

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	sgs_internet_operations@sgs.com

Report No.: SZEM111200543201 Page: 1 of 69

FCC REPORT

Application No:	SZEM1112005432RF
Applicant:	Philips Consumer Lifestyle
Product Name:	Docking System For iPod/iPhone
Operation Frequency:	2.402GHz to 2.480GHz
FCC ID:	BOUPHDS3600
Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247: 2010
Date of Receipt:	2011-12-22
Date of Test:	2011-12-23 to 2012-01-13
Date of Issue:	2012-01-18
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM111200543201 Page: 2 of 69

2 Contents

1	CC	OVER PAGE	1
2	СС	ONTENTS	2
3	ТЕ	EST SUMMARY	
4	GE	ENERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF E.U.T.	4
	4.3	E.U.T OPERATION MODE	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	TEST FACILITY	
	4.6	TEST LOCATION	
	4.7	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.8	TEST INSTRUMENTS LIST	7
5	TE	EST RESULTS AND MEASUREMENT DATA	9
	5.1	ANTENNA REQUIREMENT:	9
	5.2	CONDUCTED EMISSIONS	
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	20dB Occupy Bandwidth	
	5.5	CARRIER FREQUENCIES SEPARATION	
	5.6	HOPPING CHANNEL NUMBER	
	5.7	DWELL TIME	
	5.8	BAND EDGE	41
	5.9	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS	
	5.10	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	5.11	RADIATED EMISSION	
	••••	11.1 Radiated emission below 1GHz	
	••••	11.2 Transmitter emission above 1GHz	
	5.1	11.3 Band edge (Radiated Emission)	

Report No.: SZEM111200543201 Page: 3 of 69

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (b)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remark: Pass: The EUT complies with the essential requirements in the standard.

Fail: The EUT does not comply with the essential requirements in the standard.

Report No.: SZEM111200543201 Page: 4 of 69

4 General Information

4.1 Client Information

Applicant:	Philips Consumer Lifestyle		
Address of Applicant:	1600 Summer Street Stamford Connecticut 06905 United States		
Manufacturer:	PHILIPS Electronics Hong Kong Ltd		
Address of Manufacturer:	5/F., 5 Science Park East Avenue, Hong Kong Science Park, Shatin, N.T., Hong Kong		
Factory:	Yusan Technology (Shenzhen) Limited		
Address of Factory:	Haoyi Technology Park, Nan Huan Road, Shajing West, Baoan Shenzhen, Guang Dong P.R. China		

4.2 General Description of E.U.T.

EUT Name:	Docking System For iPod/iPhone		
Model No.:	DS3600/37		
Trade mark:	PHILIPS		
Bluetooth version:	V2.1+ EDR		
Operation Frequency:	2402MHz~2480MHz		
Channel numbers:	79		
Channel separation:	1MHz		
Modulation type:	GFSK, π/4DQPSK, 8DPSK		
Antenna Type:	Integral		
Antenna gain:	0dBi		
Power supply:	MODEL: AS300-120-AA250 INPUT: AC100-240V 50/60Hz 1.1A OUTPUT: DC12.0V 2.5A		
Adapter:	<3m		

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM111200543201 Page: 5 of 69

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The highest channel	2480MHz

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM111200543201 Page: 6 of 69

4.3 E.U.T Operation mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	50 % RH
Atmospheric Pressure:	1025 mbar
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode at low channel, middle channel and high channel.

4.4 Description of Support Units

The EUT was tested with associated equipment as below.

Description	Manufacturer	Model No.
iPod	Apple	MC027CH/A
Mobile phone	Nokia	6300

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• VCCI

The 3m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197 and C-2383 respectively.

Date of Registration: September 29, 2008. Valid until September 28, 2011.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, March 16, 2011

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

4.6 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch E&E Lab No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 No tests were sub-contracted.

4.7 Other Information Requested by the Customer

None.

Report No.: SZEM111200543201 Page: 7 of 69

4.8 Test Instruments list

RE i	RE in Chamber							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)			
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2012-06-10			
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2012-05-26			
3	EMI Test software	AUDIX	E3	SEL0050	N/A			
4	Coaxial cable	SGS	N/A	SEL0028	2012-05-29			
5	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2012-10-29			
6	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2012-10-29			
7	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2012-10-29			
8	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2012-05-26			
9	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2012-10-27			
11	Band filter	Amindeon	82346	SEL0094	2012-05-26			

Con	Conducted Emission							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)			
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2012-06-10			
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2012-10-23			
3	Two-Line V-Network	ETS-LINDGREN	3816/2	SEL0021	2012-05-26			
4	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2012-05-26			
5	Coaxial Cable	SGS	N/A	SEL0024	2012-05-29			

Report No.: SZEM111200543201 Page: 8 of 69

RF c	RF conducted						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)		
1	Spectrum Analyzer	Rohde & Schwarz	FSP 30	SEL0154	2012-10-23		
2	Coaxial cable	SGS	N/A	SEL0028	2012-05-29		

	General used equipment					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	Humidity/ Temperature Indicator	Shanghai	ZJ1-2B	SEL0102 to SEL0103	2012-10-27	
2	Humidity/ Temperature Indicator	Shanghai	ZJ1-2B	SEL0101	2012-10-27	
3	Barometer	ChangChun	DYM3	SEL0088	2012-05-18	

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM111200543201 Page: 9 of 69

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

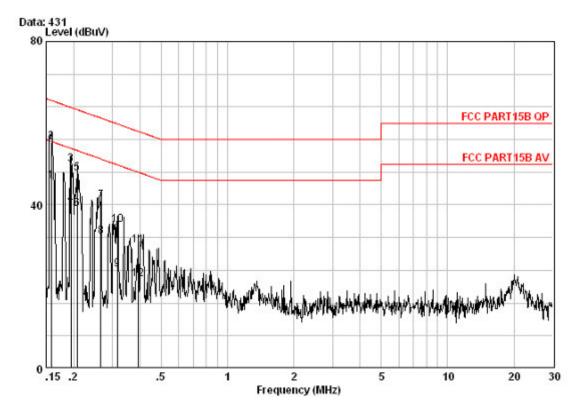
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM111200543201 Page: 10 of 69

5.2 Conducted Emiss	2 Conducted Emissions							
Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10: 2009							
Test Frequency Range:	150kHz to 30MHz							
Class / Severity:	Class B	Class B						
Limit:		Limit (c	dBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5 56 46							
	5-30	60	50					
Test procedure	* Decreases with the logarithm The E.U.T and simulators are							
	impedance stabilization network (L.I.S.N.).The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement.							
Test setup:		ence Plane						
	LISN 40cm 40cm Equipment E.U Test table/Insulation pla	80cm U.T ane	er – AC power					
	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m							
Test Instruments:	Refer to section 4.8 for details). 						
Test mode:	Transmitting mode							
Test results:	Pass							

5.2 Conducted Emissions

Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector.

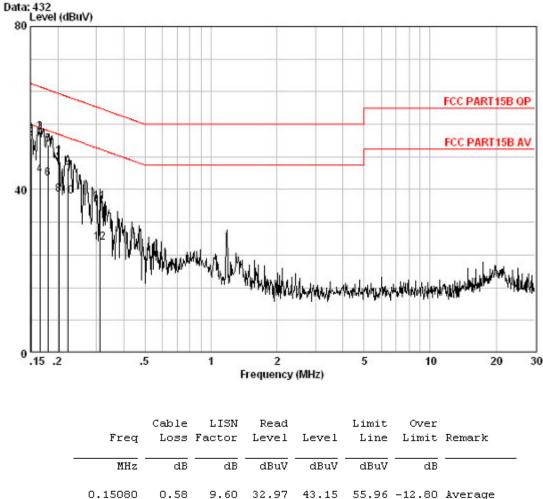
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEM111200543201 Page: 11 of 69

Live line:

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
10	0.15816	0.59	9.60	35.69	45.88	55.56	-9.68	Average
20	0.15816	0.59	9.60	45.23	55.42	65.56	-10.14	QP
3	0.19447	0.62	9.60	39.73	49.95	63.84	-13.89	QP
4	0.19447	0.62	9.60	29.81	40.02	53.84	-13.82	Average
5	0.20723	0.62	9.60	37.47	47.69	63.32	-15.63	QP
6	0.20723	0.62	9.60	28.73	38.96	53.32	-14.36	Average
7	0.26583	0.63	9.60	30.65	40.88	61.25	-20.37	QP
8	0.26583	0.63	9.60	21.98	32.20	51.25	-19.04	Average
9	0.31662	0.63	9.60	14.06	24.29	49.80	-25.51	Average
10	0.31662	0.63	9.60	24.89	35.12	59.80	-24.67	QP
11	0.39344	0.63	9.60	19.85	30.08	57.99	-27.91	QP
12	0.39344	0.63	9.60	11.55	21.78	47.99	-26.21	Average

Notes:


1. The following Quasi-Peak and Average measurements were performed on the EU

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM111200543201 Page: 12 of 69

Neutral line:

	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15080	0.58	9.60	32.97	43.15	55.96	-12.80	Average
2	0.15080	0.58	9.60	42.41	52.59	65.96	-13.37	QP
30	0.16589	0.59	9.60	43.90	54.09	65.16	-11.07	QP
4	0.16589	0.59	9.60	33.47	43.66	55.16	-11.50	Average
5	0.18056	0.61	9.60	40.72	50.92	64.46	-13.54	QP
6	0.18056	0.61	9.60	32.46	42.66	54.46	-11.80	Average
7	0.20181	0.62	9.60	37.43	47.65	63.54	-15.89	QP
8	0.20181	0.62	9.60	28.62	38.84	53.54	-14.70	Average
9	0.22201	0.62	9.60	35.17	45.40	62.74	-17.35	QP
10	0.22201	0.62	9.60	28.22	38.44	52.74	-14.30	Average
11	0.31163	0.63	9.60	26.77	37.00	59.93	-22.93	QP
12	0.31163	0.63	9.60	16.85	27.08	49.93	-22.85	Average

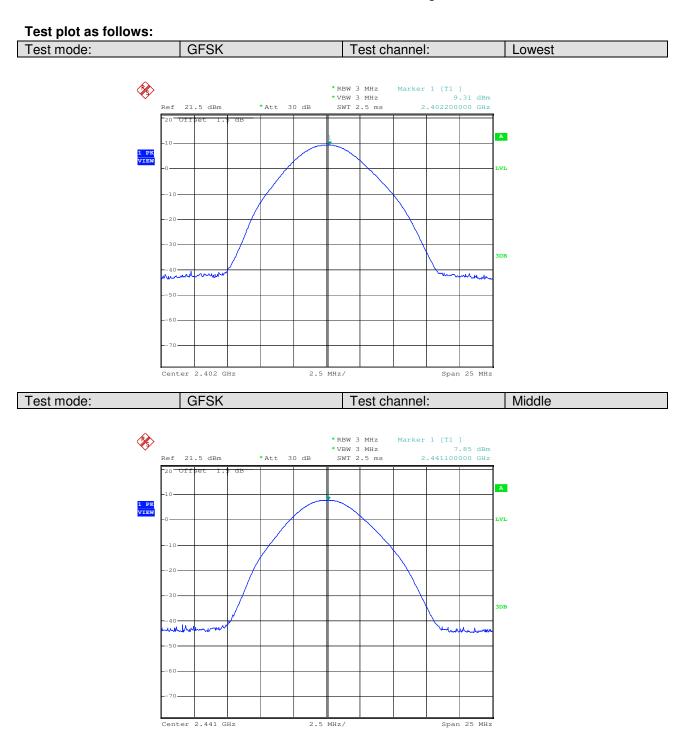
Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

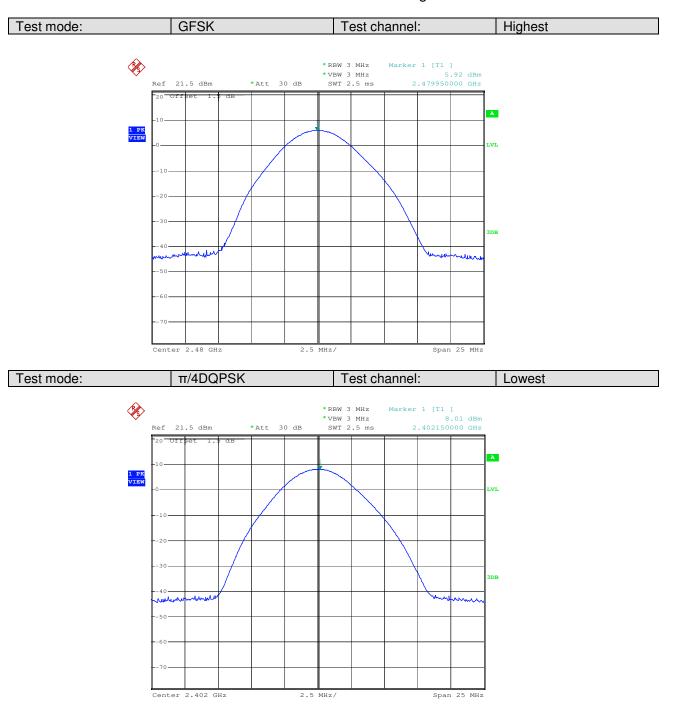
Report No.: SZEM111200543201 Page: 13 of 69

5.3 Conducted Peak Output Power

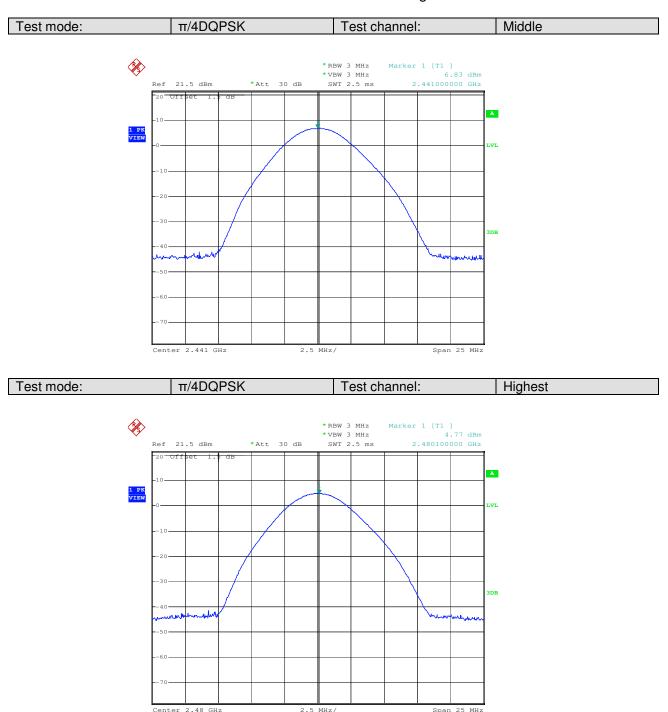

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)			
Test Method:	ANSI C63.10:2009			
Limit:	30dBm			
Test setup:				
	Spectrum Analyzer			
	E.U.T Non-Conducted Table			
	Ground Reference Plane			
	Remark:			
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.			
Test Instruments:	Refer to section 4.8 for details.			
Test state:	Keep the EUT in transmitting mode at low channel, middle channel and high channel.			
Test results:	Pass			

Measurement Data

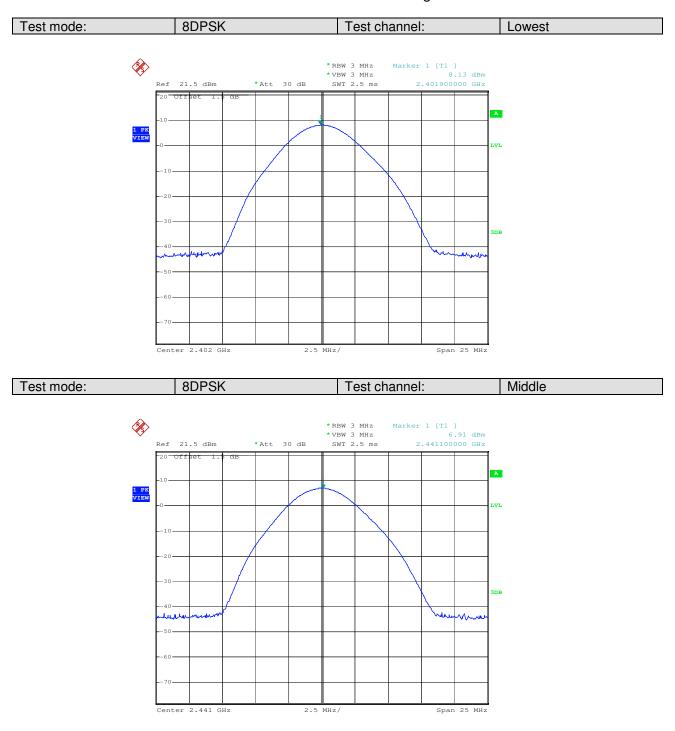
GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	9.31	30.00	Pass			
Middle	7.85	30.00	Pass			
Highest	5.92	30.00	Pass			
	π/4DQPSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	8.01	30.00	Pass			
Middle	6.83	30.00	Pass			
Highest	4.77	30.00	Pass			
	8DPSK mo	de				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	8.13	30.00	Pass			
Middle	6.91	30.00	Pass			
Highest	4.85	30.00	Pass			



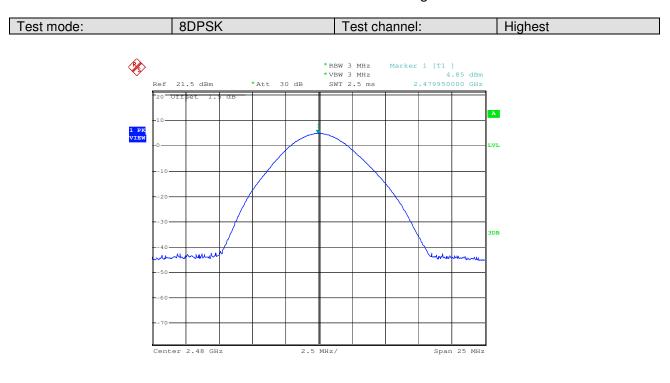
Report No.: SZEM111200543201 Page: 14 of 69


Report No.: SZEM111200543201 Page: 15 of 69

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



Report No.: SZEM111200543201 Page: 16 of 69



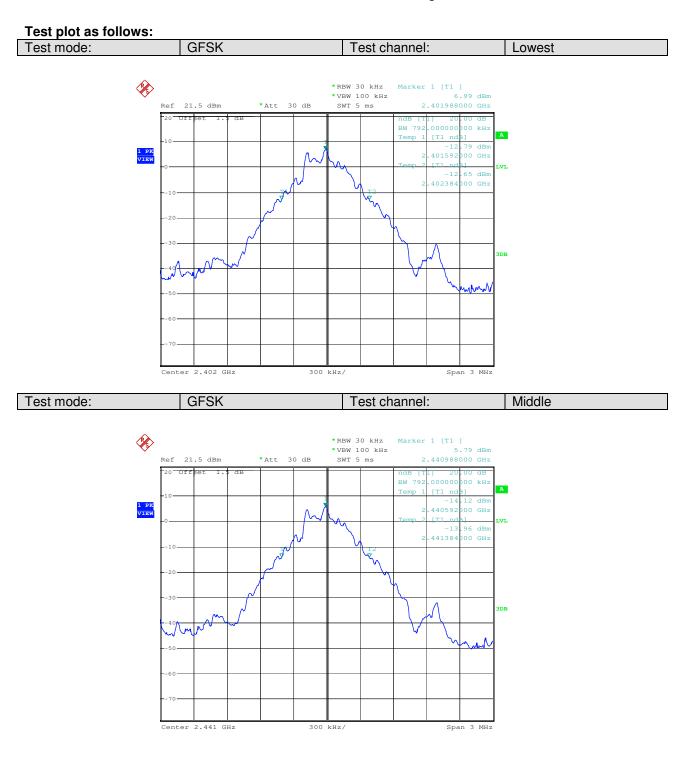
Report No.: SZEM111200543201 Page: 17 of 69

Report No.: SZEM111200543201 Page: 18 of 69

Report No.: SZEM111200543201 Page: 19 of 69

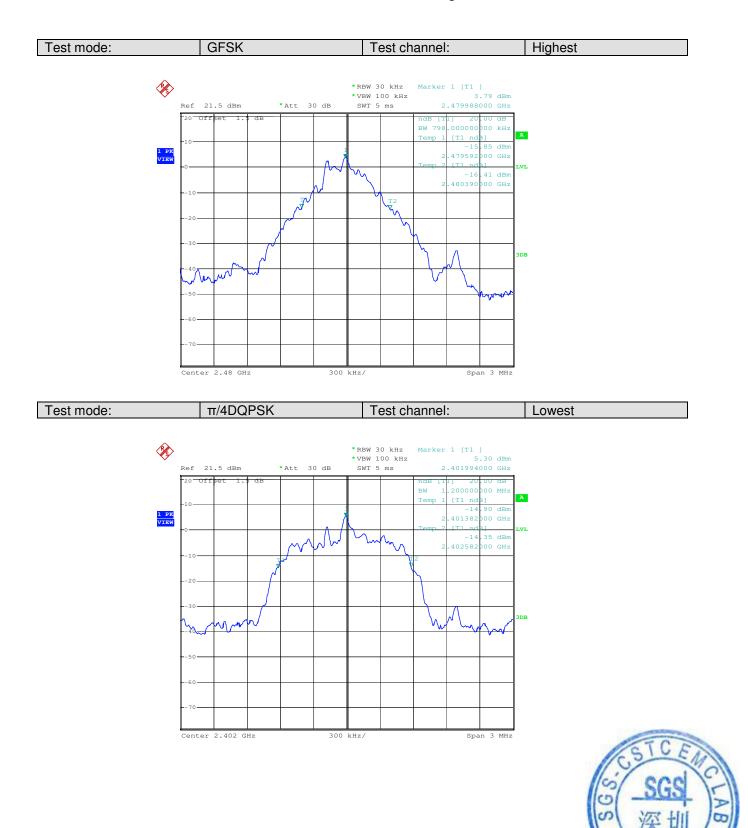
Test Requirement: FCC Part15 C Section 15.247 (a)(1) Test Method: ANSI C63.10:2009 NA Limit: Test setup: Spectrum Analyzer E.U.T G Non-Conducted Table Ground Reference Plane Test Instruments: Refer to section 4.8 for details Keep the EUT in transmitting mode at low channel, middle channel and Test state: high channel. Test results: Pass

5.4 20dB Occupy Bandwidth

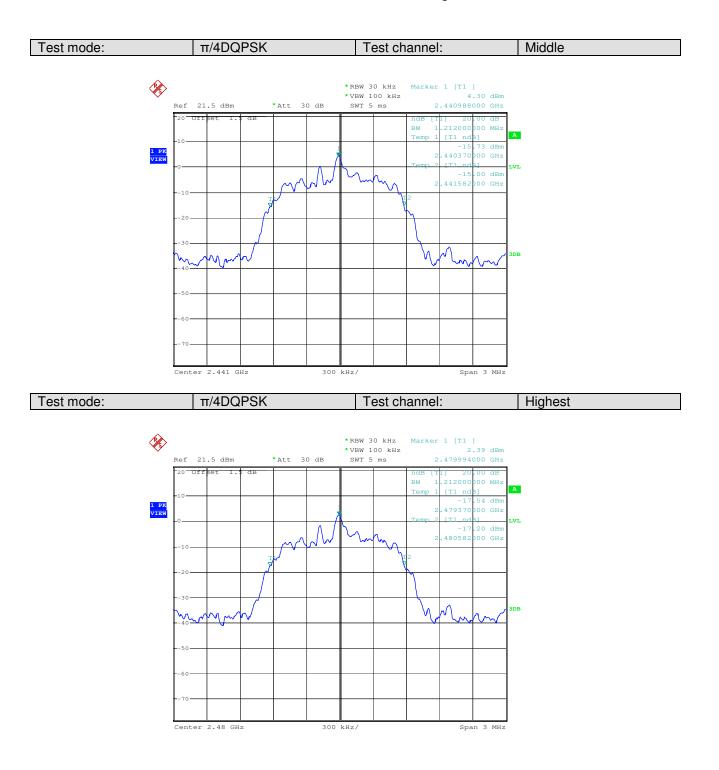

Measurement Data

Testshewed	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	Pi/4QPSK	8DPSK
Lowest	792	1200	1206
Middle	792	1212	1212
Highest	798	1212	1212

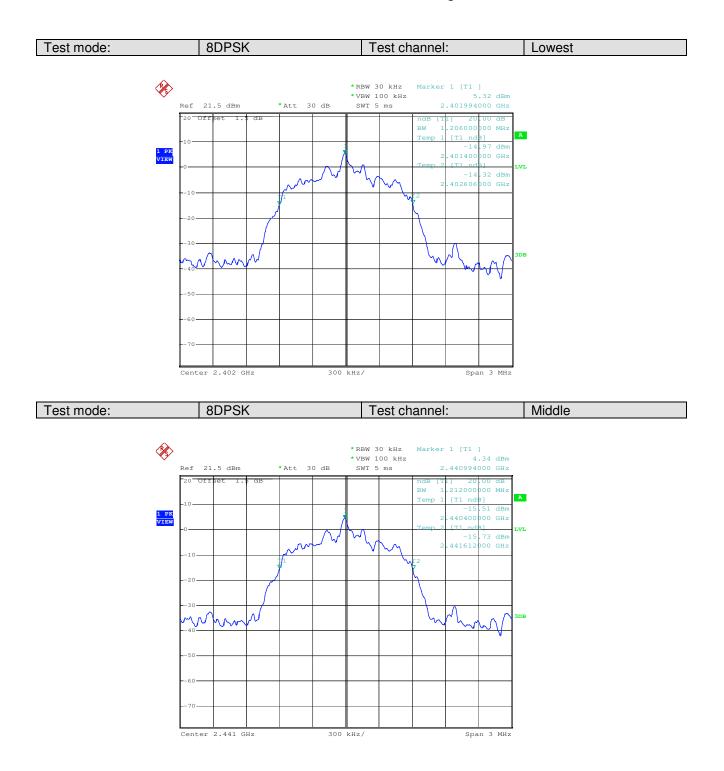
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



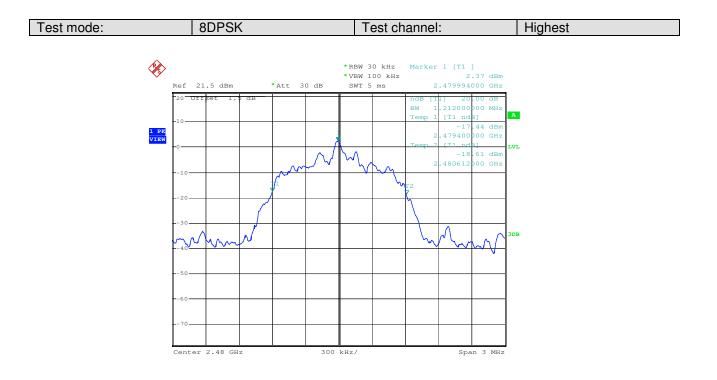
Report No.: SZEM111200543201 Page: 20 of 69



Report No.: SZEM111200543201 Page: 21 of 69



Report No.: SZEM111200543201 Page: 22 of 69



Report No.: SZEM111200543201 Page: 23 of 69

Report No.: SZEM111200543201 Page: 24 of 69

Report No.: SZEM111200543201 Page: 25 of 69

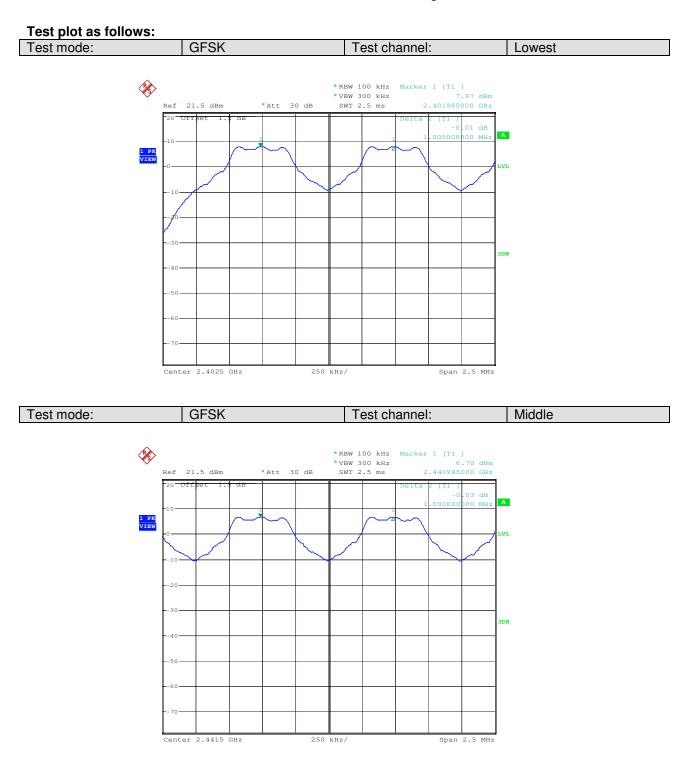
5.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009		
Test state:	Hopping transmitting with all kind of modulation.		
Test setup:	Spectrum Analyzer		
	F.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 4.8 for details		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test results:	Pass		

Report No.: SZEM111200543201 Page: 26 of 69

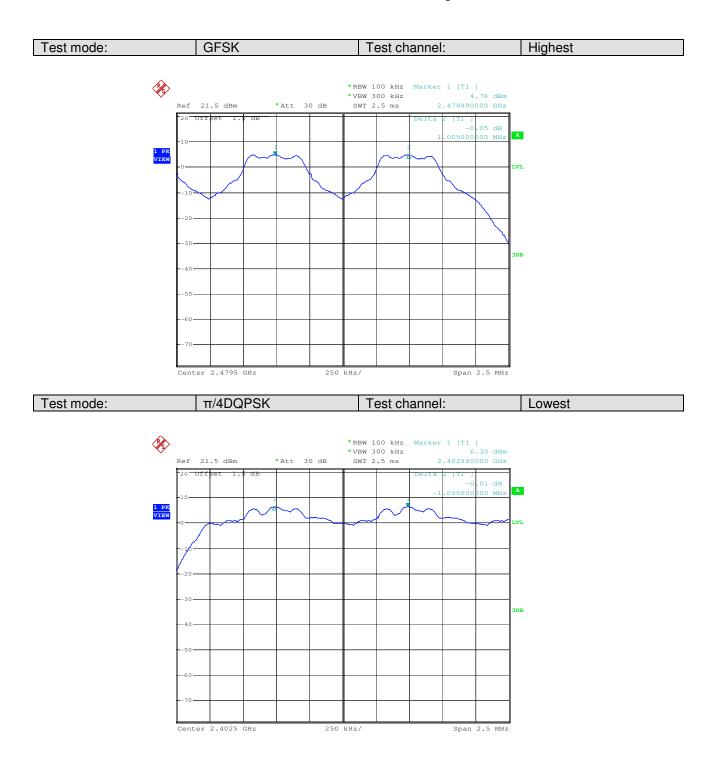
Measurement Data

GFSK mode						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Lowest	1005	≥808	Pass			
Middle	1000	≥808	Pass			
Highest	1005	≥808	Pass			
	π/4DQPSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Lowest	1005	≥808	Pass			
Middle	1000	≥808	Pass			
Highest	1005	≥808	Pass			
	8DPSK mo	de				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Lowest	1000	≥808	Pass			
Middle	1005	≥808	Pass			
Highest	1000	≥808	Pass			

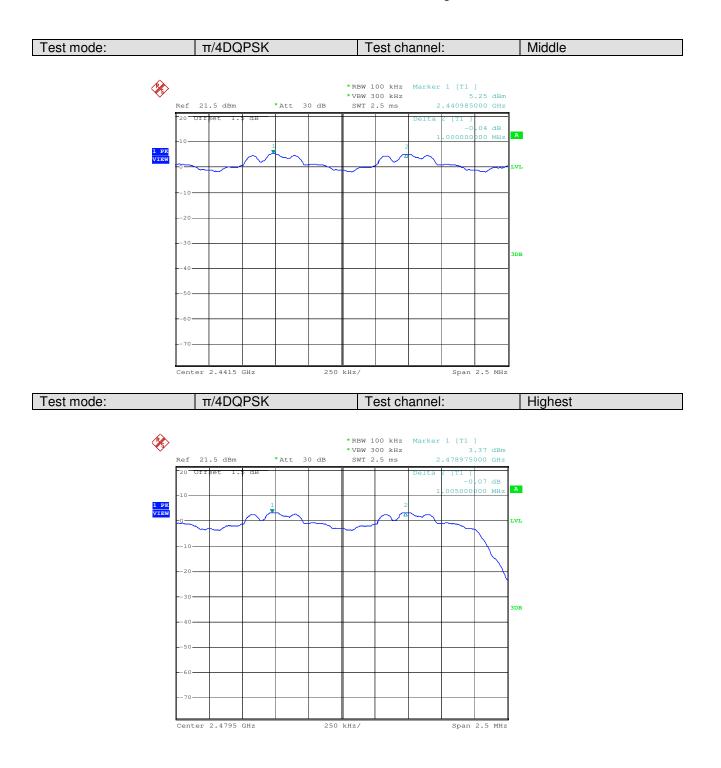

Note: According to section 5.4,

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	798	539
π/4DQPSK	1212	808
8DPSK	1212	808

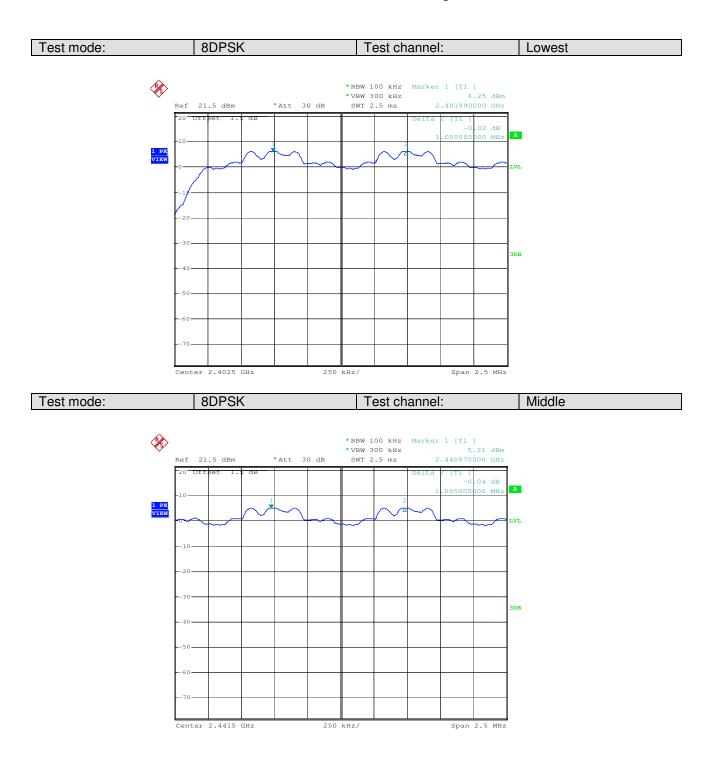
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



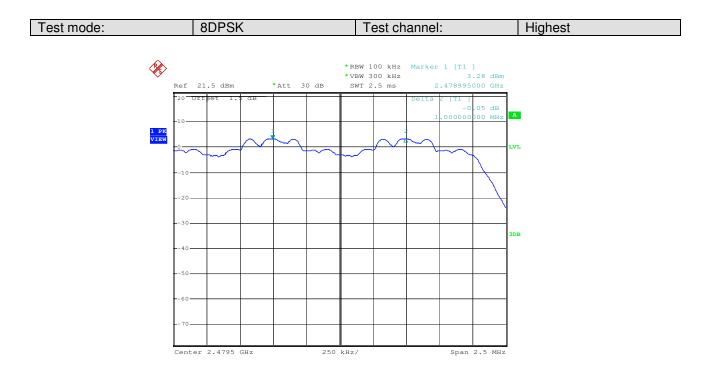
Report No.: SZEM111200543201 Page: 27 of 69



Report No.: SZEM111200543201 Page: 28 of 69



Report No.: SZEM111200543201 Page: 29 of 69



Report No.: SZEM111200543201 Page: 30 of 69

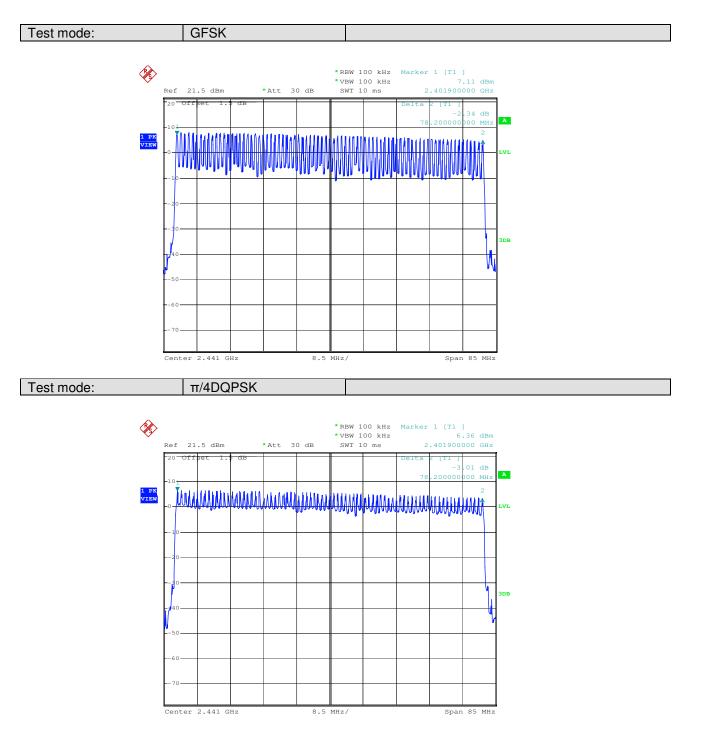
Report No.: SZEM111200543201 Page: 31 of 69

Report No.: SZEM111200543201 Page: 32 of 69

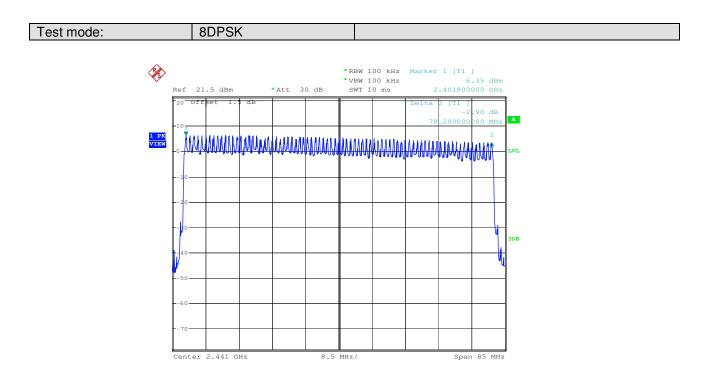
Test Requirement: FCC Part15 C Section 15.247 (b) Test Method: ANSI C63.10:2009 Limit: 75channels Test setup: Spectrum Analyzer E.U.T G Non-Conducted Table Ground Reference Plane Test Instruments: Refer to section 4.8 for details Keep the EUT in transmitting mode at low channel, middle channel and Test state: high channel. Test results: Pass

5.6 Hopping Channel Number

Measurement Data


Test mode	Hopping channel numbers	Limit	Results
GFSK	79	75	Pass
Pi/4QPSK	79	75	Pass
8DPSK	79	75	Pass

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM111200543201 Page: 33 of 69

Test plot as follows

Report No.: SZEM111200543201 Page: 34 of 69

Report No.: SZEM111200543201 Page: 35 of 69

5.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009		
Limit:	0.4 Second		
Test setup:			
	Spectrum Analyzer		
	E.U.T		
	Non-Conducted Table		
	Ground Reference Plane		
Test Instruments:	Refer to section 4.8 for details.		
Test state:	Keep the EUT in transmitting mode at low channel, middle channel and high channel.		
Test results:	Pass		

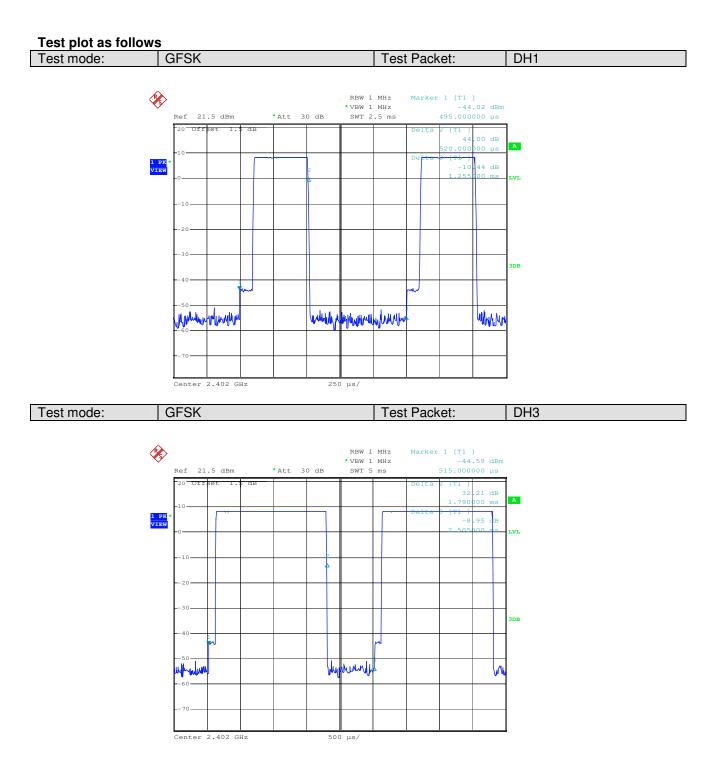
Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	0.1664	0.4
	DH3	0.2864	0.4
	DH5	0.3237	0.4
π/4DQPSK	2-DH1	0.1696	0.4
	2-DH3	0.2864	0.4
	2-DH5	0.1957	0.4
8DPSK	3-DH1	0.1712	0.4
	3-DH3	0.2856	0.4
	3-DH5	0.3243	0.4

Test Result:

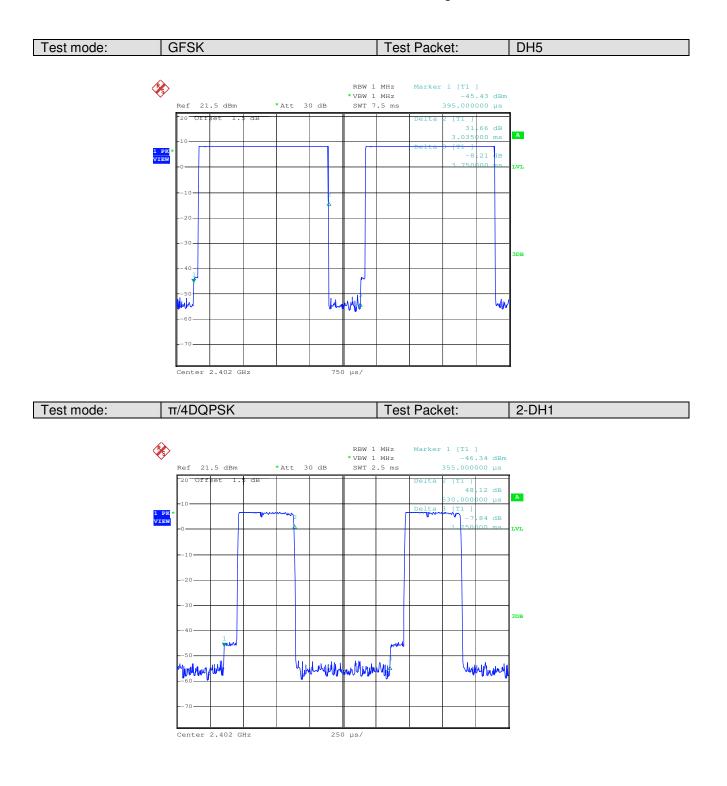
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as below


DH1 time slot=0.520(ms)*(1600/ (2*79))*31.6=166.4ms

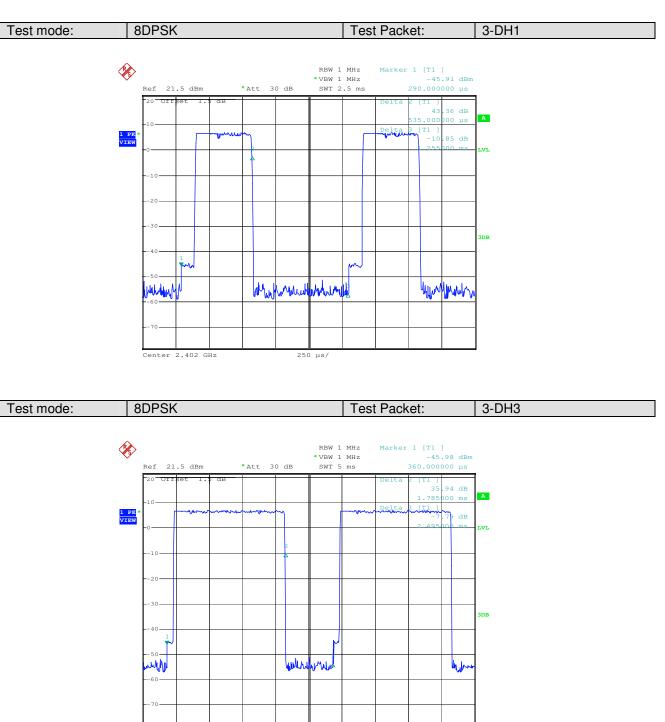
DH3 time slot=1.790(ms)*(1600/ (4*79))*31.6=286.4ms

DH5 time slot=3.035(ms)*(1600/ (6*79))*31.6=323.7ms



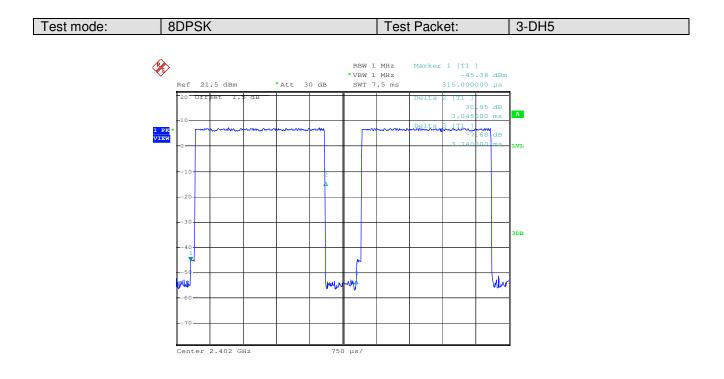
Report No.: SZEM111200543201 Page: 36 of 69

Report No.: SZEM111200543201 Page: 37 of 69



Report No.: SZEM111200543201 Page: 38 of 69

Report No.: SZEM111200543201 Page: 39 of 69


Center 2.402 GHz

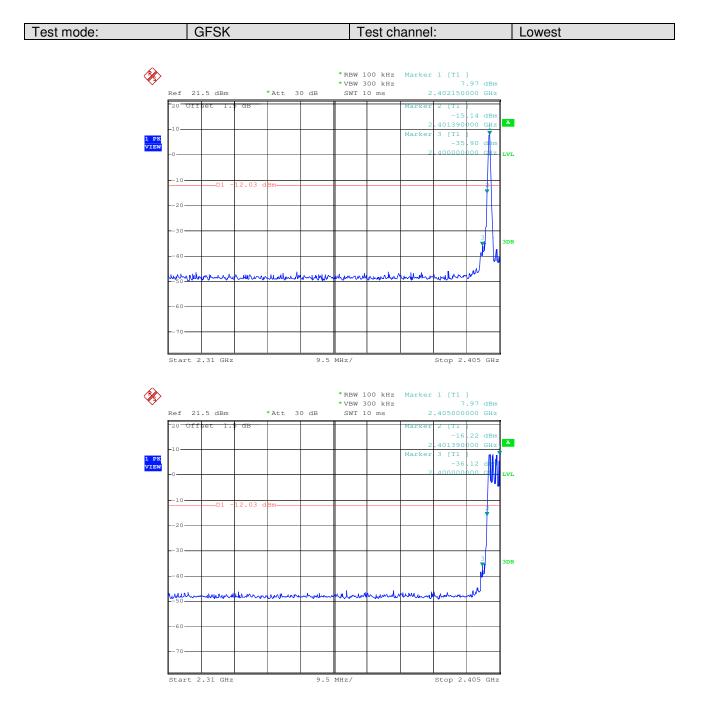
"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

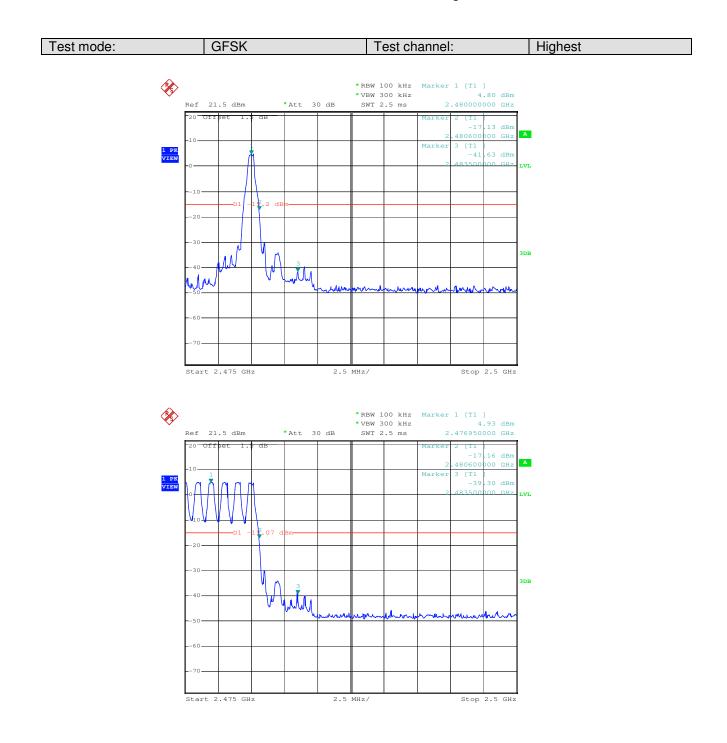
500 µs/

Report No.: SZEM111200543201 Page: 40 of 69

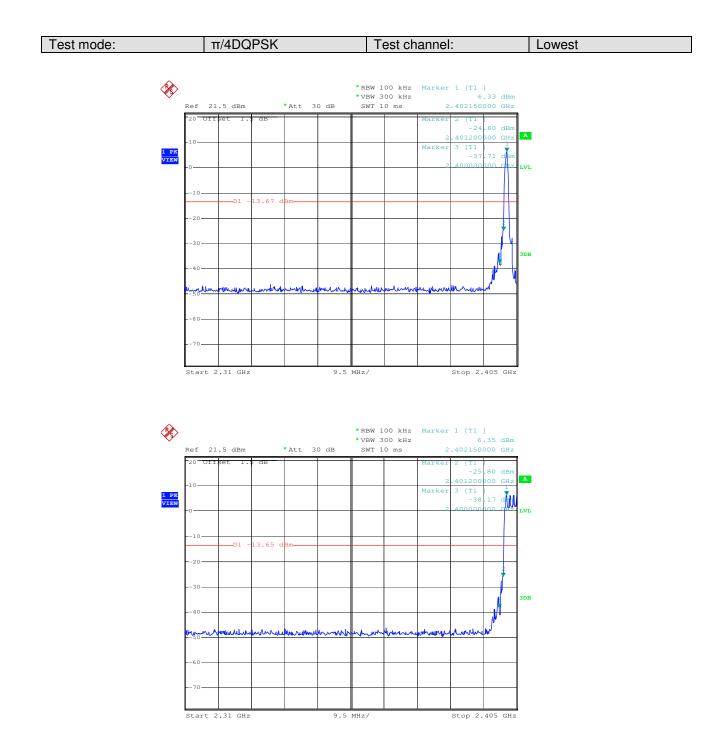
Report No.: SZEM111200543201 Page: 41 of 69

5.8 Band Edge


ele Balla Lage						
Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer F.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.					
Test Instruments:	Refer to section 4.8 for details.					
Test state:	Keep the EUT in transmitting mode at low channel, middle channel and high channel.					
Test results:	Pass					


Report No.: SZEM111200543201 Page: 42 of 69

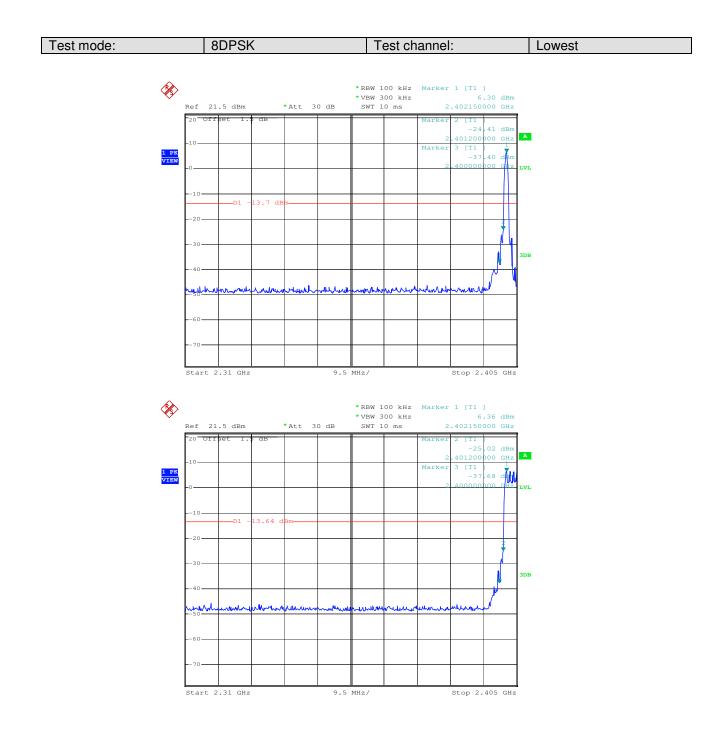
Test plot as follows:



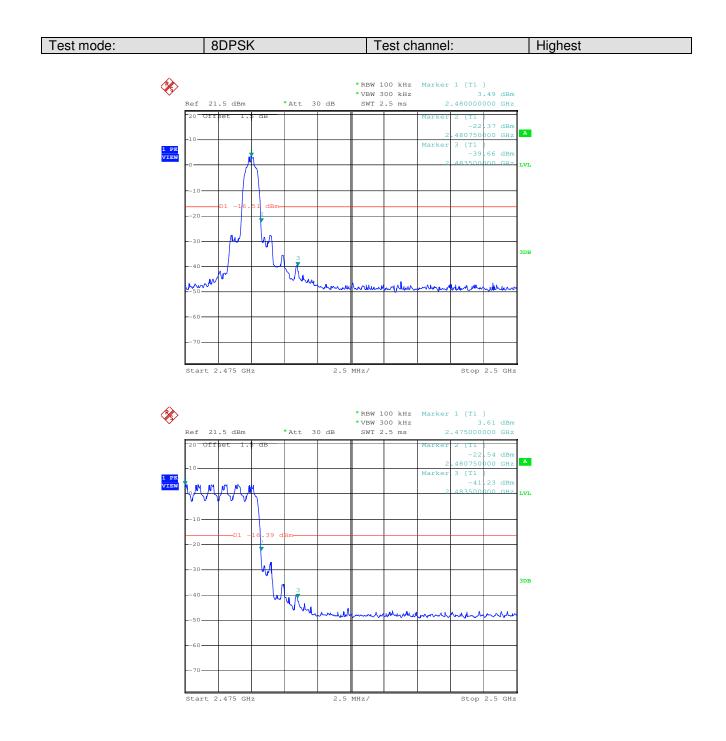
Report No.: SZEM111200543201 Page: 43 of 69



Report No.: SZEM111200543201 Page: 44 of 69



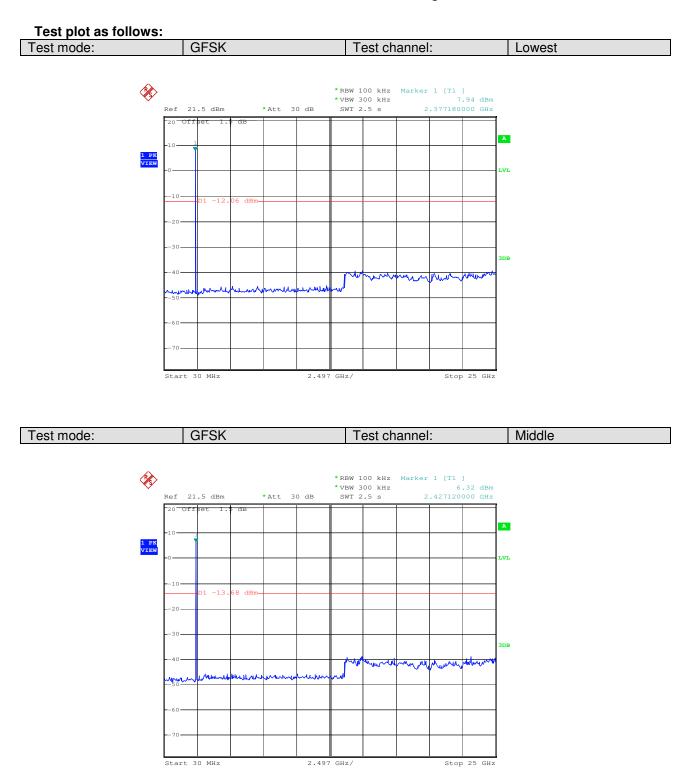
Report No.: SZEM111200543201 Page: 45 of 69



Report No.: SZEM111200543201 Page: 46 of 69

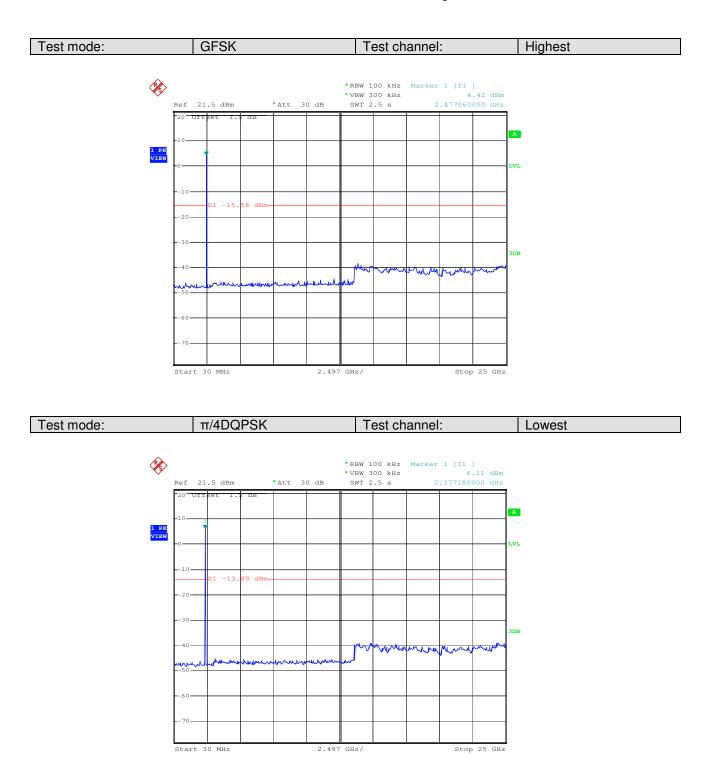
Report No.: SZEM111200543201 Page: 47 of 69

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

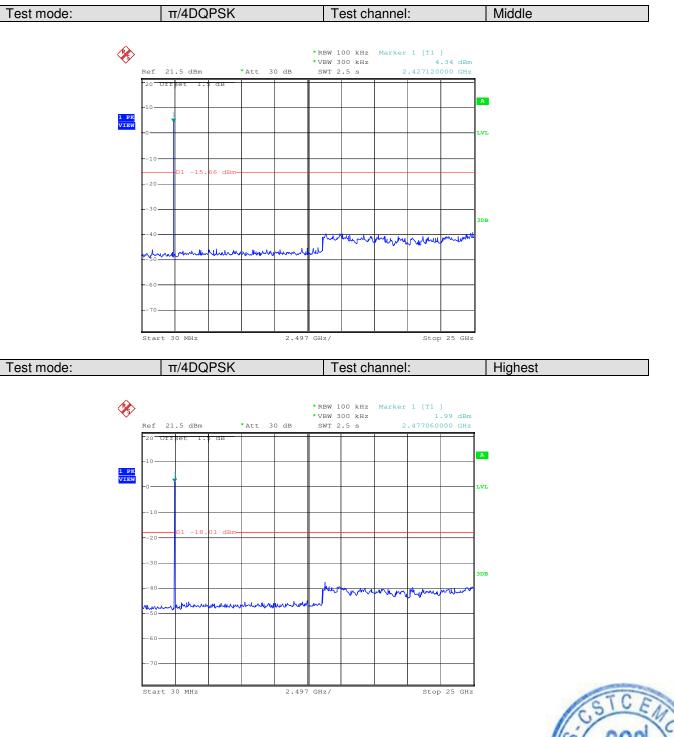

Report No.: SZEM111200543201 Page: 48 of 69

5.9 RF Antenna Conducted spurious emissions

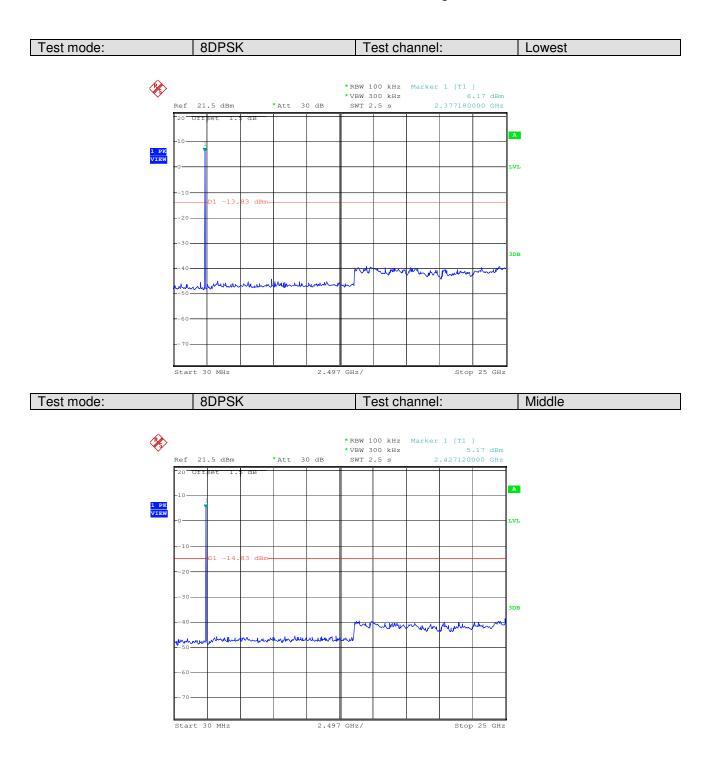
Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.					
Test Instruments:	Refer to section 4.8 for details.					
Test results:	Pass					



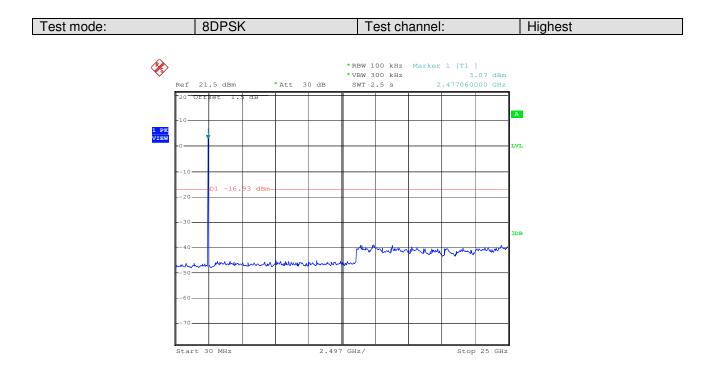
Report No.: SZEM111200543201 Page: 49 of 69



Report No.: SZEM111200543201 Page: 50 of 69


Report No.: SZEM111200543201 Page: 51 of 69

SCSTC EARCHAB SS SGS ABB STEN ZHEN



Report No.: SZEM111200543201 Page: 52 of 69

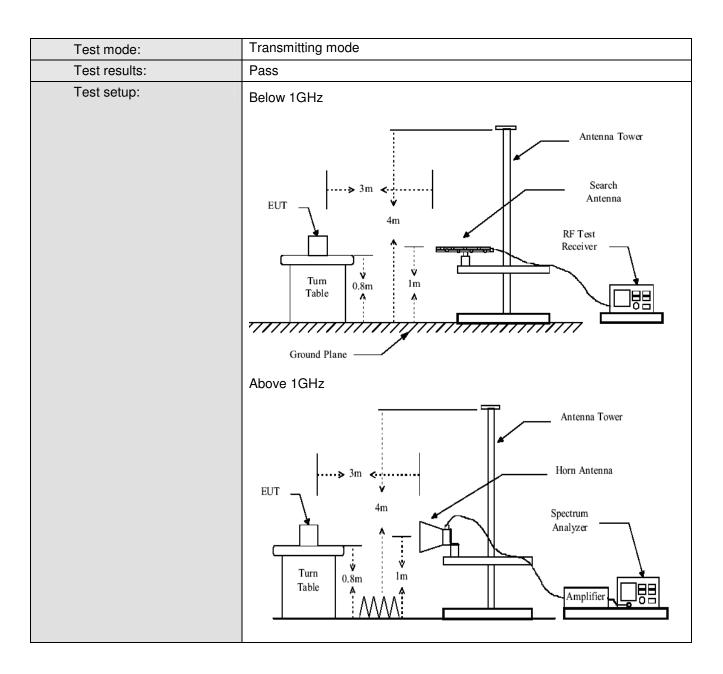
Report No.: SZEM111200543201 Page: 53 of 69

Report No.: SZEM111200543201 Page: 54 of 69

5.10Pseudorandom Frequency Hopping Sequence

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) requirement:									
	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.									
channel carrier frequencies hopping channel, whicheve than 125 mW. The system rate from a Pseudorandom on the average by each tra	pping systems operating in the 2400-2483.5 MHz band may have hopping that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the r is greater, provided the systems operate with an output power no greater shall hop to channel frequencies that are selected at the system hopping ordered list of hopping frequencies. Each frequency must be used equally nsmitter. The system receivers shall have input bandwidths that match the ths of their corresponding transmitters and shall shift frequencies in nsmitted signals.									
EUT Pseudorandom Frequ	iency Hopping Sequence									
outputs are added in a mod	sequence: $2^9 - 1 = 511$ bits									
Linear Feedback S	Shift Register for Generation of the PRBS sequence									
An example of Pseudorando	om Frequency Hopping Sequence as follow:									
0 2 4 6	62 64 78 1 73 75 77									
The system receivers have	ly on the average by each transmitter. input bandwidths that match the hopping channel bandwidths of their and shift frequencies in synchronization with the transmitted signals.									

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM111200543201 Page: 55 of 69

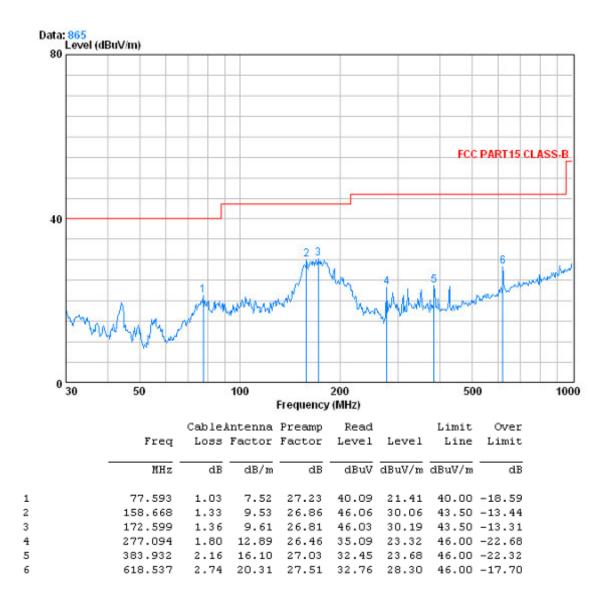
5.11 Radiated Emission

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205						
Test Method:	ANSI C63.10: 2009 and Public Notice DA 00-705								
Test Frequency Range:	30MHz to 25GHz								
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver setup:		, , , , , , , , , , , , , , , , , , ,			,				
	Frequency Detector RBW VBW Remark								
	30MHz-1GHz Quasi-peak 100kHz 300kHz Quasi-peak								
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
		Peak	1MHz	10Hz	Average Value				
Limit:					1				
	Freque		Limit (dBuV	- /	Remark				
	30MHz-8		40.0		Quasi-peak Value				
	88MHz-21		43.5		Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
			Quasi-peak Value Average Value						
	Above 1	GHz —			Peak Value				
Test Procedure:	 the ground a rotated 360 radiation. b. The EUT wa antenna, wh tower. c. The antenna ground to de horizontal a the measure d. For each su case and th meters and degrees to f e. The test-recession of the EUT was the limit specified Bas the limit speci	at a 3 meter se degrees to def as set 3 meters nich was moun a height is vari- etermine the m nd vertical pola ement. Ispected emiss en the antenna the rotatable ta find the maxim ceiver system v andwidth with I ion level of the ecified, then tes would be repor margin would b	mi-anechoic ermine the p away from ted on the to ed from one aximum valua- rizations of ion, the EUT was tuned able was turned able of the peal daximum Ho EUT in peal sting could b ted. Otherwip or re-tested	camber. T position of the the interference op of a varial meter to fo ue of the fie the antenna was arrane to heights fin hed from 0 of eak Detect F old Mode. < mode was e stopped a se the emissione by one	he highest ence-receiving able-height antenna ur meters above the eld strength. Both a are set to make ged to its worst rom 1 meter to 4 degrees to 360				
Test Instruments:	sheet. Refer to section	4.8 for details							

Report No.: SZEM111200543201 Page: 56 of 69

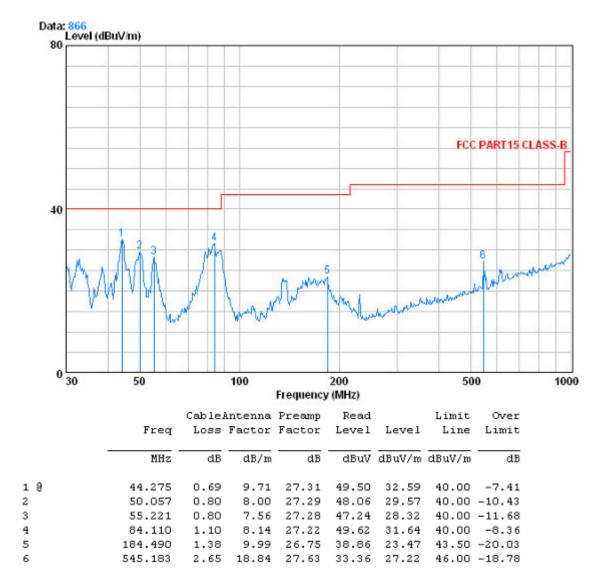
Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

Report No.: SZEM111200543201 Page: 57 of 69

5.11.1 Radiated emission below 1GHz


Horizontal:

Report No.: SZEM111200543201 Page: 58 of 69

Vertical:

Report No.: SZEM111200543201 Page: 59 of 69

Test mode:		GFSK	Tes	t channel:	Lowest	st Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1600.000	3.99	28.84	39.40	59.35	52.78	74.00	-21.22	Vertical
4804.000	7.44	34.70	41.63	50.82	51.33	74.00	-22.67	Vertical
6569.500	8.17	36.23	40.43	51.24	55.21	74.00	-18.79	Vertical
7206.000	8.72	35.88	39.87	49.35	54.08	74.00	-19.92	Vertical
10094.500	9.91	37.82	37.49	46.72	56.96	74.00	-17.04	Vertical
11927.500	11.24	38.83	38.24	47.27	59.10	74.00	-14.90	Vertical
1600.000	3.99	28.84	39.40	58.94	52.37	74.00	-21.63	Horizontal
2116.250	4.42	32.02	39.65	53.22	50.01	74.00	-23.99	Horizontal
4804.000	7.44	34.70	41.63	51.15	51.66	74.00	-22.34	Horizontal
7206.000	8.72	35.88	39.87	50.20	54.93	74.00	-19.07	Horizontal
10012.250	9.85	37.72	37.45	47.10	57.22	74.00	-16.78	Horizontal
11927.500	11.24	38.83	38.24	48.31	60.14	74.00	-13.86	Horizontal
Tost modo:		CECK	Too	t channol:	Lowost	Borr	ork	Avorago

5.11.2 Transmitter emission above 1GHz

Test mode:	GFSK	Test channel:	Lowest	Remark:	Average

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1600.000	3.99	28.84	39.40	58.21	51.64	54.00	-2.36	Vertical
4804.000	7.44	34.70	41.63	41.79	42.30	54.00	-11.70	Vertical
6569.500	8.17	36.23	40.43	36.22	40.19	54.00	-13.81	Vertical
7206.000	8.72	35.88	39.87	35.75	40.48	54.00	-13.52	Vertical
10094.500	9.91	37.82	37.49	32.86	43.10	54.00	-10.90	Vertical
11927.500	11.24	38.83	38.24	34.13	45.96	54.00	-8.04	Vertical
1600.000	3.99	28.84	39.40	56.92	50.35	54.00	-3.65	Horizontal
2116.250	4.42	32.02	39.65	34.60	31.39	54.00	-22.61	Horizontal
4804.000	7.44	34.70	41.63	41.59	42.10	54.00	-11.90	Horizontal
7206.000	8.72	35.88	39.87	35.68	40.41	54.00	-13.59	Horizontal
10012.250	9.85	37.72	37.45	32.22	42.34	54.00	-11.66	Horizontal
11927.500	11.24	38.83	38.24	34.10	45.93	54.00	-8.07	Horizontal

Report No.: SZEM111200543201 Page: 60 of 69

Test mode:		GFSK	Tes	t channel:	Middle	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1628.000	4.00	29.09	39.41	59.86	53.54	74.00	-20.46	Vertical
4882.000	7.48	34.59	41.68	50.03	50.42	74.00	-23.58	Vertical
6522.500	8.15	36.28	40.46	51.28	55.25	74.00	-18.75	Vertical
7697.500	9.24	36.00	39.46	49.93	55.71	74.00	-18.29	Vertical
10717.250	10.36	38.39	37.74	46.68	57.69	74.00	-16.31	Vertical
12597.250	11.53	39.44	38.52	47.87	60.32	74.00	-13.68	Vertical
1628.000	4.00	29.09	39.41	59.28	52.96	74.00	-21.04	Horizontal
2104.500	4.40	31.99	39.64	52.72	49.47	74.00	-24.53	Horizontal
4882.000	7.48	34.59	41.68	49.94	50.33	74.00	-23.67	Horizontal
7086.500	8.58	35.83	39.99	50.84	55.26	74.00	-18.74	Horizontal
9871.250	9.79	37.58	37.57	47.08	56.88	74.00	-17.12	Horizontal
12221.250	11.38	39.12	38.37	49.09	61.22	74.00	-12.78	Horizontal
Test mode:	1	GFSK	Tes	t channel:	Middle	Rem	ark:	Average
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1628.000	4.00	29.09	39.41	58.61	52.29	54.00	-1.71	Vertical
4882.000	7.48	34.59	41.68	43.60	43.99	54.00	-10.01	Vertical

(101112)	(dB)	(dB/m)	(dB)	(dBuV)	(aba v/m)	(aba v/m)	(dB)	
1628.000	4.00	29.09	39.41	58.61	52.29	54.00	-1.71	Vertical
4882.000	7.48	34.59	41.68	43.60	43.99	54.00	-10.01	Vertical
6522.500	8.15	36.28	40.46	36.23	40.20	54.00	-13.80	Vertical
7697.500	9.24	36.00	39.46	35.66	41.44	54.00	-12.56	Vertical
10717.250	10.36	38.39	37.74	32.30	43.31	54.00	-10.69	Vertical
12597.250	11.53	39.44	38.52	34.70	47.15	54.00	-6.85	Vertical
1628.000	4.00	29.09	39.41	57.80	51.48	54.00	-2.52	Horizontal
2104.500	4.40	31.99	39.64	38.47	35.22	54.00	-18.78	Horizontal
4882.000	7.48	34.59	41.68	41.82	42.21	54.00	-11.79	Horizontal
7086.500	8.58	35.83	39.99	36.18	40.60	54.00	-13.40	Horizontal
9871.250	9.79	37.58	37.57	32.63	42.43	54.00	-11.57	Horizontal
12221.250	11.38	39.12	38.37	34.06	46.19	54.00	-7.81	Horizontal

6722.250

7697.500

9918.250

12538.500

8.22

9.24

9.81

11.51

36.08

36.00

37.63

39.42

40.30

39.46

37.53

38.50

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEM111200543201 Page: 61 of 69

Test mode:	(GFSK	Test	t channel:	Highest	Rem	Remark: Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1654.000	4.04	29.21	39.42	59.47	53.30	74.00	-20.70	Vertical
4960.000	7.53	34.46	41.74	50.05	50.30	74.00	-23.70	Vertical
6428.500	8.12	36.20	40.55	50.74	54.51	74.00	-19.49	Vertical
7697.500	9.24	36.00	39.46	49.32	55.10	74.00	-18.90	Vertical
10094.500	9.91	37.82	37.49	46.63	56.87	74.00	-17.13	Vertical
12033.250	11.30	38.93	38.29	47.38	59.32	74.00	-14.68	Vertical
1654.000	4.04	29.21	39.42	59.67	53.50	74.00	-20.50	Horizontal
4960.000	7.53	34.46	41.74	50.14	50.39	74.00	-23.61	Horizontal
6722.250	8.22	36.08	40.30	51.10	55.10	74.00	-18.90	Horizontal
7697.500	9.24	36.00	39.46	49.78	55.56	74.00	-18.44	Horizontal
9918.250	9.81	37.63	37.53	47.45	57.36	74.00	-16.64	Horizontal
12538.500	11.51	39.42	38.50	48.61	61.04	74.00	-12.96	Horizontal
						•		
Test mode:		GFSK	Test	t channel:	Highest	Rem	ark:	Average
		-						
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
1654.000	4.04	29.21	39.42	56.40	50.23	54.00	-3.77	Vertical
4960.000	7.53	34.46	41.74	39.09	39.34	54.00	-14.66	Vertical
6428.500	8.12	36.20	40.55	37.19	40.96	54.00	-13.04	Vertical
7697.500	9.24	36.00	39.46	35.35	41.13	54.00	-12.87	Vertical
10094.500	9.91	37.82	37.49	32.86	43.10	54.00	-10.90	Vertical
12033.250	11.30	38.93	38.29	33.91	45.85	54.00	-8.15	Vertical
1654.000	4.04	29.21	39.42	58.70	52.53	54.00	-1.47	Horizontal
4960.000	7.53	34.46	41.74	38.40	38.65	54.00	-15.35	Horizontal

Remark: The disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

35.95

35.26

32.62

34.73

39.95

41.04

42.53

47.16

54.00

54.00

54.00

54.00

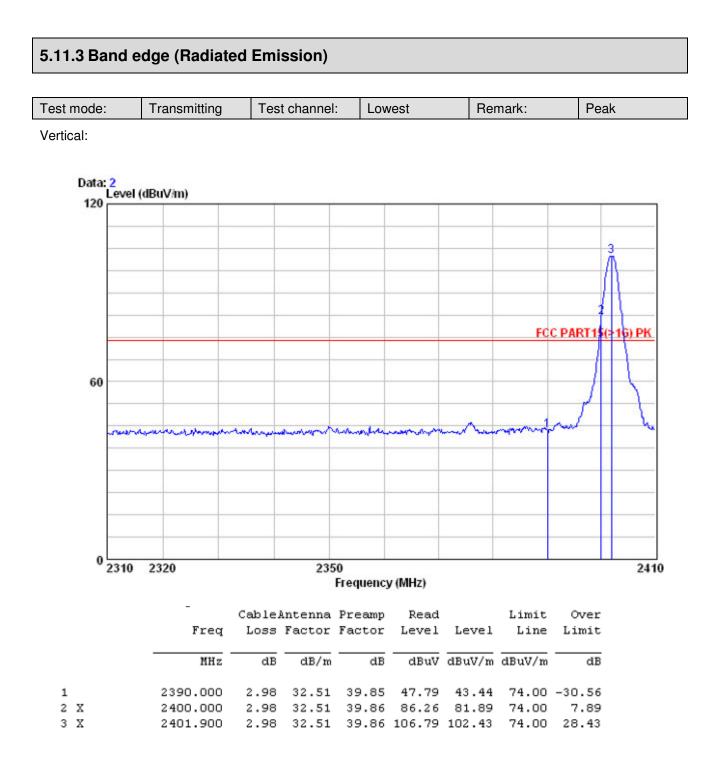
-14.05

-12.96

-11.47

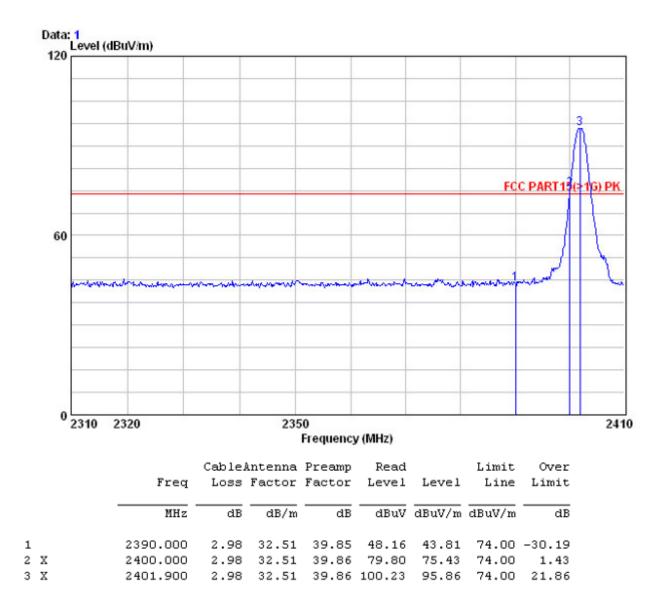
-6.84

Horizontal


Horizontal

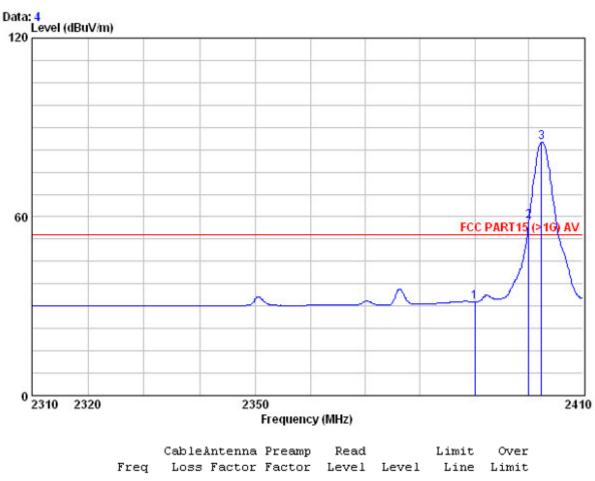
Horizontal

Horizontal


Report No.: SZEM111200543201 Page: 62 of 69

Report No.: SZEM111200543201 Page: 63 of 69

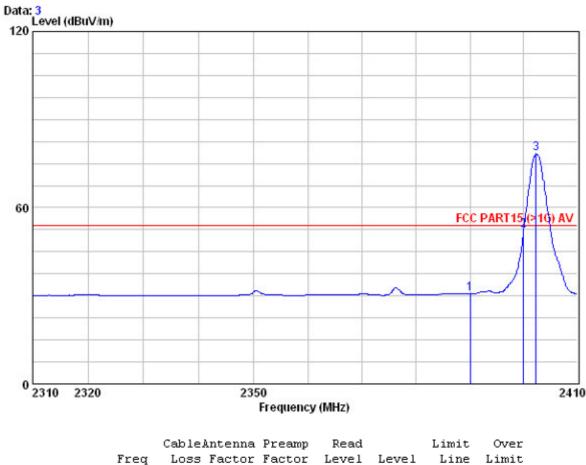
Horizontal:



Report No.: SZEM111200543201 Page: 64 of 69

Test mode: Tra	ansmitting Test c	hannel: Lowest	Remark:	Average
----------------	-------------------	----------------	---------	---------

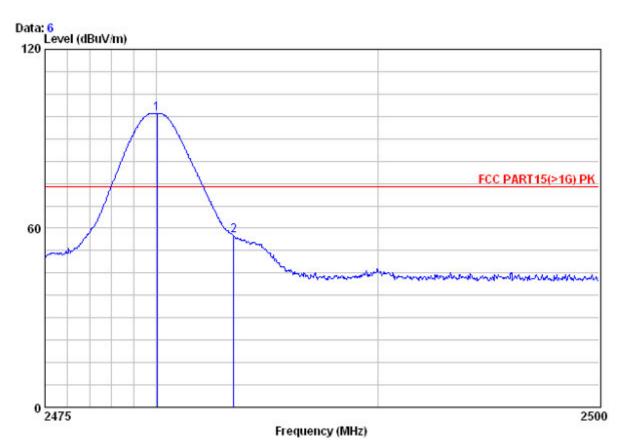
Vertical:



	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 X	2390.000 2400.000						54.00 54.00	
30							54.00	

Report No.: SZEM111200543201 Page: 65 of 69

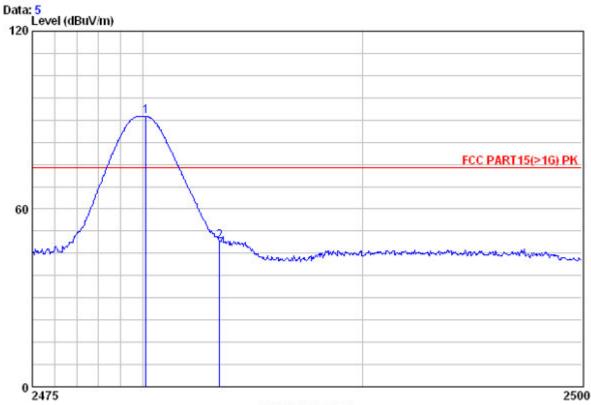
Horizontal:


	1209	1055	ractor	ractor	PEACT	PEAGT	PTHE	Limit
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
2	2390.000 2400.000 2402.300	2.98	32.51	39.85 39.86 39.86	56.83	52.46	54.00	-1.54

Report No.: SZEM111200543201 Page: 66 of 69

Test mode:TransmittingTest channel:HighestRemark:Peak	
---	--

Vertical:

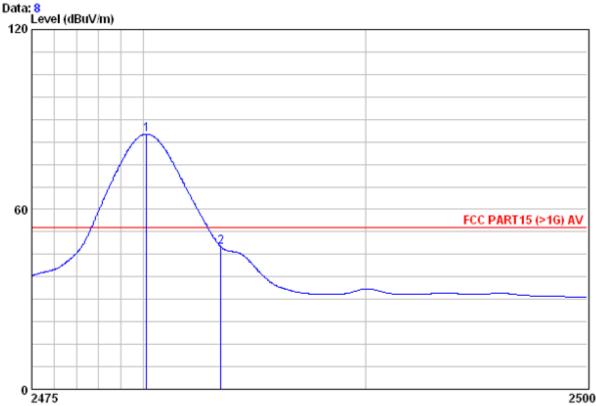


CableAntenna Preamp Read Over Limit Loss Factor Factor Freq Level Level Line Limit MHz dBuV dBuV/m dBuV/m dB dB/m dB dB 1 X 2480.050 3.03 32.67 39.92 102.72 98.50 74.00 24.50 2 2483.500 3.03 32.67 39.92 61.65 57.43 74.00 -16.57

Report No.: SZEM111200543201 Page: 67 of 69

Horizontal:

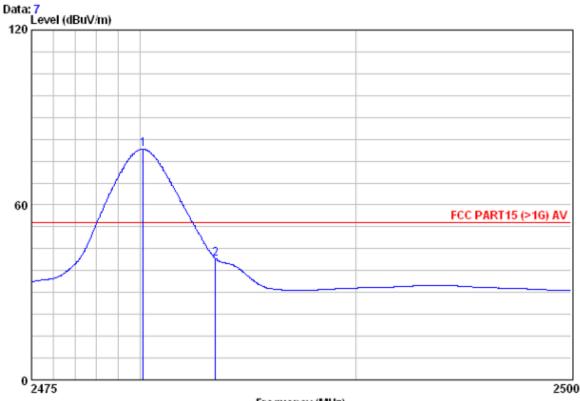
Frequency (MHz)


	Freq			Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 X 2	2480.150 2483.500			39.92 39.92				

Report No.: SZEM111200543201 68 of 69 Page:

Test mode: Transmitting Test channel: Highest Remark: Average

Vertical:


Frequency (MHz)

				Preamp			Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
10 2	2480.150 2483.500						54.00 54.00	

Report No.: SZEM111200543201 Page: 69 of 69

Horizontal:

Frequency (MHz)

		Freq			Preamp Factor			Limit Line	Over Limit
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2	x	2480.150 2483.500			39.92 39.92				