

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Report No.: SZEM140800417803

Fax: +86 (0) 755 2671 0594 Page : 1 of 19

FCC REPORT

Application No.: SZEM1408004178RF

Applicant: Philips Consumer Lifestyle

Manufacturer:IDT Technology LimitedFactory:IDT Technology Limited

Product Name: Activity Monitor with OHR

Model No.(EUT): DL8770

Add Model No.: DL8770/XX ("X" can be A-Z or 0-9 for different country version)

Trade Mark: Philips

Standards: 47 CFR Part 15B (2013)

Date of Receipt: 2014-08-07

Date of Test: 2014-08-15 to 2014-08-18

Date of Issue: 2014-09-05

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM140800417803

Page : 2 of 19

2 Version

Revision Record									
Version	Chapter	Date	Modifier	Remark					
00		2014-09-05		Original					

Authorized for issue by:		
Tested By	Back Huang)/Project Engineer	2014-08-18 Date
Prepared By	Mohrda Ii	2014-09-05
	(Molinda Li) /Clerk	Date
Checked By	Emen-Li	2014-09-05
	(Emen Li) /Reviewer	Date

Report No.: SZEM140800417803

Page : 3 of 19

2 Test Summary

Test Item	Test Requirement	Test method	Result	
Radiated Emission §	47 CFR Part 15B	ANSI C63.4 (2009)	PASS	
Conducted Emission	47 CFR Part 15B	ANSI C63.4 (2009)	PASS	
(150kHz to 30MHz)	47 OFN Part 13B	AINSI 003.4 (2009)		

Remark:

§ If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

Model No.: DL8770, DL8770/XX "X" can be A-Z or 0-9 for different country version Only the model DL8770 was tested, since the electrical circuit design, PCB layout, components used and internal wiring were identical for the above models, only different on exterior printing.

Report No.: SZEM140800417803

Page : 4 of 19

3 Contents

			Page
1	С	OVER PAGE	1
2	V	ERSION	2
2	Т	EST SUMMARY	3
3	С	CONTENTS	4
4	G	ENERAL INFORMATION	5
	4.1	CLIENT INFORMATION	5
	4.2	GENERAL DESCRIPTION OF EUT	5
	4.3	TEST ENVIRONMENT AND MODE	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	TEST LOCATION	
	4.6	TEST FACILITY	
	4.7 4.8	DEVIATION FROM STANDARDS	
	4.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.10		
5	Т	EST RESULTS AND MEASUREMENT DATA	10
	5.1	CONDUCTED EMISSIONS	10
	5.2	RADIATED EMISSION	14
6	Р	HOTOGRAPHS - EUT TEST SETUP	18
	6.1	CONDUCTED EMISSION TEST SETUP	18
	6.2	RADIATED EMISSION TEST SETUP	18
7	Р	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	19

Report No.: SZEM140800417803

Page : 5 of 19

4 General Information

4.1 Client Information

Applicant:	Philips Consumer Lifestyle			
Address of Applicant:	5/F., Philips Electronics Building, 5 Science Park East Avenue, Hong Kong			
Manufacturer:	IDT Technology Limited			
Address of Manufacturer:	Block C, 9/F., Kaiser Estate, Phase 1, 41 Man Yue Street, Hunghom, Kowloon, Hong Kong.			
Factory:	IDT Technology Limited			
Address of Factory:	Chentian Industrial Estate Xixiang, BaoAn, Shenzhen, PRC			

4.2 General Description of EUT

Product Name:	Activity Monitor with OHR
Model No.:	DL8770, DL8770/XX ("X" can be A-Z or 0-9 for different country version)
Trade Mark:	Philips
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	0dBi
Power Supply:	DC 3.8V 100mA (Li-Polymer Battery)
Test Voltage:	AC 120V 60Hz

Report No.: SZEM140800417803

Page : 6 of 19

4.3 Test Environment and Mode

Operating Environment:					
Temperature:	23.0 °C				
Humidity:	56 % RH				
Atmospheric Pressure:	1000 mbar				
Test mode:					
Communicate with PC mode	Build the connection between EUT and PC, keep data transmit				

4.4 Description of Support Units

The EUT has been tested independent unit.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM140800417803

Page : 7 of 19

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

• Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

Report No.: SZEM140800417803

Page : 8 of 19

4.10 Equipment List

	RE in Chamber				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN N/A		SEL0017	2015-06-10
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2015-05-16
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	Coaxial cable	SGS	N/A	SEL0027	2015-05-29
5	Coaxial cable	SGS	N/A	SEL0189	2015-05-29
6	Coaxial cable	SGS	N/A	SEL0121	2015-05-29
7	Coaxial cable	SGS	N/A	SEL0178	2015-05-29
8	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-10-24
9	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2014-10-24
10	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-16
11	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2014-10-24
12	Barometer	ChangChun	DYM3	SEL0088	2015-05-16
13	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
14	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24
15	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2014-10-24
16	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-16
17	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-06-04

Report No.: SZEM140800417803

Page : 9 of 19

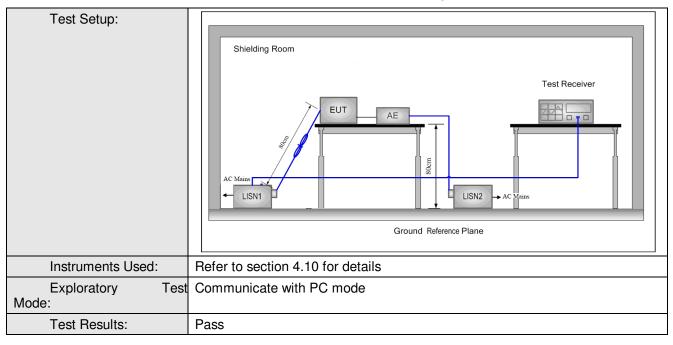
	Conducted Emission	n			
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	Shielding Room	ZhongYu Electron	ZhongYu Electron GB-88 SE		2015-06-10
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2014-10-24
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-16
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2014-11-10
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2014-11-10
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2014-11-10
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-16
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-29
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM140800417803

Page : 10 of 19

5 Test results and Measurement Data

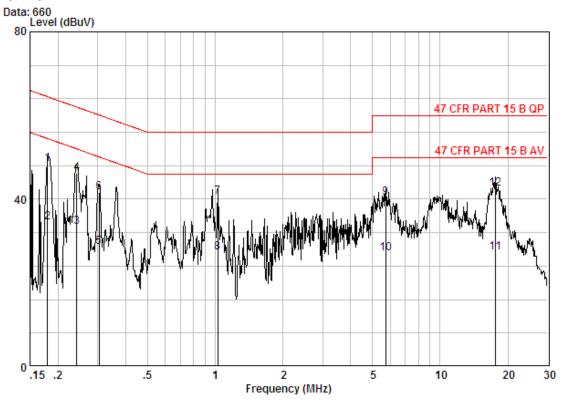

5.1 Conducted Emissions

Test Requirement:	47 CFR Part 15B					
Test Method:	ANSI C63.4: 2009					
Test frequency range:	150kHz to 30MHz					
Limit:	F (AUL.)	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test Procedure:	The mains terminal disturb room. On The FUT recessors and the second seco	-				
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear					
	impedance. The power cables of all other units of the EUT were contonant to a second LISN 2, which was bonded to the ground reference the same way as the LISN 1 for the unit being measured. A multiple so outlet strip was used to connect multiple power cables to a single LI					
	provided the rating of the l					
	The tabletop EUT was place ground reference plane. At the classical section is a second of the classical section.	nd for floor-standing ar				
	placed on the horizontal gr	•	former where The reserve			
	the EUT shall be 0.4 m fro vertical ground reference pane. The LISN unit under test and bonded on top of the ground refere closest points of the LISN associated equipment was 5) In order to find the maxim equipment and all of the interface cab	est was performed with a vertical ground reference plane. The rear JT shall be 0.4 m from the vertical ground reference plane. The all ground reference plane was bonded to the horizontal ground note plane. The LISN 1 was placed 0.8 m from the boundary of the order test and bonded to a ground reference plane for LISNs mount of the ground reference plane. This distance was between the st points of the LISN 1 and the EUT. All other units of the EUT and lated equipment was at least 0.8 m from the LISN 2. Her to find the maximum emission, the relative positions of the interface cables must be changed according to ANSI C63.4 on conducted measurement.				

Report No.: SZEM140800417803

Page : 11 of 19

Report No.: SZEM140800417803


Page : 12 of 19

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

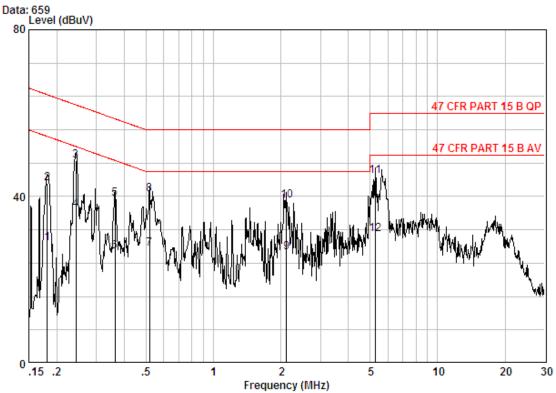
Live Line:

Site : Shielding Room

Condition : 47 CFR PART 15 B QP CE LINE

Job No. : 4178RF

Mode : Communicate with PC


	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.17961	0.02	9.70	38.64	48.36	64.50	-16.15	QP
2	0.17961	0.02	9.70	24.72	34.44	54.50	-20.06	Average
3	0.24165	0.02	9.70	23.67	33.38	52.04	-18.66	Average
4	0.24165	0.02	9.70	36.59	46.30	62.04	-15.74	QP
5	0.30509	0.01	9.71	18.87	28.58	50.10	-21.52	Average
6	0.30509	0.01	9.71	31.84	41.55	60.10	-18.55	QP
7 @	1.027	0.02	9.80	30.66	40.48	56.00	-15.52	QP
8	1.027	0.02	9.80	17.45	27.27	46.00	-18.73	Average
9	5.713	0.01	9.90	30.51	40.42	60.00	-19.58	QP
10	5.713	0.01	9.90	17.08	26.99	50.00	-23.01	Average
11	17.661	0.02	10.10	17.03	27.15	50.00	-22.85	Average
12	17.661	0.02	10.10	32.31	42.43	60.00	-17.57	QP

Report No.: SZEM140800417803

Page : 13 of 19

Neutral Line:

Site : Shielding Room

Condition : 47 CFR PART 15 B QP CE NEUTRAL

Job No. : 4178RF

Mode : Communicate with PC

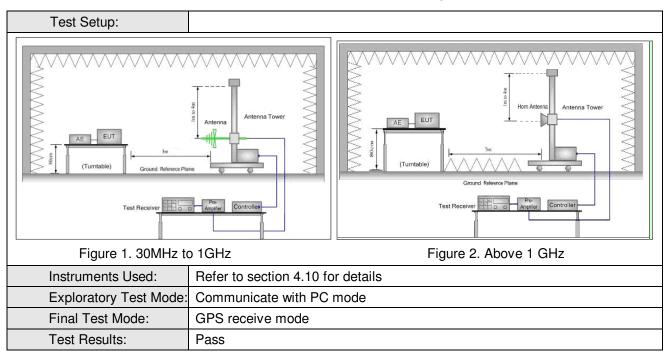
	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18152	0.02	9.70	19.05	28.77	54.42	-25.65	Average
2	0.18152	0.02	9.70	33.54	43.26	64.42	-21.16	QP
3 @	0.24293	0.02	9.70	38.86	48.58	62.00	-13.42	QP
4 @	0.24293	0.02	9.70	27.02	36.74	52.00	-15.26	Average
5	0.36338	0.01	9.77	29.65	39.43	58.65	-19.22	QP
6	0.36338	0.01	9.77	17.02	26.80	48.65	-21.85	Average
7	0.51824	0.01	9.80	17.69	27.50	46.00	-18.50	Average
8 @	0.51824	0.01	9.80	30.75	40.56	56.00	-15.44	QP
9	2.121	0.02	9.81	16.75	26.57	46.00	-19.43	Average
10	2.121	0.02	9.81	29.17	38.99	56.00	-17.01	QP
11 @	5.277	0.01	9.92	34.91	44.84	60.00	-15.16	QP
12	5.277	0.01	9.92	20.96	30.88	50.00	-19.12	Average

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM140800417803

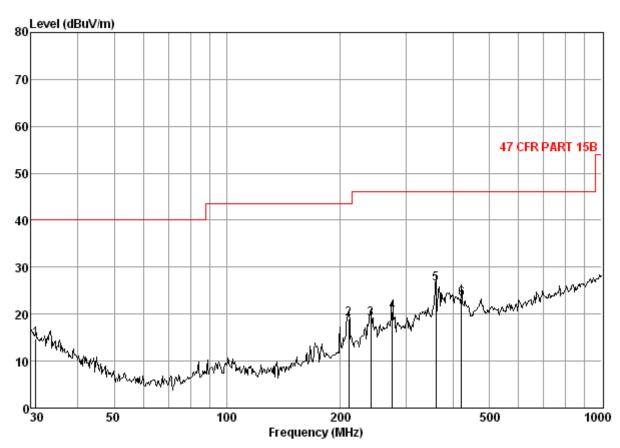
Page : 14 of 19


5.2 Radiated Emission

Test Requirement:	47 CFR Part 15B							
Test Method:	ANSI C63.4: 2009							
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver setup:		Frequency Detector			RBW	VBW	Remark	
		30MHz-1GHz	lz Quasi-peal		100kHz	300kHz	Quasi-peak Value	
		Above 1GHz	Peak		1MHz	3MHz	Peak Value	
Limit:		Freque	ncy	Limit (dBuV/m @3m)		(m @3m)	Remark	
		30MHz-88MHz 88MHz-216MHz			40.0		Quasi-peak Value	
					43.5		Quasi-peak Value	
		216MHz-960MHz		46.0)	Quasi-peak Value	
		960MHz-1GHz			54.0		Quasi-peak Value	
		Above 1GHz			54.0		Average Value	
					74.0		Peak Value	
Test Procedure:	a. b. c. d. g.	 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 						

Report No.: SZEM140800417803

Page : 15 of 19



Report No.: SZEM140800417803

Page : 16 of 19

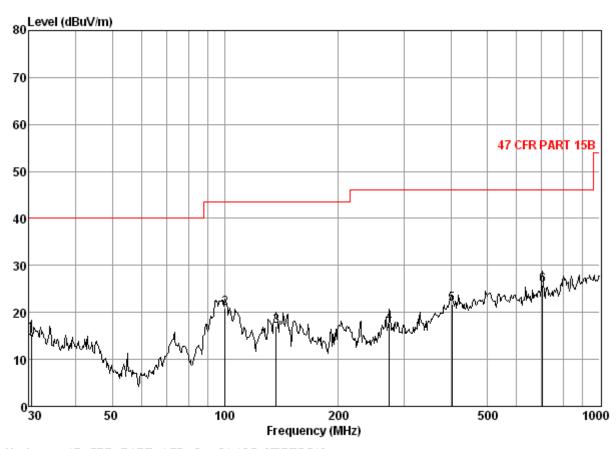
QP value: Below 1GHz

Horizontal

Condition: 47 CFR PART 15B 3m 3142C HORIZONTAL

Job No. : 4178RF

Mode : Communicate with PC


		LUSS	ľactor	Factor	Level		Limit Line	Limit
	MHz	₫B	dB/m	dB	dBuV	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	dB
2 2 3 2 4 2 5 3	30.85 211.53 241.68 276.12 360.45 422.06	1.47 1.63 1.80 2.09	10.80 12.03 12.85 14.78		33.37 31.96 32.38 36.44	18. 98 19. 06 20. 57 26. 44	43.50 46.00 46.00 46.00	-24.52 -26.94 -25.43

Report No.: SZEM140800417803

Page : 17 of 19

Vertical

Condition: 47 CFR PART 15B 3m 3142C VERTICAL

Job No. : 4178RF

Mode : Communicate with PC

dB dB/m	<u>dB</u>				
		шuv	dBuV/m	dBuV/m	dB
l. 20 9. 10 l. 29 7. 98 l. 79 12. 78 2. 21 16. 31	27. 20 26. 97 26. 47 27. 15	23. 74 37. 79 34. 69 29. 62 30. 28	15. 44 20. 89 16. 99 17. 72 21. 65	43.50 43.50 46.00 46.00	-24. 56 -22. 61 -26. 51 -28. 28 -24. 35
1	.20 9.10 .29 7.98 .79 12.78 .21 16.31	.20 9.10 27.20 .29 7.98 26.97 .79 12.78 26.47 .21 16.31 27.15	.20 9.10 27.20 37.79 .29 7.98 26.97 34.69 .79 12.78 26.47 29.62 .21 16.31 27.15 30.28	.20 9.10 27.20 37.79 20.89 .29 7.98 26.97 34.69 16.99 .79 12.78 26.47 29.62 17.72 .21 16.31 27.15 30.28 21.65	.20 9.10 27.20 37.79 20.89 43.50 .29 7.98 26.97 34.69 16.99 43.50 .79 12.78 26.47 29.62 17.72 46.00 .21 16.31 27.15 30.28 21.65 46.00

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM140800417803

Page : 18 of 19

6 Photographs - EUT Test Setup

Test Model No.: DL8770

6.1 Conducted Emission Test Setup

6.2 Radiated Emission Test Setup

Report No.: SZEM140800417803

Page : 19 of 19

7 Photographs - EUT Constructional Details

Test Model No.: DL8770

Refer to Report No. SZEM140800417801 for EUT external and internal photos.

