TEST REPORT

Dt&C Co., Ltd.

			Dt&C Co., Ltd.			
U	Dt&C		eon-gil, Cheoin-gu, Yongin el : 031-321-2664, Fax : 0	si, Gyeonggi-do, Korea, 17042 31-321-1664		
1. Report N	lo: DRTFCC2303-0034	1				
2. Custome	er					
• Name (F	CC) : MOTREX CO., LT	D.				
 Address 	(FCC) : Seoyoung Bldg. Gyeonggi-do,So		o 258beon-gil,Bundar	ng-gu, Seongnam-si,		
3. Use of R	Report : FCC Original Gra	nt				
	Name / Model Name : Sl : BP9-MS400ACN7PE	MART DISPLAY / N	MS400ACN7PE			
	gulation(s): Part 15.247 hod used: KDB558074 D	001v05r02, ANSI C	63.10-2013			
6. Date of	Test : 2023.02.01 ~ 2023	.03.14				
7. Location	of Test : 🛛 Permanent	Testing Lab	On Site Testing			
8. Testing I	Environment : See apper	ided test report.				
9. Test Res	sult : Refer to the attache	d test result.				
	shown in this test report references on the second se		e(s) tested unless other	vise stated.		
Affirmation	Tested by	0	Technical Manager	A		
	Name : SeungMin Gil	(Signature)	Name : JaeJin Lee	(Signature)		
				10		
		2023.03.	29.			
	Dt&C Co., Ltd.					

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2303-0034	Mar, 29. 2023	Initial issue	SeungMin Gil	JaeJin Lee

Table of Contents

1. General Information	. 4
1.1. Description of EUT	4
1.2. Declaration by the applicant / manufacturer	
1.3. Testing Laboratory	
1.4. Testing Environment	
1.5. Measurement Uncertainty	
1.6. Test Equipment List	
••	
2. Test Methodology	
2.1. EUT Configuration	
2.2. EUT Exercise	
2.3. General Test Procedures	7
2.4. Instrument Calibration	7
2.5. Description of Test Modes	8
3. Antenna Requirements	. 9
4. Summary of Test Result	10
5. Test Result	11
5.1. Maximum Peak Conducted Output Power	11
5.1.1. Test Setup	
5.1.2. Test Procedures	
5.1.3. Test Results	
5.2. 6 dB Bandwidth	
5.2.1. Test Setup	-
5.2.2. Test Procedures	
5.2.3. Test Results	
5.3. Power Spectral Density	
5.3.1. Test Setup	
5.3.2. Test Procedures	
5.3.3. Test Results	
5.4. Unwanted Emissions (Conducted)	
5.4.1. Test Setup	
5.4.2. Test Procedures	
5.4.3. Test Results	
5.5. Unwanted Emissions (Radiated)	
5.5.1. Test Setup	
5.5.2. Test Procedures	
5.5.3. Test Results	
5.6. AC Power-Line Conducted Emissions	
5.6.1. Test Setup	
5.6.2. Test Procedures	
5.6.3. Test Results	57
APPENDIX I	58
APPENDIX II	59
APPENDIX III	61

1. General Information

1.1. Description of EUT

Equipment Class	Digital Transmission System (DTS)
Product Name	SMART DISPLAY
Model Name	MS400ACN7PE
Add Model Name	-
Firmware Version Identification Number	Rev 0.1
EUT Serial Number	No Specified
Power Supply	DC 12 V
Modulation Technique	• 802.11b: CCK, DSSS • 802.11g/n: OFDM
Antenna Specification	Antenna Type: Dielectric Chip Antenna Gain: 4.49 dBi (PK)

Band	Mode	Tx. frequency(MHz)	Max. conducted power(dBm)
2.4 GHz	802.11b	2 412 ~ 2 462	7.33
	802.11g	2 412 ~ 2 462	14.69
	802.11n (HT20)	2 412 ~ 2 462	15.75

1.2. Declaration by the applicant / manufacturer

N/A

1.3. Testing Laboratory

Dt&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of Part 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No. : KR0034

- ISED#: 5740A

www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.4. Testing Environment

Ambient Condition	
 Temperature 	+20 °C ~ +25 °C
 Relative Humidity 	+35 % ~ +45 %

1.5. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Antenna-port conducted emission	1.1 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz Below)	4.8 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz ~ 18 GHz)	5.0 dB (The confidence level is about 95 %, k = 2)
Radiated emission (18 GHz Above)	5.2 dB (The confidence level is about 95 %, $k = 2$)

1.6. Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	22/12/16	23/12/16	MY48010133
Spectrum Analyzer	Agilent Technologies	N9020A	22/12/16	23/12/16	MY48011700
Spectrum Analyzer	Agilent Technologies	N9020A	22/06/24	23/06/24	US47360812
DC Power Supply	Agilent Technologies	66332A	22/06/24	23/06/24	US37473627
DC Power Supply	SM techno	SDP30-5D	22/06/24	23/06/24	305DMG288
Multimeter	FLUKE	17B+	22/12/16	23/12/16	36390701WS
Signal Generator	Rohde Schwarz	SMBV100A	22/12/16	23/12/16	255571
Signal Generator	ANRITSU	MG3695C	22/12/16	23/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	22/12/16	23/12/16	120612-1
Thermohygrometer	BODYCOM	BJ5478	22/12/16	23/12/16	120612-2
Thermohygrometer	BODYCOM	BJ5478	22/06/24	23/06/24	N/A
Loop Antenna	ETS-Lindgren	6502	22/12/16	24/12/16	00226186
Hybrid Antenna	Schwarzbeck	VULB 9160	22/12/16	23/12/16	3362
Horn Antenna	ETS-Lindgren	3117	22/06/24	23/06/24	00143278
Horn Antenna	A.H.Systems Inc.	SAS-574	22/06/24	23/06/24	155
PreAmplifier	tsj	MLA-0118-B01-40	22/12/16	23/12/16	1852267
PreAmplifier	tsj	MLA-1840-J02-45	22/06/24	23/06/24	16966-10728
PreAmplifier	H.P	8447D	22/12/16	23/12/16	2944A07774
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	22/06/24	23/06/24	8
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	22/06/24	23/06/24	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	22/06/24	23/06/24	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	22/06/24	23/06/24	16012202
Attenuator	Aeroflex/Weinschel	56-3	22/06/24	23/06/24	Y2370
Attenuator	SMAJK	SMAJK-2-3	22/06/24	23/06/24	3
Attenuator	SMAJK	SMAJK-2-3	22/06/24	23/06/24	2
Attenuator	Aeroflex/Weinschel	86-10-11	22/06/24	23/06/24	408
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A MA2411B	22/12/16	23/12/16	1338004 1911481
Cable	Dt&C	Cable	23/01/04	24/01/04	G-2
Cable	HUBER+SUHNER	SUCOFLEX 100	23/01/04	24/01/04	G-3
Cable	Dt&C	Cable	23/01/04	24/01/04	G-4
Cable	OMT	YSS21S	23/01/04	24/01/04	G-5
Cable	HUBER+SUHNER	SUCOFLEX100	23/01/04	24/01/04	M-01
Cable	HUBER+SUHNER	SUCOFLEX100	23/01/04	24/01/04	M-02
Cable	JUNKOSHA	MWX241/B	23/01/04	24/01/04	M-03
Cable	JUNFLON	J12J101757-00	23/01/04	24/01/04	M-07
Cable	HUBER+SUHNER	SUCOFLEX106	23/01/04	24/01/04	M-09
Cable	RADIALL	TESTPRO 3	23/01/04	24/01/04	RFC-70
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0147

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by Dt&C itself.

2. Test Methodology

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB558074 D01v05r02 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB558074 D01v05r02. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB558074 D01v05r02.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB558074 D01v05r02. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on section 12.1 of the KDB558074 D01v05r02.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

2.4. Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.5. Description of Test Modes

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting.

Transmitting Configuration of EUT

Mode	Data rate
802.11b	1 Mbps ~ 11 Mbps
802.11g	6 Mbps ~ 54 Mbps
802.11n(HT20)	MCS 0 ~ MCS 7

EUT Operation test setup

- Test Software: Teraterm 4.105

- **Power setting:** Refer to the table below.

Test Mode

Test mode	Worst case data rate	Power setting	Tested Frequency (MHz)		
TM 1	802.11b 1 Mbps	7	2 412	2 437	2 462
TM 2	802.11g 6 Mbps	-4	2 412	2 437	2 462
ТМ 3	802.11n(HT20) MCS 0	-4	2 412	2 437	2 462

Note1: The worst case data rate was determined according to the power measurements.

Note2: The power measurement results for all modes and data rate were reported.

3. Antenna Requirements

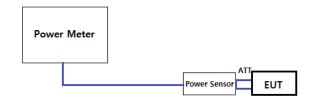
According to Part 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna is attached on the PCB by means of unique connector. Therefore this E.U.T complies with the requirement of Part 15.203

4. Summary of Test Result

FCC part section(s)	Test Description	Limit	Test Condition	Status Note 1
15.247(a)	6 dB Bandwidth	> 500 kHz		С
15.247(b)	Maximum Peak Output Power	< 1 Watt		С
15.247(d)	Unwanted Emissions(Conducted)	20 dBc in any 100 kHz BW	Conducted	с
15.247(e)	Power Spectral Density	Power Spectral Density < 8 dBm / 3 kHz		с
15.247(d) 15.205 15.209	Unwanted Emissions(Radiated)	Part 15.209 limits (Refer to section 5.5)	Radiated	с
15.207	15.207AC Power-Line Conducted EmissionsPart 15.207 limits (Refer to section 5.6)		AC Line Conducted	NA Note 3
15 203 Antenna Requirements		Part 15.203 (Refer to section 3)	-	С
Note 2: For radiated emiss	Not Comply NT=Not Tested NA=Not Ap sion tests below 30 MHz were performed on s alled in a car. Therefore the power source is a	emi-anechoic chamber whic	h is correlated with	OATS.


5. Test Result

5.1. Maximum Peak Conducted Output Power

Test Requirements and limit, Part 15.247(b)

The maximum permissible conducted output power is 1 Watt.

5.1.1. Test Setup

5.1.2. Test Procedures

- KDB558074 D01v05r02 Section 8.3.1.3
- ANSI C63.10-2013 Section 11.9.1.3

RBW ≥ DTSPKPM1 Peak-reading power meter method

The maximum conducted output powers were measured using a broadband peak RF power meter which has greater video bandwidth than DUT's DTS bandwidth and utilize a fast-responding diode detector.

- KDB558074 D01v05r02 Section 8.3.2.3
- ANSI C63.10-2013 Section 11.9.2.3

Method AVGPM-G

The average conducted output powers were measured using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

5.1.3. Test Results

- Refer to the next page

Mode	Freq. (MHz)	Det.	Maximum Peak Conducted Output Power (dBm)							
			1	2	5.5	11	-	-	-	-
	2 412	PK	7.33	7.25	7.23	7.22	-	-	-	-
		AV	4.17	4.13	4.14	4.13	-	-	-	-
802.11b	2 437	PK	7.17	7.10	7.07	7.04	-	-	-	-
002.110		AV	4.01	3.98	3.94	3.91	-	-	-	-
	2 462	PK	6.68	6.59	6.51	6.45	-	-	-	-
		AV	3.41	3.35	3.33	3.26	-	-	-	-

Mode	Freq. (MHz)	Det.	Maximum Peak Conducted Output Power (dBm)							
			Data Rate (Mbps)							
			6	9	12	18	24	36	48	54
	2 412	PK	14.69	14.60	13.78	13.47	12.53	12.67	11.84	11.80
		AV	3.80	3.74	3.75	3.32	3.30	3.22	3.40	3.25
802.11g	2 437	PK	14.24	14.17	13.36	13.19	12.14	12.22	11.59	11.43
602.11g		AV	3.37	3.29	3.28	2.95	2.91	2.88	2.93	2.87
	2 462	PK	13.51	13.43	12.91	12.56	11.99	11.97	11.43	11.26
		AV	2.70	2.43	2.46	2.42	2.39	2.24	2.48	2.32

Mode	Freq. (MHz)	Det.	Maximum Peak Conducted Output Power (dBm)							
			0	1	2	3	4	5	6	7
	2 412	PK	15.75	14.54	14.56	13.73	14.25	14.01	13.26	14.36
		AV	3.81	3.82	3.87	3.49	3.56	3.65	3.66	3.66
802.11n	2 437	PK	15.02	14.15	14.09	13.52	13.68	13.62	13.49	13.83
(HT20)		AV	3.51	3.49	3.53	3.21	3.19	3.37	3.38	3.32
	2 462	PK	14.09	13.76	13.73	13.15	13.28	13.18	13.09	13.54
		AV	2.80	2.73	2.79	2.49	2.47	2.63	2.62	2.58

5.2.6 dB Bandwidth

Test Requirements and limit, Part 15.247(a)

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

5.2.1. Test Setup

Refer to the APPENDIX I.

5.2.2. Test Procedures

- KDB558074 D01v05r02 Section 8.2
- ANSI C63.10-2013 Section 11.8.2
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Option 2 - The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

5.2.3. Test Results

Test Mode	Frequency	Test Results (MHz)
	2 412	7.10
TM 1	2 437	7.07
	2 462	7.13
	2 412	16.11
TM 2	2 437	16.12
	2 462	16.06
	2 412	17.13
TM 3	2 437	16.92
	2 462	17.17

TM 1 & 2412

nt Spectrum Analyzer - Occupied BW j SENSE:PUCE ALIGN OFF Center Freq: 2.43700000 GHz → Trig: Free Run Avg|Hold: 500/500 #Atten: 20 dB 02:42:15 PM Mar 14, 2023 Radio Std: None BL Frequency Center Freq 2.437000000 GHz Radio Device: BTS #IFGain:Low Ref 10.00 dBm 10 dB/div og Center Freq many man 2.437000000 GHz Center 2.437 GHz #Res BW 100 kHz Span 40 MHz Sweep 3.867 ms CF Step 4.000000 MHz #VBW 300 kHz Man Auto Total Power Occupied Bandwidth 11.4 dBm 10.120 MHz Freq Offset 0 Hz -12.891 kHz **OBW Power** 99.00 % Transmit Freq Error x dB Bandwidth 7.072 MHz x dB -6.00 dB STATUS

6 dB Bandwidth

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-236(05)210316 Pages: 14 / 68

<u>TM 1 & 24</u>37

TM 1 & 2462 ent Spectrum Analyzer - Occupied BW CORREC SENSE:PULSE ▲ ALIGN OFF GHz Center Freq: 2.462000000 GHz Trig: Freq Run Avg|Hold: 500/500 #/IFGain:Low #Atten: 20 dB 02:49:44 PM Mar 14, 2023 Radio Std: None Frequency Center Freq 2.462000000 GHz Radio Device: BTS Ref 10.00 dBm Center Freq anna ሥሌሌ በ 2.462000000 GHz Center 2.462 GHz #Res BW 100 kHz Span 40 MHz Sweep 3.867 ms CF Step 4.000000 MHz Man #VBW 300 kHz <u>Auto</u> Total Power Occupied Bandwidth 11.5 dBm 10.105 MHz Freq Offset Transmit Freq Error -15.734 kHz OBW Power 99.00 % 0 Hz x dB Bandwidth -6.00 dB 7.128 MHz x dB STATUS

6 dB Bandwidth

TM 2 & 2437

Dt&C

6 dB Bandwidth

<u>TM 3 & 2437</u>

Pages: 18 / 68

Test requirements and limit, Part 15.247(e)

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.3.1. Test Setup

Refer to the APPENDIX I.

5.3.2. Test Procedures

- KDB558074 D01v05r02 Section 8.4
- ANSI C63.10-2013 Section 11.10.2

Method PKPSD (peak PSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = **auto couple.**
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

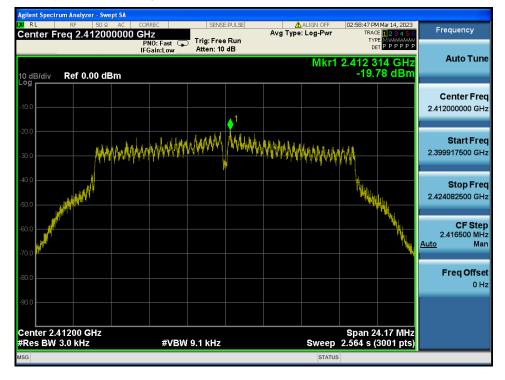
5.3.3. Test Results

Test Mode	Frequency	RBW	PKPSD (dBm)	Limit (dBm / 3 kHz)
	2 412	3 kHz	-16.83	8.00
TM 1	2 437	3 kHz	-17.32	8.00
	2 462	3 kHz	-17.22	8.00
	2 412	3 kHz	-19.78	8.00
TM 2	2 437	3 kHz	-20.20	8.00
	2 462	3 kHz	-20.56	8.00
	2 412	3 kHz	-19.73	8.00
TM 3	2 437	3 kHz	-19.77	8.00
	2 462	3 kHz	-19.95	8.00

TM 1 & 2412

Power Spectral Density

TM 1 & 2437



TM 1 & 2462

TM 2 & 2412


Power Spectral Density

TM 2 & 2437

TM 2 & 2462

TM 3 & 2412

Power Spectral Density

TM 3 & 2437

TM 3 & 2462

5.4. Unwanted Emissions (Conducted)

Test requirements and limit, Part 15.247(d)

In any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions :

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level. If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level. In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

5.4.1. Test Setup

Refer to the APPENDIX I including path loss

5.4.2. Test Procedures

- KDB558074 D01v05r02 Section 8.5
- ANSI C63.10-2013 Section 11.11

Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to \geq 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level LIMIT LINE = 20 dB below of the reference level.

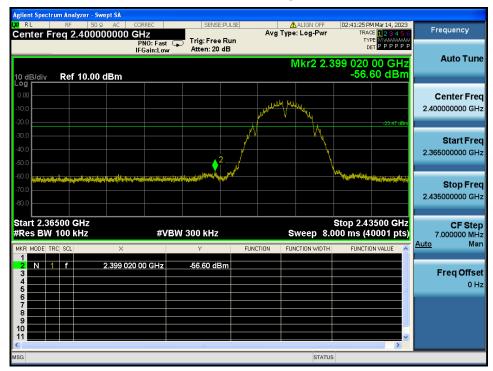
Emission level measurement

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.(Actual 1 MHz , See below note)
- 3. Set the VBW \ge 3 x RBW.(Actual 3 MHz, See below note)
- 4. Detector = peak.
- 5. Ensure that the number of measurement points \geq span / RBW
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use the peak marker function to determine the maximum amplitude level.

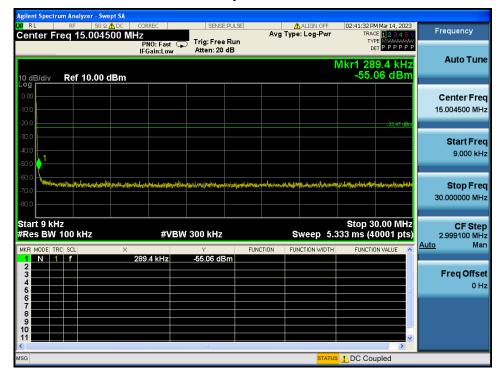
Note. The unwanted emission(conducted) was tested with below settings.								
Frequency range	RBW	VBW	Detector	Trace	Sweep Point			
9 kHz ~ 30 MHz	100 kHz	300 kHz						
30 MHz ~ 10 GHz	1 MHz	3 MHz	Peak	Max Hold	40 001			
10 GHz ~ 25 GHz	1 MHz	3 MHz						

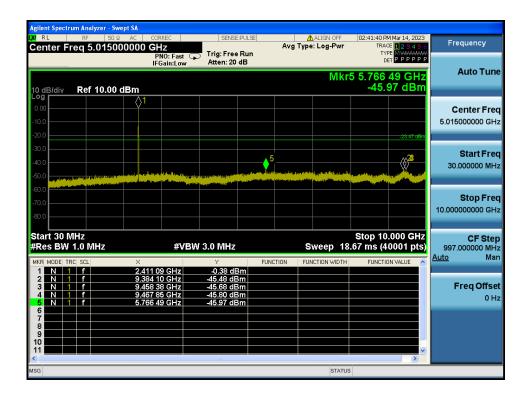
Note: The unwanted emission(conducted) was tested with below settings.

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.

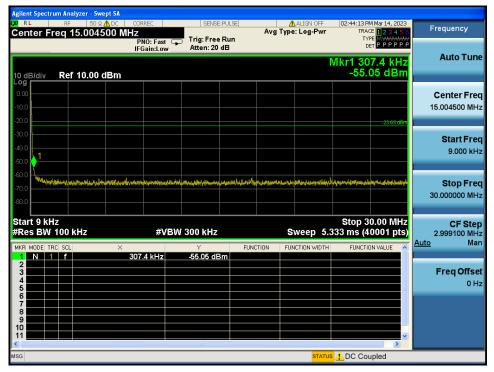

5.4.3. Test Results

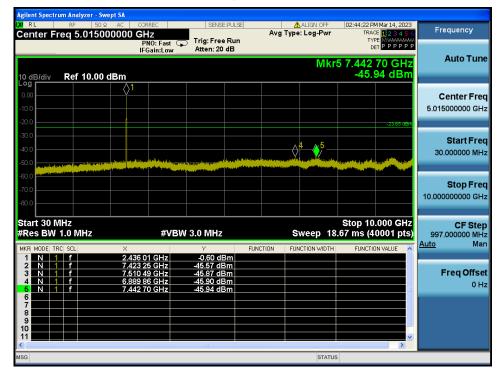
TM 1 & 2412

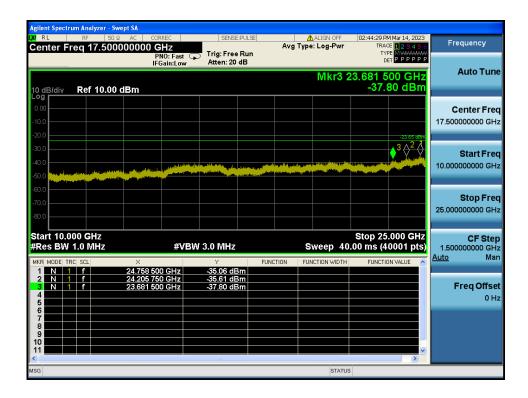


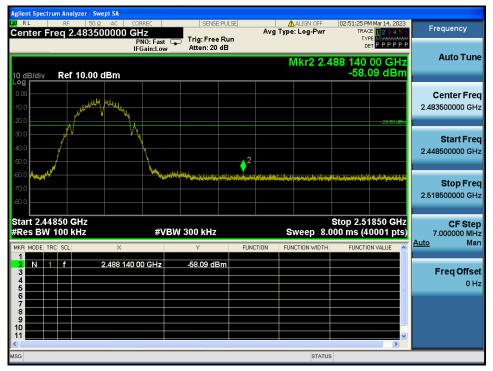

Reference

Low Band-edge

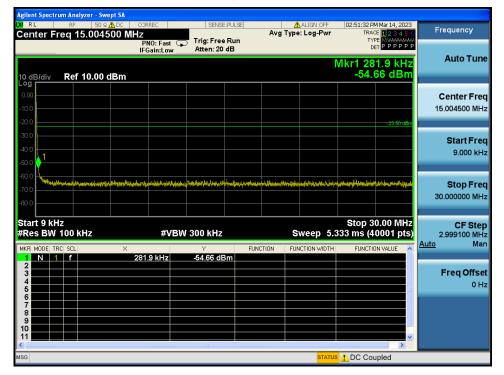


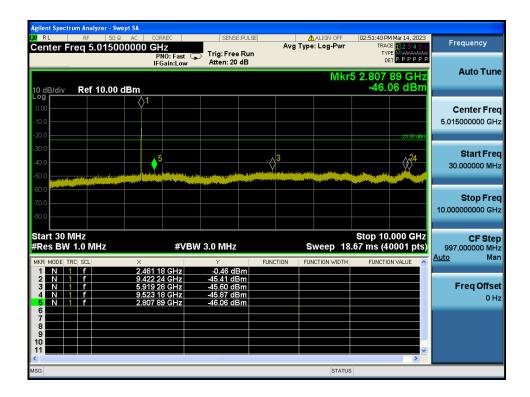

TM 1 & 2437


Reference

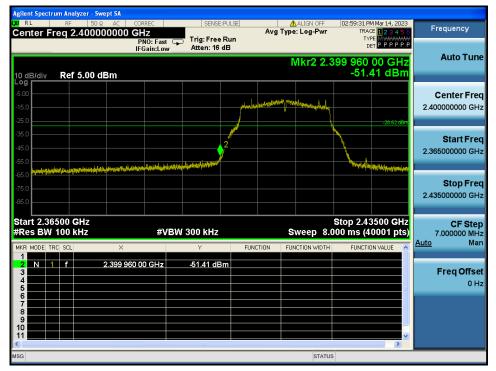


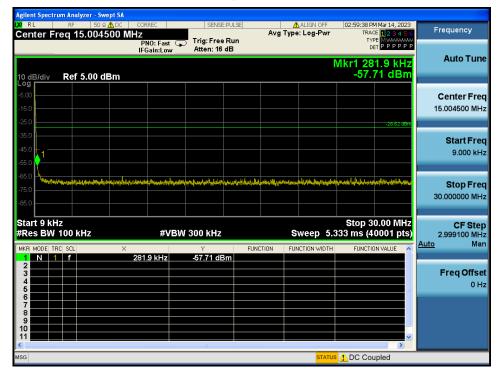
TM 1 & 2462

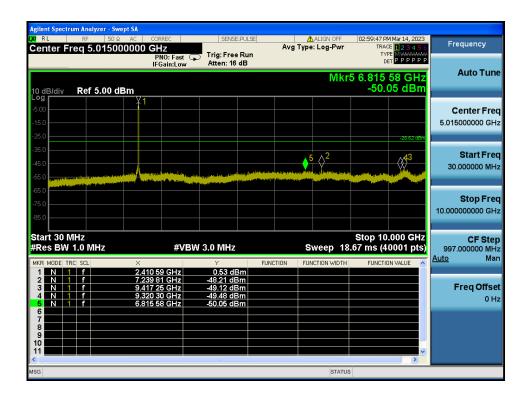

Reference

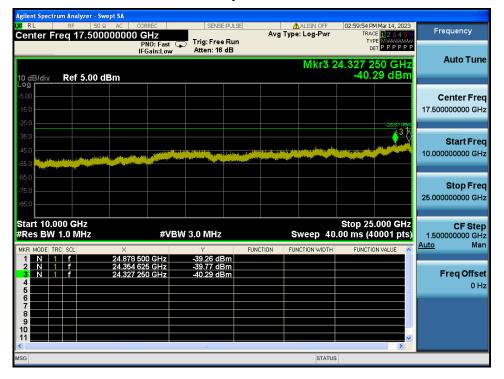


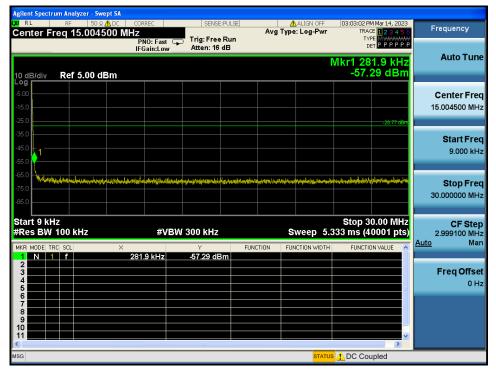
High Band-edge

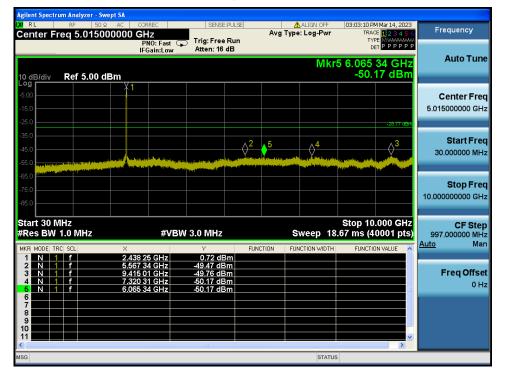

Agilent Spectrum Analyzer -					
Center Freq 17.50	0 Ω AC CORREC	SENSE:PULSE	ALIGN OFF Avg Type: Log-Pwr	02:51:48 PM Mar 14, 2023 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast IFGain:Low	Trig: Free Run Atten: 20 dB			
			Mkr3	24.363 250 GHz	Auto Tune
10 dB/div Ref 10.0	0 dBm			-36.07 dBm	
0.00					Center Freq
-10.0					17.50000000 GHz
-20.0				-23.50 dBm	
-30.0					Start Freq
-50.0 Manufacture and a state					10.00000000 GHz
-60.0					
-70.0					Stop Freq 25.00000000 GHz
-80.0					25.00000000 GH2
Start 10.000 GHz				Stop 25.000 GHz	CF Step
#Res BW 1.0 MHz	#VE	SW 3.0 MHz	Sweep 40	0.00 ms (40001 pts)	1.500000000 GHz Auto Man
MKR MODE TRC SCL	× 24.707 125 GHz	, -34.98 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Adto Mari
2 N 1 f 3 N 1 f	24.228 625 GHz 24.363 250 GHz	-35.80 dBm -36.07 dBm			Freq Offset
	24.303 230 GHz				0 Hz
6				=	
8					
9					
11		iu -		×	
MSG			STATU	IS	

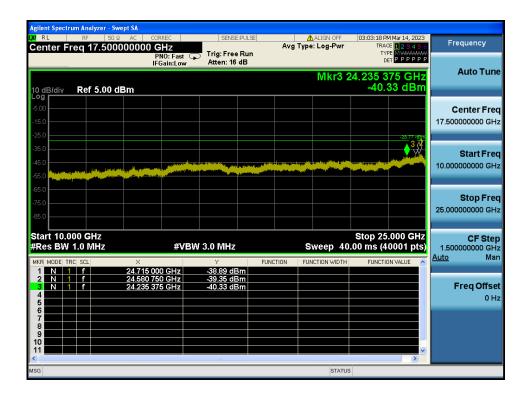

TM 2 & 2412

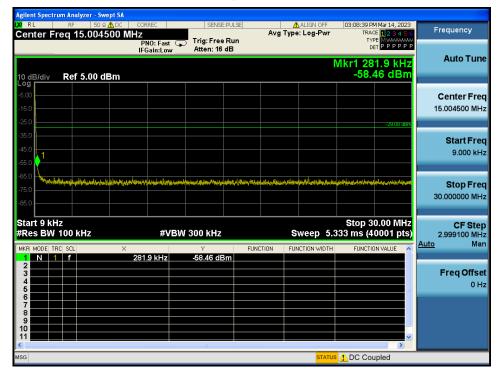

Reference

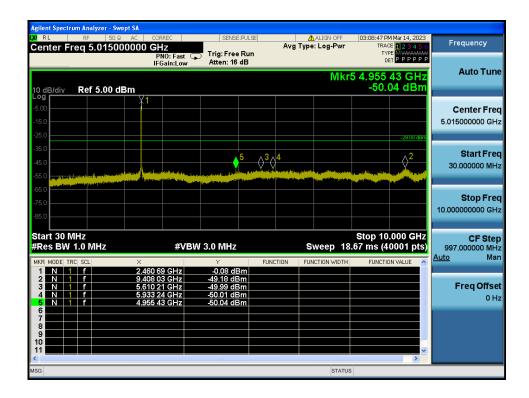

Low Band-edge



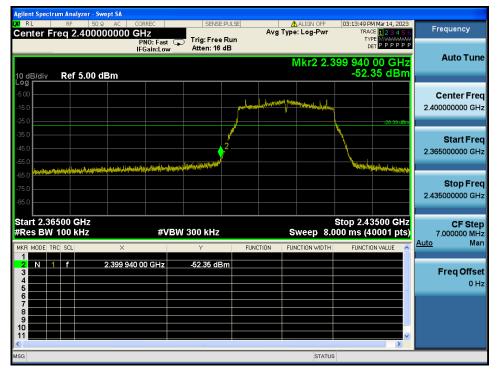

TM 2 & 2437


Reference


TM 2 & 2462


Reference

High Band-edge



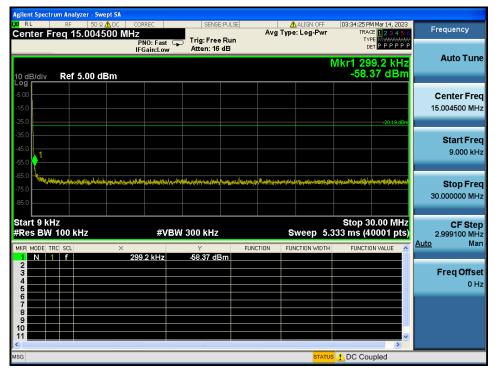
TM 3 & 2412

Reference

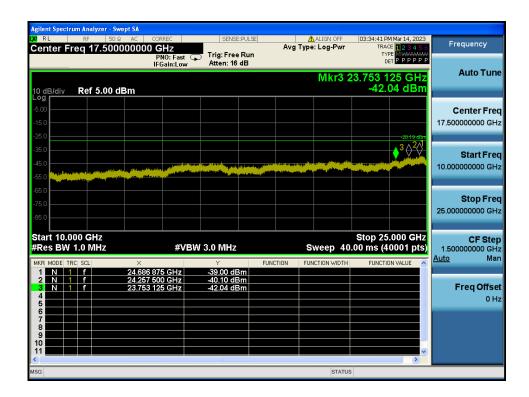
Low Band-edge

RL	RF 5		ORREC	SENSE		ALIGN	Daar TRA	PM Mar 14, 2023 ACE 1 2 3 4 5 6	Frequency
	req 15.00	F	PNO: Fast (Gain:Low	Trig: Free Atten: 16	Run		т т		Auto Tur
0 dB/div	Ref 5.00	dBm						81.9 kHz .24 dBm	Auto Tun
og 5.00									Center Fre
25.0								-28.39 dBm	15.004500 MH
35.0									Start Fre
45.0 1 55.0 1									9.000 kH
55.0	den har def benjaker	n Market Same Bater Maddager Shipe	international figure	the solution around the	ringle/propertiespeerte/hystole	need, while the Mashine	ite to algebije weet to the second	wayoolafighterstikkiyaater	Stop Fre
75.0 35.0									30.000000 MH
tart 9 kH Res BW	lz 100 kHz		 #VB	W 300 kHz		Sweep	Stop 3 5.333 ms (4	30.00 MHz 40001 pts)	CF Ste 2.999100 MH
IKR MODE TR		× 28'	1.9 kHz	∨ -59.24 d⊟	FUNCTIO	I FUNCTION W	/IDTH FUNCT	ION VALUE	<u>Auto</u> Ma
2 3 4									Freq Offs
5								3	0 H
7 8 9									
0								~	
								>	


RL RF 50 :		SENSE:PULSE	ALIGN OFF	03:14:04 PM Mar 14, 2023	Frequency
enter Freq 5.0150	IOOOOO GHZ PNO: Fast ⊂ IEGain:Low	Trig: Free Run Atten: 16 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWW DET PPPPP	Trequency
0 dB/div Ref 5.00 d			Mk	r5 7.494 29 GHz -49.89 dBm	Auto Tun
5 .00 15.0	¥1			-28-39 dBm	Center Fre 5.015000000 GH
35.0 45.0 56.0					Start Free 30.000000 MH
75.0 75.0 35.0					Stop Fre 10.000000000 GH
tart 30 MHz Res BW 1.0 MHz	#VB	W 3.0 MHz	Sweep 1	Stop 10.000 GHz 8.67 ms (40001 pts)	CF Ste 997.000000 MH
IKR MODE TRC SCL	X		FUNCTION FUNCTION WIDTH	H FUNCTION VALUE	<u>Auto</u> Ma
1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f	2.409 84 GHz 9.346 72 GHz 5.556 62 GHz 6.046 65 GHz 7.494 29 GHz	0.49 dBm -49.60 dBm -49.71 dBm -49.80 dBm -49.89 dBm			Freq Offse 0 H
6 7 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
				▼	
G			STAT	19	



TM 3 & 2437


Reference

Agilent Spectrum Analyzer - Sw					
RL RF 50 G Center Freq 5.0150		SENSE:PULSE	ALIGN OFF Avg Type: Log-Pwr	03:34:34 PM Mar 14, 2023 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast G IFGain:Low	Trig: Free Run Atten: 16 dB		түре Милинин Det P P P P P P 5 6.759 75 GHz	Auto Tune
10 dB/div Ref 5.00 d	IBm			-49.56 dBm	
-5.00					Center Freq 5.015000000 GHz
-25.0			5 ¹ ∧4	-20.19 dDm	Start Freq 30.000000 MHz
-55.0 -65.0			ne et la de la consecta que en a plut de la consecta que de la dela de la consecta por La dela de la consecta de la del factor de la consecta de la del de la consecta de la del de la consecta de la La dela dela del de la del de la dela del		Stop Freq
-75.0					10.000000000 GH
Start 30 MHz #Res BW 1.0 MHz		V 3.0 MHz		Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MH Auto Mar
MKR MODE TRC SCL	× 2.435 01 GHz	Y FU 0.70 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Hato</u> Indi
2 N 1 F 3 N 1 F 4 N 1 F 5 N 1 F	6.841 01 GHz 9.398 06 GHz 7.312 84 GHz 6.759 75 GHz	-49.19 dBm -49.37 dBm -49.53 dBm -49.56 dBm			Freq Offse 0 Ha
6 7 8 9 10					
11		Litt		×	
ISG			STATUS	5	

TM 3 & 2462

Reference


High Band-edge

Agilent Spectrum Analyzer - Sw XI RL RF 50 G Center Freq 15.004	2 <u>A</u> DC CORREC	SENSE:PULS	Avg Typ	ALIGN OFF	03:27:28 PM Mar 14 TRACE 1 2 TYPE MW	3456 Frequency
10 dB/div Ref 5.00 d	PNO: Fast 0 IFGain:Low _	Atten: 16 dB			vikr1 292.4 -58.70 d	KHZ Auto Tune
-5.00 -15.0 -25.0						Center Freq 15.004500 MHz
-35.0 -45.0 -55.0					-20	Start Fred 9.000 kHz
-65.0 -75.0 -85.0	int wind and a starting the starting the second	nally Indiana a si Kadi Maadi Maadi Ma	henderander bereiten ander bei here	uning him de de la constant de la co	ĸţuPrisyto ⁿ istonil ⁱ ni teriali ter ijali tet ien i	Stop Free 30.000000 MHz
Start 9 kHz #Res BW 100 kHz MKR MODE TRC SCL	×	W 300 kHz Y		Sweep 5.3	Stop 30.00 333 ms (40001 FUNCTION VALU	pts) 2.999100 MHz
1 N 1 f 2 3 4 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	292.4 kHz	-58.70 dBm				Freq Offset
7 8 9 10 11						×
MSG		And		STATUS	L DC Coupled	

RL RF 50 9		SENSE:PULSE	🛕 ALIGN OFF	03:27:36 PM Mar 14, 2023	Frequency
enter Freq 5.0150	00000 GHz PNO: Fast IFGain:Low	➡ Trig: Free Run Atten: 16 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P	Frequency
0 dB/div Ref 5.00 c			Mkr	5 6.791 65 GHz -49.36 dBm	Auto Tun
.00 5.00 15.0 25.0	X1			-28.73 dBm	Center Fre 5.015000000 GH
35.0					Start Fre 30.000000 MH
65.0 75.0 85.0					Stop Fre 10.000000000 G⊦
Start 30 MHz Res BW 1.0 MHz	#VB	W 3.0 MHz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Ste 997.000000 M⊦
IN 1 F	× 2.460 94 GHz	Y FL 0.19 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
2 N 1 F 3 N 1 F 4 N 1 F 5 N 1 F	5.546 65 GHz 9.411 02 GHz 7.439 45 GHz 6.791 65 GHz	-48.87 dBm -49.21 dBm -49.25 dBm -49.36 dBm			Freq Offs 0 ⊦
6 7 8 9 9					
				×	
			STATUS		

5.5. Unwanted Emissions (Radiated)

Test Requirements and limit,

Part 15.247(d), Part 15.205, Part 15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	FCC Limit (uV/m)	Measurement Distance (m)
0.009 - 0.490	2 400 / F (kHz)	300
0.490 – 1.705	24 000 / F (kHz)	30
1.705 - 30.0	30	30

- Part 15 200. General requirement

Frequency (MHz)	FCC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

- Part 15.205(a): Restricted band of operation

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

5.5.1. Test Setup

Refer to the APPENDIX I.

5.5.2. Test Procedures

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Note: Measurement Instrument Setting for Radiated Emission Measurements.

- KDB558074 D01v05r02 Section 8.6
- ANSI C63.10-2013 Section 11.12

1. Frequency Range Below 1 GHz

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

2. Frequency Range > 1 GHz

Peak Measurement > 1 GHz

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes Average Measurement > 1 GHz

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power (i.e., RMS).
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is $10 \log(1 / D)$, where D is the duty cycle.
 - 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1 / D), where D is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Test Mode	Date rate	T _{on} (ms) T _{on+off} (ms)		$D=T_{on}/(T_{on+off})$	DCCF = 10 log(1/D) (dB)								
TM 1	1 Mbps	12.420	12.510	0.992 8	0.03								
TM 2	6 Mbps	2.063	2.166	0.952 4	0.21								
TM 3	MCS 0	1.920	2.023	0.949 1	0.23								

Duty Cycle Correction factor

Note1: Where, T= Transmission duration / D= Duty cycle

Note2: Please refer to the appendix II for duty cycle plots.

5.5.3. Test Results

Test Notes -

1. The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies.

2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit – Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL – AG Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 389.89	V	Х	PK	51.45	4.60	N/A	N/A	56.05	74.00	17.95
	2 389.86	V	Х	AV	41.26	4.60	N/A	N/A	45.86	54.00	8.14
2,412	4 824.99	V	Х	PK	50.02	2.34	N/A	N/A	52.36	74.00	21.64
2 412	4 825.49	V	Х	AV	39.48	2.34	N/A	N/A	41.82	54.00	12.18
	5 000.12	V	Х	PK	52.71	2.69	N/A	N/A	55.40	74.00	18.60
	5 000.09	V	Х	AV	44.83	2.69	N/A	N/A	47.52	54.00	6.48
	4 872.55	V	Х	PK	49.92	2.18	N/A	N/A	52.10	74.00	21.90
2 437	4 871.98	V	Х	AV	39.44	2.18	N/A	N/A	41.62	54.00	12.38
2 437	5 000.16	V	Х	PK	52.77	2.69	N/A	N/A	55.46	74.00	18.54
	5 000.06	V	Х	AV	44.99	2.69	N/A	N/A	47.68	54.00	6.32
	2 488.64	V	Х	PK	52.69	5.69	N/A	N/A	58.38	74.00	15.62
	2 488.29	V	Х	AV	41.61	5.69	N/A	N/A	47.30	54.00	6.70
2 462	4 924.82	V	Х	PK	49.35	2.57	N/A	N/A	51.92	74.00	22.08
2 402	4 925.35	V	Х	AV	38.99	2.57	N/A	N/A	41.56	54.00	12.44
	4 999.93	V	Х	PK	52.28	2.69	N/A	N/A	54.97	74.00	19.03
	4 999.98	V	Х	AV	44.94	2.69	N/A	N/A	47.63	54.00	6.37

Radiated Emissions data(9 kHz ~ 25 GHz) : TM 1

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 387.70	V	Х	PK	53.17	4.61	N/A	N/A	57.78	74.00	16.22
	2 388.07	V	Х	AV	42.33	4.61	0.21	N/A	47.15	54.00	6.85
0.440	4 825.27	V	Х	PK	49.36	2.34	N/A	N/A	51.70	74.00	22.30
Z 41Z	4 825.81	V	Х	AV	39.53	2.34	0.21	N/A	42.08	54.00	11.92
	5 000.06	V	Х	PK	52.05	2.69	N/A	N/A	54.74	74.00	19.26
	5 000.03	V	Х	AV	44.80	2.69	N/A	N/A	47.49	54.00	6.51
	4 872.93	V	Х	PK	49.33	2.18	N/A	N/A	51.51	74.00	22.49
2 412 2 437 2 462	4 872.30	V	Х	AV	39.64	2.18	0.21	N/A	42.03	54.00	11.97
2 437	5 000.02	V	Х	PK	52.32	2.69	N/A	N/A	55.01	74.00	18.99
	5 000.07	V	Х	AV	44.80	2.69	N/A	N/A	47.49	54.00	6.51
	2 486.75	V	Х	PK	53.02	5.66	N/A	N/A	58.68	74.00	15.32
	2 485.85	V	Х	AV	42.04	5.65	0.21	N/A	47.90	54.00	6.10
0.460	4 925.40	V	Х	PK	49.44	2.57	N/A	N/A	52.01	74.00	21.99
Z 40Z	4 925.18	V	Х	AV	39.21	2.57	0.21	N/A	41.99	54.00	12.01
	4 999.90	V	Х	PK	52.02	2.69	N/A	N/A	54.71	74.00	19.29
	4 999.99	V	Х	AV	44.79	2.69	N/A	N/A	47.48	54.00	6.52

Radiated Emissions data(9 kHz ~ 25 GHz) : TM 2

Radiated Emissions data(9 kHz ~ 25 GHz) : TM 3

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 388.08	V	Х	PK	50.62	4.61	N/A	N/A	55.23	74.00	18.77
	2 388.03	V	Х	AV	41.16	4.61	0.23	N/A	46.00	54.00	8.00
2 412	4 824.03	V	Х	PK	50.26	2.34	N/A	N/A	52.60	74.00	21.40
2412	4 824.48	V	Х	AV	39.53	2.34	0.23	N/A	42.10	54.00	11.90
	5 000.23	V	Х	PK	52.00	2.69	N/A	N/A	54.69	74.00	19.31
	5 000.09	V	Х	AV	44.62	2.69	N/A	N/A	47.31	54.00	6.69
	4 871.75	V	Х	PK	49.87	2.18	N/A	N/A	52.05	74.00	21.95
0.407	4 872.06	V	Х	AV	39.61	2.18	0.23	N/A	42.02	54.00	11.98
2 437	5 000.09	V	Х	PK	52.22	2.69	N/A	N/A	54.91	74.00	19.09
	5 000.18	V	Х	AV	44.80	2.69	N/A	N/A	47.49	54.00	6.51
	2 485.96	V	Х	PK	51.48	5.65	N/A	N/A	57.13	74.00	16.87
	2 485.49	V	Х	AV	40.04	5.64	0.23	N/A	45.91	54.00	8.09
2.462	4 924.48	V	Х	PK	49.57	2.57	N/A	N/A	52.14	74.00	21.86
2 462	4 924.74	V	Х	AV	38.96	2.57	0.23	N/A	41.76	54.00	12.24
	5 000.09	V	Х	PK	51.90	2.69	N/A	N/A	54.59	74.00	19.41
	5 000.13	V	Х	AV	44.71	2.69	N/A	N/A	47.40	54.00	6.60

5.6. AC Power-Line Conducted Emissions

Test Requirements and limit, Part 15.207

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Conducted Limit (dBuV)		
	Quasi-Peak	Average	
0.15 ~ 0.5	66 to 56 *	56 to 46 *	
0.5 ~ 5.0	56	46	
5 ~ 30	60	50	

* Decreases with the logarithm of the frequency

5.6.1. Test Setup

NA

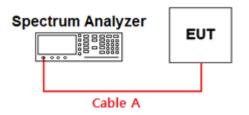
5.6.2. Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

5.6.3. Test Results

NA


APPENDIX I

Test set up diagrams

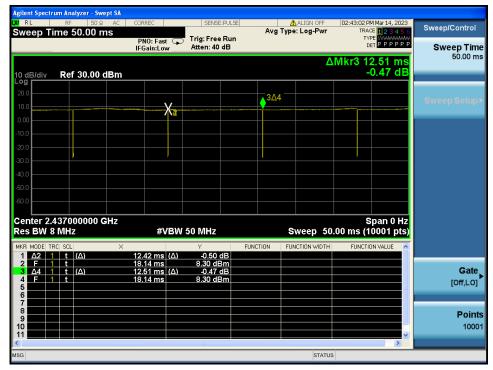
Radiated Measurement

Conducted Measurement

APPENDIX II

Duty cycle plots

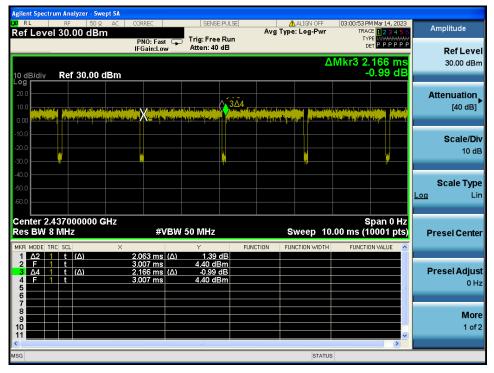
Test Procedures


- KDB558074 D01v05r02 - Section 6

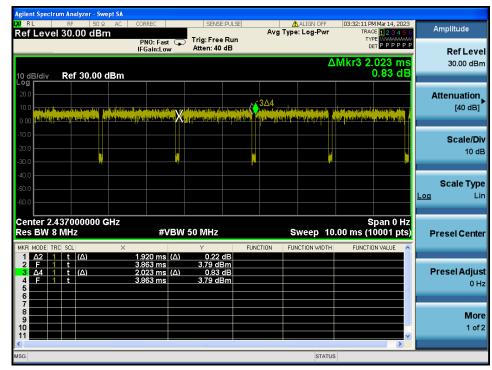
The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50 /T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

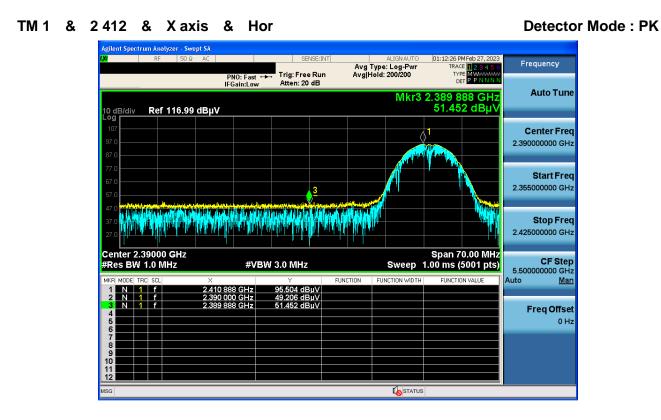
Duty Cycle


TM 1 & 2 437 MHz

Duty Cycle

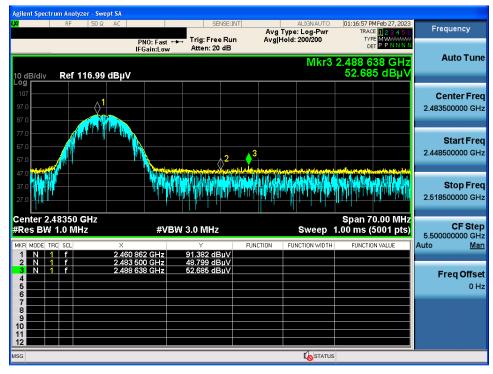

🛈 Dt&C

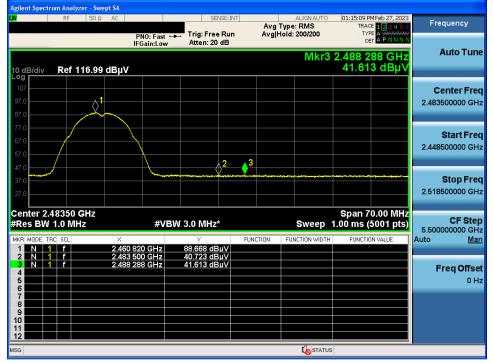
TM 2 & 2 437 MHz


TM 3 & 2 437 MHz

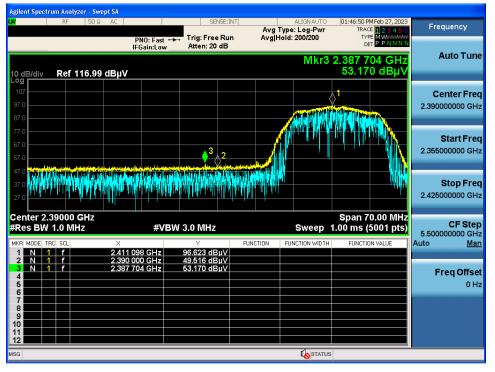
Duty Cycle

APPENDIX III

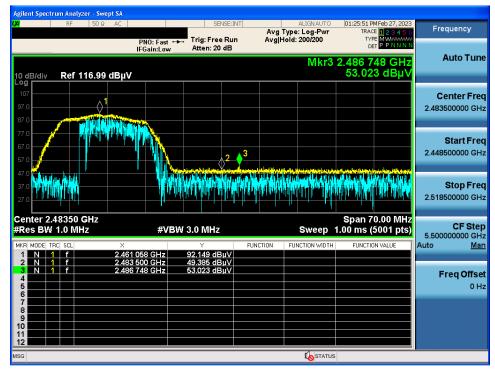

Unwanted Emissions (Radiated) Test Plot


TM 1 & 2412 & Xaxis & Hor

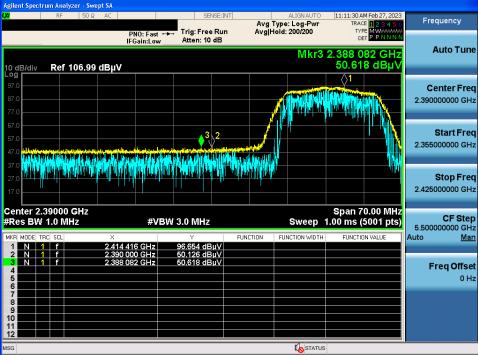
Agilent Spectrum Analyzer - Swept SA							
LXI RF 50 Ω	AC	SENSE:INT	ALIGN AUTO	11:18:08 AM Feb 27, 2023 TRACE 1 2 3 4 5 6	Frequency		
	PNO: Fast IFGain:Low	Trig: Free Run Atten: 20 dB	Avg Hoid: 200/200 Mkr3	2.389 860 GHz	Auto Tune		
10 dB/div Ref 116.99	dBµV			41.259 dBµ∨			
97.0				1	Center Freq 2.390000000 GHz		
77.0 67.0 57.0					Start Freq 2.355000000 GHz		
47.0 37.0 27.0		3			Stop Freq 2.425000000 GHz		
Center 2.39000 GHz Span 70.00 MHz #Res BW 1.0 MHz #VBW 3.0 MHz* Sweep 1.00 ms (5001 pts)					CF Step 5.50000000 GHz		
MKR MODE TRC SCL	× 2.410 986 GHz	Y 92.266 dBµV	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto <u>Man</u>		
2 N 1 f 3 N 1 f 4	2.390 000 GHz 2.389 860 GHz	40.618 dBµV 41.259 dBµV			Freq Offset 0 Hz		
7 8 9 10							
11 12 MSG			STATUS				


TM 1 & 2462 & Xaxis & Hor

TM 1 & 2462 & X axis & Hor

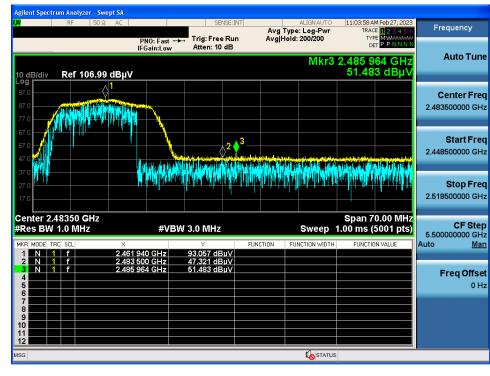

TM 2 & 2412 & Xaxis & Hor

TM 2 & 2412 & X axis & Hor


TM 2 & 2462 & X axis & Hor

TM 2 & 2462 & X axis & Hor

TM 3 & 2412 & Xaxis & Hor


TM 3 & 2412 & X axis & Hor

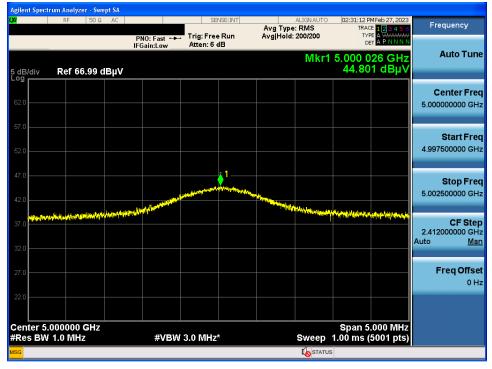
Detector Mode : AV


lvzer - Swent SA SENSE:INT 11:10:12 A Frequency Avg Type: RMS Avg|Hold: 200/200 TRACE 12345 TYPE A WARMAN DET A P N N N PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 10 dB Auto Tune Mkr3 2.388 026 GHz 41.160 dBµ\ 10. 0g Ref 106.99 dBµV dB/div ¢1 **Center Freq** 2.39000000 GHz Start Freq 2.355000000 GHz <mark>}3</mark><u>}2</u> Stop Freq 2.425000000 GHz Center 2.39000 GHz #Res BW 1.0 MHz Span 70.00 MHz 1.00 ms (5001 pts) **CF Step** 5.500000000 GHz uto <u>Man</u> #VBW 3.0 MHz* Sweep FUNCTION luto 00 GHz 026 GHz 40.348 dBµ\ 41.160 dBµ\ Freq Offset 0 Hz 11 12 **I**STATUS

TM 3 & 2 462 & X axis & Hor

Detector Mode : PK

TM 3 & 2462 & Xaxis & Hor



TM 1 & 2 437 & X axis & Ver

TM 2 & 2412 & Xaxis & Ver

Detector Mode : AV

TM 3 & 2 437 & X axis & Ver

Pages: 68 / 68