

Jiangsu TÜV Product Service Ltd. – Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

Jiangsu TÜV Product Service Ltd. – Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. Jiangsu TÜV Product Service Ltd. – Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from Jiangsu TÜV Product Service Ltd. – Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

Report Number: 68.920.13.004.01

Page 1 of 66

Table of Contents 1

1	Tabl	le of Contents	2			
2	Deta	Details about the Test Laboratory				
3	Dese	cription of the Equipment Under Test	4			
4	Sum	mary of Test Standards	5			
5	Sum	mary of Test Results	6			
6	Gen	eral Remarks	7			
7	Tes	t Setups	8			
8	Tecl	hnical Requirement	9			
8.	1	Conducted Emission	9			
8.	2	Conducted peak output power	.12			
8.	3	Band edge compliance of RF emissions	.13			
8.	4	Spurious RF conducted emissions	.30			
8.	5	Spurious radiated emissions for transmitter and receiver	.40			
8.	6	20 dB bandwidth and 99% Occupied Bandwidth	.44			
8.	7	Carrier Frequency Separation	.51			
8.	8	Number of hopping frequencies	.53			
8.	9	Dwell Time	.55			
9	Test	Equipment List	.65			
10	Syst	em Measurement Uncertainty	.66			

Details about the Test Laboratory 2

Details about the Test Laboratory

Company name:	Jiangsu TÜV Product Service Ltd. – Shenzhen Branch 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001, Fuqiang Road, Futian District 518048, Shenzhen,P.R.C.
Telephone:	86 755 8828 6998
Fax:	86 755 8828 5299
Test Site 1 Company name:	Audix Technology (shenzhen) Co.,Ltd No. 6, Ke Feng Rd., 52 Block Shenzhen, Science & Industry Park, Nantou, Shenzhen, Guangdong, China
Telephone:	86 755 2663 9496
Fax:	86 755 2663 2877

at

Description of the Equipment Under Test 3

Product:	Bluetooth Headset
Model no.:	SHB7000/28
FCC ID:	BOUSHB7000
IC ID:	135M-SHB7000
Brand Name:	Philips
Options and accessories:	NIL
Rating:	3.7VDC (Supplied by Li-ion rechargeable battery) 5VDC (Charged by PC USB Port)
RF Transmission Frequency:	2402-2480MHz
No. of Operated Channel:	79
Modulation:	GFSK, π/4-DQPSK, 8-DPSK
Duty Cycle:	34.8%
Antenna Type:	Dip type antenna
Antenna Gain:	-0.8dBi
Description of the EUT:	The Equipment Under Test (EUT) is a Bluetooth Headset operated 2.4GHz

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
MP4 Player	Apple	iPod touch	

Report Number: 68.920.13.004.01

Summary of Test Standards 4

Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES			
10-1-2012 Edition	Subpart C - Intentional Radiators			
RSS-Gen Issue 3	General Requirements and Information for the Certification of			
December 2010	Radio Apparatus			
RSS-210 Issue 8	RSS-210 — Licence-exempt Radio Apparatus (All Frequency			
December 2010	Bands): Category I Equipment			

All the test methods were according to Public Notice DA 00-705 -Frequency Hopper Spread Spectrum Test Procedure released by FCC on March 30, 2000 and C63.4 (2009).

Report Number: 68.920.13.004.01

5 Summary of Test Results

	Т	echnical Requirements			
FCC Part 15 Sub	part C, RSS-Gen, R	SS-210			
Test Condition			Pages	Test Site	Test Result
§15.207	RSS-GEN A7.2.4	Conducted emission AC power port	9	Site 2	Pass
§15.247 (b) (1)	RSS-210 A8.4	Conducted peak output power	12	Site 2	Pass
§15.247(d)	RSS-210 A8.5	Band edge compliance of RF emissions	13	Site 2	Pass
§15.247(d)	RSS-210 A8.5	Spurious RF conducted emissions	30	Site 2	Pass
§15.247(d) & §15.209	RSS-210 2.5 & RSSGEN 7.2.5 & RSSGEN 6.1	Spurious radiated emissions for transmitter and receiver	40	Site 2	Pass
§15.247(a)(2)	RSS-210 A8.2(a)	6dB bandwidth*			Not Applicable
§15.247(e)	RSS-210 A8.2(b)	Power spectral density*			Not Applicable
§15.247(a)(1)	RSS-210 A8.1(a) & RSSGEN 4.6.2	20dB bandwidth and 99% Occupied Bandwidth	44	Site 2	Pass
§15.247(a)(1)	RSS-210 A8.1(b)	Carrier frequency separation	51	Site 2	Pass
§15.247(a)(1)(iii)	RSS-210 A8.1(d)	Number of hopping frequencies	53	Site 2	Pass
§15.247(a)(1)(iii)	RSS-210 A8.1(c)	Dwell Time	55	Site 2	Pass
§15.203		Antenna requirement	See	note 1	Pass

Note 1: The EUT uses a permanently ceramic antenna, which in accordance to §15.203, is considered sufficient to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: BOUSHB7000 & IC ID: 135M-SHB7000 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules and RSS-210.

The difference between all models only lies in the colour of enclosure, SHB7000/28 is black, SHB7000WT/28 is white, so all the tests were applied on SHB7000/28, the other model is deemed to fulfill relevant requirement without further testing.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- I Not Performed

The Equipment Under Test

- - **Fulfills** the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:

: January 22, 2013

January 25, 2013

Testing Start Date: January 22, 2013

Testing End Date:

- Jiangsu TÜV Product Service Ltd. – Shenzhen Branch -

Reviewed by:

Prepared by:

non

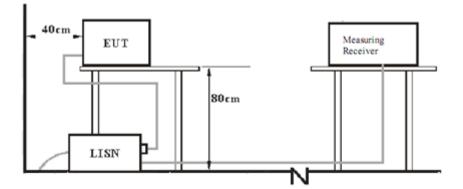
Phoebe Hu EMC Project Manager

-elis-h

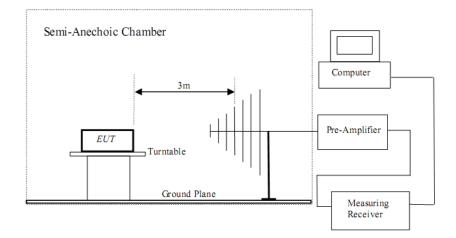
Felix Li EMC Project Engineer

Tested by:

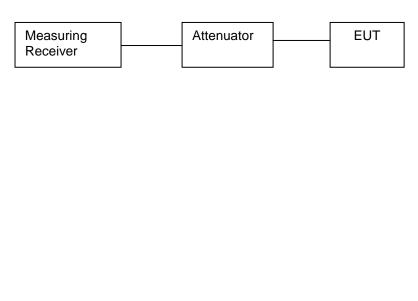
Leo Li EMC Test Engineer


Report Number: 68.920.13.004.01

Page 7 of 66



7 Test Setups


7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups

7.3 Conducted RF test setups

Report Number: 68.920.13.004.01

Page 8 of 66

Technical Requirement 8

Conducted Emission 8.1

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

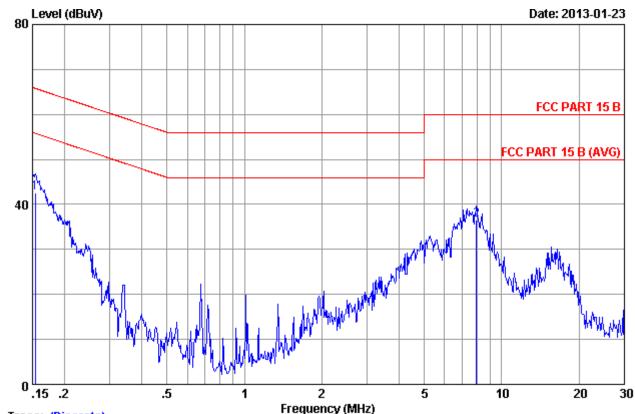
Limit

According to §15.207 & RSS-GEN A7.2.4, conducted emissions limit as below:

	Frequency	QP Limit	AV Limit
_	MHz	dBµV	dBµV
-	0.150-0.500	66-56*	56-46*
	0.500-5	56	46
	5-30	60	50
Г	Decreasing linearly with	logarithm of the freq	liency

Decreasing linearly with logarithm of the frequency

Remark: This test was carried out in all the test modes, here only the worst test result was shown.


Conducted Emission

2

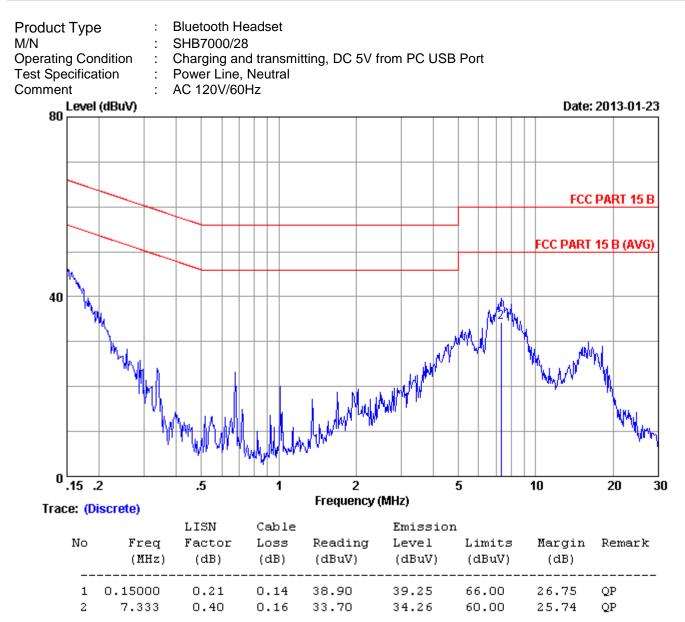
:

:

Product Type M/N Operating Condition Test Specification Comment Bluetooth Headset SHB7000/28 Charging and transmitting, DC 5V from PC USB Port Power Line, Live AC 120V/60Hz

Trace: (Discrete)

No	Freq (MHz)	LISN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1	0.15400	0.19	0.14	42.31	42.64	65.78	23.14	QP
2	7.976	0.40	0.16	36.00	36.56	60.00	23.44	QP


Remarks: 1.Emission Level=LISN Factor+Cable Loss+Reading.

2. If the average limit is met when useing a quasi-peak detector. the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

Page 10 of 66

Conducted Emission

Remarks: 1.Emission Level=LISN Factor+Cable Loss+Reading.

2.If the average limit is met when useing a quasi-peak detector. the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

Page 11 of 66

8.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

According to §15.247 (b) (1) and RSS-210 A8.4, conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Conducted peak output power

Bluetooth Mode GFSK modulation Test Result Conducted Peak						
Frequency						
MHz	dBm					
Low channel 2402MHz	3.92	Pass				
Middle channel 2441MHz	4.71	Pass				
High channel 2480MHz	4.65	Pass				

Bluetooth Mode $\pi/4$ -DQPSK modulation Test Result

Frequency MHz	Conducted Peak Output Power dBm	Result
Low channel 2402MHz	3.01	Pass
Middle channel 2441MHz	3.84	Pass
High channel 2480MHz	3.67	Pass

Bluetooth Mode 8-DPSK modulation Test Result

	Conducted Peak	
Frequency	Output Power	Result
MHz	dBm	
Low channel 2402MHz	3.15	Pass
Middle channel 2441MHz	3.97	Pass
High channel 2480MHz	3.81	Pass

Report Number: 68.920.13.004.01

Page 12 of 66

Test Method

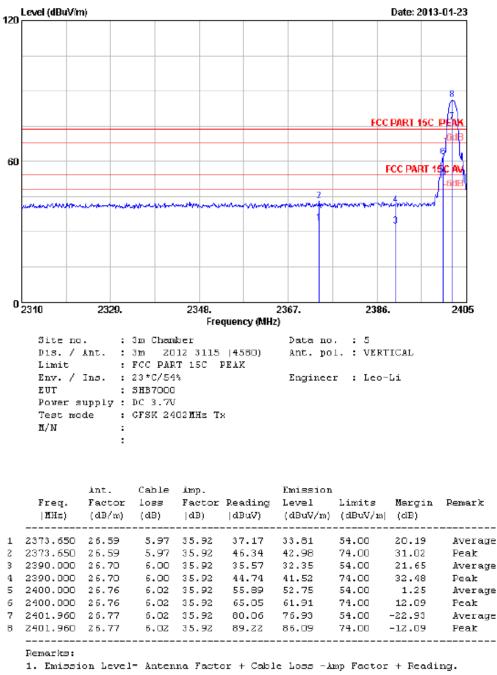
- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation.RBW≥ 1% of the span, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section. Submit this plot.
- 3. Now, using the same instrument settings, enable the hopping function of the EUT. Allow he trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit. Submit this plot.

Limits

According to §15.247(d) and RSS-210 A8.5, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a) and RSS-Gen7.2.2, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)) and RSS-Gen.

Frequency	Limit Average	Limit Peak
MHz	dBuV/m	dBuV/m
Below 2390 Above 2483.5	54	74

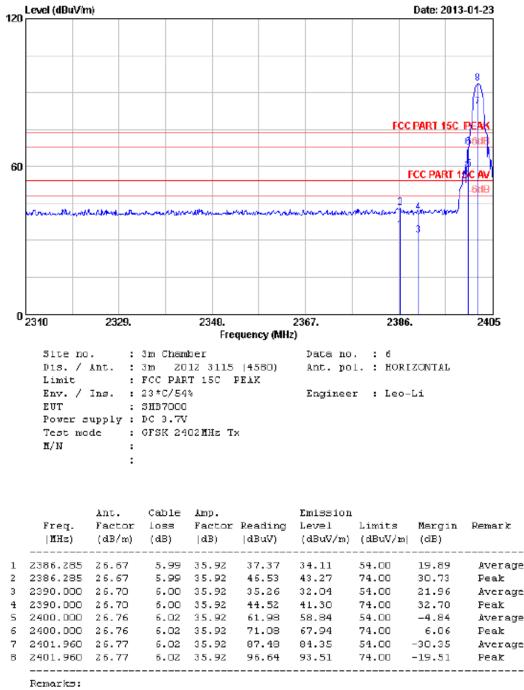
Report Number: 68.920.13.004.01


Page 13 of 66

The EUTs have been tested under all modulation modes, only the worse case GFSK and 8-DPSK modulation test result are listed in the report.

Radiated measurement result:

Hopping off test data: Bluetooth Mode GFSK Modulation Test Result: Lower edge peak Plot: Vertical:

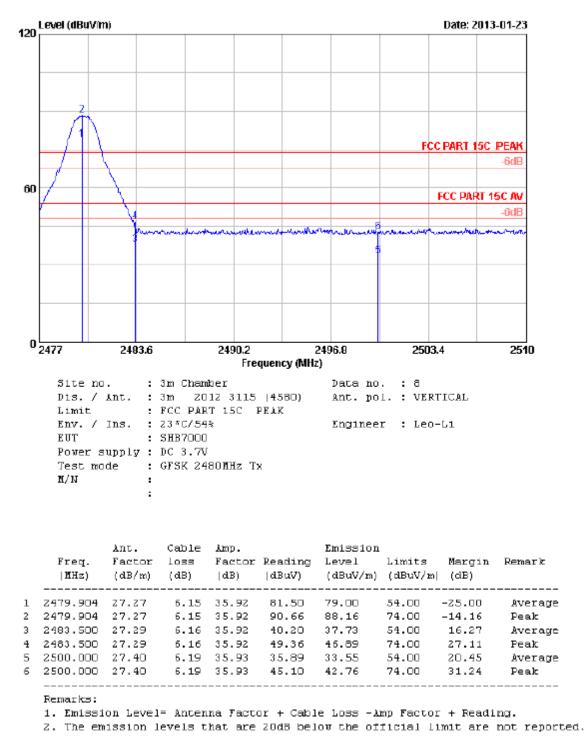

2. The emission levels that are 20dB below the official limit are not reported.

Report Number: 68.920.13.004.01

Page 14 of 66

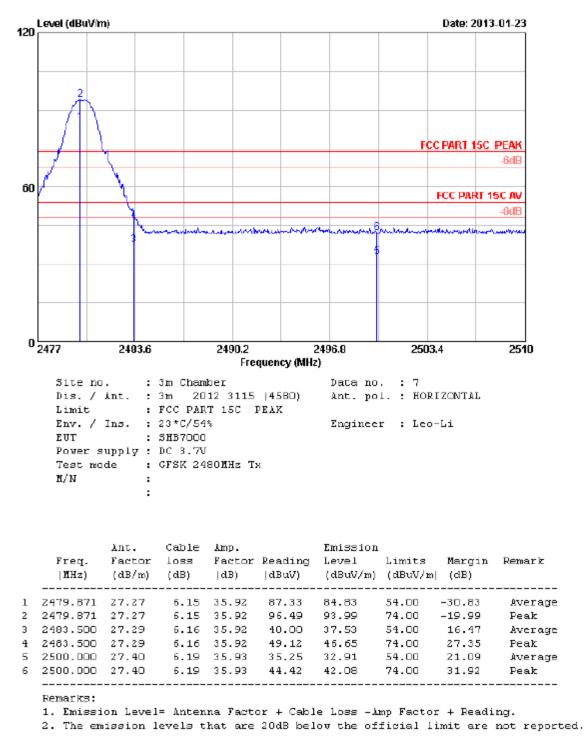
Lower edge peak Plot: Horizontal:

1. Emission Level= Antenna Factor + Cable Loss $-\lambda$ mp Factor + Reading.


2. The emission levels that are 20dB below the official limit are not reported.

Report Number: 68.920.13.004.01

Page 15 of 66


Upper edge peak Plot: Vertical:

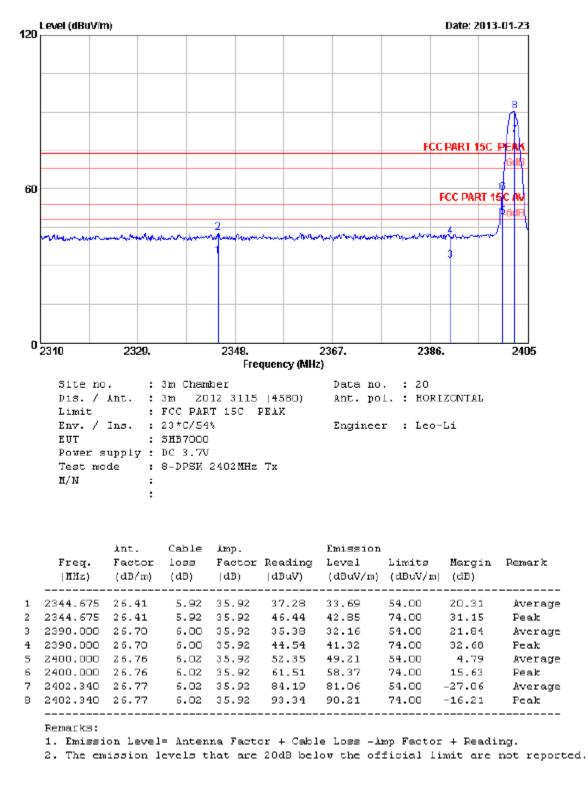
Page 16 of 66

Upper edge peak Plot: Horizontal:

Page 17 of 66

Bluetooth Mode 8-DPSK Modulation Test Result:

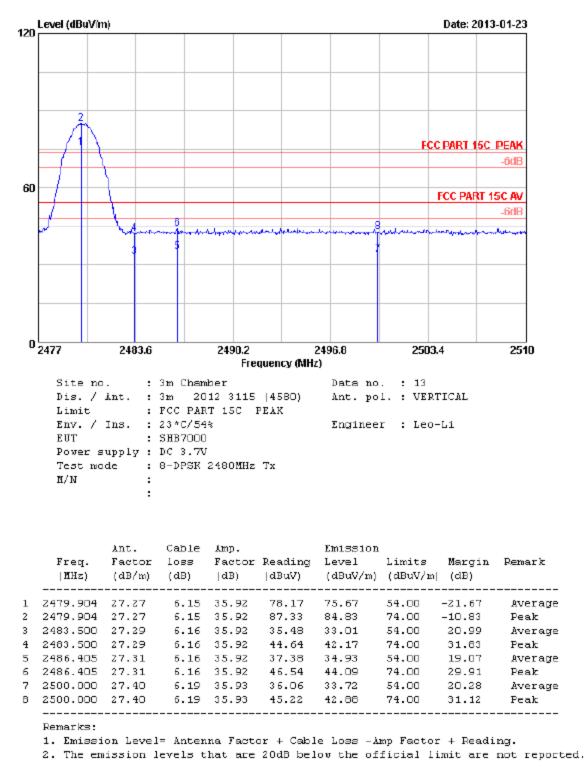
Lower edge peak Plot: Vertical:


2. The emission levels that are 20dB below the official limit are not reported.

Report Number: 68.920.13.004.01

Page 18 of 66

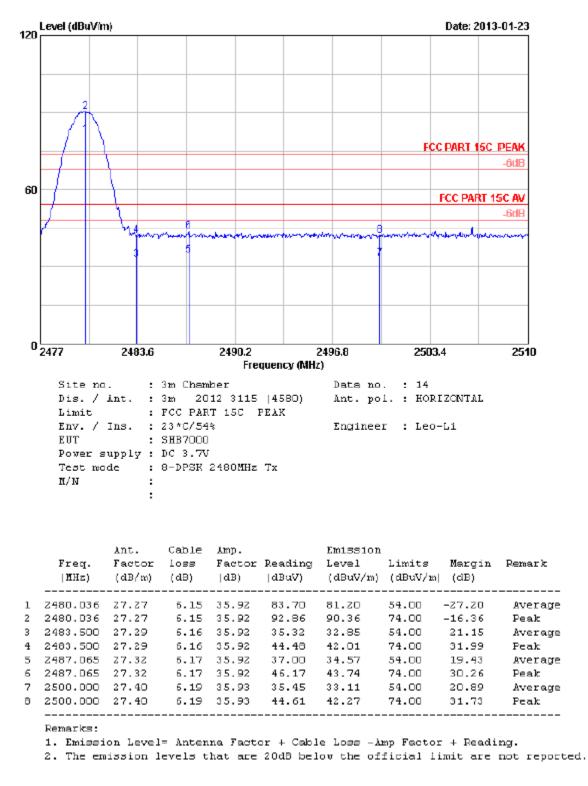
Lower edge peak Plot: Horizontal:



Report Number: 68.920.13.004.01

Page 19 of 66

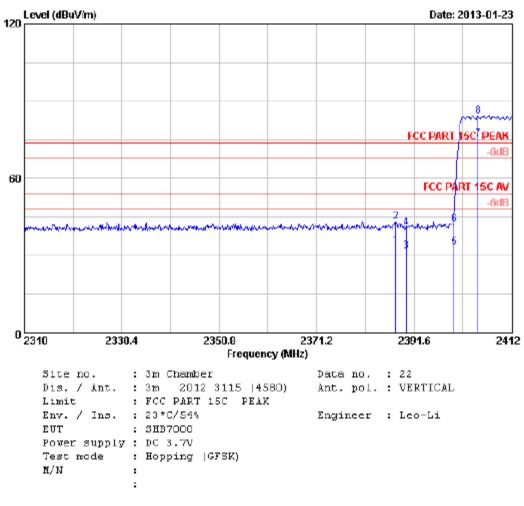
Upper edge peak Plot: Vertical:



Report Number: 68.920.13.004.01

Page 20 of 66

Upper edge peak Plot: Horizontal:



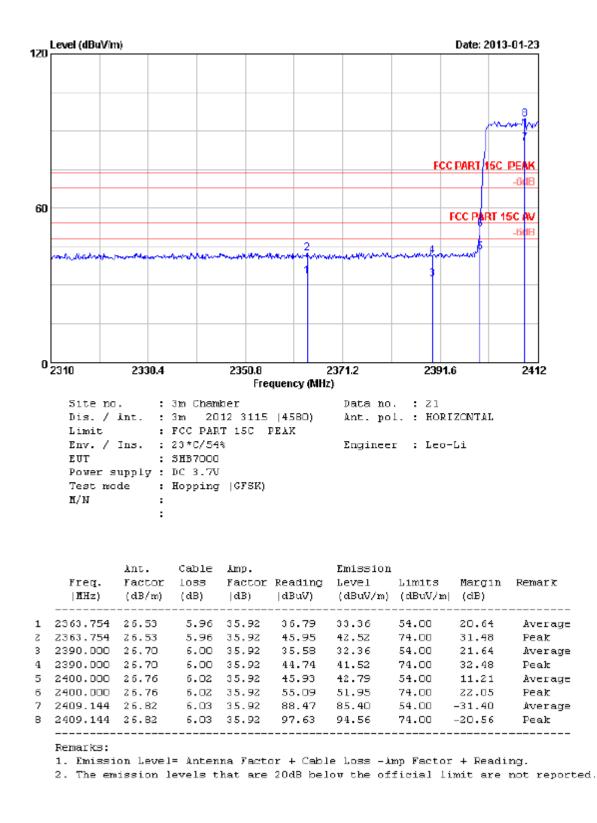
Report Number: 68.920.13.004.01

Page 21 of 66

Hopping on test data: Bluetooth Mode GFSK Modulation Test Result: Lower edge peak Plot: Vertical:

	Freq. NHZ)	Ant. Factor (dB/m)	Cable 1055 (dB)	Amp. Factor dB)	Reading dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1	2387.724	26.68	6.00	35.92	37.09	33.85	54.00	20.15	Average
2	2387.724	26.68	6.00	35.92	46.25	43.01	74.00	30.99	Peak
з	2390.000	26.70	6.00	35.92	34.97	31.75	54.00	22.25	Average
4	Z390.000	25.70	5.00	35.9Z	44.13	40.91	74.00	33.09	Peak
5	2400.000	26.76	6.02	35.92	36.08	32.94	54.00	21.06	Average
6	2400.000	26.76	6.02	35.92	45.24	42.10	74.00	31.90	Peak
7	2405.064	26.79	6.03	35.92	78.15	75.05	54.00	-21.05	Average
В	Z405.064	Z5.79	5.03	35.9Z	87.31	84.Z1	74.00	-10.Zl	Feak
	Remarks:								

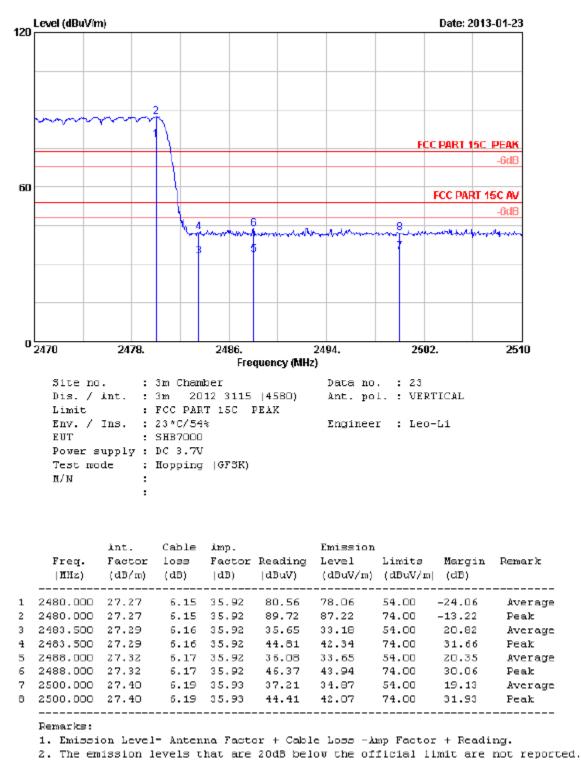
1. Emission Level- Antenna Factor + Cable Loss -Amp Factor + Reading.


2. The emission levels that are 20dB below the official limit are not reported.

Report Number: 68.920.13.004.01

Page 22 of 66

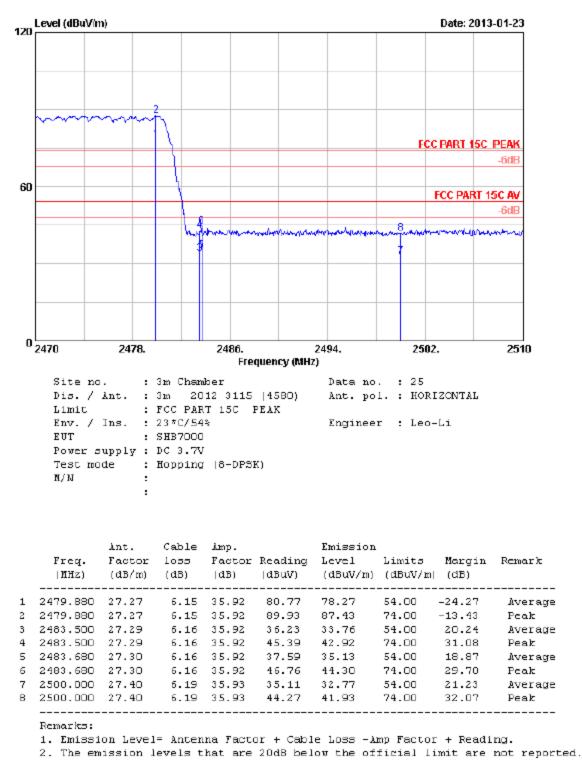
Lower edge peak Plot: Horizontal:



Report Number: 68.920.13.004.01

Page 23 of 66

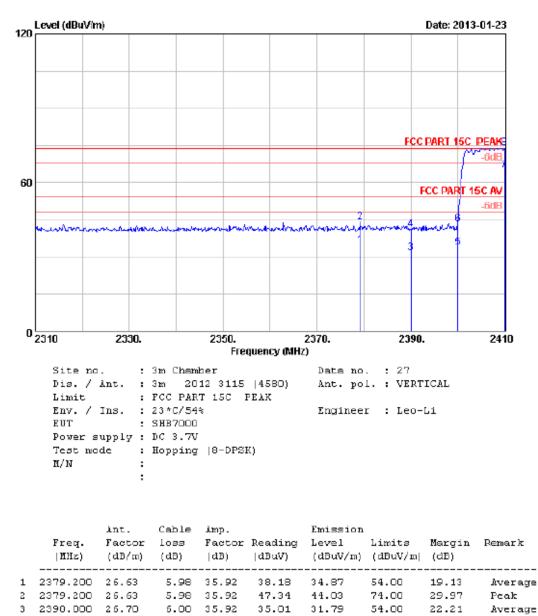
Upper edge peak Plot: Vertical:



Report Number: 68.920.13.004.01

Page 24 of 66

Upper edge peak Plot: Horizontal:


Report Number: 68.920.13.004.01

Page 25 of 66

Bluetooth Mode 8-DPSK Modulation Test Result:

Lower edge peak Plot: Vertical:

Report Number: 68.920.13.004.01

4

5

7

2390.000 26.70

Z400.DOO Z5.76

2409.800 26.82

6 Z400.000 Z5.76

B 2409.BOO 25.B2

Remarks:

6.00 35.92

5.OZ 35.9Z

5.OZ 35.9Z

6.03 35.92

6.03 35.92

Page 26 of 66

Jiangsu TÜV Product Service Ltd. – Shenzhen Branch 6 floor, H Hall, Century Craftwork Culture Square, No. 4001, Fuqiang Road, Futian District, Shenzhen 518048, P. R. China, Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

44.17

37.03

67.88

77.03

2. The emission levels that are 20dB below the official limit are not reported.

1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.

45.19

40.95

33.89

43.05

64.81

73.96

74.00

54.00

74.00

54.00

74.00

33.05

ZO.11

30.95

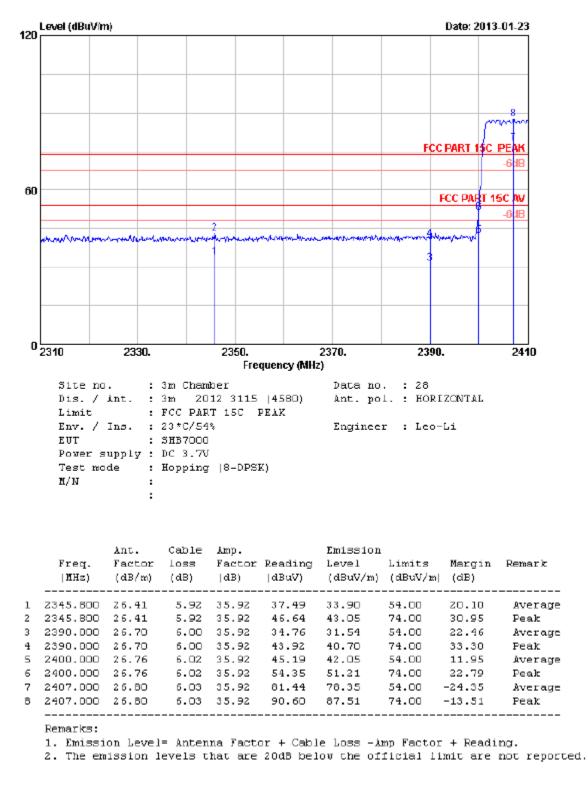
0.04

-10.81

Peak

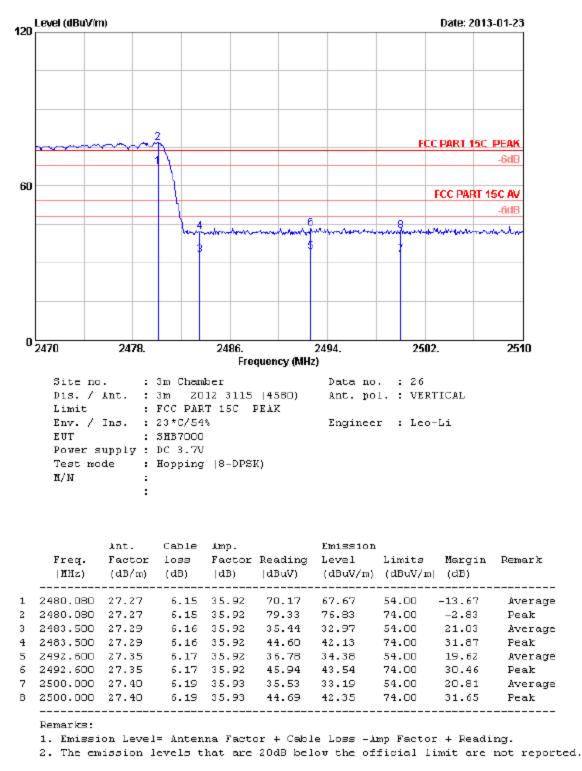
Feak

Peak


Average

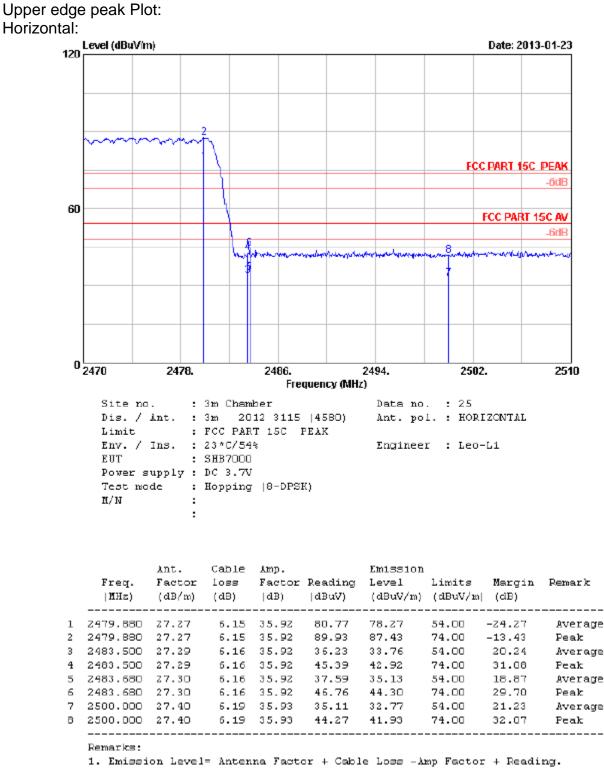
Average

Lower edge peak Plot: Horizontal:



Report Number: 68.920.13.004.01

Page 27 of 66


Upper edge peak Plot: Vertical:

Report Number: 68.920.13.004.01

Page 28 of 66

2. The emission levels that are 20dB below the official limit are not reported.

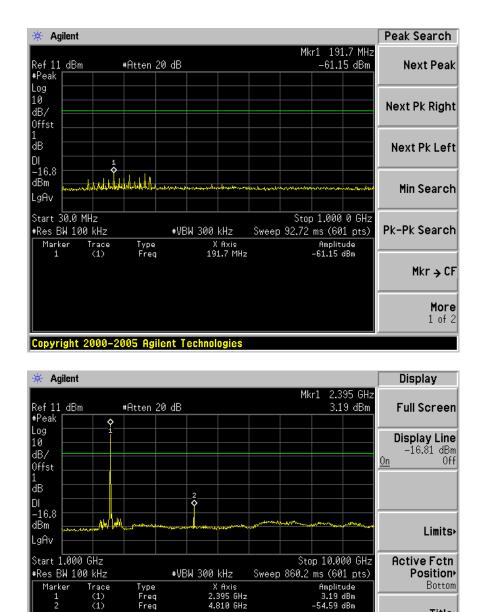
Report Number: 68.920.13.004.01

Page 29 of 66

Test Method

- 1. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit


Frequency Range MHz	Limit (dBc)	
30-25000	-20	

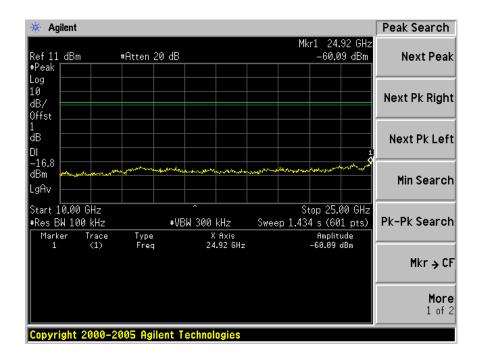
The EUTs have been tested under all modulation modes, only the worst case GFSK and 8-DPSK modulation test result are listed in the report.

Bluetooth Mode GFSK Modulation Test Result:

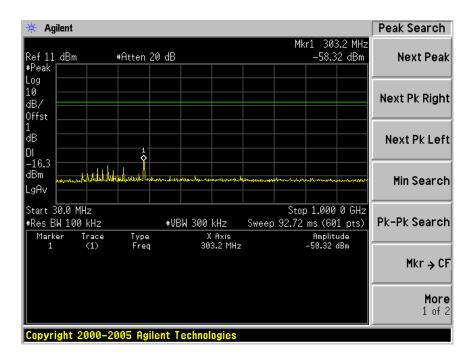
2402MHz

Report Number: 68.920.13.004.01

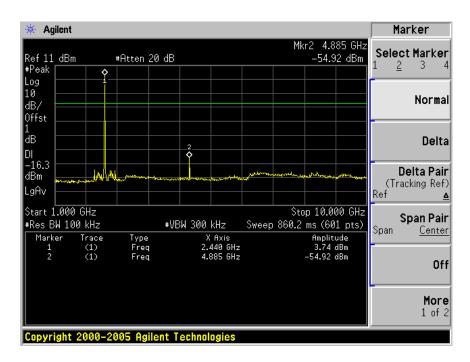
Page 31 of 66

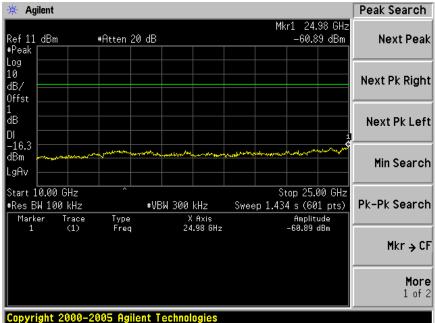

Title→

Preferences.

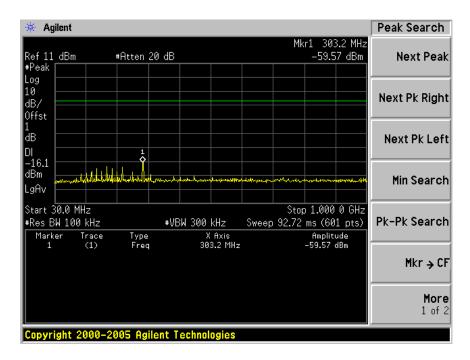

Jiangsu TÜV Product Service Ltd. – Shenzhen Branch 6 floor, H Hall, Century Craftwork Culture Square, No. 4001, Fuqiang Road, Futian District, Shenzhen 518048, P. R. China, Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

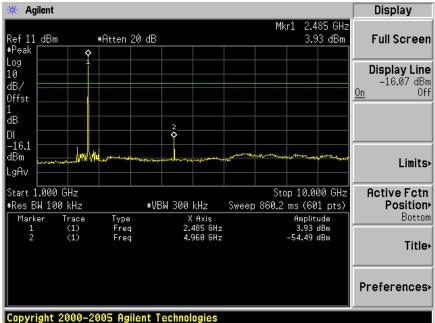
Copyright 2000-2005 Agilent Technologies





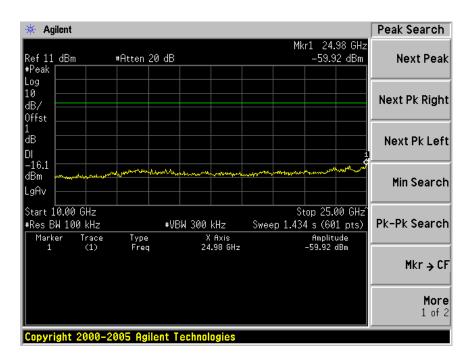
2441MHz

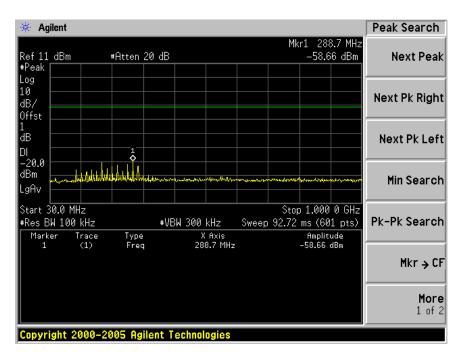



Report Number: 68.920.13.004.01

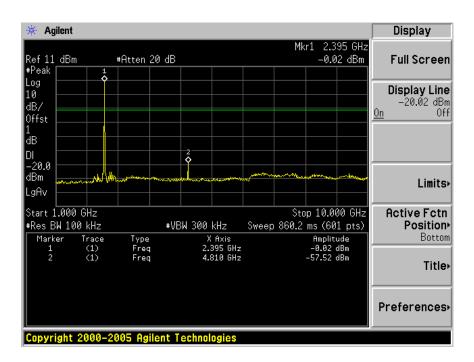
Page 33 of 66

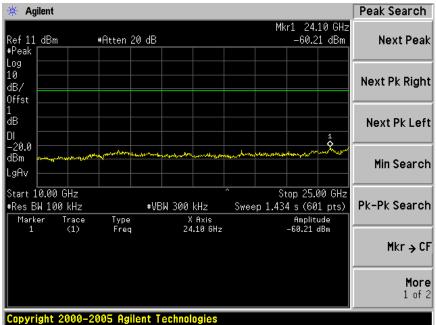
2480MHz




Report Number: 68.920.13.004.01

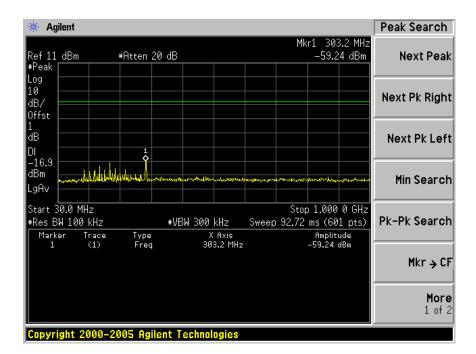
Page 34 of 66

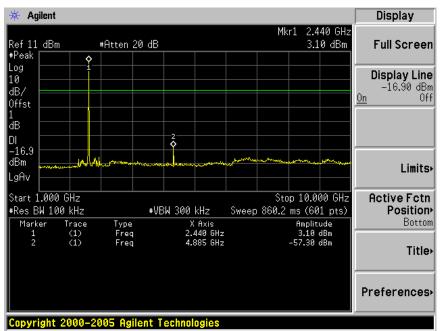

Bluetooth Mode 8-DPSK Modulation Test Result: 2402MHz



Report Number: 68.920.13.004.01

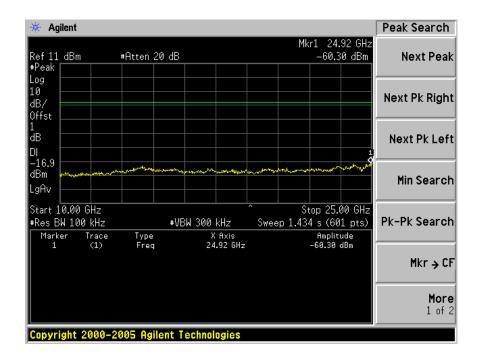
Page 35 of 66


Report Number: 68.920.13.004.01

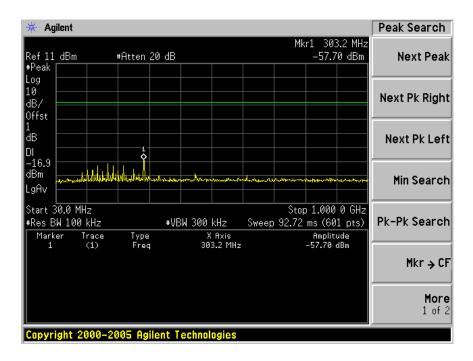

Page 36 of 66

Spurious RF conducted emissions

2441MHz

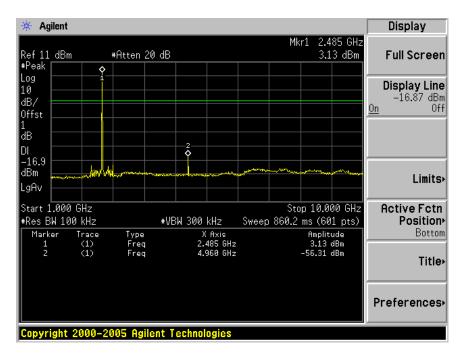

Report Number: 68.920.13.004.01

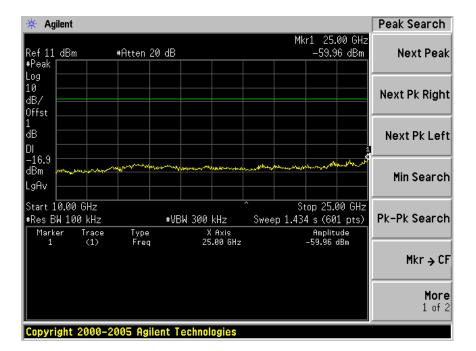
Page 37 of 66



Page 38 of 66

Spurious RF conducted emissions


2480MHz



Report Number: 68.920.13.004.01

Spurious RF conducted emissions

Report Number: 68.920.13.004.01

Page 39 of 66

8.5 Spurious radiated emissions for transmitter and receiver

Test Method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured ,RBW = 1 MHz for f \geq 1GHz, 100 kHz for f < 1 GHz, VBW \geq RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Follow the guidelines in ANSI C63.4-1992 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the duty cycle per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(duty cycle/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Limit				
	Frequency	Field Strength	Field Strength	Detector
	MHz	uV/m	dBµV/m	
_	30-88	100	40	QP
	88-216	150	43.5	QP
	216-960	200	46	QP
	960-1000	500	54	QP
	Above 1000	500	54	AV
	Above 1000	5000	74	PK

Spurious radiated emissions for transmitter and receiver

Remark: According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit. The EUTs have been tested under all modulation modes, only the worse case GFSK and 8-

DPSK modulation test result are listed in the report.

Transmitting spurious emission test result as below:

Bluetooth Mode GFSK Modulation 2402MHz Test Result

Frequency	Antenna Factor	Cable Loss	Amp. Factor	Reading	Emission Level	Polarization	Limit	Detector	Resul
MHz	dB/m	dB	dB	dBuV	dBuV/m		dBµV/m		
68.800	11.05	0.69	-	2.7	14.44	Vertical	40	QP	Pass
63.950	11.99	0.69	-	9.54	22.22	Horizontal	40	QP	Pass
4804.000	32.47	8.67	35.72	45.67	51.09	Vertical	74.0	PK	Pass
4804.000	32.47	8.67	35.72	44.75	50.17	Horizontal	74.0	PK	Pass

Bluetooth Mode GFSK Modulation 2441MHz Test Result

Frequency	Antenna Factor	Cable Loss	Amp. Factor	Reading	Emission Level	Polarization	Limit	Detector	Resu
MHz	dB/m	dB	dB	dBuV	dBuV/m		dBµV/m		
4882.000	32.64	8.74	35.69	45.37	51.06	Vertical	74.0	PK	Pass
4882.000	32.64	8.74	35.69	44.71	50.40	Horizontal	74.0	PK	Pass

Bluetooth Mode GFSK Modulation 2480MHz Test Result

Frequency	Antenna Factor	Cable Loss	Amp. Factor	Reading	Emission Level	Polarization	Limit	Detector	Resu
MHz	dB/m	dB	dB	dBuV	dBuV/m		dBµV/m		
4960.000	32.81	8.81	35.66	46.28	52.24	Vertical	74.0	PK	Pass
4960.000	32.81	8.81	35.66	44.79	50.75	Horizontal	74.0	PK	Pass

Remark:

- QP Emission Level= Antenna Factor +Cable Loss + Reading PK Emission Level= Antenna Factor +Cable Loss - Amp. factor + Reading AV Emission Level= PK Emission Level+20log(dutycycle)
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.

Report Number: 68.920.13.004.01

_

Page 41 of 66

Spurious radiated emissions for transmitter and receiver

Bluetooth Mode 8-DPSK Modulation 2402MHz Test Result

Frequency	Antenna Factor	Cable Loss	Amp. Factor	Reading	Emission Level	Polarization	Limit	Detector	Resul
MHz	dB/m	dB	dB	dBuV	dBuV/m		dBµV/m		
80.440	9.3	0.76	-	4.62	14.68	Vertical	40	QP	Pass
163.860	13.77	0.99	-	3.19	17.95	Horizontal	43.5	QP	Pass
4804.000	32.47	8.67	35.72	45.23	50.65	Vertical	74.0	PK	Pass
4804.000	32.47	8.67	35.72	44.98	50.40	Horizontal	74.0	PK	Pass
	MHz 80.440 163.860 4804.000	Frequency Factor MHz dB/m 80.440 9.3 163.860 13.77 4804.000 32.47	Frequency Factor Loss MHz dB/m dB 80.440 9.3 0.76 163.860 13.77 0.99 4804.000 32.47 8.67	Frequency Factor Loss Factor MHz dB/m dB dB 80.440 9.3 0.76 - 163.860 13.77 0.99 - 4804.000 32.47 8.67 35.72	Frequency Factor Loss Factor Reading MHz dB/m dB dB dBuV 80.440 9.3 0.76 - 4.62 163.860 13.77 0.99 - 3.19 4804.000 32.47 8.67 35.72 45.23	Frequency Factor Loss Factor Reading Level MHz dB/m dB dB dBuV dBuV/m 80.440 9.3 0.76 - 4.62 14.68 163.860 13.77 0.99 - 3.19 17.95 4804.000 32.47 8.67 35.72 45.23 50.65	Frequency Factor Loss Factor Reading Level Polarization MHz dB/m dB dB dBuV dBuV/m Vertical 80.440 9.3 0.76 - 4.62 14.68 Vertical 163.860 13.77 0.99 - 3.19 17.95 Horizontal 4804.000 32.47 8.67 35.72 45.23 50.65 Vertical	Frequency Factor Loss Factor Reading Level Polarization Limit MHz dB/m dB dB dBuV dBuV dBuV/m dBµV/m 80.440 9.3 0.76 - 4.62 14.68 Vertical 40 163.860 13.77 0.99 - 3.19 17.95 Horizontal 43.5 4804.000 32.47 8.67 35.72 45.23 50.65 Vertical 74.0	Frequency Factor Loss Factor Reading Level Polarization Limit Detector MHz dB/m dB dB dBuV dBuV dBuV/m dBµV/m 80.440 9.3 0.76 - 4.62 14.68 Vertical 40 QP 163.860 13.77 0.99 - 3.19 17.95 Horizontal 43.5 QP 4804.000 32.47 8.67 35.72 45.23 50.65 Vertical 74.0 PK

Bluetooth Mode 8-DPSK Modulation 2441MHz Test Result

Frequency	Antenna Factor	Cable Loss	Amp. Factor	Reading	Emission Level	Polarization	Limit	Detector	Resu
MHz	dB/m	dB	dB	dBuV	dBuV/m		dBµV/m		
4882.000	32.64	8.74	35.69	45.36	51.05	Vertical	74	PK	Pass
4882.000	32.64	8.74	35.69	44.27	49.96	Horizontal	74	PK	Pass

Bluetooth Mode 8-DPSK Modulation 2480MHz Test Result

Frequency	Antenna Factor	Cable Loss	Amp. Factor	Reading	Emission Level	Polarization	Limit	Detector	Resu
MHz	dB/m	dB	dB	dBuV	dBuV/m		dBµV/m		
4960.000	32.81	8.81	35.66	45.28	51.24	Vertical	74.0	PK	Pass
4960.000	32.81	8.81	35.66	44.35	50.31	Horizontal	74.0	PK	Pass

Remark:

 QP Emission Level= Antenna Factor +Cable Loss + Reading PK Emission Level= Antenna Factor +Cable Loss - Amp. factor + Reading AV Emission Level= PK Emission Level+20log(dutycycle)

AV Emission Level= PK Emission Level+20log(dutycycle)
(2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.

Report Number: 68.920.13.004.01

Page 42 of 66

Spurious radiated emissions for transmitter and receiver

Receiving spurious emission test result as below:

Frequency	Antenna Factor	Cable Loss	Amp. Factor	Reading	Emission Level	Polarization	Limit	Detector	Result
MHz	dB/m	dB	dB	dBµV	dBµV/m		dBµV/m		
939.860	22.07	2.85	-	4.56	29.48	Vertical	46	QP	Pass
Above 1GHz*	-	-	-	-	-	-	-	-	Pass

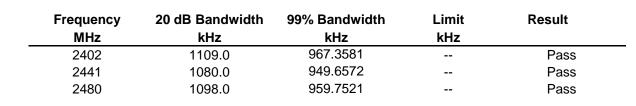
Remark:

(1) QP Emission Level= Antenna Factor +Cable Loss + Reading PK Emission Level= Antenna Factor +Cable Loss - Amp. factor + Reading

AV Emission Level= PK Emission Level+20log(dutycycle)(2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.

Test Method

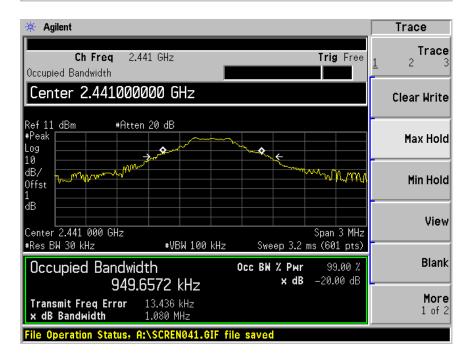
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.


Limit

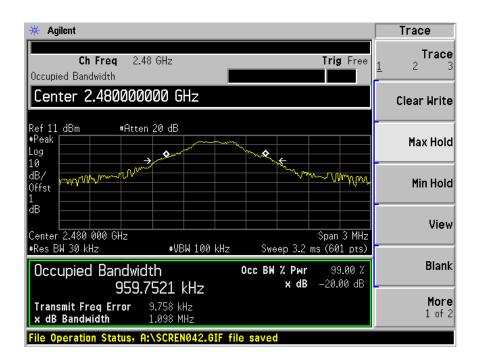
Limit [kHz]

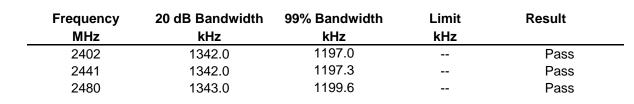
N/A

Report Number: 68.920.13.004.01

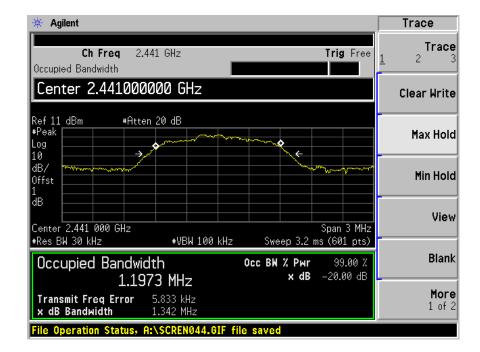


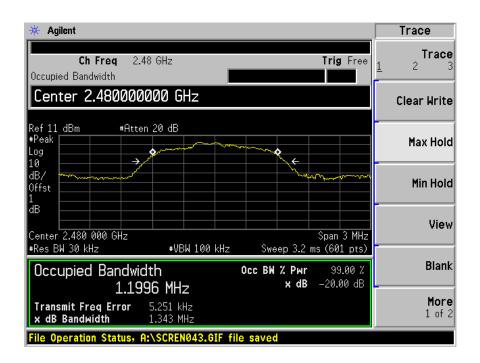
Bluetooth Mode GFSK Modulation test result



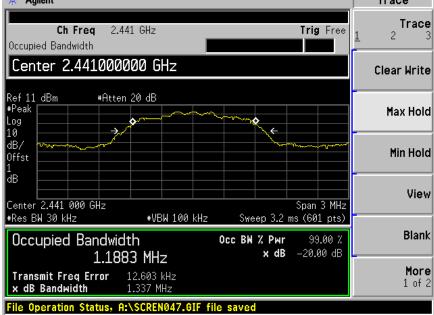

Report Number: 68.920.13.004.01

Page 45 of 66



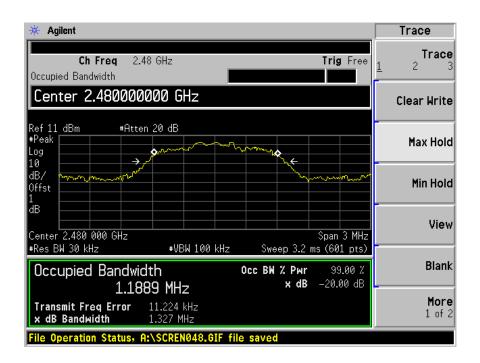

Bluetooth Mode π /4-DQPSK Modulation test result

Report Number: 68.920.13.004.01



Frequency MHz	20 dB Bandwidth kHz	99% Bandwidth kHz	Limit kHz	Result
2402	1322.0	1177.8		Pass
2441	1337.0	1188.3		Pass
2480	1327.0	1188.9		Pass

Bluetooth Mode 8-DPSK Modulation test result



Report Number: 68.920.13.004.01

Page 49 of 66

8.7 Carrier Frequency Separation

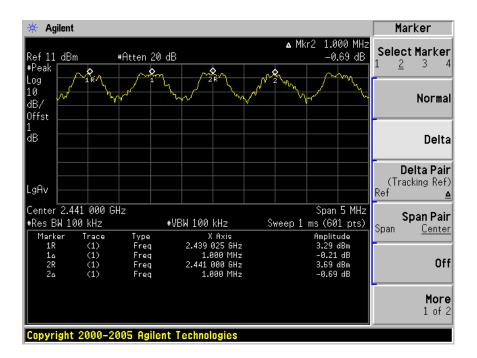
Test Method

- 1. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW \geq 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. By using the Max-Hold function record the separation of two adjacent channels.
- 3. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit kHz ≥25KHz or 2/3 of the 20 dB bandwidth which is greater

GFSK Modulation Limit


Frequency	2/3 of 20 dB Bandwidth
MHz	kHz
2402	549.3147
2441	543.1322
2480	552.7683

Carrier Frequency Separation

GFSK Modulation test result

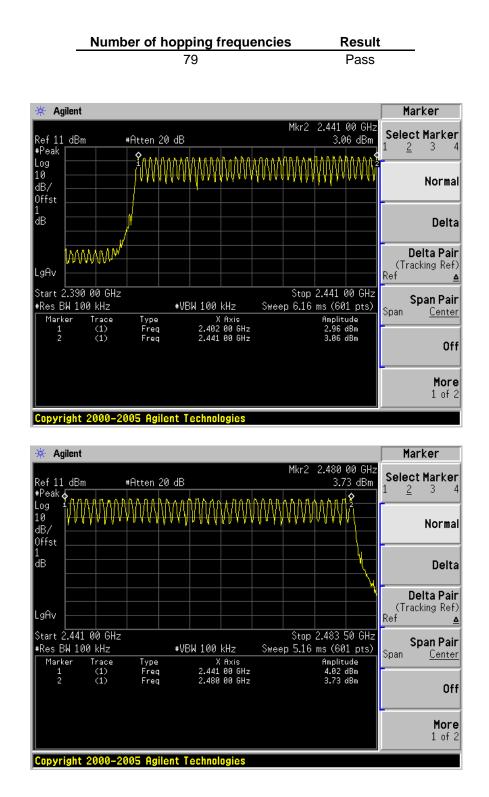
Frequency	Carrier Frequency Separation	Result
MHz	kHz	
2402	1000	Pass
2441	1000	Pass
2480	1000	Pass

Page 52 of 66

8.8 Number of hopping frequencies

Test Method

- 1. Use the following spectrum analyzer settings:
- Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. Set the spectrum analyzer on Max-Hold Mode, and then keep the EUT in hopping mode.
- 3. Record all the signals from each channel until each one has been recorded.
- 4. Repeat above procedures until all frequencies measured were complete.


Limit

Limit	
number	
≥ 15	

Number of hopping frequencies

Test result:

Report Number: 68.920.13.004.01

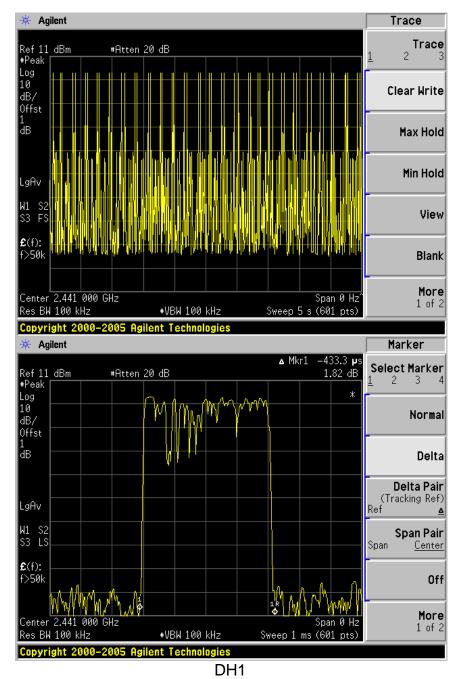
Page 54 of 66

8.9 Dwell Time

Test Method

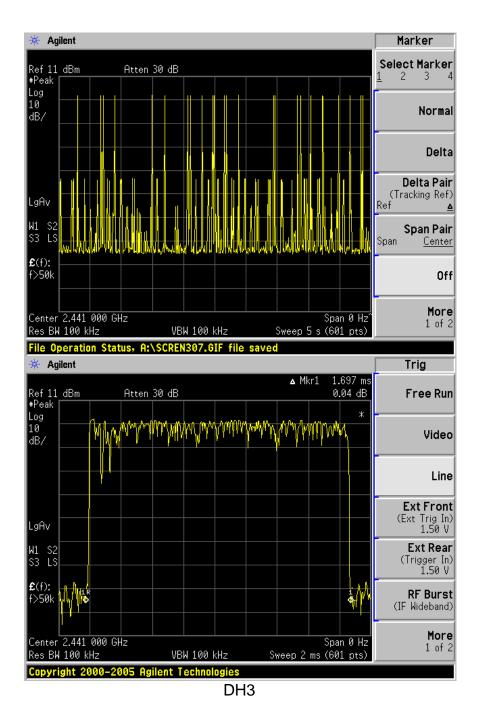
- 1. Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer
- 2. RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 4. Measure the Dwell Time by spectrum analyzer Marker function.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit


According to §15.247(a)(1)(iii) & RSS-210 A8.1(c) The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

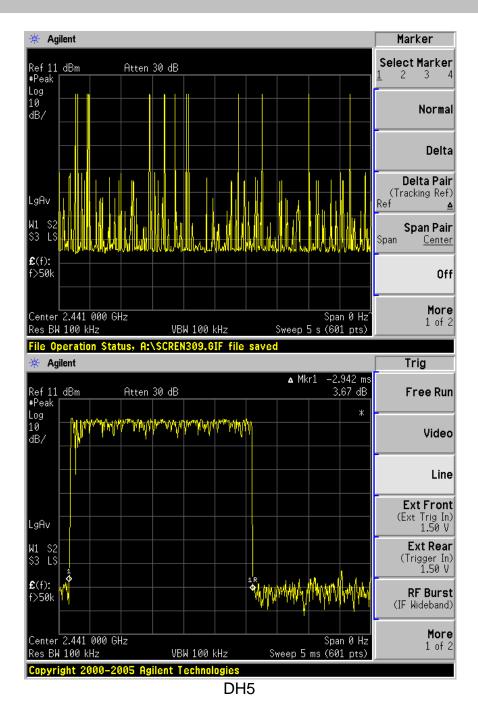
Dwell time

The maximum dwell time shall be 0,4 s. Bluetooth Mode GFSK Modulation:


Test Result				
Mode	Reading (µs)	Test Result (ms)	Limit (ms)	Result
DH1	433.3	139.66	< 400	Pass
DH3	1697	257.400	< 400	Pass
DH5	2942	241.714	< 400	Pass

Report Number: 68.920.13.004.01

Page 56 of 66



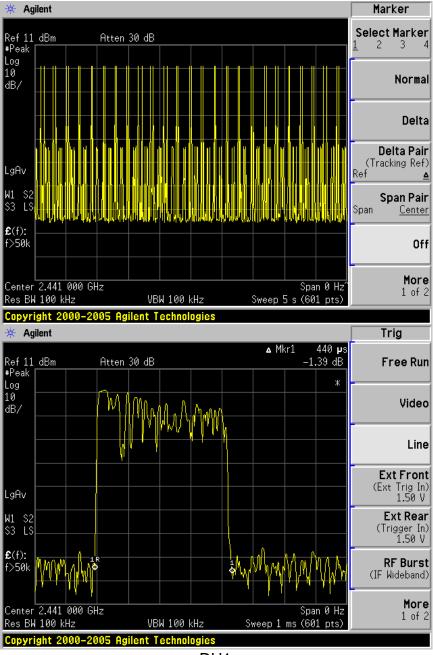
Report Number: 68.920.13.004.01

Page 57 of 66

A period time=79x0.4(s)=31.6(s)

Note:

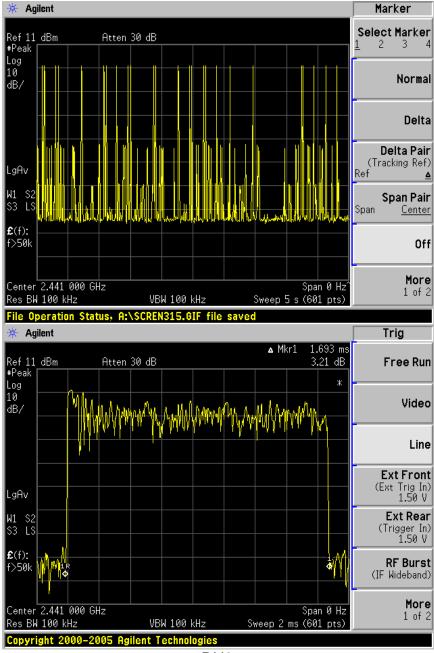
DH1	time slot= 51(times)/5(s) *433.3 (µs) *31.6(s)= 139.66 (ms)
DH3	time slot= 24(times)/5(s) *1697 (µs) *31.6(s)= 257.400(ms)
DH5	time slot= 13(times)/5(s) *2942 (µs) *31.6(s)= 241.714 (ms)


Report Number: 68.920.13.004.01

Page 58 of 66

Bluetooth Mode π /4-DQPSK Modulation:

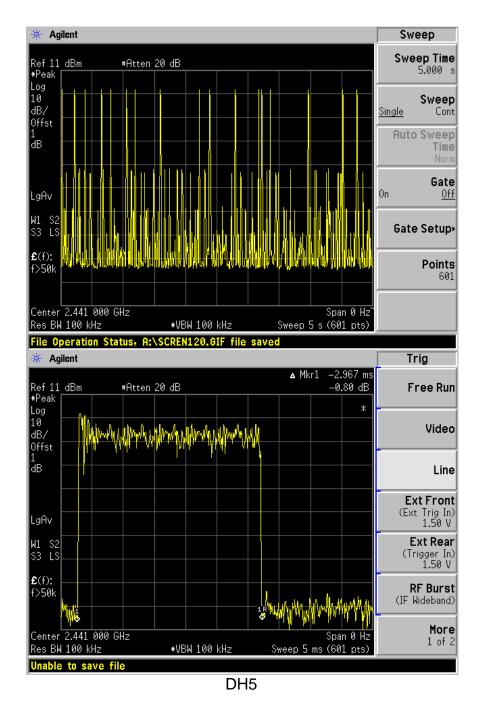
Mode	Reading (µs)	Test Result (ms)	Limit (ms)	Result
DH1	440	130.697	< 400	Pass
DH3	1693	267.494	< 400	Pass
DH5	2967	318.774	< 400	Pass



DH1

Report Number: 68.920.13.004.01

Page 59 of 66



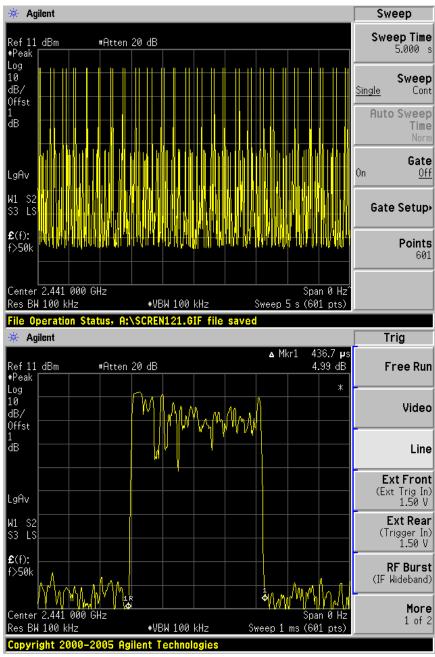
DH3

Report Number: 68.920.13.004.01

Page 60 of 66

Note: A period time=79x0.4(s)=31.6(s)

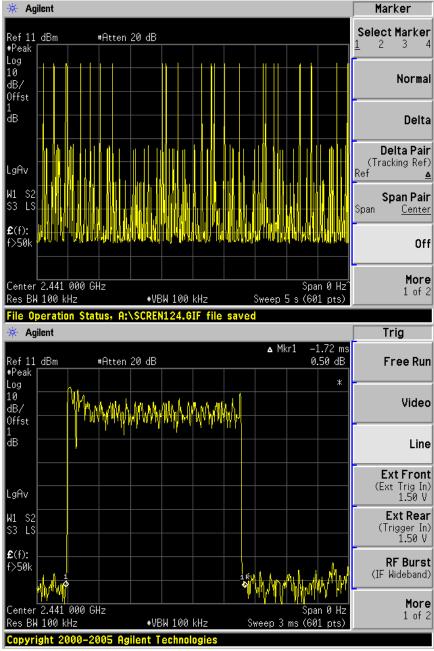
DH1	time slot= 47(times)/5(s) *440(µs) *31.6(s)= 130.697(ms)
DH3	time slot= 25(times)/5(s) *1693 (µs) *31.6(s)= 267.494(ms)
DH5	time slot= 17(times)/5(s) *2967 (µs) *31.6(s)=318.774 (ms)


Report Number: 68.920.13.004.01

Page 61 of 66

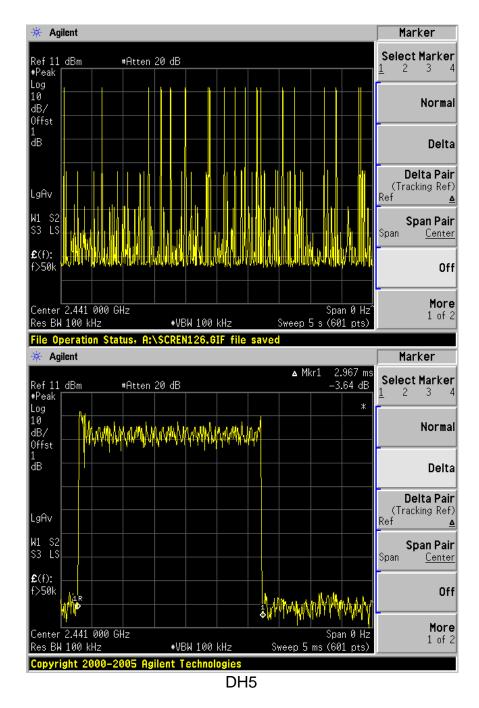
Bluetooth Mode 8-DPSK Modulation:

Test Result				
Mode	Reading (µs)	Test Result (ms)	Limit (ms)	Result
DH1	436.7	140.757	< 400	Pass
DH3	1720	271.760	< 400	Pass
DH5	2967	356.277	< 400	Pass



Report Number: 68.920.13.004.01

Page 62 of 66



DH3

Report Number: 68.920.13.004.01

Page 63 of 66

Note: A period time=79x0.4(s)=31.6(s)

DH1	time slot= 51(times)/5(s) *436.7(µs) *31.6(s)= 140.757(ms)
DH3	time slot= 25(times)/5(s) *1720 (µs) *31.6(s)=271.760(ms)
DH5	time slot= 19(times)/5(s) *2967 (µs) *31.6(s)=356.277 (ms)

Report Number: 68.920.13.004.01

Page 64 of 66

Test Equipment List 9

List of Test Instruments				
ESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Spectrum	Agilent	E4446A	US44300459	May.08, 13
Amp	HP	8449B	3008A08495	May.08, 13
Antenna	EMCO	3115	9510-4580	May.17, 13
HF Cable	Hubersuhne	Sucoflex104	-	May.08, 13
Power Meter	Anritsu	ML2487A	6K00002472	May.08, 13
Power Sensor	Anritsu	MA2491A	033005	May.08, 13
Power meter	Agilent	436A	MY45100928	May.08, 13
Power Sensor	Agilent	8482B	MY41090514	May.08, 13
Power meter	Anritsu	ML2487A	6K00002472	May.08, 13
Power Sensor	Anritsu	ML2491A	032516	May.08, 13
Noise Figure	HP	8970B	3247U02193	May.08, 13
Noise Source	HP	346B	3318A13134	May.08, 13
Loop Antenna	Chase	HLA6120	1062	May.08, 13
Test Receiver	Rohde & Schwarz	ESHS10	838693/001	Oct.30, 13
L.I.S.N.#1	Rohde & Schwarz	ESH2-Z5	834066/011	Oct.30, 13
L.I.S.N.#3	Kyoritsu	KNW-242C	8-1920-1	May.08, 13
Terminator	Hubersuhner	50Ω	No. 1	May.08, 13
Terminator	Hubersuhner	50Ω	No. 2	May.08, 13
RF Cable	Fujikura	3D-2W	No.1	May.08, 13
Coaxial Switch	Anritsu	MP59B	M50564	May.08, 13
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100341	May.08, 13
Oscilloscope	Tektronix	TDS3052B	B026036	May.20, 13

List of Test Instruments

Report Number: 68.920.13.004.01

10 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty

Items		Extended Uncertainty
RE	Field strength ($dB\mu V/m$)	U=4.32dB (30MHz-25GHz)
CE	Disturbance Voltage (dBµV)	U=2.4dB

Report Number: 68.920.13.004.01