TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report N	No : DRTFCC1804-0074(1)				
2. Custome	er				
	FCC): MOTREX CO., LTD. IC): Motrex Co,. Ltd.				
 Address 	s (FCC) : (Mullae-dong 3(sam)-ga, Ace High-Tech City B/D), 1-1103, 775, Gyeongin-ro, Yeongdeungpo-gu, Seoul, South Korea				
Address	(IC) : 21, Daewangpangyo-ro 644beon-gil,Bundang-gu Seongnam-si 13494 Korea (Republic Of)				
3. Use of F	Report : FCC & IC Original Grant				
4. Product	Name / Model Name : KinectlQ-Pro BT Dongle / AT-1000U				
FCC ID	: BP9-AT-1000U / IC : 23638-AT1000U				
	5. Test Method Used : ANSI C63.10-2013 Test Specification : FCC Part 15 Subpart C.247 RSS-247 Issue 2 (2017-02), RSS-GEN Issue 4 (2014-11)				
6. Date of	Test : 2017.03.21 ~ 2017.03.27, 2017.06.23 ~ 2017.06.30				
7. Testing I	Environment : See appended test report.				
8. Test Res	sult : Refer to the attached test result.				
Affirmation	Tested by Reviewed by				
Ammauon	Name : JungWoo Kim				
The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.					
	2018.04.03.				
	DT&C Co., Ltd.				

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	
DRTFCC1804-0074	Apr. 02, 2018	Initial issue	
DRTFCC1804-0074(1)	Apr. 03, 2018	Change the IC Number	

Table of Contents

1.1 Testing Laboratory	. 4
	4
1.2 Testing Environment	4
1.3 Measurement Uncertainty	4
1.4 Details of Applicant	5
1.5 Description of EUT	5
1.6 Declaration by the applicant / manufacturer	5
1.7 Information about the FHSS characteristics	
1.8 Test Equipment List	
1.9 Summary of Test Results	
1.10 Conclusion of worst-case and operation mode	
2. Maximum Peak Output Power Measurement	
2.1 Test Setup	
2.1 rest Setup	
2.3 Test Procedure	
2.4 Test Results	
3. 20 dB BW & Occupied BW	
3.1 Test Setup	
3.2 Limit	
3.3 Test Procedure	
3.4 Test Results	
4. Carrier Frequency Separation	
4.1 Test Setup	
4.2 Limit	
4.3 Procedure	
4.4 Test Results	
5. Number of Hopping Frequencies	
5.1 Test Setup	
5.2 Limit	28
5.3 Procedure	28
5.4 Test Results	28
6. Time of Occupancy (Dwell Time)	34
6.1 Test Setup	
6.2 Limit	
6.3 Test Procedure	
6.4 Test Results	
7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	
7.1 Test Setup	
7.2 Limit	39
7.2 Limit	
7.3. Test Procedures	40
7.3. Test Procedures 7.3.1. Test Procedures for Radiated Spurious Emissions	40 40
7.3. Test Procedures 7.3.1. Test Procedures for Radiated Spurious Emissions 7.3.2. Test Procedures for Conducted Spurious Emissions	40 40 41
7.3. Test Procedures 7.3.1. Test Procedures for Radiated Spurious Emissions 7.3.2. Test Procedures for Conducted Spurious Emissions 7.4. Test Results	40 40 41 42
7.3. Test Procedures 7.3.1. Test Procedures for Radiated Spurious Emissions 7.3.2. Test Procedures for Conducted Spurious Emissions 7.4. Test Results 7.4.1. Radiated Emissions	40 40 41 42 42
7.3. Test Procedures 7.3.1. Test Procedures for Radiated Spurious Emissions 7.3.2. Test Procedures for Conducted Spurious Emissions 7.4. Test Results 7.4.1. Radiated Emissions 7.4.2. Conducted Spurious Emissions	40 40 41 42 42 45
7.3. Test Procedures. 7.3.1. Test Procedures for Radiated Spurious Emissions 7.3.2. Test Procedures for Conducted Spurious Emissions. 7.3.2. Test Procedures for Conducted Spurious Emissions. 7.4. Test Results 7.4.1. Radiated Emissions. 7.4.2. Conducted Spurious Emissions 7.4.2. Conducted Spurious Emissions. 8. Transmitter AC Power Line Conducted Emission 6.	40 40 41 42 42 45 69
7.3. Test Procedures. 7.3.1. Test Procedures for Radiated Spurious Emissions 7.3.2. Test Procedures for Conducted Spurious Emissions. 7.3.2. Test Procedures for Conducted Spurious Emissions. 7.4. Test Results 7.4.1. Radiated Emissions. 7.4.2. Conducted Spurious Emissions 7.4.2. Conducted Spurious Emissions. 8. Transmitter AC Power Line Conducted Emission 6.1 Test Setup	40 41 42 42 45 69 69
7.3. Test Procedures. 7.3.1. Test Procedures for Radiated Spurious Emissions 7.3.2. Test Procedures for Conducted Spurious Emissions. 7.3.2. Test Procedures for Conducted Spurious Emissions 7.4. Test Results 7.4.1. Radiated Emissions. 7.4.2. Conducted Spurious Emissions 7.4.2. Conducted Spurious Emissions 8. Transmitter AC Power Line Conducted Emission 8.1 Test Setup 8.2 Limit 8.2 Limit	40 41 42 42 45 69 69
7.3. Test Procedures. 7.3.1. Test Procedures for Radiated Spurious Emissions 7.3.2. Test Procedures for Conducted Spurious Emissions. 7.4.1. Radiated Emissions. 7.4.1. Radiated Emissions. 7.4.2. Conducted Spurious Emissions 8. Transmitter AC Power Line Conducted Emission 8.1 Test Setup 8.2 Limit. 8.3 Test Procedures.	40 41 42 42 45 69 69 69
7.3. Test Procedures. 7.3.1. Test Procedures for Radiated Spurious Emissions 7.3.2. Test Procedures for Conducted Spurious Emissions. 7.4. Test Results 7.4.1. Radiated Emissions. 7.4.2. Conducted Spurious Emissions 8. Transmitter AC Power Line Conducted Emission 8.1 Test Setup 8.2 Limit. 8.3 Test Procedures. 8.4 Test Results	40 40 41 42 45 69 69 69 69 70
7.3. Test Procedures. 7.3.1. Test Procedures for Radiated Spurious Emissions 7.3.2. Test Procedures for Conducted Spurious Emissions. 7.4. Test Results 7.4.1. Radiated Emissions. 7.4.2. Conducted Spurious Emissions 8. Transmitter AC Power Line Conducted Emission 8.1 Test Setup 8.2 Limit 8.3 Test Procedures. 8.4 Test Results 9. Antenna Requirement	40 40 41 42 45 69 69 69 69 70 72
7.3. Test Procedures. 7.3.1. Test Procedures for Radiated Spurious Emissions 7.3.2. Test Procedures for Conducted Spurious Emissions. 7.4. Test Results 7.4.1. Radiated Emissions. 7.4.2. Conducted Spurious Emissions 8. Transmitter AC Power Line Conducted Emission 8.1 Test Setup 8.2 Limit. 8.3 Test Procedures. 8.4 Test Results	40 40 41 42 45 69 69 69 69 70 72 73

1. General Information

1.1 Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The site is constructed in conformance with the requirements.

- FCC MRA Accredited Test Firm No. : KR0034

- IC Test site No. : 5740A-4

www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.2 Testing Environment

Ambient Condition	
 Temperature 	+21 °C ~ +24 °C
 Relative Humidity 	44 % ~ 48 %

1.3 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Test items	Measurement uncertainty
Transmitter Output Power	0.9 dB (The confidence level is about 95 %, $k = 2$)
Conducted spurious emission	1.0 dB (The confidence level is about 95 %, $k = 2$)
AC conducted emission	2.4 dB (The confidence level is about 95 %, $k = 2$)
Radiated spurious emission (1 GHz Below)	5.1 dB (The confidence level is about 95 %, $k = 2$)
Radiated spurious emission (1 GHz ~ 18 GHz)	5.4 dB (The confidence level is about 95 %, $k = 2$)
Radiated spurious emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, $k = 2$)

1.4 Details of Applicant

Applicant(FCC)	: MOTREX CO., LTD.
Applicant(IC)	: Motrex Co,. Ltd.
Address(FCC)	. (Mullae-dong 3(sam)-ga, Ace High-Tech City B/D), 1-1103, 775, Gyeongin-ro, Yeongdeungpo-gu, Seoul, South Korea
Address(IC)	21, Daewangpangyo-ro 644beon-gil,Bundang-gu Seongnam-si 13494 Korea (Republic Of)
Contact person	: Young Kwon

1.5 Description of EUT

EUT	KinectIQ-Pro BT Dongle
Model Name	AT-1000U
Add Model Name	NA
Hardware Version	0.3
Software Version	16.6.9
Serial Number	Identical prototype
Power Supply	DC 5 V
Frequency Range	2402 MHz ~ 2480 MHz
Modulation Technique	GFSK, π/4DQPSK, 8DPSK
Number of Channels	79
Antenna Type	Chip Antenna
Antenna Gain	PK : 1.99 dBi

1.6 Declaration by the applicant / manufacturer

- NA

1.7 Information about the FHSS characteristics

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following :
 - A) The hopping sequence is pseudorandom
 - Note 1 : Pseudorandom Frequency Hopping Sequence Table as below:
 - Channel: 08, 24, 40, 56, 42, 54, 72, 09, 01, 11, 33, 41, 34, 42, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 41, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 52, 71, 08, 24, 06, 24, 48, 56, 45, 46, 70, 01, 72, 06, 25, 33, 12, 28, 49, 60, 45, 58, 74, 13, 05, 18, 37, 49 etc
 - The System receiver have input bandwidths that match the hopping channel badwidths of Their corresponding transmitters and shift frequencies in synchroniztation with the transmit Ted signals.
 - B) All channels are used equally on average
 - C) The receiver input bandwidth equals the transmit bandwidth
 - D) The receiver hops in sequence with the transmit signal
- 15.247(g) : In accordance with the Bluetooth Industry Standard, the system is designed to comply with all
 of the regulations in Section 15.247 when the transmitter is presented with a continuous data
 (or information) system.
- 15.247(h) : In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection / hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h): The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the number of test channels from 79 channels to a minimum number of 20 channels.

1.8 Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	16/09/09 17/09/06	17/09/09 18/09/06	MY50200834
Spectrum Analyzer	Agilent Technologies	N9020A	16/10/11 17/09/05	17/10/11 18/09/05	MY46471251
Multimeter	FLUKE	17B	16/04/21 17/12/26	17/04/21 18/12/26	26030065WS
DC Power Supply	Agilent	66332A	16/10/17 17/09/05	17/10/17 18/09/05	MY43000394
Signal Generator	Rohde Schwarz	SMBV100A	17/01/04 17/12/27	18/01/04 18/12/27	255571
Signal Generator	Rohde Schwarz	SMF100A	16/06/23 17/04/21	17/06/23 18/04/21	102341
Thermohygrometer	BODYCOM	BJ5478	16/04/22 17/04/11	17/04/22	120612-2
Power Splitter	Anritsu	K241B	17/01/11 17/12/27	18/01/11 18/12/27	1301183
Bluetooth Tester	TESCOM	TC-3000C	17/01/11 17/12/26	18/01/11 18/12/26	3000C000396
Loop Antenna	Schwarzbeck	FMZB1513	16/04/22	18/04/22	1513-128
BILOG ANTENNA	Schwarzbeck	VULB 9160	16/08/05	18/08/05	9160-3362
Horn Antenna	ETS-LINDGREN	3117	16/05/03	18/05/03	00140394
Horn Antenna	A.H.Systems Inc.	SAS-574	15/09/03 17/07/31	17/09/03 19/07/31	155
PreAmplifier	Agilent	8449B	16/10/19 17/09/05	17/10/19 18/09/05	3008A002108
PreAmplifier	TSJ	MLA-010K01- B01-27	17/03/06 18/03/05	18/03/06 19/03/05	1844539
EMI Test Receiver	Rohde Schwarz	ESR7	17/02/16 18/02/13	18/02/16 19/02/13	101061
High-pass filter	Wainwright	WHKX12-2580- 3000-18000-80SS	16/09/09 17/09/05	17/09/09 18/09/05	3
High-pass filter	Wainwright	WHNX6-6320- 8000-26500-40C	16/09/13 17/09/05	17/09/13 18/09/05	1
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A MA2411B	16/06/23 17/04/11	17/06/23 18/04/11	1338004 1306053
EMI TEST RECEIVER	Rohde Schwarz	ESCI7	17/02/16 18/02/12	18/02/16 19/02/12	100910
ARTIFICIAL MAINS NETWORK	SCHWARZBECK	ESH2-Z5	16/09/08 17/09/06	17/09/08 18/09/06	828739/006
CABLE	DTNC	CABLE	NA	NA	RF-58
CABLE	DTNC	CABLE	NA	NA	RF-61
CABLE	DTNC	CABLE	NA	NA	RF-82
CABLE	DTNC	CABLE	NA	NA	C-016-4
CABLE	DTNC	CABLE	NA	NA	RF-81
CABLE	Radiall	TESTPRO3	NA	NA	RF-74
CABLE	HUBER+SUHNER	SUCOFLEX103	NA	NA	RF-75
CABLE	Radiall	TESTPRO3	NA	NA	RF-66

Note: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

1.9 Summary of Test Results

FCC Part RSS Std.	Parameter	Limit (Using in 2400~ 2483.5 MHz)	Test Condition	Status Note 1
	Carrier Frequency Separation	>= 25 kHz or >= Two thirds of the 20 dB BW, whichever is greater.		С
15.247(a) RSS-247(5.1)	Number of Hopping Frequencies	>= 15 hops		С
	20 dB Bandwidth N/A			С
	Dwell Time	=< 0.4 seconds		С
15.247(b) RSS-247(5.4)	Transmitter Output Power	For FCC =< 1 Watt , if CHs >= 75 Others =< 0.125 W For IC if CHs >= 75 =< 1 Watt For Conducted Power =< 4 Watt For e.i.r.p, Others =< 0.125 W For Conducted Power. =< 0.5 Watt For e.i.r.p	Conducted	С
15.247(d) RSS-247(5.5)	Conducted Spurious Emissions	The radiated emission to any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density.		С
RSS Gen(6.6)	Occupied Bandwidth (99 %)	N/A		С
15.247(d) 15.205 & 209 RSS-247(5.5) RSS-Gen (8.9 & 8.10)	Radiated Spurious Emissions	FCC 15.209 Limits RSS-Gen 8.9	Radiated	C Note2
15.207 RSS-Gen(8.8)	AC Conducted Emissions	FCC 15.207 Limits	AC Line Conducted	С
15.203 RSS-Gen(8.3)	Antenna Requirements	FCC 15.203	-	С

Dt&C

1.10 Conclusion of worst-case and operation mode

The EUT has three type of modulation (GFSK, π /4DQPSK and 8DPSK).

Therefore all applicable requirements were tested with all the modulations.

And packet type was tested at the worst case(DH5).

The field strength of spurious emission was measured in three orthogonal EUT positions (X-axis, Y-axis and Z-axis).

Tested frequency information,

- Hopping Function : Enable

	TX Frequency (MHz)	RX Frequency (MHz)
Hopping Band	2402 ~ 2480	2402 ~ 2480

- Hopping Function : Disable

	TX Frequency (MHz)	RX Frequency (MHz)
Lowest Channel	2402	2402
Middle Channel	2441	2441
Highest Channel	2480	2480

2. Maximum Peak Output Power Measurement

2.1 Test Setup

Refer to the APPENDIX I.

2.2 Limit

FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- §15.247(b)(1), For frequency hopping systems operating in the 2400 2483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725 5805 MHz band : 1 Watt.

IC Requirements

1. RSS-247(5.4), For FHSS operating in the band 2400 - 2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels the maximum peak conducted output power shall not exceed 0.125 W and the e.i.r.p. shall not exceed 0.5 W if the hopset uses less than 75 hopping channels

2.3 Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using ;
 Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel
 RBW ≥ 20 dB BW

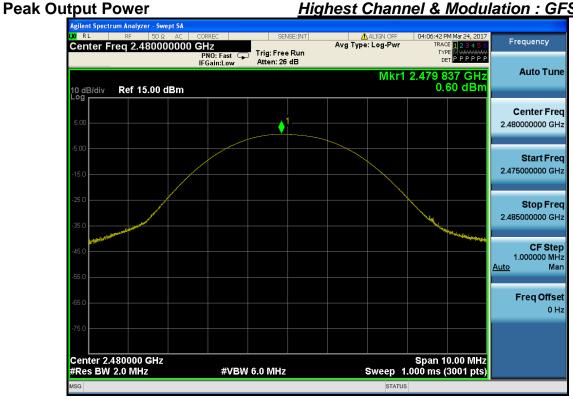
VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold

2.4 Test Results

Modulation	Tested Channel		Average t Power	Peak Output Power		
	rested Chainter	dBm	mW	dBm	mW	
	Lowest	-3.69	0.428	-2.23	0.598	
<u>GFSK</u>	Middle	-0.46	0.899	0.91	1.233	
	Highest	-1.24	0.752	0.60	1.148	
	Lowest	-5.53	0.280	-1.59	0.693	
<u>π/4DQPSK</u>	Middle	-3.15	0.484	0.78	1.197	
	Highest	-3.86	0.411	0.63	1.156	
<u>8DPSK</u>	Lowest	-5.51	0.281	-1.06	0.783	
	Middle	-3.12	0.488	1.33	1.358	
	Highest	-3.82	0.415	1.13	1.297	

Note 1 The frame average output power was tested using an average power meter for reference only. Note 2 : See next pages for actual measured spectrum plots.

Lowest Channel & Modulation : GFSK


Peak Output Power

Middle Channel & Modulation : GFSK

Highest Channel & Modulation : GFSK

Peak Output Power

Lowest Channel & Modulation : π/4DQPSK

Middle Channel & Modulation : π/4DQPSK

Peak Output Power

Highest Channel & Modulation : π/4DQPSK

Lowest Channel & Modulation : 8DPSK

Peak Output Power

Middle Channel & Modulation : 8DPSK

Highest Channel & Modulation : 8DPSK

3. 20 dB BW & Occupied BW

3.1 Test Setup

Refer to the APPENDIX I.

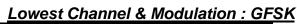
3.2 Limit

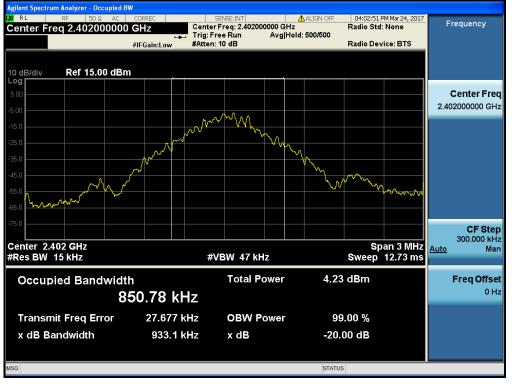
Limit : Not Applicable

3.3 Test Procedure

- 1. The 20 dB bandwidth & Occupied bandwidth were measured with a spectrum analyzer connected to RF antenna Connector(conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting:
 - RBW = 1% to 5% of the 20 dB BW & Occupied BW
 - $VBW \ge 3 \times RBW$

Span = between two times and five times the 20 dB bandwidth & Occupied BW


Sweep = auto

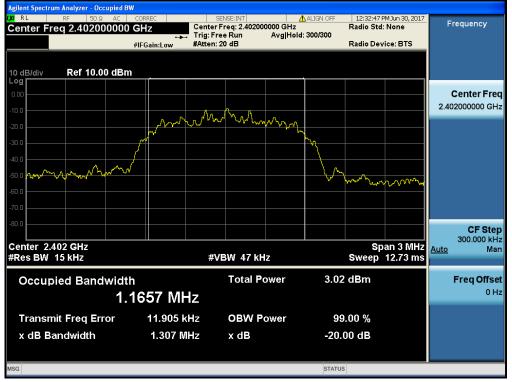

Detector function = peak

Trace = max hold

3.4 Test Results

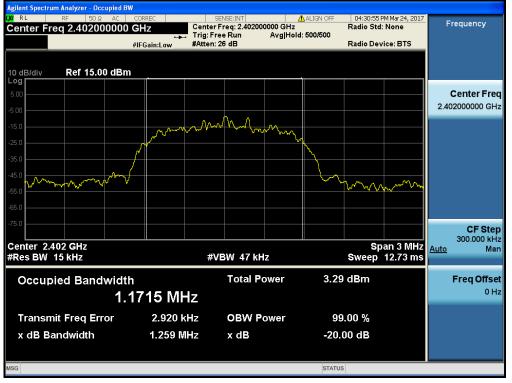

Modulation	Tested Channel	20 dB BW (MHz)	Occupied BW (MHz)
	Lowest	0.933	0.851
<u>GFSK</u>	Middle	0.891	0.858
	Highest	0.890	0.857
	Lowest	1.307	1.166
<u>π/4DQPSK</u>	Middle	1.280	1.165
	Highest	1.280	1.164
<u>8DPSK</u>	Lowest	1.259	1.172
	Middle	1.264	1.171
	Highest	1.263	1.172

Middle Channel & Modulation : GFSK



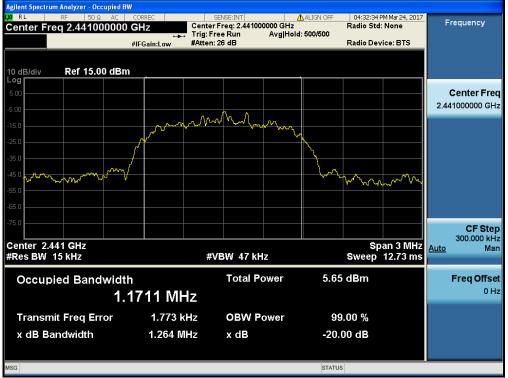
20 dB BW & Occupied BW

Lowest Channel & Modulation : π/4DQPSK



20 dB BW & Occupied BW

Highest Channel & Modulation : π/4DQPSK



Middle Channel & Modulation : 8DPSK

4. Carrier Frequency Separation

4.1 Test Setup

Refer to the APPENDIX I.

4.2 Limit

Limit : \geq 25 kHz or \geq Two-Thirds of the 20 dB BW whichever is greater.

4.3 Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the markerdelta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

 $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold

4.4 Test Results

FH mode

Hopping Mode	Modulation	Peak of center channel (MHz)	Peak of adjacent Channel (MHz)	Test Result (MHz)
	GFSK	2440.014	2441.019	1.005
Enable	π/4DQPSK	2440.011	2441.013	1.002
	8DPSK	2439.015	2440.014	0.999

AFH mode

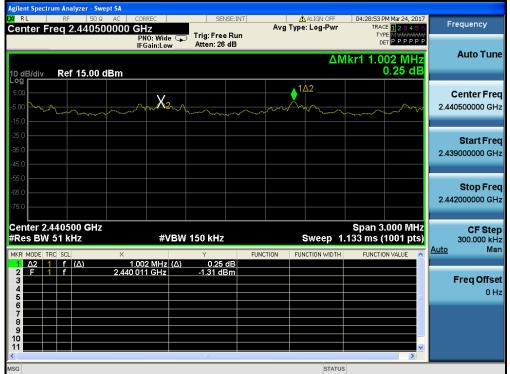
Hopping Mode	Modulation	Peak of center channel (MHz)	Peak of adjacent Channel (MHz)	Test Result (MHz)
	GFSK	2440.014	2441.010	0.996
Enable	π/4DQPSK	2440.011	2441.010	0.999
	8DPSK	2440.014	2441.013	0.999

Note 1 : See next pages for actual measured spectrum

- Minimum Standard :

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 - 2483.5 MHz band may have hopping

channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW


Carrier Frequency Separation (FH)

Carrier Frequency Separation (FH)

Hopping mode : Enable & π/4DQPSK

Carrier Frequency Separation (FH)

Start Freq 2.439000000 GHz

Stop Freq 2.442000000 GHz

CF Step 300.000 kHz

Freq Offset 0 Hz

Man

<u>Auto</u>

R I

dB/div

Center 2.440500 GHz #Res BW 51 kHz

1 f (Δ)

Δ2

200

5

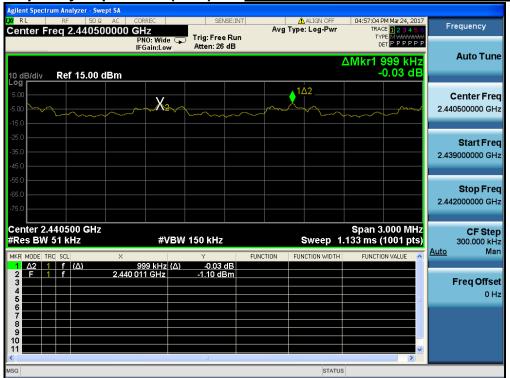
10

Carrier Frequency Separation (AFH)

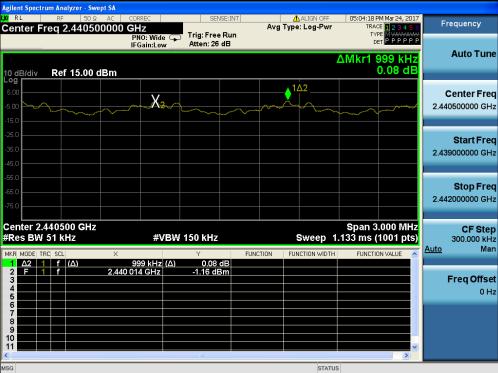
FUNCTI

STATUS

Hopping mode : Enable & GFSK


Span 3.000 MHz Sweep 1.133 ms (1001 pts)

#VBW 150 kHz


0.02 dB 0.25 dBm

996 kHz (Δ) 2.440 014 GHz

Carrier Frequency Separation (AFH) <u>Hopping mode : Enable & 8DPSK</u>

5. Number of Hopping Frequencies

5.1 Test Setup

Refer to the APPENDIX I.

5.2 Limit

Limit : >= 15 hops

5.3 Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 2400 ~ 2483.5 MHz were examined.

The spectrum analyzer is set to :

Span for FH mode = 50 MHz	Start Frequency = 2391.5 MHz,	Stop Frequency = 2441.5 MHz
	Start Frequency = 2441.5 MHz,	Stop Frequency = 2491.5 MHz
Span for AFH mode = 50 MHz	Start Frequency = 2416.0 MHz,	Stop Frequency = 2466.0 MHz
RBW = To identify clearly the ind or the 20 dB bandwidth, w		less than 30% of the channel spacing
VBW ≥ RBW	Sweep = auto	
Detector function = peak	Trace = max hold	

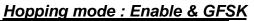
5.4 Test Results

FH mode

Hopping mode	Modulation	Test Result (Total Hops)
	GFSK	79
Enable	π/4DQPSK	79
	8DPSK	79

AFH mode

Hopping mode	Modulation	Test Result (Total Hops)
	GFSK	20
Enable	π/4DQPSK	20
	8DPSK	20


Note 1 : See next pages for actual measured spectrum plots.

- Minimum Standard :

At least 15 hopes

Number of Hopping Frequencies 1(FH)

Agilent Spectrum Analyzer - Swept SA V RL RF 50 Ω AC	CORREC	SENSE:INT	Avg Type:	ALIGN OFF	04:12:47 PM Mar 24, 201 TRACE 1 2 3 4 5	
Center Freq 2.416500000	PNO: Fast IFGain:Low	Trig: Free Run Atten: 26 dB	Avg Hold>		TYPE MWWWWW DET P P P P P	
	IFGain:Low	Atten: 20 GB		Mkr2	2 2.441 00 GH	Auto Tune
10 dB/div Ref 15.00 dBm					0.510 dBm	
Log 5.00					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Center Freq
-5.00	MMM		WWWW	MMM		2.416500000 GHz
-25.0						
-35.0						Start Freq 2.391500000 GHz
-45.0 nnnnnnnn/						2.391500000 GH2
-55.0						Oton From
-65.0						Stop Freq 2.441500000 GHz
-75.0						
Start 2.39150 GHz	_				Stop 2.44150 GH	
#Res BW 200 kHz	#VBW	/ 620 kHz			200 ms (1001 pts	Auto Man
MKR MODE TRC SCL X	02 00 GHz	ץ -2.756 dBm	FUNCTION FUN	CTION WIDTH	FUNCTION VALUE	
2 N 1 f 2.4	41 00 GHz	0.510 dBm				Freq Offset
4 5						0 Hz
6 7						
8						
10						
<		Ш				
MSG				STATUS		

Number of Hopping Frequencies 2(FH) Hop

Hopping mode : Enable & GFSK

04:13:19 PM Mar 24, 2017 ALIGN Frequency Avg Type: Log-Pwr Avg|Hold:>100/100 Center Freg 2.466500000 GHz RACE TYPE MWWWWW DET P P P P P Trig: Free Run PNO: Fast IFGain:Low P Atten: 26 dB Auto Tune Mkr2 2.480 00 GHz 0.019 dBm Ref 15.00 dBm 10 dB/div _og 2 **Center Freq** MM <u>MMMMM</u> 2.466500000 GHz Start Freq 2.441500000 GHz Stop Freq 2.491500000 GHz Start 2.44150 GHz #Res BW 200 kHz Stop 2.49150 GHz Sweep 1.200 ms (1001 pts) CF Step 5.000000 MHz Man #VBW 620 kHz <u>Auto</u> FUNCTION FUNCTION WIDTH FUNCTION VALUE Mſ 2.442 00 GHz 2.480 00 GHz 0.367 dBm 0.019 dBm Ν f Freq Offset 3 0 Hz 567 e c 10 STATUS

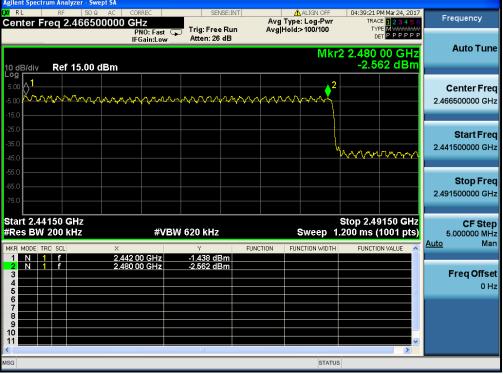
Number of Hopping Frequencies 1(FH)

Agilent Spectrum Analyzer - Swept SA					
IXI RL RF 50Ω AC				PM Mar 24, 2017 CE 1 2 3 4 5 6	Frequency
Center Freq 2.416500000	PNO: Fast C Trig: Fre		>100/100 TY	PE M WARANANA	
	IFGain:Low Atten: 26			ET PPPPP	
			Mkr2 2.441	00 GHz	Auto Tune
10 dB/div Ref 15.00 dBm				77 dBm	
Log					
5.00					Center Freq
-5.00 Xmm	man	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	$\gamma \gamma $	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	2.416500000 GHz
-15.0					
-25.0					Start Freq
-35.0					2.391500000 GHz
-45.0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
-55.0					
-65.0					Stop Freq
					2.441500000 GHz
-75.0					
Start 2.39150 GHz			Oton 2.4	4150 GHz	
#Res BW 200 kHz	#VBW 620 kHz		Sweep 1.200 ms (CF Step 5.000000 MHz
	##B## 020 KHZ		-	<u> </u>	Auto Man
MKR MODE TRC SCL X	Y 00.000 U		ICTION WIDTH FUNCTI	ON VALUE	turo mari
	02 00 GHz -3.930 d 41 00 GHz -1.177 d				
3					Freq Offset
4 5					0 Hz
6					
7 8					
9					
10					
				~	
MSG			STATUS		
mod			STATUS		

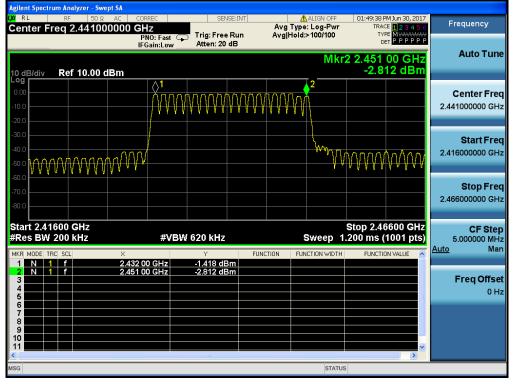
Number of Hopping Frequencies 2(FH)

Hopping mode : Enable & π/4DQPSK

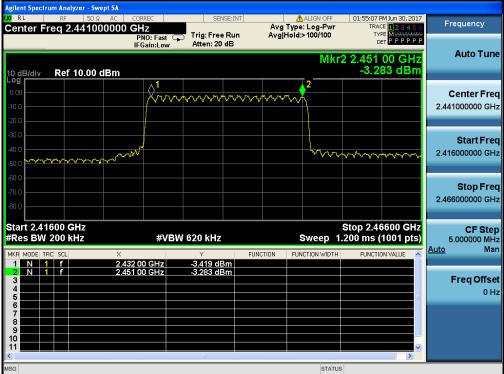
Mar 24, 2017 Avg Type: Log-Pwr Avg|Hold:>100/100 ≜ Frequency Center Freq 2.466500000 GHz TRACE 123456 TYPE MWWWWW DET PPPPP Trig: Free Run Atten: 26 dB PNO: Fast 😱 IFGain:Low Auto Tune Mkr2 2.480 00 GHz -3.053 dBm 10 dB/div Ref 15.00 dBm 1 **Center Freq** 2 ພາກ 2.466500000 GHz MMM $\sqrt{2}$ Start Freq 2.441500000 GHz ᠃᠂᠂ᡝ m_{n} Stop Freq 2.491500000 GHz Stop 2.49150 GHz Sweep 1.200 ms (1001 pts) CF Step 5.000000 MHz Man Start 2.44150 GHz #Res BW 200 kHz #VBW 620 kHz <u>Auto</u> 2.442 00 GHz 2.480 00 GHz -3.118 dBm -3.053 dBm N Freq Offset 0 Hz


Number of Hopping Frequencies 1(FH)

Agilent Spectrum Analyzer - Swept SA					
LXU RL RF 50Ω AC	CORREC	SENSE:INT	ALIGN OFF	04:38:49 PM Mar 24, 2017	Frequency
Center Freq 2.416500000	GHz		vg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 😱 Trig:		vg Hold:>100/100	TYPE M WWWWWW DET P P P P P P	
	IFGain:Low Atte	n: 26 dB			
			Mkr2	2 2.441 00 GHz	Auto Tune
				-2.507 dBm	
10 dB/div Ref 15.00 dBm				-2.007 uBm	
				2	
5.00					Center Freq
-5.00	\mathcal{M}	$\sim \sim $	mmmm	\sim	2.416500000 GHz
1 1 1 1 1 1 1 1 1 1					2.41000000000112
-15.0					
-25.0					
					Start Freq
-35.0					2.391500000 GHz
-45.0					
-55.0					
-65.0					Stop Freq
					2.441500000 GHz
-75.0					
Start 2.39150 GHz				Stop 2.44150 GHz	CF Step
#Res BW 200 kHz	#VBW 620 I	(H7		200 ms (1001 pts)	5.000000 MHz
	<i></i>		erroop in		Auto Man
MKR MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto
	02 00 GHz -3.78	9 dBm			
	41 00 GHz -2.50	7 dBm			
3					Freq Offset
4					0 Hz
5				3	
7					
8					
9					
10					
11				~	
<				>	
MSG			STATUS		


Number of Hopping Frequencies 2(FH)

Hopping mode : Enable & 8DPSK


Number of Hopping Frequencies 1(AFH)

Number of Hopping Frequencies 1(AFH)

<u>Hopping mode : Enable & π/4DQPSK</u>

Number of Hopping Frequencies 1(AFH)

Agilent Spectrum Analyzer - Swept SA	CORREC	SENSE:INT	ALIGN OFF	02:00:21 PM Jun 30, 2017	
Center Freq 2.441000000) GHz		Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
	PNO: Fast 🖵 IFGain:Low	Atten: 20 dB	Avginola.>100/100	DETPPPP	
			Mkr	2 2.451 00 GHz	Auto Tune
10 dB/div Ref 10.00 dBm	A 1		2	-3.240 dBm	
0.00	- Xm	\cdots			Center Freq
-10.0					2.441000000 GHz
-20.0					
-30.0					Start Freq
-40.0	rv ^N		***\`\`**	*****	2.416000000 GHz
-60.0					
-70.0					Stop Freq 2.466000000 GHz
-80.0					2.466000000 GHz
Start 2.41600 GHz				Stop 2.46600 GHz	CF Step
#Res BW 200 kHz	#VBW	/ 620 kHz		.200 ms (1001 pts)	5.000000 MHz
MKR MODE TRC SCL X	432 00 GHz	Y FL -2.484 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
	451 00 GHz	-3.240 dBm			Freq Offset
4					0 Hz
6				=	
8					
9 10					
11				>	
MSG			STATUS		

6. Time of Occupancy (Dwell Time)

6.1 Test Setup

Refer to the APPENDIX I.

6.2 Limit

The maximum permissible time of occupancy is 400 ms within a period of 400 ms multiplied by the number of hopping channels employed.

6.3 Test Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to : Center frequency = 2441 MHz

Span = zero

RBW = 1 MHz (RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)

VBW ≥ RBW Trace = max hold Detector function = peak

6.4 Test Results

FH mode

Hopping mode	Packet Type	Number of hopping Channels	Burst On Time (ms)	Period (ms)	Test Result (sec)
	DH 5	79	2.880	3.750	0.307
Enable	2 DH 5	79	2.880	3.750	0.307
	3 DH 5	79	2.880	3.750	0.307

AFH mode

Hopping mode	Packet Type	Number of hopping Channels	Burst On Time (ms)	Period (ms)	Test Result (sec)
Enable	DH 5	20	2.880 3.750		0.154
	2 DH 5	20	2.880	3.750	0.154
	3 DH 5	20	2.880	3.750	0.154

Note 1 : Dwell Time = $0.4 \times$ Hopping channel × Burst ON time ×

((Hopping rate ÷ Time slots) ÷ Hopping channel)

- Time slots for DH5 = 6 slots (TX = 5 slot / RX = 1 slot)
- Hopping Rate = 1600 for FH mode & 800 for AFH mode

Note 2 : See next pages for actual measured spectrum plots.

Time of Occupancy (FH)

Agilent Spectrum Analyzer - Swept SA												
L)U	RF 5		RREC NO:Fast ↔	SENS			ALIGNAUTO e: Log-Pwr	09:26:01 AM M	Mar 27, 2017 1 2 3 4 5 6 WWWWWWW	Frequency		
10 dB/div	Auto Tune											
Log 10.0 0.00 -10.0		×	2	1∆	2_3∆4 -					Center Freq 2.441000000 GHz		
-20.0 -30.0 -40.0		Markar					LUNArril			Start Freq 2.441000000 GHz		
-50.0 4444 -60.0					40°					Stop Freq 2.441000000 GHz		
	Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 15.00 ms (1001 pts)									CF Step 1.000000 MHz Auto Man		
MKR MODE TF		×	380 ms (Δ)	۲ 0.01 d	FUNC	TION FU	NCTION WIDTH	FUNCTION	VALUE	<u>Auto</u> Wan		
2 F 1 3 <u>Δ4</u> 1 4 F 1 5	t (Δ) t (Δ) t	4.2	230 ms 750 ms (Δ) 230 ms	0.33 dBr -0.02 dl 0.33 dBr	n 3					Freq Offset 0 Hz		
6 7 8 9 10 11												
<												
MSG	MSG STATUS											

Hopping mode : Enable & DH5

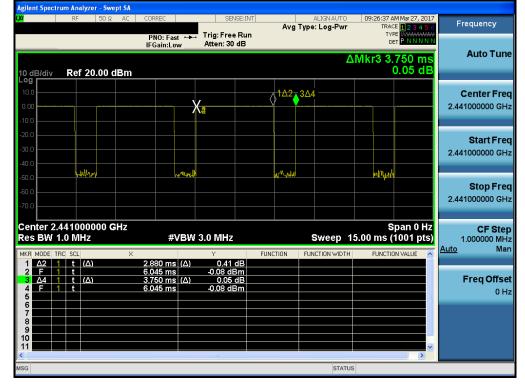
Time of Occupancy (FH) Frequency Avg Type: Log-Pwr Trig: Free Run Atten: 30 dB DE1 PNO: Fast IFGain:Low Auto Tune ΔMkr3 3.750 ms 0.04 dB Ref 20.00 dBm 10 dB/div _og **Center Freq** ()^{1∆2} 3/\4 2.441000000 GHz X Start Freq 2.441000000 GHz Julyan and raise n,M/ Stop Freq 2.441000000 GHz Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 15.00 ms (1001 pts) CF Step 1.000000 MHz Man #VBW 3.0 MHz <u>Auto</u> FUNCTION FUNCTION WIDTH FUNCTION V 1 t (Δ) 1 t (Δ) 1 t (Δ) 1 t 2.880 ms (∆) 5.070 ms 3.750 ms (∆) 5.070 ms 0.39 dB -1.31 dBm 0.04 dB -1.31 dBm Δ2 1 **Freq Offset** ∆4 F 4567 0 Hz

Hopping mode : Enable & 2-DH5

STATUS

10

Hopping mode : Enable & 3-DH5


Time of Occupancy (FH)

Time of Occupancy (AFH)

Hopping mode : Enable & DH5

Time of Occupancy (AFH) Hopping mode : Enable & 2-DH5 SENSE:INT Frequency Avg Type: Log-Pwr TRACE 72 Trig: Free Run Atten: 30 dB TYP PNO: Fast IFGain:Low DET ΔMkr3 3.750 ms 0.01 dE Auto Tune 10 dB/div Ref 20.00 dBm **Center Freq** 3∆4 1 \ 1 X 2.441000000 GHz Start Freq 2.441000000 GHz A ville الملر -haven - **N**. NI Stop Freq 2.441000000 GHz Center 2.441000000 GHz Span 0 Hz CF Step MHz Man

Res	; BW	/ 1.0	D M	Hz		#\	/BW :	3.0 MHz		Sweep 1	5.00 ms (1001 p	ts)		1.000000 MHz
MKR	MODE	TRC	SCL		Х			Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	^	<u>Auto</u>	Man
1	Δ2	1	t	(Δ)		2.880 ms	(Δ)	0.35 dB						
2	F	1	t			5.400 ms		-1.22 dBm						
3	Δ4	1	t	(Δ)		3.750 ms	(Δ)	0.01 dB						Freq Offset
4	F	1	t			5.400 ms		-1.22 dBm						0 Hz
5												=		0112
6														
7														
8														
9														
10														
11												~		
<												>		

STATUS

Hopping mode : Enable & 3-DH5

Time of Occupancy (AFH)

7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

7.1 Test Setup

Refer to the APPENDIX I.

7.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1705	24000/F (kHz)	30
1705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below :

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~ 156.52525	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.7 ~ 156.9	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	162.0125 ~ 167.17	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	167.72 ~ 173.2	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	240 ~ 285	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	322 ~ 335.4	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1240	3345.8 ~ 3358		
			3600 ~ 4400		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

7.3. Test Procedures

7.3.1. Test Procedures for Radiated Spurious Emissions

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note: The radiated spurious emission was tested with below settings.

- Frequencies less than or equal to 1000 MHz The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- Frequencies above 1000 MHz
 The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.
 The result of Average measurement is calculated using PK result and duty correction factor.

7.3.2. Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

Frequency range : 9 kHz ~ 30 MHz RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

Frequency range : 30 MHz ~ 10 GHz, 10 GHz ~ 25 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

7.4. Test Results

7.4.1. Radiated Emissions

9 kHz ~ 25 GHz Data (Modulation : GFSK)

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2350.25	V	Z	PK	51.91	0.70	N/A	N/A	52.61	74.00	21.39
2350.25	V	Z	AV	51.91	0.70	-24.79	N/A	27.82	54.00	26.18
4804.37	Н	Х	PK	60.16	4.77	N/A	N/A	64.93	74.00	9.07
4804.37	Н	Х	AV	60.16	4.77	-24.79	N/A	40.14	54.00	13.86

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4881.69	Н	Х	PK	63.36	5.11	N/A	N/A	68.47	74.00	5.53
4881.69	Н	Х	AV	63.36	5.11	-24.79	N/A	43.68	54.00	10.32

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2484.18	V	Z	PK	53.72	1.07	N/A	N/A	54.79	74.00	19.21
2484.18	V	Z	AV	53.72	1.07	-24.79	N/A	30.00	54.00	24.00
4959.59	Н	Х	PK	64.20	5.34	N/A	N/A	69.54	74.00	4.46
4959.59	Н	Х	AV	64.20	5.34	-24.79	N/A	44.75	54.00	9.25

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)

- Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = 2.88 ms

- 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.74 = 2

- The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms

- D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB

4. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG

 $\label{eq:Where, T.F = Total Factor, \quad AF = Antenna \ Factor, \quad CL = Cable \ Loss, \quad AG = Amplifier \ Gain.$

9 kHz ~ 25 GHz Data (Modulation : π /4DQPSK)

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2370.26	V	Z	PK	50.96	0.70	N/A	N/A	51.66	74.00	22.34
2370.26	V	Z	AV	50.96	0.70	-24.79	N/A	26.87	54.00	27.13
4803.85	Н	Х	PK	58.21	4.77	N/A	N/A	62.98	74.00	11.02
4803.85	Н	Х	AV	58.21	4.77	-24.79	N/A	38.19	54.00	15.81

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4881.77	Н	Х	PK	61.06	5.11	N/A	N/A	66.17	74.00	7.83
4881.77	Н	Х	AV	61.06	5.11	-24.79	N/A	41.38	54.00	12.62

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2496.20	V	Z	PK	52.85	1.07	N/A	N/A	53.92	74.00	20.08
2496.20	V	Z	AV	52.85	1.07	-24.79	N/A	29.13	54.00	24.87
4960.28	Н	Х	PK	62.18	5.34	N/A	N/A	67.52	74.00	6.48
4960.28	Н	Х	AV	62.18	5.34	-24.79	N/A	42.73	54.00	11.27

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)

- Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = 2.88 ms

- 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.74 = 2

- The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms

- D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB

4. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain.

9 kHz ~ 25 GHz Data (Modulation : <u>8DPSK</u>)

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2370.07	V	Z	PK	51.18	0.70	N/A	N/A	51.88	74.00	22.12
2370.07	V	Z	AV	51.18	0.70	-24.79	N/A	27.09	54.00	26.91
4804.10	Н	Х	PK	58.53	4.77	N/A	N/A	63.30	74.00	10.70
4804.10	Н	Х	AV	58.53	4.77	-24.79	N/A	38.51	54.00	15.49

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4881.89	Н	Х	PK	61.39	5.11	N/A	N/A	66.50	74.00	7.50
4881.89	Н	Х	AV	61.39	5.11	-24.79	N/A	41.71	54.00	12.29

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2484.03	V	Z	PK	52.88	1.07	N/A	N/A	53.95	74.00	20.05
2484.03	V	Z	AV	52.88	1.07	-24.79	N/A	29.16	54.00	24.84
4960.05	Н	Х	PK	62.62	5.34	N/A	N/A	67.96	74.00	6.04
4960.05	Н	Х	AV	62.62	5.34	-24.79	N/A	43.17	54.00	10.83

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)

- Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = 2.88 ms

- 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.74 = 2

- The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms

- D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB

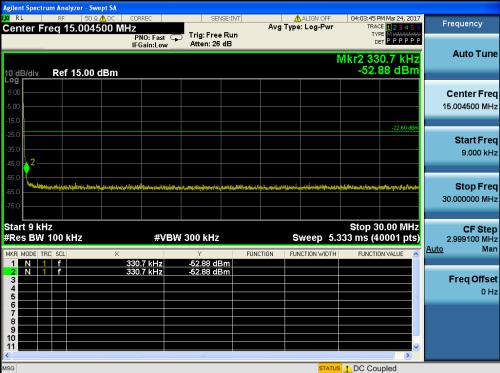
4. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain.


Low Band-edge

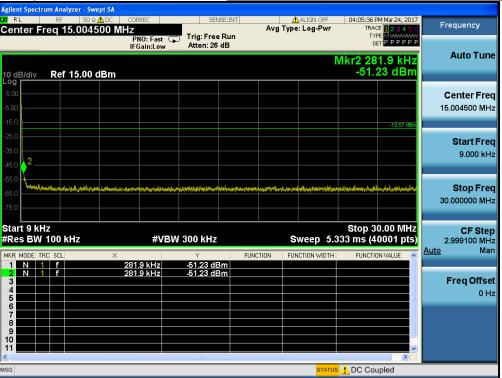
Lowest Channel & Modulation : GFSK

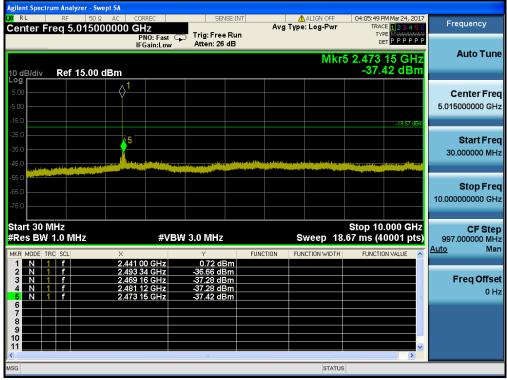

Low Band-edge

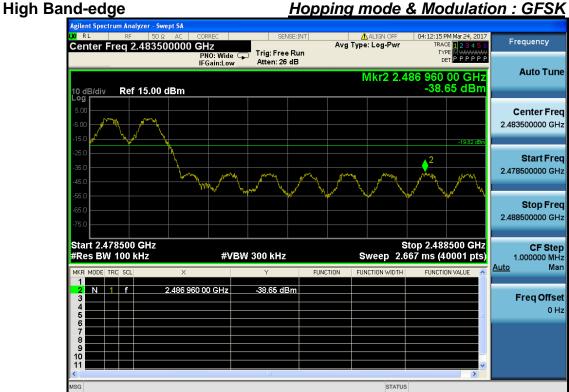
Hopping mode & Modulation : GFSK

Conducted Spurious Emissions <u>Lowest Channel & Modulation : GFSK</u>

Lowest Channel & Modulation : GFSK

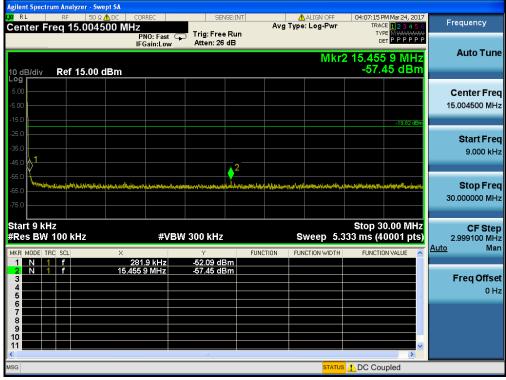

Reference for limit

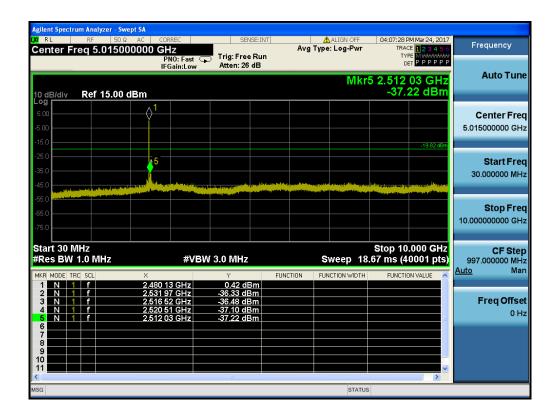




High Band-edge

Highest Channel & Modulation : GFSK





Hopping mode & Modulation : GFSK

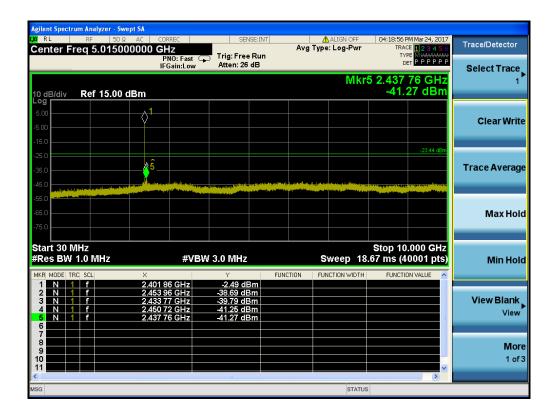
Highest Channel & Modulation : GFSK

Highest Channel & Modulation : GFSK

Low Band-edge

Lowest Channel & Modulation : π/4DQPSK

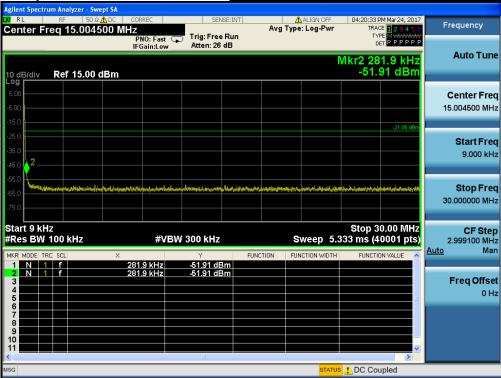
Low Band-edge


Hopping mode & Modulation : π/4DQPSK

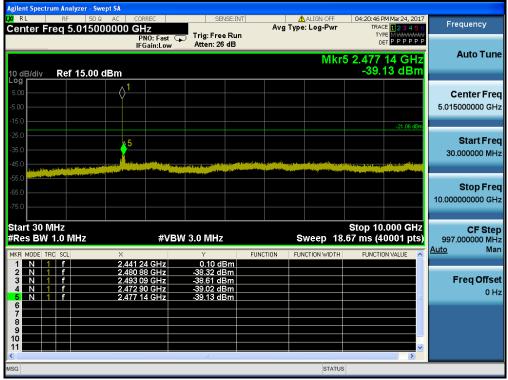
Lowest Channel & Modulation : π/4DQPSK

					wept SA														
l xi rl			RF		Ω 🧘 DC	COR	REC		SE	NSE:INT				ALIGN OFF			PM Mar 24,		Trace/Detector
Cen	ter F	rec	1	5.004	500					_		Avg	Туре	: Log-Pwr		TRA	.CE 1234	56	Hace/Delector
						PN	IO: Fast		rig: Fre							Th I	PE MWWW	P P	
						IFG	iain:Low	·	Atten: 26	5 dB									Select Trace
															ML	2.20	31.9 k		•
															IVIN		1.8 K	14	1
10 dE	3/div	R	ef	15.00	dBm	1										-51.	74 dE	m	
Log																			
5.00																			
																			Clear Write
-5.00																			
-15.0																			
																	-23.44	dBm	
-25.0																			
-35.0																			Trace Average
-45.0	2_																		
-55.0	N I																		
-55.0	Nonke .													di na sa sa				4	
-65.0			New Y	S. Martin S. Start	A farmer was		enter nerris	April 1 and 1	ud Spittantai		ur diatante.	Contraction	water V	-Ja Majilik/Ariyandh	and the second	ur far her fi	while providence		Max Hold
																			Muxitoru
-75.0																			
Star	t 9 k	Ηz													U /	Stop 3	0.00 M	Hz	
#Re:	s BVA	10	<u> </u>	H7			#V	BW 31)0 kHz				S	weep 5					Min Hold
"	3 4 4		• •					44.64	. o taitie					noop a	Terere	ille (•••• P		WIIITIOIU
MKB 1	MODE	TRC S	CL		>	<			Y		FUNC	CTION	FUN	CTION WIDT	н	FUNCTI	ON VALUE	^	
1	Ν	1	F			281.	9 kHz		51.74 d	Bm									
2	Ν	1	f			281.	9 kHz	-	51.74 d	Bm									
3																			View Blank
4																			View
5																		=	
6			_															-	
7																			
9																			More
10																			1 of 3
11																		~	1010
<													-						
MSG	_	_		_	_	_	_	-	_	_	_	-	_	OT			unlad		
MSG	_	_	_											STAT		DC Co	upied		

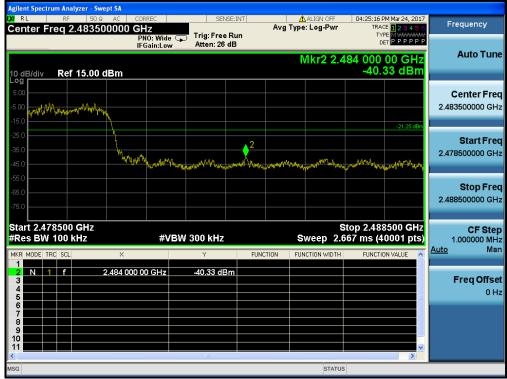
Lowest Channel & Modulation : π/4DQPSK


Reference for limit

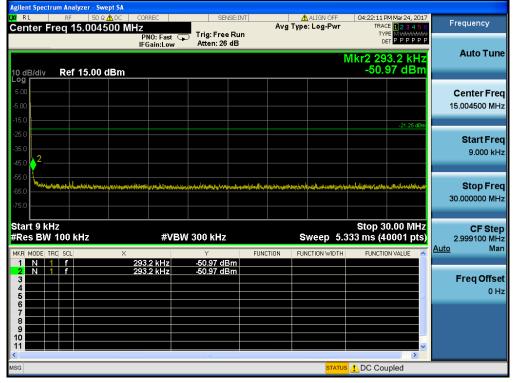
Middle Channel & Modulation : π/4DQPSK

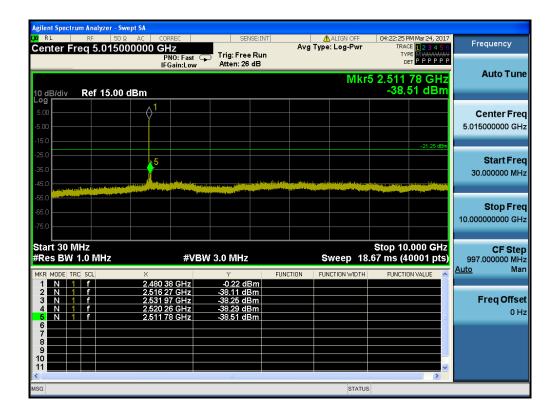

Conducted Spurious Emissions

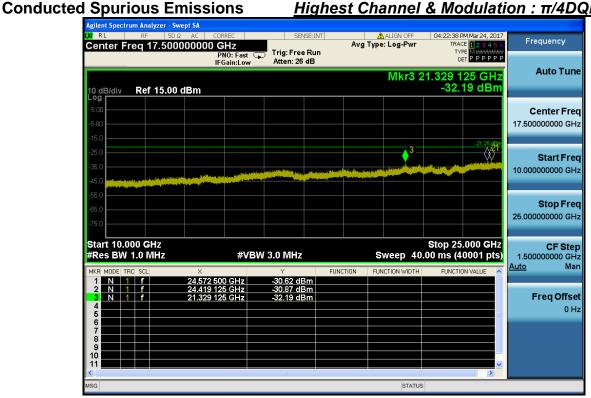
Middle Channel & Modulation : π/4DQPSK


High Band-edge

<u>Highest Channel & Modulation : π/4DQPSK</u>


High Band-edge

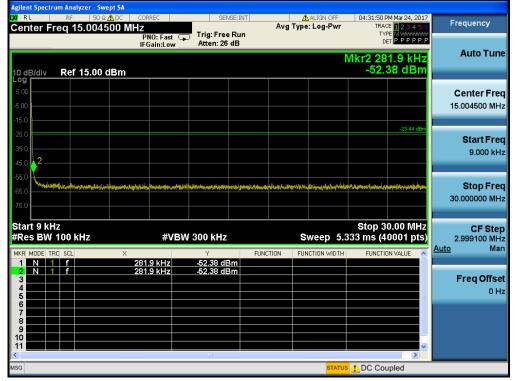

Hopping mode & Modulation : π/4DQPSK

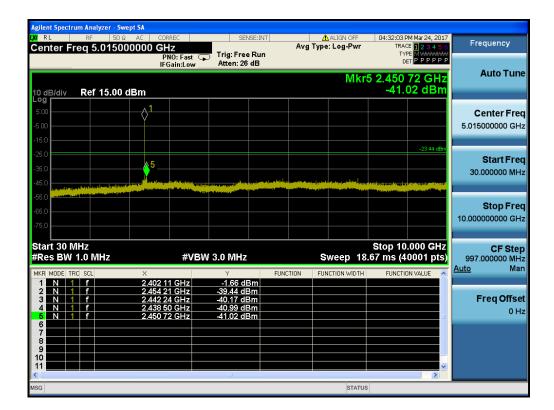

Highest Channel & Modulation : π/4DQPSK

Highest Channel & Modulation : π/4DQPSK

Low Band-edge

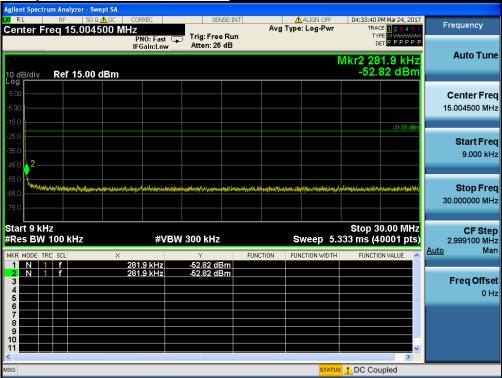
Lowest Channel & Modulation : 8DPSK


Low Band-edge

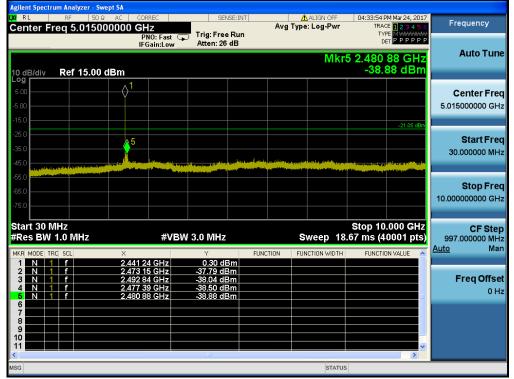

Hopping mode & Modulation : 8DPSK


Lowest Channel & Modulation : 8DPSK

Lowest Channel & Modulation : 8DPSK

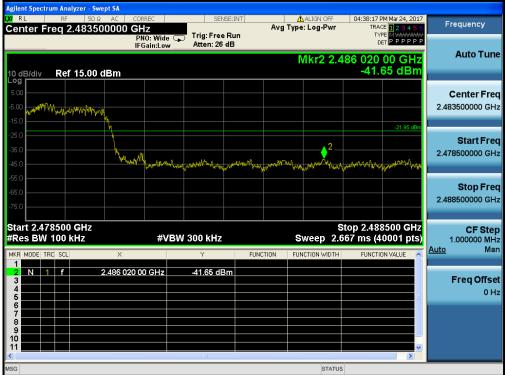

Reference for limit

Middle Channel & Modulation : 8DPSK

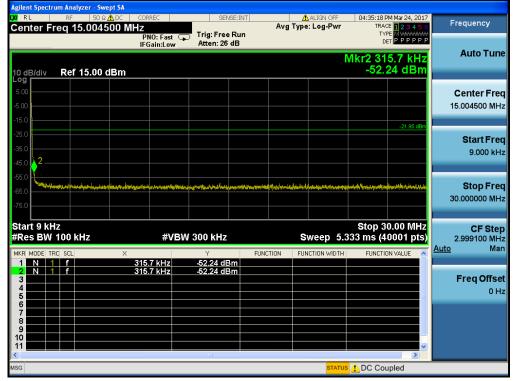

Conducted Spurious Emissions <u>A</u>

Middle Channel & Modulation : 8DPSK

Middle Channel & Modulation : 8DPSK


High Band-edge

Highest Channel & Modulation : 8DPSK


High Band-edge


Hopping mode & Modulation : 8DPSK

Highest Channel & Modulation : 8DPSK

Highest Channel & Modulation : 8DPSK

8. Transmitter AC Power Line Conducted Emission

8.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

8.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

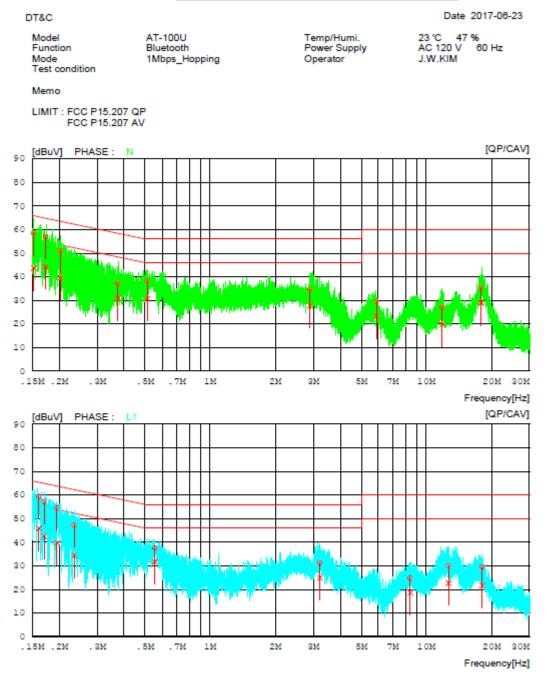
Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

	Conducted Limit (dBuV)						
Frequency Range (MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

* Decreases with the logarithm of the frequency

8.3 Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10.


- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

8.4 Test Results

AC Line Conducted Emissions (Graph) = Modulation : <u>GFSK</u>

Results of Conducted Emission

Results of Conducted Emission

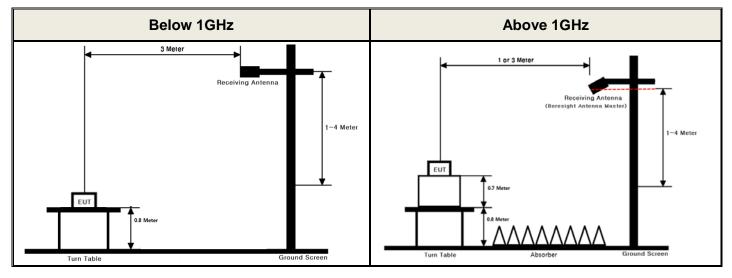
DT&C			Date 2017-06-23							
Model Function Mode Test condition	AT-100U Bluetooth 1Mbps_Hopping	Temp/Humi. Power Supply Operator	23 'C 47 % AC 120 V 60 Hz J.W.KIM							
Memo										
LIMIT : FCC P15.207 QP FCC P15.207 AV										
NO FREQ	READING C.FACTOR		MARGIN PHASE							
[MHz]	QP CAV [dBuV][dBuV] [dB]	QP CAV QP CAV [dBuV][dBuV] [dBuV][dBuV	QP CAV 7] [dBuV][dBuV]							
	58.3243.51 0.22	58.5443.73 65.85 55.85	7.3112.12 N							
	56.8344.11 0.21	57.0444.32 64.80 54.80	7.7610.48 N							
) 50.8539.49 0.20 37.0130.76 0.21	51.0539.69 63.50 53.50 37.2230.97 58.40 48.40	12.4513.81 N 21.1817.43 N							
	38.0230.52 0.22	38.2430.74 56.00 46.00	17.7615.26 N							
	34.28 27.49 0.35	34.6327.84 56.00 46.00	21.3718.16 N							
	28.8922.90 0.49	29.3823.39 60.00 50.00	30.6226.61 N							
8 11.83340	26.0318.94 0.84	26.8719.78 60.00 50.00	33.1330.22 N							
9 17.91280	34.2127.67 1.25	35.4628.92 60.00 50.00	24.5421.08 N							
10 0.16128	59.1345.58 0.19	59.32 45.77 65.40 55.40	6.08 9.63 L1							
11 0.17059	56.9842.33 0.18	57.1642.51 64.93 54.93	7.7712.42 L1							
	. 54.2539.48 0.17	54.4239.65 63.79 53.79	9.3714.14 L1							
	47.0934.29 0.18	47.2734.47 62.27 52.27	15.0017.80 L1							
	37.2631.49 0.21	37.4731.70 56.00 46.00	18.5314.30 L1							
	30.8524.58 0.36	31.2124.94 56.00 46.00	24.7921.06 L1							
	24.0417.83 0.69	24.7318.52 60.00 50.00	35.27 31.48 L1							
) 29.1821.74 0.94) 28.1520.29 1.33	30.1222.68 60.00 50.00 29.4821.62 60.00 50.00	29.8827.32 L1 30.5228.38 L1							
10 10.09780	20.1020.29 1.88	29.4021.02 00.00 50.00	SU. 32 20. SO LI							

9. Antenna Requirement

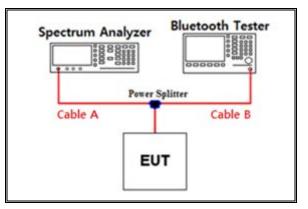
Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

Conclusion: Comply

The antenna is permanently attached. (Refer to Internal Photo file.)


- Minimum Standard :

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.


APPENDIX I

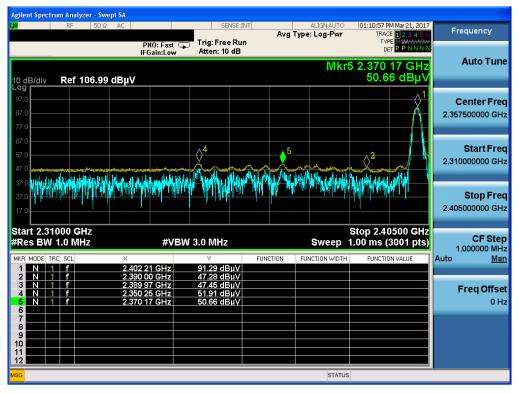
Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	6.69	15	10.40
1	6.97	20	11.17
2.402 & 2.441 & 2480	7.60	25	13.39
5	8.33	-	-
10	9.49	-	-


Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.

Path loss (S/A's Correction factor) = Cable A + Power splitter

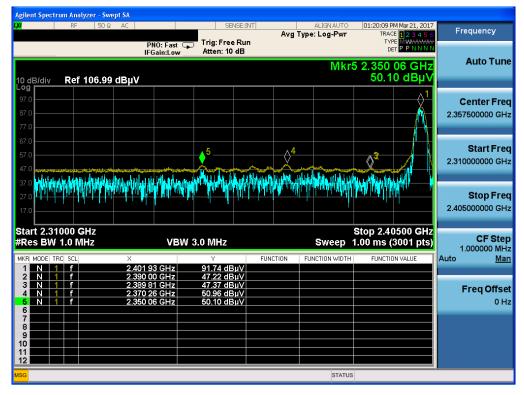
APPENDIX II

Unwanted Emissions (Radiated) Test Plot

GFSK & Lowest & Z & Ver

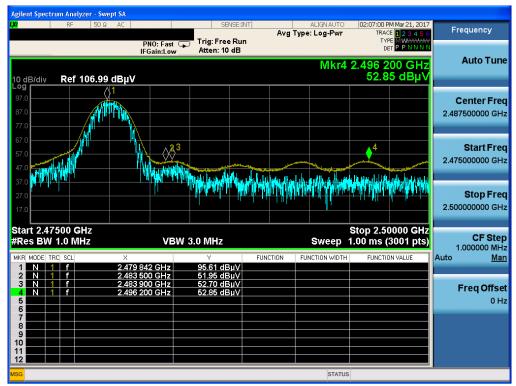
GFSK & Highest & Z & Ver

t Spectrum Analyzer - Swept SA Mar 21, 2017 Frequency Avg Type: Log-Pwr FRACE 🛐 Trig: Free Run Atten: 10 dB TYP PNO: Fast 😱 IFGain:Low DET Auto Tune Mkr4 2. 492 117 GHz 53.27 dBμV Ref 106.99 dBµV dB/div **Center Freq** 2.487500000 GHz Start Freq 2.475000000 GHz Marin Marine WAT MANY Stop Freq 2.500000000 GHz Start 2.47500 GHz #Res BW 1.0 MHz Stop 2.50000 GHz 1.00 ms (3001 pts) CF Step 1.000000 MHz VBW 3.0 MHz Sweep Auto Man FUNCTION FUNCTION WIDTH FUNCTION VALUE **Freq Offset** 0 Hz STATUS

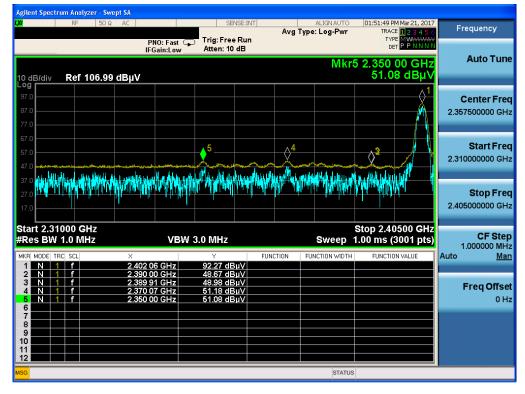

Detector Mode : PK

Detector Mode : PK

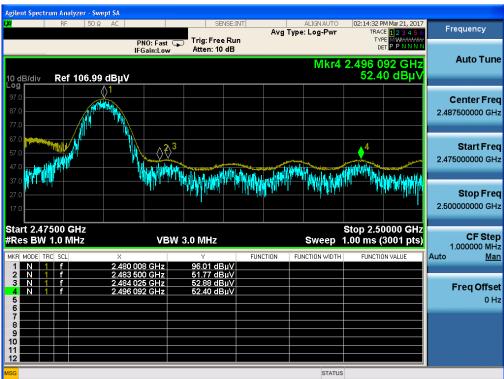
Detector Mode : PK



π /4DQPSK & Lowest & Z & Ver


Detector Mode : PK

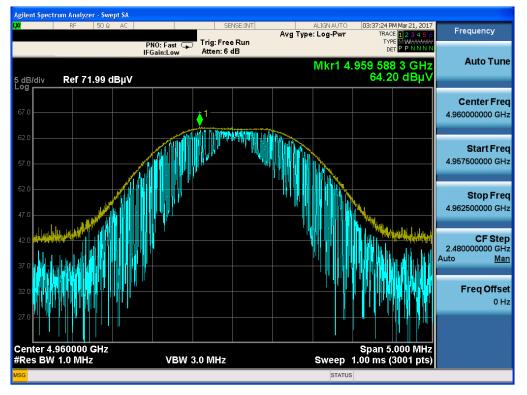
$\pi/4DQPSK$ & Highest & Z & Ver



8DPSK & Lowest & Z & Ver

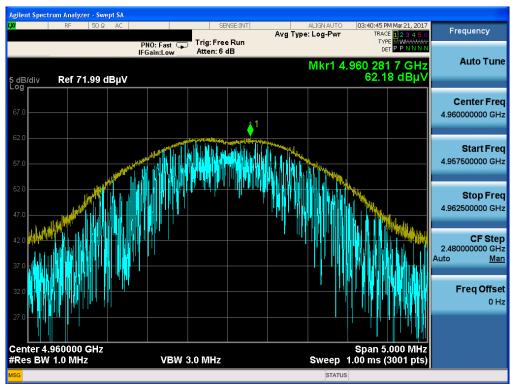
Detector Mode : PK

8DPSK & Highest & Z & Ver



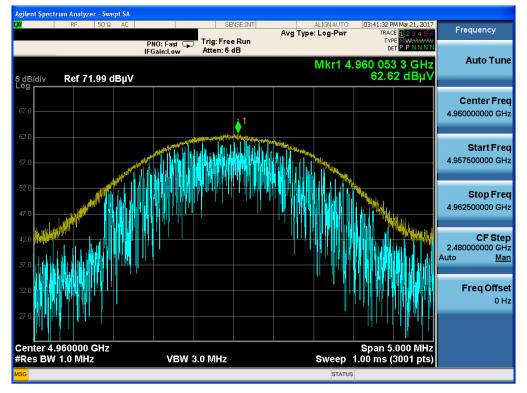
Detector Mode : PK

Detector Mode : PK



GFSK & Highest & X & Hor

$\pi/4DQPSK$ & Highest & X & Hor


Detector Mode : PK

TRF-RF-237(05)180118

8DPSK & Highest & X & Hor

Detector Mode : PK