mode & Modulation : GFSK

**High Band-edge** rum Analyzer - Swept S/ ALIGN OFF Frequency Center Freq 2.483500000 GHz Trig: Free Run Atten: 20 dB түр PNO: Wide 🖵 IFGain:Low DET PPPPF Auto Tune Mkr1 2.487 000 00 GHz -51.79 dBm Ref 10.00 dBm 10 dB/div ₋og r **Center Freq** 2.483500000 GHz Start Freq 2.478500000 GHz Stop Freq 2.488500000 GHz Start 2.478500 GHz #Res BW 100 kHz Stop 2.488500 GHz Sweep 2.667 ms (40001 pts) CF Step 1.000000 MHz #VBW 300 kHz Man Auto FUNCTION MKR MODE FUNCTION WIDTH FUNCTION VALUE 2.487 000 00 GHz N 1 f -51.79 dBm **Freq Offset** 0 Hz STATUS



# Conducted Spurious Emissions <u>Highest Channel & Modulation : GFSK</u>

| Agilent Spectrum Analyzer - Swept ! |                                                                                                                  |                              |                                                                                                                  |               |                        |                         |                        |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|------------------------|-------------------------|------------------------|
| 🗶 RL RF 50 Q 🚹 D                    |                                                                                                                  | SENSE:IN                     |                                                                                                                  | ALIGN OFF     | 12:48:29 PM De         | c 07, 2023<br>2 3 4 5 6 | Frequency              |
| Center Freq 15.004500               | PNO: Fast G                                                                                                      | Trig: Free Rur               |                                                                                                                  | e. Log-r wi   | TYPE                   | PPPPP                   |                        |
|                                     | IFGain:Low                                                                                                       | Atten: 20 dB                 |                                                                                                                  |               | DET 🗜                  | PPPPP                   |                        |
|                                     |                                                                                                                  |                              |                                                                                                                  |               | Mkr1 281.              | 9 kHz                   | Auto Tune              |
| 10 dB/div Ref 10.00 dB              | <b>m</b> 0                                                                                                       |                              |                                                                                                                  |               | -43.16                 |                         |                        |
|                                     |                                                                                                                  |                              |                                                                                                                  |               |                        |                         |                        |
| 0.00                                |                                                                                                                  |                              |                                                                                                                  |               |                        |                         | Center Free            |
| -10.0                               |                                                                                                                  |                              |                                                                                                                  |               |                        |                         | 15.004500 MH           |
| -20.0                               |                                                                                                                  |                              |                                                                                                                  |               |                        |                         |                        |
|                                     |                                                                                                                  |                              |                                                                                                                  |               |                        | -24.23 dBm              |                        |
| -30.0                               |                                                                                                                  |                              |                                                                                                                  |               |                        |                         | Start Fred             |
| -40.0                               |                                                                                                                  |                              |                                                                                                                  |               |                        |                         | 9.000 kHz              |
| -50.0                               |                                                                                                                  |                              |                                                                                                                  |               |                        |                         |                        |
| -60.0                               |                                                                                                                  |                              |                                                                                                                  |               |                        |                         |                        |
| -70.0                               | and the second | مالى المرجدة والمجاد المالية | and the second |               | Levense for the second | Nuntrainat              | Stop Free              |
|                                     |                                                                                                                  |                              |                                                                                                                  |               |                        |                         | 30.000000 MH:          |
| -80.0                               |                                                                                                                  |                              |                                                                                                                  |               |                        |                         |                        |
| Start 9 kHz                         |                                                                                                                  |                              |                                                                                                                  |               | Stop 30.0              |                         |                        |
| #Res BW 100 kHz                     | #\/R)                                                                                                            | V 300 kHz                    | ,                                                                                                                | Sween 5'      | 333 ms (400            |                         | CF Step<br>2.999100 MH |
|                                     |                                                                                                                  | ¥ 500 KHZ                    |                                                                                                                  | -             |                        |                         | Auto Mar               |
| MKR MODE TRC SCL                    | X                                                                                                                | ۲<br>-43.16 dBm              | FUNCTION FL                                                                                                      | JNCTION WIDTH | FUNCTION V.            | ALUE 🔼                  | <u>/(dro</u> inter     |
| 1 N 1 f                             | 281.9 kHz                                                                                                        | -43.16 dBm                   |                                                                                                                  |               |                        |                         |                        |
| 3                                   |                                                                                                                  |                              |                                                                                                                  |               |                        |                         | Freq Offse             |
| 4                                   |                                                                                                                  |                              |                                                                                                                  |               |                        |                         | 0 H:                   |
| 6                                   |                                                                                                                  |                              |                                                                                                                  |               |                        |                         |                        |
| 7                                   |                                                                                                                  |                              |                                                                                                                  |               |                        |                         |                        |
| 8                                   |                                                                                                                  |                              |                                                                                                                  |               |                        |                         |                        |
| 10                                  |                                                                                                                  |                              |                                                                                                                  |               |                        |                         |                        |
| 11                                  |                                                                                                                  |                              |                                                                                                                  |               |                        | >                       |                        |
| NSG                                 |                                                                                                                  |                              |                                                                                                                  | OT A THE      | DC Couple              |                         |                        |
| 100                                 |                                                                                                                  |                              |                                                                                                                  | STATUS        |                        | u                       |                        |

| L RF S                                   | 50 Ω AC CORREC                                               | SENSE:INT                                                          |          | ALIGN OFF                        | 01:07:48 PM Dec 07, 2023                             | Frequency                        |
|------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|----------|----------------------------------|------------------------------------------------------|----------------------------------|
|                                          | PNO: Fast<br>IFGain:Low                                      | Trig: Free Run<br>Atten: 20 dB                                     | Avg T    | ype: Log-Pwr                     | TRACE 123456<br>TYPE MWWWWW<br>DET PAAAAA            | riequency                        |
| OdB/div Ref 10.0                         |                                                              |                                                                    |          | Mkr                              | 5 3.346 77 GHz<br>-50.19 dBm                         | Auto Tur                         |
| •g<br>                                   |                                                              |                                                                    |          |                                  | -24.23 dBm                                           | Center Fre<br>5.015000000 GI     |
| 0.0<br>0.0<br>0.0                        | 54                                                           | 2                                                                  |          | (uni (14) est recejes destricted | top at 10 may rate and top 2 million to the starting | Start Fro<br>30.000000 M         |
|                                          |                                                              |                                                                    |          |                                  |                                                      | <b>Stop Fr</b><br>10.000000000 G |
| tart 30 MHz<br>Res BW 1.0 MHz            | #VE                                                          | 3W 3.0 MHz                                                         |          | Sweep 18                         | Stop 10.000 GHz<br>.67 ms (40001 pts)                | CF St<br>997.000000 M            |
| KR MODE TRC SCL                          | ×<br>2.480 13 GHz                                            | ≺3.51 dBm                                                          | FUNCTION | FUNCTION WIDTH                   | FUNCTION VALUE                                       | <u>Auto</u> M                    |
| 2 N 1 f<br>3 N 1 f<br>4 N 1 f<br>5 N 1 f | 3.966 90 GHz<br>5.699 19 GHz<br>3.518 00 GHz<br>3.346 77 GHz | -48.81 dBm<br>-48.81 dBm<br>-50.05 dBm<br>-50.08 dBm<br>-50.19 dBm |          |                                  |                                                      | Freq Offs<br>0                   |
|                                          |                                                              |                                                                    |          |                                  |                                                      |                                  |
| 6                                        |                                                              |                                                                    |          |                                  |                                                      |                                  |



# Conducted Spurious Emissions <u>Highest Channel & Modulation : GFSK</u>

| gilent Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|------------------------------------|----------------------------------|
| KIRL RF 50Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CORREC                               | SENSE:IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | LALIGN OFF<br>e: Log-Pwr | 12:49:18 PM Dec 07,<br>TRACE 1 2 3 |                                  |
| Center Freq 17.5000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PNO: Fast                            | Trig: Free Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | e. Log-Pwr               | TYPE MINA                          |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IFGain:Low                           | Atten: 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                          | DET PPP                            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Mkr3 1                   | 6.791 625 G                        | Hz Auto Tu                       |
| 10 dB/div Ref 10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          | -43.85 dl                          | Bm                               |
| Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    |                                  |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    | Center Fr                        |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    | 17.500000000 G                   |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          | -24.2                              | 23 dBm                           |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    |                                  |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                          |                                    | Start Fr                         |
| -50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | والمتعادية وحجرين التحري والمتطالبين | and the section of th | And Street Street Street Street |                          |                                    | 10.00000000 G                    |
| standard and a second se |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    |                                  |
| -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    | Stop Fr                          |
| -70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    | 25.000000000 G                   |
| -80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    |                                  |
| Start 10.000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          | Oto 05 000 /                       |                                  |
| #Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #VRM                                 | 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | ween 10                  | Stop 25.000 (<br>00 ms (40001      | GHz CF Sto<br>pts) 1.500000000 G |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | •                        |                                    | Auto M                           |
| MKR MODE TRC SCL ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83 875 GHz                           | ≺39.54 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FUNCTION FU                     | NCTION WIDTH             | FUNCTION VALUE                     |                                  |
| 2 N 1 f 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 363 500 GHz                          | -42.41 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                          |                                    |                                  |
| 3 N 1 f 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 791 625 GHz                          | -43.85 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                          |                                    | Freq Offs                        |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    | 0                                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    |                                  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    |                                  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    |                                  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    | <b>∼</b>                         |
| <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                          |                                    |                                  |
| ISG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | STATUS                   |                                    |                                  |



#### Low Band-edge

#### Lowest Channel & Modulation : π/4DQPSK



#### Low Band-edge

#### <u>Hopping mode & Modulation : π/4DQPSK</u>






## Lowest Channel & Modulation : π/4DQPSK

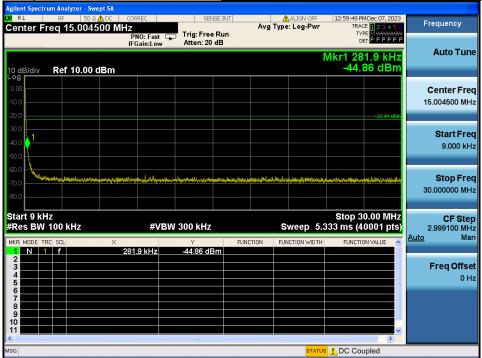
| Agilent Spe          |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |
|----------------------|-----------|--------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|---------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|----------------------|------|--------------|
| L <mark>XI</mark> RL | RF        |              | i0 Ω <u>Λ</u> DC           | CORREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                   | SENSE:I | T             |                                                                                                                                                                                                                                    | ALIGN OFF               |                      | MDec 07, 2023        | F    | requency     |
| Center               | Freq      | 15.00        | 4500                       | MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               | Tria: F           | ree Ru  | n             | Avging                                                                                                                                                                                                                             | pe: Log-Pwr             |                      | CE 123456            |      | , oquono j   |
|                      |           |              |                            | PNO: I<br>IFGain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fast ⊂,<br>∙Low |                   | 20 dB   |               |                                                                                                                                                                                                                                    |                         |                      | PPPPP                |      |              |
|                      |           |              |                            | ii oaiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EON             |                   | _       |               |                                                                                                                                                                                                                                    |                         |                      |                      |      | Auto Tune    |
|                      |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         | IVIKT1 28            | 34.2 kHz             |      |              |
| 10 dB/di             | v Re      | f 10.0       | I0 dBm                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         | -44.                 | 75 dBm               |      |              |
| Log                  |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |
| 0.00                 |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      | Center Freq  |
| -10.0                |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      | 1    | 5.004500 MHz |
| -20.0                |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |
|                      |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      | -23.76 dBm           |      |              |
| -30.0                |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      | Start Freq   |
| -40.0                |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      | 9.000 kHz    |
| -50.0                |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |
| -60.0                |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |
| <b>1 1</b>           | Witness   |              |                            | والمعدم والع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | later beingen aus |         | i the section | and the sector                                                                                                                                                                                                                     | والطريب المعراب والمروا | and as a second      | a dar bi a chan a sh |      | Stop Freq    |
| -70.0                | and a set | Ada a data a | and dealers in the damp is | the life of the state of the st |                 |                   |         | La detail     | alle de la contra d<br>Contra de la contra d | and residently for the  | Contract in ratio is |                      | 2    | 0.000000 MHz |
| -80.0                |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      | 3    | 5.000000 MHz |
|                      |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |
| Start 9              | kHz       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         | Stop 3               | 30.00 MHz            |      | CF Step      |
| #Res B               | W 100     | kHz          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VBW            | / 300 ki          | z       |               |                                                                                                                                                                                                                                    | Sweep 5.                | 333 ms (4            | 10001 pts)           |      | 2.999100 MHz |
| MKR MODE             |           |              | ×                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 0                 | 1       | FUN           | TION                                                                                                                                                                                                                               | UNCTION WIDTH           | FUNCT                | ION VALUE            | Auto | Man          |
|                      |           |              | X                          | 284.2 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -17             | -44.75            | dBm     | FUN           |                                                                                                                                                                                                                                    | UNCTION WIDTH           | FUNCT                | IUN VALUE            |      |              |
| 2                    |           |              |                            | 204.2 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 112             |                   | abiii   |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |
| 3                    |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      | Freq Offset  |
| 4 5                  | +         |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      | 0 Hz         |
| 6                    | $\vdash$  |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |
| 7                    |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |
| 8                    | $\vdash$  |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |
| 10                   | $\vdash$  |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |
| 11                   |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      | ~                    |      |              |
| <                    |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ш                 |         |               |                                                                                                                                                                                                                                    |                         |                      | >                    |      |              |
| MSG                  |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    | STATU                   | s 🚺 DC Co            | upled                |      |              |
|                      |           |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |         |               |                                                                                                                                                                                                                                    |                         |                      |                      |      |              |

| Agilent Spectrum Analyzer - Swe |                              |                                |                                |                                               |                              |
|---------------------------------|------------------------------|--------------------------------|--------------------------------|-----------------------------------------------|------------------------------|
| <b>LXI</b> L RF 50Ω             | AC CORREC                    | SENSE:INT                      | ALIGN OFF<br>Avg Type: Log-Pwr | 01:06:46 PM Dec 07, 2023<br>TRACE 1 2 3 4 5 6 | Frequency                    |
|                                 | PNO: Fast 🖵<br>IFGain:Low    | Trig: Free Run<br>Atten: 20 dB |                                | TYPE MWWWWW<br>DET PAAAAA                     | Auto Tune                    |
| 10 dB/div Ref 10.00 d           | dBm                          |                                | Mkı                            | r5 2.771 50 GHz<br>-50.05 dBm                 | Auto Tunc                    |
| 0.00                            | <b>1</b>                     |                                |                                |                                               | Center Freq                  |
| -10.0                           |                              |                                |                                |                                               | 5.015000000 GHz              |
| -30.0                           |                              |                                |                                | -23.76 dBm                                    | Start Freq                   |
| -40.0                           | <b>5 € €</b>                 |                                |                                |                                               | 30.000000 MHz                |
| -50.0                           |                              |                                |                                | an a      |                              |
| -70.0                           |                              |                                |                                |                                               | Stop Freq<br>10.00000000 GHz |
| -80.0                           |                              |                                |                                |                                               |                              |
| Start 30 MHz<br>#Res BW 1.0 MHz | #VBW                         | 3.0 MHz                        | Sweep 18                       | Stop 10.000 GHz<br>8.67 ms (40001 pts)        | CF Step<br>997.000000 MHz    |
| MKR MODE TRC SCL                | X                            |                                | INCTION FUNCTION WIDTH         | FUNCTION VALUE                                | <u>Auto</u> Man              |
| 2 N 1 f                         | 2.401 86 GHz<br>3.864 71 GHz | -1.22 dBm<br>-47.25 dBm        |                                |                                               |                              |
| 3 N 1 f<br>4 N 1 f              | 3.165 81 GHz<br>3.038 45 GHz | -49.46 dBm<br>-49.93 dBm       |                                |                                               | Freq Offset                  |
| 5 N 1 f                         | 2.771 50 GHz                 | -50.05 dBm                     |                                | 3                                             | 0 Hz                         |
| 7 8                             |                              |                                |                                |                                               |                              |
| 9                               |                              |                                |                                |                                               |                              |
| 11 <                            |                              | Ш                              |                                | ×                                             |                              |
| MSG                             |                              |                                | <b>I</b> o statu               | IS                                            |                              |



#### Lowest Channel & Modulation : π/4DQPSK






#### **Reference for limit**

#### Middle Channel & Modulation : π/4DQPSK



#### Conducted Spurious Emissions <u>Middle Channel & Modulation : π/4DQPSK</u>



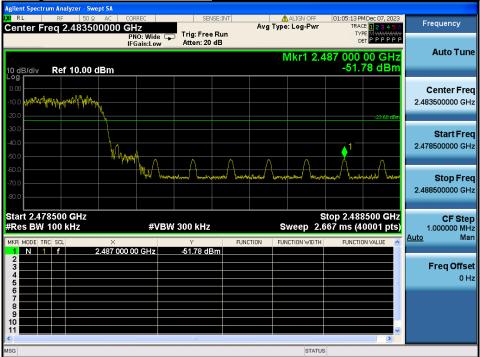


#### Middle Channel & Modulation : π/4DQPSK



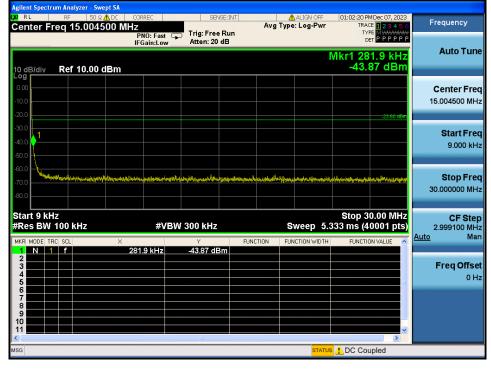
|                        | ım Analyzer - Sv                                                      |                        |                         |                         |                         |          |              |         |                                             |                                |
|------------------------|-----------------------------------------------------------------------|------------------------|-------------------------|-------------------------|-------------------------|----------|--------------|---------|---------------------------------------------|--------------------------------|
| Center Fr              | RF 50 9<br>eq 17.500                                                  |                        | ORREC                   |                         | SE:INT                  |          | ALIGN OFF    | TRAC    | 4Dec 07, 2023<br>E <mark>1 2 3 4 5</mark> 6 | Frequency                      |
|                        |                                                                       | I                      | PNO: Fast G<br>Gain:Low | Trig: Free<br>Atten: 20 |                         |          |              |         | E MWWWWW<br>P P P P P P                     |                                |
|                        |                                                                       |                        | Gamileow                |                         |                         |          | Mkr3 1       | 8.193 7 | 50 GHz                                      | Auto Tune                      |
| 10 dB/div              | Ref 10.00                                                             | dBm                    |                         |                         |                         |          |              |         | 37 dBm                                      |                                |
|                        |                                                                       |                        |                         |                         |                         |          |              |         |                                             | Conton From                    |
| -10.0                  |                                                                       |                        |                         |                         |                         |          |              |         |                                             | Center Freq<br>17.50000000 GHz |
| -20.0                  |                                                                       |                        |                         |                         |                         |          |              |         | 22.04 JD-                                   | 17.50000000 GHZ                |
| -30.0                  |                                                                       |                        |                         |                         |                         |          |              |         | -22.91 dbii                                 |                                |
| -40.0                  |                                                                       |                        |                         |                         | 3                       |          |              |         |                                             | Start Freq                     |
| 50.0                   | Non-Arrist St. T. St. St. Str. St. St. St. St. St. St. St. St. St. St | all successive states  |                         |                         | - Chapter Street Street |          |              |         |                                             | 10.00000000 GHz                |
| -60.0                  |                                                                       |                        |                         |                         |                         |          |              |         |                                             |                                |
| -70.0                  |                                                                       |                        |                         |                         |                         |          |              |         |                                             | Stop Freq                      |
| -80.0                  |                                                                       |                        |                         |                         |                         |          |              |         |                                             | 25.00000000 GHz                |
|                        |                                                                       |                        |                         |                         |                         |          |              |         |                                             |                                |
| Start 10.00<br>#Res BW |                                                                       |                        | #VB۱                    | N 3.0 MHz               |                         | s        | weep 40      |         | .000 GHz<br>0001 pts)                       |                                |
| MKR MODE TR            | C  SCL                                                                | ×                      |                         | Y                       |                         | CTION FU | NCTION WIDTH | FUNCTIO | IN VALUE                                    | <u>Auto</u> Man                |
| 1 N 1<br>2 N 1         | f                                                                     | 24.922 00<br>17.016 62 |                         | -38.96 dB<br>-44.36 dB  | m<br>m                  |          |              |         |                                             |                                |
| 3 N 1<br>4             | f                                                                     | 18.193 7               |                         | -45.37 dB               |                         |          |              |         |                                             | Freq Offset                    |
| 5                      |                                                                       |                        |                         |                         |                         |          |              |         | =                                           | 0 Hz                           |
| 6                      |                                                                       |                        |                         |                         |                         |          |              |         |                                             |                                |
| 8                      |                                                                       |                        |                         |                         |                         |          |              |         |                                             |                                |
| 10                     |                                                                       |                        |                         |                         |                         |          |              |         |                                             |                                |
| 11 <u> </u>            |                                                                       |                        |                         | Ш                       |                         |          |              |         | >                                           |                                |
| MSG                    |                                                                       |                        |                         |                         |                         |          | STATUS       |         |                                             |                                |

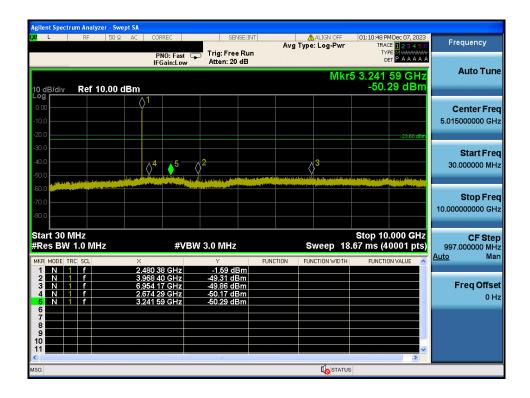



#### High Band-edge

#### Highest Channel & Modulation : π/4DQPSK




#### High Band-edge


#### Hopping mode & Modulation : π/4DQPSK





### Highest Channel & Modulation : π/4DQPSK








### Highest Channel & Modulation : π/4DQPSK

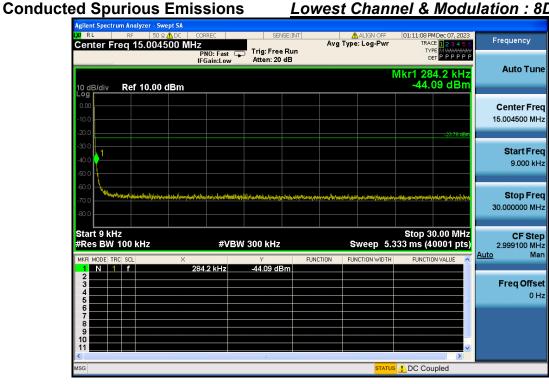




#### Low Band-edge

#### Lowest Channel & Modulation : 8DPSK




#### Low Band-edge

#### Hopping mode & Modulation : 8DPSK





## Lowest Channel & Modulation : 8DPSK



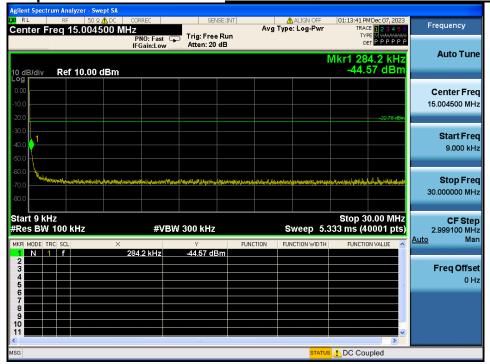
| Agilent Spectrum Analyzer - Sw                                                                | Pept SA                                                                      | SENSE:INT                                                         | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALIGN OFF             | 01:12:26 PM Dec 07, 2023                       |                                      |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------|--------------------------------------|
| V L NA 30 M                                                                                   |                                                                              |                                                                   | Avg Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | TRACE 1 2 3 4 5<br>TYPE MILLION                | Frequency                            |
|                                                                                               | PNO: Fast G                                                                  | Atten: 20 dB                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | DET PAAAA                                      | A                                    |
| 10 dB/div Ref 10.00                                                                           | dBm                                                                          |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr                   | 5 2.778 98 GHz<br>-50.29 dBm                   |                                      |
| 0.00<br>-10.0<br>-20.0                                                                        | 1<br>                                                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -23.76 dBn                                     | Center Fred<br>5.015000000 GHz       |
| -30.0<br>-40.0                                                                                | 5 4                                                                          |                                                                   | like to grad a first of a state of a first of a state o | 3                     | ran better and provide the second state of the | Start Free<br>30.000000 MHz          |
| -60.0<br>-70.0<br>-80.0                                                                       |                                                                              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tera politici tito de |                                                | <b>Stop Fred</b><br>10.000000000 GHz |
| Start 30 MHz<br>#Res BW 1.0 MHz                                                               | #VB\                                                                         | V 3.0 MHz                                                         | Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | veep 18               | Stop 10.000 GHz<br>.67 ms (40001 pts           | 997.000000 MH                        |
| MKR MODE TRC SCL                                                                              | X                                                                            | Y                                                                 | FUNCTION FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TION WIDTH            | FUNCTION VALUE                                 | Auto Mar                             |
| 2 N 1 f<br>3 N 1 f<br>4 N 1 f<br>5 N 1 f                                                      | 2.402 11 GHz<br>3.843 28 GHz<br>6.995 29 GHz<br>3.330 82 GHz<br>2.778 98 GHz | -1.00 dBm<br>-48.99 dBm<br>-49.89 dBm<br>-50.17 dBm<br>-50.29 dBm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                | Freq Offset<br>0 Hz                  |
| N     T       6     -       7     -       8     -       9     -       10     -       11     - | 2.11898 GHZ                                                                  | -50.29 dBm                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                |                                      |
| <                                                                                             |                                                                              | Ш                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                     | >                                              |                                      |
| IISG                                                                                          |                                                                              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                |                                      |



## Conducted Spurious Emissions <u>Lowest Channel & Modulation : 8DPSK</u>

| RL RF 50<br>Center Freq 17.500                                                       | Ω AC CORREC<br>0000000 GHz<br>PNO: Fast C<br>IFGain:Low | Trig: Free Run<br>Atten: 20 dB                | ALIGN OFF              | 01:11:58 PM Dec 07, 2023<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWW<br>DET P P P P P P | Frequency                         |
|--------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|------------------------|---------------------------------------------------------------------------------|-----------------------------------|
| 10 dB/div Ref 10.00                                                                  | dBm                                                     |                                               | Mkr3 2                 | 21.259 000 GHz<br>-42.65 dBm                                                    | Auto Tui                          |
| -10.0                                                                                |                                                         |                                               |                        | -23.76 dBm                                                                      | Center Fre<br>17.500000000 GI     |
| -30.0<br>-40.0<br>-50.0                                                              |                                                         |                                               |                        | 2<br>2                                                                          | Start Fre<br>10.000000000 GH      |
| -60.0<br>-70.0<br>-80.0                                                              |                                                         |                                               |                        |                                                                                 | <b>Stop Fr</b><br>25.000000000 GI |
| Start 10.000 GHz<br>#Res BW 1.0 MHz                                                  | #VB                                                     | W 3.0 MHz                                     | Sweep 40               | Stop 25.000 GHz<br>0.00 ms (40001 pts)                                          | CF Ste<br>1.50000000 GI           |
| MKR MODE TRC SC.<br>1 N 1 F<br>2 N 1 F<br>3 N 1 F<br>4 F<br>5 F<br>7 F<br>8 S<br>9 S | X<br>24.803 875 GHz<br>21.832 750 GHz<br>21.259 000 GHz | Y FL<br>39.42 dBm<br>-42.52 dBm<br>-42.65 dBm | INCTION FUNCTION WIDTH | FUNCTION VALUE                                                                  | Auto M<br>Freq Offs<br>0          |
| 10                                                                                   |                                                         |                                               |                        | ×                                                                               |                                   |




#### **Reference for limit**

#### Middle Channel & Modulation : 8DPSK



#### Conducted Spurious Emissions

#### Middle Channel & Modulation : 8DPSK



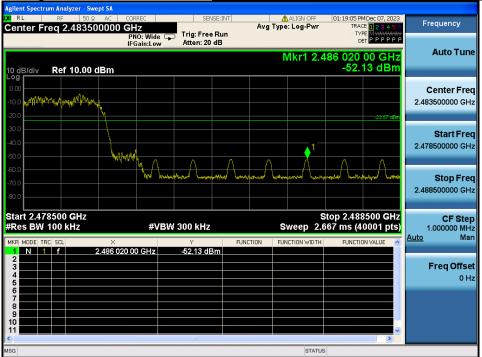


## Middle Channel & Modulation : 8DPSK



| Agilent Spectru  |           | wept SA<br>Ω AC CORREC         | SEN               | SE:INT     | ALIGN OFF       | 01:14:30 P         | 4Dec 07, 2023        |                               |
|------------------|-----------|--------------------------------|-------------------|------------|-----------------|--------------------|----------------------|-------------------------------|
|                  |           | 0000000 GHz                    | ast 👝 Trig: Free  | Avg<br>Run | g Type: Log-Pwr | TRAC               | E 123456<br>E MWWWWW | Frequency                     |
|                  |           | IFGain:                        |                   | dB         | Mkr3 /          |                    | 50 GHz               | Auto Tune                     |
| 10 dB/div<br>Log | Ref 10.00 | dBm                            |                   |            |                 |                    | 40 dBm               |                               |
| 0.00             |           |                                |                   |            |                 |                    |                      | Center Freq                   |
| -10.0            |           |                                |                   |            |                 |                    |                      | 17.50000000 GHz               |
| -20.0            |           |                                |                   |            |                 | _                  | -22.78 dBm           |                               |
| -40.0            |           |                                |                   |            |                 | $ \rangle^2$       |                      | Start Freq<br>10.00000000 GHz |
| -50.0            |           |                                |                   |            |                 | and a state of the |                      |                               |
| -60.0            |           |                                |                   |            |                 |                    |                      | Stop Freq                     |
| -80.0            |           |                                |                   |            |                 |                    |                      | 25.00000000 GHz               |
| Start 10.00      | 00 GHz    |                                |                   |            |                 | Stop 25            | .000 GHz             | CF Step                       |
| #Res BW          |           |                                | #VBW 3.0 MHz      |            | Sweep 40        | .00 ms (4          | 0001 pts)            | 1.500000000 GHz<br>Auto Man   |
| MKR MODE TRI     | C SCL     | ×<br>24.141 250 GH             | Y<br>Iz -39.54 dE |            | FUNCTION WIDTH  | FUNCTIO            | IN VALUE             | <u>Adto</u> Mari              |
| 2 N 1<br>3 N 1   | f<br>f    | 22.366 375 GH<br>16.819 750 GH |                   | 3m<br>3m   |                 |                    |                      | Freq Offset                   |
| 4<br>5<br>6      |           |                                |                   |            |                 |                    | =                    | 0 Hz                          |
| 7                |           |                                |                   |            |                 |                    |                      |                               |
| 9                |           |                                |                   |            |                 |                    |                      |                               |
| 11               |           |                                | ш                 |            |                 |                    | ×                    |                               |
| MSG              |           |                                |                   |            | STATU           | ŝ                  |                      |                               |




#### High Band-edge

#### Highest Channel & Modulation : 8DPSK



#### High Band-edge

#### Hopping mode & Modulation : 8DPSK





## Conducted Spurious Emissions <u>Highest Channel & Modulation : 8DPSK</u>

| Center Fred                                   | RF 50 Q 🚹 DC                  | CORREC                               | SENSE                           |                           | ALIGN OFF                        | 01:16:12 PMDec 07                            |        | Frequency                                         |
|-----------------------------------------------|-------------------------------|--------------------------------------|---------------------------------|---------------------------|----------------------------------|----------------------------------------------|--------|---------------------------------------------------|
|                                               | 15.004500 N                   | PNO: Fast                            | 🖵 Trig: Free R                  | un                        | j Type: Log-Pwr                  | TRACE 123<br>TYPE MWW<br>DET P P F           | WWWWW  | , requeites                                       |
| 10 dB/div R                                   | ef 10.00 dBm                  | IFGain:Low                           | Atten: 20 dE                    | 3                         |                                  | Mkr1 291.7<br>-44.44 d                       | KHZ    | Auto Tune                                         |
| -10.00                                        |                               |                                      |                                 |                           |                                  | -23                                          | 57 dBm | Center Free<br>15.004500 MH                       |
| -30.0                                         |                               |                                      |                                 |                           |                                  |                                              |        | Start Free<br>9.000 kH                            |
| -60.0<br>-70.0<br>-80.0                       | nietheridoogtanijonietheridoo | lavarhallagidir statilar the Namadra | n,midanly-secondryphenetic fiss | antangkais laharan Japaka | hil yhaddi maan kihdellamaan kyn | uhhuduhimiyadhida yana lahad                 | ye     | <b>Stop Fre</b><br>30.000000 MH                   |
|                                               |                               |                                      |                                 |                           |                                  |                                              |        |                                                   |
| Start 9 kHz<br>#Res BW 10                     |                               | #VE                                  | 3W 300 kHz                      |                           |                                  | Stop 30.00<br>333 ms (40001                  | pts)   | CF Stej<br>2.999100 MH                            |
| #Res BW 10                                    | CL X                          | #VE                                  | BW 300 kHz<br>Y<br>-44.44 dBm   | FUNCTION                  | Sweep 5.                         | Stop 30.00<br>333 ms (40001<br>FUNCTION VALU | pts)   | 2.999100 MH<br><u>ito</u> Ma<br><b>Freq Offse</b> |
| #Res BW 10   MKR MODE TRC S   1 N   2   3   4 | CL X                          |                                      | Y                               |                           |                                  | 333 ms (40001                                | pts)   | 2.999100 MH                                       |

|                | Analyzer - Swept SA |                            |                              |                       |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|---------------------|----------------------------|------------------------------|-----------------------|----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | RF 50 Q AC          |                            | SENSE                        |                       | ALIGN OFF      | 01:16:37 PM Dec 07, 20<br>TRACE 1 2 3 4 | 6 Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Conton moe     | 0.01000000          | PNO: Fast (<br>IFGain:Low  | Trig: Free R<br>Atten: 20 di |                       |                |                                         | where a second sec |
|                |                     | FOamLOW                    | Paten: 20 al                 |                       | Mkr            | 5 5.363 20 G⊦                           | Auto Tune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 dB/div R    | ef 10.00 dBm        |                            |                              |                       | IVINI          | -48.34 dB                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Log<br>0.00    | <                   | <u>}1</u>                  |                              |                       |                |                                         | Center Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -10.0          |                     |                            |                              |                       |                |                                         | 5.015000000 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -20.0          |                     |                            |                              |                       |                | -23.57 d                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -30.0          |                     |                            |                              |                       |                | -25.57 0                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -40.0          |                     |                            |                              | <u>مة 5</u>           |                |                                         | Start Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -50.0          |                     |                            |                              |                       |                |                                         | 30.000000 MH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -60.0          |                     |                            |                              | a shift care of a set |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -70.0          |                     |                            |                              |                       |                |                                         | Stop Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -80.0          |                     |                            |                              |                       |                |                                         | 10.00000000 GH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -00.0          |                     |                            |                              |                       |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Start 30 MHz   |                     |                            |                              |                       |                | Stop 10.000 GH                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| #Res BW 1.0    | MHz                 | #VB                        | W 3.0 MHz                    |                       | Sweep 18       | .67 ms (40001 pt                        | S) 997.000000 MH:<br>Auto Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MKR MODE TRC S |                     |                            | Y                            | FUNCTION              | FUNCTION WIDTH | FUNCTION VALUE                          | Auto Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 N 1 2 N 1    | f 5                 | .480 38 GHz<br>.355 48 GHz | -1.26 dBm<br>-47.08 dBm      | 1                     |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 N 1          |                     | .266 24 GHz<br>.345 01 GHz | -47.98 dBm<br>-48.30 dBm     |                       |                |                                         | Freq Offse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5 N 1          |                     | .363 20 GHz                | -48.34 dBm                   |                       |                |                                         | 0 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6              |                     |                            |                              |                       |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8              |                     |                            |                              |                       |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10             |                     |                            |                              |                       |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11 <u> </u>    |                     |                            | Ш                            |                       |                | >                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MSG            |                     |                            |                              |                       | STATUS         | 5                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



#### Highest Channel & Modulation : 8DPSK





## **10. AC Power-Line Conducted Emissions**

#### 10.1. Test Setup

NA

#### 10.2. Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

| Frequency Range (MHz) | Conducted Limit (dBuV) |            |  |  |  |  |
|-----------------------|------------------------|------------|--|--|--|--|
|                       | Quasi-Peak             | Average    |  |  |  |  |
| 0.15 ~ 0.50           | 66 to 56 *             | 56 to 46 * |  |  |  |  |
| 0.5 ~ 5.0             | 56                     | 46         |  |  |  |  |
| 5 ~ 30                | 60                     | 50         |  |  |  |  |

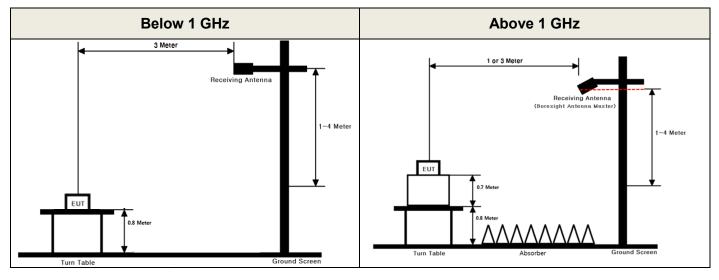
\* Decreases with the logarithm of the frequency

#### 10.3. Test Procedure

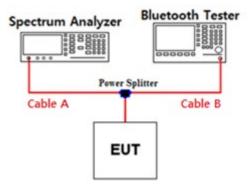
Conducted emissions from the EUT were measured according to the ANSI C63.10.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

#### 10.4. Test Results


NA




## **APPENDIX I**

#### Test set up diagrams

#### Radiated Measurement

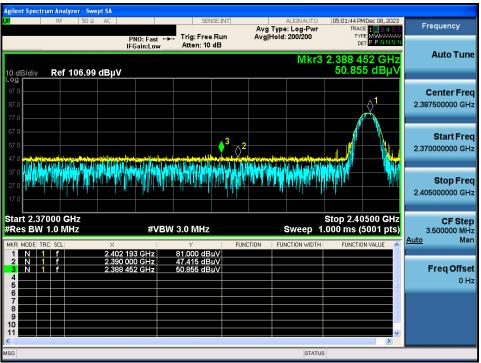


#### Conducted Measurement



#### Path loss information

| Frequency (GHz)       | Path Loss<br>(dB) | Frequency (GHz) | Path Loss<br>(dB) |
|-----------------------|-------------------|-----------------|-------------------|
| 0.03                  | 6.53              | 15              | 7.83              |
| 1                     | 6.83              | 20              | 8.09              |
| 2.402 & 2.441 & 2.480 | 6.96              | 25              | 8.69              |
| 5                     | 7.04              | -               | -                 |
| 10                    | 7.38              | -               | -                 |


Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's correction factor) = Cable A + Power Splitter



## **APPENDIX II**

#### **Unwanted Emissions (Radiated) Test Plot**

#### GFSK & Lowest & X & Ver



#### GFSK & Highest & X & Ver

#### ctrum Analyzer - Swept SA Frequency Avg Type: Log-Pwr Avg|Hold: 200/200 TRACE TYPE DET 123 MWP PPN Auto Tune Mkr3 2.485 968 4 GHz 49.852 dBµ\ Ref 106.99 dBµV **Center Freq** 2.489000000 GHz Start Freq 2.478000000 GHz $\langle \rangle^2$ Stop Freq 2.50000000 GHz Start 2.47800 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.000 ms (5001 pts) CF Step 2.200000 MHz Man #VBW 3.0 MHz Sweep Auto 46.937 dBµ 49.852 dBµ Freq Offset 0 Hz 10

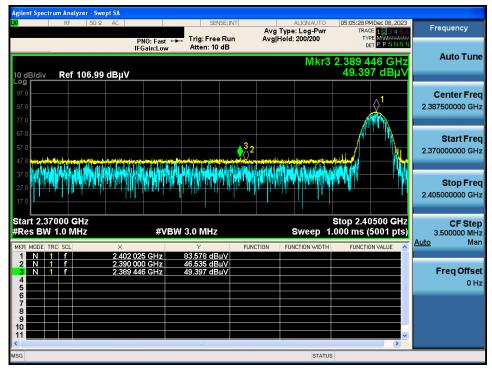
# Detector Mode : PK



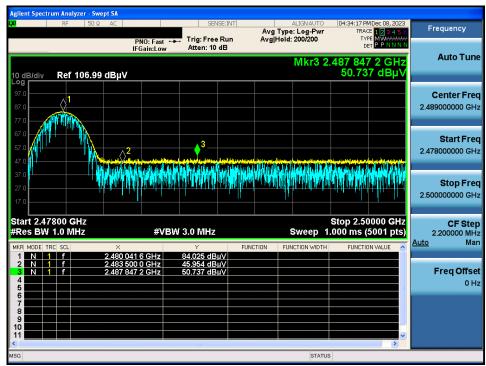
#### $\pi/4DQPSK$ & Lowest & X & Ver

#### t Spectrum Analyzer - Swept SA SENSE:INT 05:0 Frequency Avg Type: Log-Pwr Avg|Hold: 200/200 Trig: Free Run Atten: 10 dB PNO: Fast IFGain:Low Auto Tune Mkr3 2.386 744 GH2 50.051 dBµ\ Ref 106.99 dBµV 10 dB/div -og **Center Freq** 2.387500000 GHz Start Freq 2.370000000 GHz $\langle \rangle^2$ ĥUtulit Stop Freq 2.40500000 GHz Start 2.37000 GHz #Res BW 1.0 MHz Stop 2.40500 GHz 1.000 ms (5001 pts) CF Step 3.500000 MHz Man #VBW 3.0 MHz Sweep Auto 83.147 dBµV 46.362 dBµV 50.051 dBµV NN **Freq Offset** 0 Hz STATUS

#### $\pi$ /4DQPSK & Highest & X & Ver

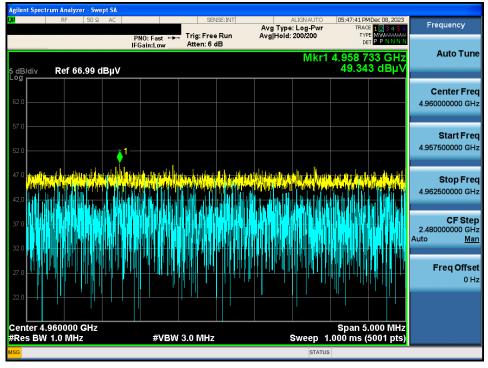



#### **Detector Mode : PK**



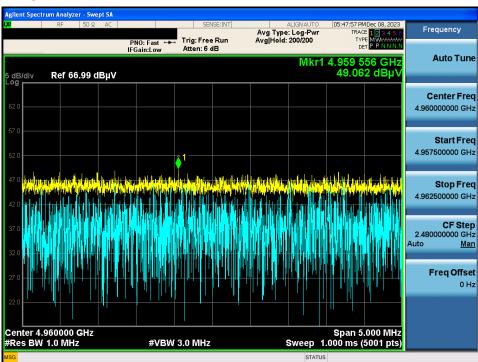

#### 8DPSK & Lowest & X & Ver






#### 8DPSK & Highest & X & Ver



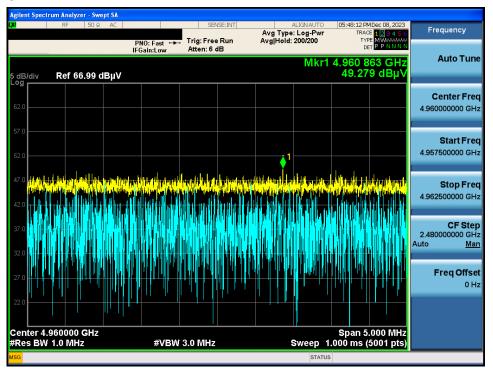



#### GFSK & Highest & X & Ver



#### π/4DQPSK & Highest & X & Ver

#### Detector Mode : PK




This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-237(07)210316 F

**Detector Mode : PK** 



#### 8DPSK & Highest & X & Ver



#### Pages: 75 / 75