SRD-Testreport

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 4-2855-01-03/07 Date: 2007-12-02 Page 37 of 86

MPE calculation

These equations are generally accurate in the far field of an antenna but will over predict power density in the near field, where they could be used for making a "worst case" prediction.

$S = PG/4\pi R^2$

where S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units e.g. mW)

G = power gain of the antenna in the direction of interest relative to the isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units e.g. cm)

Or

$S = EIRP/4\pi R^2$

where EIRP = equivalent isotropically radiated power

Calculation:

(Calculated for max. EIRP)

EIRP: 23.5 dBm = 223.9 mW

calculated at distance of 20 cm:

power density = $223.9 / 4\pi 20^2 = 0.045 \text{ mW/cm}^2$

Limit:

1mW/ cm² is the reference level for general public exposure according to the OET Bulletin 65, Edition 97-01 Table 1.