

MPE Calculation

Applicant: Philips Consumer Lifestyle

Address: 1600 Summer Street Stamford, CT 06905, United States

Product: Video Baby Monitor Model No.: SCD610, SCD609

According to subpart 15.407(f) and subpart §1.1307(b)(1), §2.1091, §2.1093 systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE)(§1.1310, §2.1091)

(B) Limits for Gener	ral Population/Uncontrolled Exposure			
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Averaging Time (minutes)
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f²)	30
30–300	27.5	0.073	0.2	30
300–1500	1	1	f/1500	30
1500–100,000	1	1	1.0	30

f=frequency in MHz; *=Plane=wave equivalent power density;

According to §1.1310 and §2.1091 RF Exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S=PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P=power input to the antenna (in appropriate units, e.g. mW);

G=power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain:

R=distance to the center of radiation of the antenna (appropriate units, e.g. cm);

Calculated Data:

1) For Operation frequency band: 2400-2483.5MHz:

,		
	Maximum peak output power at antenna input terminal (dBm):	17.18
	Maximum peak output power at antenna input terminal (mW):	52.24
	Prediction distance (cm):	20
	Antenna Gain, typical (dBi):	1
	Maximum Antenna Gain (numeric):	1.26
	The worst case is power density at predication frequency at 20cm (mW/cm ²):	0.013
	MPE limit for general population exposure at prediction frequency (mW/cm ²):	1.0

 $0.013(\text{mW/cm}^2) < 1 \text{ (mW/cm}^2)$

Result: Compliant

TUV SUD Chian, Shenzhen Branch

Reviewed by:

Prepared By:

Paul Yu/EMC Project Manager

Date: 2011-09-22

Phoebe Hu/EMC Project Engineer

Date: 2011-09-22