

Report No. ATT2017SZ0417108F - Page 1 of 52 -

FCC PART 15 SUBPART C TEST REPORT					
	FCC PART 15.247				
FCC ID:	BOOKP-810-56S				
Compiled by		Jouk Vu			
(position+printed name+signature):	File administrators Jack Yu	ya. y c			
Supervised by		Jerry you			
(position+printed name+signature):	Technique principal Jerry You	JŰ			
Approved by		Conlin			
(position+printed name+signature):	Manager Can Liu	(Juli a			
Date of issue:	May 03, 2017				
Representative Laboratory Name .:	Shenzhen Asia Test Technology	Co.,Ltd.			
Address	7 / F, Xinwei Building, Gushu Villa Shenzhen, China	ge, Xixiang Town, Baoan District,			
Applicant's name	Unisen Limited				
Address:	Room 907, Fook Hong Industria Kowloon Bay, Kowloon, Hong Kor	al Bldg., 19 Sheung Yuet Road, ng			
Test specification:					
Standard:	FCC Part 15.247: Operation wit 2400-2483.5 MHz and 5725-5850	hin the bands 902-928 MHz,) MHz			
TRF Originator	Shenzhen Asia Test Technology	Co.,Ltd.			
Shenzhen Asia Test Technology Co This publication may be reproduced in Shenzhen Asia Test Technology Co.,L Test Technology Co.,Ltd. takess no re from the reader's interpretation of the r	.,Ltd.All rights reserved. whole or in part for non-commercia td.as copyright owner and source of sponsibility for and will not assume eproduced material due to its place	Il purposes as long as the If the material. Shenzhen Asia Iliability for damages resulting ment and context.			
Test item description	Bluetooth Keyboard				
Trade Mark	N/A				
Manufacturer	Unisen Limited				
Model/Type reference	KP-810-56S				
Listed Models	KP-810-56				
Modulation Type	GFSK				
Operation Frequency	From 2402MHz to 2480MHz				
Rating	DC 3.7V				
Result	PASS				

Report No. ATT2017SZ0417108F - Page 2 of 52 -

Contents

<u>1</u>	TEST STANDARDS	3
<u>2</u>	<u>SUMMARY</u>	4
2.1	General Remarks	4
2.2	Product Description	4
2.3	Equipment Under Test	4
2.4	EUT operation mode	4
2.5	Internal Identification of AE used during the test	5
2.6	Related Submittal(s) / Grant (s)	5
2.7	Modifications	5
<u>3</u>	TEST ENVIRONMENT	6
3.1	Address of the test laboratory	6
3.2	Test Facility	6
3.3	Environmental conditions	6
3.4	Test Conditions	6
3.5	Summary of measurement results	7
3.6	Equipments Used during the Test	8
<u>4</u>	TEST CONDITIONS AND RESULTS	10
4.1	AC Power Conducted Emission	10
4.2	Radiated Emission	13
4.3	Maximum Peak Output Power	24
4.4	20dB Bandwidth	25
4.5	Band Edge	27
4.6	Frequency Separation	30
4.7	Number of hopping frequency	31
4.8	Time of Occupancy (Dwell Time)	32
4.9	Spurious RF Conducted Emission	35
4.10	Pseudorandom Frequency Hopping Sequence	42
4.11	Antenna Requirement	43

Report No. ATT2017SZ0417108F - Page 3 of 52 -

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

Report No. ATT2017SZ0417108F - Page 4 of 52 -

SUMMARY 2

2.1 General Remarks

Date of receipt of test sample	:	Apr. 17, 2017
Testing commenced on	:	May 03, 2017
Testing concluded on	:	May 03, 2017

2.2 Product Description

The Unisen Limited 's Model: KP-810-56S or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Bluetooth Keyboard
Model Number	KP-810-56S
Listed Models	KP-810-56
Model differences	All models are the same circuit and RF module, except model name.
Antenna Type	PCB
Antenna Gain	0.87dBi(Calculated)
BT FCC Operation frequency	2402MHz-2480MHz
BT Modulation Type	GFSK(BT 3.0)
Hardware version	V1.0
Software version	V4.0
Bluetooth	Supported BT 3.0
Extreme temp. Tolerance	-10°C to +40°C
Extreme vol. Limits	3.2VDC to 4.2VDC (nominal: 3.7VDC)
adapter	N/A

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		lacksquare	Other (specified in blank bel	ow)	

DC 3.7V

2.4 EUT operation mode

The EUT has been tested under typical operating condition. There is BDR (Basic Data Rate) mode. The Applicant provides communication tools software to control the EUT for staying in continous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel . all test performed use new battery.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41	2443
02	2404	42	2444
03	2405	43	2445
04	2406	44	2446
05	2407	45	2447
06	2408	46	2448
07	2409	47	2449
08	2410	48	2450

Report No. ATT2017SZ0417108F - Page 5 of 52 -

09	2411	49	2451
10	2412	50	2452
11	2413	51	2453
12	2414	52	2454
13	2415	53	2455
14	2416	54	2456
15	2417	55	2457
16	2418	56	2458
17	2419	57	2459
18	2420	58	2460
19	2421	59	2461
20	2422	60	2462
21	2423	61	2463
22	2424	62	2464
23	2425	63	2465
24	2426	64	2466
25	2427	65	2467
26	2428	66	2468
27	2429	67	2469
28	2430	68	2470
29	2431	69	2471
30	2432	70	2472
31	2433	71	2473
32	2434	72	2474
33	2435	73	2475
34	2436	74	2476
35	2437	75	2477
36	2438	76	2478
37	2439	77	2479
38	2440	78	2480
39	2441		

2.5 Internal Identification of AE used during the test

AE ID*	Description
AE1	Notebook(M/N:B50)
AE2	adapter

AE2 Model: HS05001000ES INPUT: AC100-240V 50/60Hz 0.3A Max OUTPUT: DC 5.0V 1.0A

*AE ID: is used to identify the test sample in the lab internally.

2.6 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: BOOKP-810-56S filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7 Modifications

No modifications were implemented to meet testing criteria.

Report No. ATT2017SZ0417108F - Page 6 of 52 -

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen Asia Test Technology Co.,Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 348715

Shenzhen Asia Test Technology Co.,Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter fr om the FCC is maintained in our files.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4 Test Conditions

Toot Cooo	Test Conditions		
Test Case	Configuration	Description	
	Meas. Method	ANSI C63.10:2013	
20dB Emission	Test Environment	NTNV	
Bandwidth (EBW)	EUT Conf.	TM1_DH5_Ch00,TM1_DH5_Ch39,TM1_DH5_Ch78,	
	Meas. Method	ANSI C63.10:2013	
Carner Frequency	Test Environment	NTNV	
Separation	EUT Conf.	TM1_DH5_Hop	
Number of Henning	Meas. Method	ANSI C63.10:2013	
	Test Environment	NTNV	
Channel	EUT Conf.	TM1_DH5_Hop	
Time of Occupancy	Meas. Method	ANSI C63.10:2013	
	Test Environment	NTNV	
	EUT Conf.	TM1_DH5_Ch39	
Maximum Boak	Meas. Method	ANSI C63.10:2013	
Conducted Output Power	Test Environment	NTNV	
Conducted Odipat Power	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch39,TM1_DH3_Ch78	
Bandedge spurious	Meas. Method	ANSI C63.10:2013	
emission	Test Environment	NTNV	
(Conducted)	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch78,	
Conducted PE Sourious	Meas. Method	ANSI C63.10:2013	
	Test Environment	NTNV	
LINISSION	EUT Conf.	TM1_DH5_Ch00, TM1_DH5_Ch39, TM1_DH5_Ch78,	
Padiated Emissions in		ANSI C63.10:2013	
the Restricted Bands	Meas. Method	30 MHz to 1 GHz:	
THE RESTICIED DATIUS		Pre: RBW=100kHz; VBW=300kHz; Det. = Peak.	

Shenzhen Asia Test Technology Co.,Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page 7 of 52 -

		Final: RBW=120kHz; Det. = CISPR Quasi-Peak. 1 GHz to 26.5GHz: Average: RBW=1 MHz; VBW= 10Hz; Det. = Peak; Sweep-time= Auto; Trace = Single. Peak: RBW=1 MHz; VBW= 3 MHz; Det. = Peak; Sweep- time= Auto; Trace≥ MaxHold * 100.
Те	est Environment	NTNV
E	IT Conf	30 MHz-1GHz TM1_DH5_Ch00 (Worst Conf.).
EC		1-18 GHz: TM1_DH5_Ch00, TM1_DH5_Ch39,

Test Case	Test Conditions			
Test Case	Configuration	Description		
AC Power Line Conducted Emissions	Measurement Method	AC mains conducted.		
	Test Environment	NTNV		
	EUT Configuration	TM1_DH5_Ch39. (Worst Conf.).		

Note:

1. For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

3.5 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Recorded In Report		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest					complies
§15.247(e)	Power spectral density	-/-	-/-	-/-	-/-					Not applicable for FHSS
§15.247(a)(1)	Carrier Frequency separation	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK	🛛 Full	GFSK	🛛 Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	🛛 Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\mathbb{X}				complies
§15.247(d)	Band edge compliance conducted	GFSK	⊠ Lowest ⊠ Highest	GFSK	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.205	Band edge compliance radiated	GFSK	⊠ Lowest ⊠ Highest	GFSK	⊠ Lowest ⊠ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions conducted	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest					complies

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page 8 of 52 -

				r age 0 01 52							
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-	\boxtimes				complies	
§15.209(a)	TX spurious Emissions radiated < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes				complies	
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes				complies	

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed
- 3. We tested all test mode and recorded worst case in report

3.6 Equipments Used during the Test

Equipment No.	Instrument	Manufacturer	Model Name	Serial Number	Specification	Cal. Data	calibration due dates
1	Semi- anechoic chamber	Changzhou Chengyu	EC3088	N/A	9*6*6m	10/25/2016	10/24/2017
2	Loop Antenna	ARA	PLA- 1030/B	1029	9kHz-30 MHz	03/20/2017	03/19/2018
3	Broadband antenna	R&S	VULB 9160	VULB91 60- 516	30MHz- 1500 MHz	10/25/2016	10/24/2017
4	Horn antenna	R&S	BBHA 9120D	10087	1GHz-18GH z	06/05/2016	06/04/2016
5	SHF-EHF Horn	SCHWARZBECK	BBHA9170	BBHA9170367	15GHz- 26.5GH z	12/03/2016	12/02/2017
6	Test receiver	R&S	ESCI	101686	9KHz-3GHz	10/25/2016	10/24/2017
7	EMI Measuring Receiver	R&S	ESR	101660	9KHz- 40GHz	10/25/2016	10/24/2017
8	Multi- device controller	MF	MF-7868	MF78680 8762	N/A	10/25/2016	10/24/2017
9	Amplifier	EM	EM- 30180	060538	1GHz-18GH z	10/25/2016	10/24/2017
10	Amplifier	Schwarzbeck	BBV 9475	BBV 9475- 663	1GHz-18GH z	06/05/2016	06/04/2017
11	Spectrum Analyzer	agilent	E4440B	US44300368	9kHz- 26.5GH z	06/05/2016	06/04/2017

Report No. ATT2017SZ0417108F - Page 9 of 52 -

12	Test receiver	R&S	ESCI	101689	9KHz-3GHz	10/25/2016	10/24/2017		
13	LISN	R&S	NSLK81 26	8126466	9k-30MHz	10/25/2016	10/24/2017		
14	LISN	Narda	L2-16B	5589756	9k-30MHz	10/25/2016	10/24/2017		
15	Power Meter	Anritsu	ML2495A	N/A	40MHz	10/25/2016	10/24/2017		
16	Power sensor	Anritsu	MA2411B	N/A	40MHz	10/25/2016	10/24/2017		
17	Radiated Cable 1#	FUJIKURA	5D-2W	01	30MHz- 1GHz	10/25/2016	10/24/2017		
18	Radiated Cable 2#	FUJIKURA	10D2W	02	1GHz - 25GHz	10/25/2016	10/24/2017		
19	Conducted Cable 1#	FUJIKURA	1D-2W	01	9KHz- 30MHz	10/25/2016	10/24/2017		
20	SMA Antenna connector	Dosin	Dosin- SMA	N/A	N/A	10/25/2016	10/24/2017		
Note: The S	Note: The SMA antenna connector is soldered on the PCB board in order to perform conducted tests and this								
SMA antenr	na connector is	s listed in the equip	ment list.						
The Cal.Inte	erval was one	year							

Report No. ATT2017SZ0417108F - Page 10 of 52 -

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013
- 4. All support equipments received AC power from a second LISN, if any.
- 5. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 6. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 7. During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Eroguopov	Maximum RF Line Voltage (dBµV)							
(MHz)	CLA	SS A	CLASS B					
	Q.P.	Ave.	Q.P.	Ave.				
0.15 - 0.50	79	66	66-56*	56-46*				
0.50 - 5.00	73	60	56	46				
5.00 - 30.0	73	60	60	50				

* Decreasing linearly with the logarithm of the frequency

Report No. ATT2017SZ0417108F - Page 11 of 52 -

T€	est M	ode:	TM1	_DH5_Ch	39. (Worst	Conf.)		Phase	e:	Line
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comm	ent
1		0.3500	32.33	10.16	42.49	58.96	-16.47	QP		
2		0.3500	12.60	10.16	22.76	48.96	-26.20	AVG		
3		8.6260	24.04	10.20	34.24	60.00	-25.76	QP		
4		8.7140	7.28	10.20	17.48	50.00	-32.52	AVG		
5	*	14.5940	45.35	1.39	46.74	60.00	-13.26	QP		
6		14.5940	17.54	1.39	18.93	50.00	-31.07	AVG		

Remark: Factor = LISN Factor + Cable Loss+ Pulse limiter Factor.

Report No. ATT2017SZ0417108F - Page 12 of 52 -

Test N	/lode:	TM1_DH5_Ch39. (Worst Conf.).				Phase):	Neutral	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comm	ent
1	0.1539	32.50	11.84	44.34	65.78	-21.44	QP		
2	0.1660	16.31	11.61	27.92	55.15	-27.23	AVG		
3	0.2740	30.96	10.82	41.78	60.99	-19.21	QP		
4	0.2740	13.62	10.82	24.44	50.99	-26.55	AVG		
5	11.8059	10.10	10.31	20.41	50.00	-29.59	AVG		
6 *	11.8299	32.49	10.31	42.80	60.00	-17.20	QP		

Remark: Factor = LISN Factor + Cable Loss+ Pulse limiter Factor.

Report No. ATT2017SZ0417108F - Page 13 of 52 -

4.2 Radiated Emission

TEST CONFIGURATION

Frequency range above 1GHz-25GHz

TEST PROCEDURE

Shenzhen Asia Test Technology Co.,Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page 14 of 52 -

- 1. The EUT was placed on a turn table which is 0.8m(1.5m above 1G) above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9 KHz to 25GHz.
- 6. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

7. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	3

8. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP		
30MHz-1GHz	0MHz-1GHz RBW=120KHz/VBW=1000KHz,Sweep time=Auto			
	Peak Value: RBW=1MHz/VBW=3MHz,	Peak		
	Sweep time=Auto	(Receiver)		
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=3MHz,	Average		
	Sweep time=Auto	(Receiver)		

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	-18.1

Transd=AF +CL-AG

Report No. ATT2017SZ0417108F - Page 15 of 52 -

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

1. The radiated measurement are performed the each channel (low/mid/high) at all Packet type (DH1, DH3 and DH5) for modulation type (GFSK), recorded worst case at GFSK_DH5_Low channel (Channel 00) for below 1GHz and GFSK_DH5_Low channel (Channel 00), GFSK_DH5_Middle channel (Channel 39), GFSK_DH5_High channel (Channel 78) for above 1G.

2. ULTRA-BROADBAND ANTENNA for the radiation emission test below 1G.

3. HORN ANTENNA for the radiation emission test above 1G.

4. "---" means not recorded as emission levels lower than limit.

5. Margin= Limit - Level

For 9KHz to 30MHz

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result
12.45	43.14	69.54	26.40	QP	PASS
24.41	42.68	69.54	26.86	QP	PASS

Report No. ATT2017SZ0417108F - Page 16 of 52 -

For 30MHz to 1000MHz

Report No. ATT2017SZ0417108F - Page 17 of 52 -

Note:

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Measurement Level = Reading Level + Factor

Report No. ATT2017SZ0417108F - Page 18 of 52 -

For 1GHz to 25GHz

Note:We tested GFSK Mode and , rcorded the worst case at the GFSK (DH5) Mode.

(a) Antenna polarization: Horizontal

`80.0 dBu∀/m

No.	Mk	. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		Ν	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804	.000	57.14	-4.86	52.28	74.00	-21.72	peak			
2	*	4804	.000	46.32	-4.86	41.46	54.00	-12.54	AVG			
3		7206	.000	53.78	-0.58	53.20	74.00	-20.80	peak			
4		7206	.000	41.16	-0.58	40.58	54.00	-13.42	AVG			
5		9608	.000	45.66	4.81	50.47	74.00	-23.53	peak			
6		9608	.000	33.72	4.81	38.53	54.00	-15.47	AVG			
7		1100	5.00	38.64	8.52	47.16	74.00	-26.84	peak			
8		1100	5.00	30.24	8.52	38.76	54.00	-15.24	AVG			

Report No. ATT2017SZ0417108F - Page 19 of 52 -

(b) Antenna polarization: Vertical 80.0 dBuV/m

1 3 5 7																			
Image: No. Mk. Freq. Earling Correct Factor Massure- ment Limit Over Attenna Height Table Degree 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 * 4804.000 58.82 -4.86 53.96 74.00 -20.89 peak 3 7206.000 42.21 -0.58 53.11 74.00 -23.74 peak 4 7206.000 42.21 -0.58 41.63 54.00 -11.33 AVG 3 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 34.26 4.81 39.07 54.00 -13.73 AVG 7 11540.00 39.288 10.03 47.00 -23.46 p																	Limit:	_	
Image: No. Image:	L																ANC.		
Image: No. Mk. Freq. Reading Level Correct Factor Measure-factor Image: Level Correct Factor Measure-factor Antenna Table Degree Comment	Г																ATU.		Л
Image: No. Mk. Freq. Reading Level Correct Factor Measure-ment Limit Over Antenna Table Degree M42 4 4 4 6 53.96 74.00 18850.00 18850.00 21400.00 26500.00 MHz 1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz No. Mk. Freq. Level Factor Measure-ment Limit Over Antenna Table 2 4 404.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 -	-																		-
Image: No. Mk. Freq. Reading Ho Correct Factor Measure- ment Limit Limit Over Antenna Height Table Degree MHz dBuV dB dBuV/m dB Detector cm degree Comment 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 4 8604.000 47.53 -4.86 53.96 74.00 -20.04 peak 3 7206.000 45.73 -4.86 53.11 74.00 -20.49 peak 4 7206.000 45.73 -4.86 54.00 -11.33 AVG 5 9608.000 45.73 4.81 39.07 54.00 -12.37 AVG 7 11540.00 32.28 40.27 54.00 -14.93 AVG 7 11540.00 32.88 10.39 47.50 -24.84 peak 8 11540.00 32.88 10.39 47.50 74.00 -23.46 peak <	I																		
40 1 3 7 -																			
Image: No. Mk. Freq. Reading Correct Reading Measure- Factor Image: No. Mic. Freq. Reading Correct Reading Measure- Correct MHz Measure- BuV Measure- Measure- MHz Measure- BuV Measure- Measure- Measure- Measure- Measure- Measure- Measure- Measure- Measure- Measure- Measure- MHz Measure- BuV Measure- Measure																			
40 1 3 7 2 4 2 2 2 4 2 2 4 2 4 2 4 2 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4					_											_			1
40 X 5 7 Image: Constraint of the second sec				1		3													1
40 X 7 X 7 X 7 X	- F				ŕ – –	X		- 5	;							_			-
40 X								X	<	7									
40 3 4										x									
40 *				1 2	2					1									1
40 7 5 X Image: state of the st				<pre>></pre>	ĸ	J		e e		8									1
All All <td>40</td> <td></td> <td></td> <td></td> <td></td> <td>ſ</td> <td>•</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	40					ſ	•			*									-
0.0 0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>								(•										1
0.0																			1
0.0 0																			1
0.0 6100.000 3550.00 6100.000 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz 1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over Antenna Height Table Degree 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 42.21 -0.58 53.11 74.00 -20.89 peak 4 7206.000 45.73 4.81 50.54 74.00 -23.46 peak 5 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak																_			-
0.0 0																			1
0.0 .																			1
0.0 0.0 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 HIz No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over Antenna Table Degree 26500.00 MHz MHz dBuV dB dBuV/m dB Detector cm degree Comment 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG																			1
0.0	i i																		1
0.0 0.0 6100.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over Antenna Height Table Degree Degree Correct Measure- ment Measure- Limit Over Antenna Height Table Degree Degree Correct Measure- ment Measure- Limit Over Antenna Height Table Degree Degree Correct Measure- ment Measure- Measure- ment Antenna Height Table Degree Degree Correct Measure- Me																			1
0.0 0.0 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz No. Mk. Freq. Level Correct Factor Measure- ment Limit Over Antenna Height Table Degree MHz dBuV dB dBuV/m dB Detector cm degree Comment 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak Peak 2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -23.46 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG <td></td> <td>1</td>																			1
0.0 6100.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over Antenna Height Table Degree 26500.00 MHz MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Correct 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak V																			_
0.0 1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over Antenna Height Table Degree Degree 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak degree Corment degree Corment <																			1
0.0 0.0 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz No. Mk. Freq. Level Correct Factor Measure- ment Limit Over Antenna Height Table Degree Degree Comment Limit Over Antenna Height Table Degree Degree Comment Limit Over Height Height Height Limit Comment Limit Comment Limit Comment Limit Comment Limit Comme																			1
1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz No. Mk. Freq. Level Factor Measurement Limit Over Antenna Table Degree Antenna Table Degree 26500.00 MHz MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 3 7206.000 47.53 -4.86 42.67 54.00 -11.33 AVG <t< th=""><th>0.0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th></t<>	0.0																		1
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over Antenna Height Table Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 <th>10</th> <th><u>nn nnn</u></th> <th>255</th> <th>0.00</th> <th>E10</th> <th><u> </u></th> <th>0050</th> <th>1 00</th> <th>112</th> <th></th> <th>12750</th> <th>00 163</th> <th></th> <th>10050.0</th> <th>0 21</th> <th>400.00</th> <th>1</th> <th>26200.00</th> <th>160-</th>	10	<u>nn nnn</u>	255	0.00	E10	<u> </u>	0050	1 00	112		12750	00 163		10050.0	0 21	400.00	1	26200.00	160-
No. Mk. Freq. Level Correct Factor Measure- ment Limit Over Antenna Height Table Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 <td< th=""><th></th><th>00.000</th><th>222</th><th>0.00</th><th>010</th><th>0.00</th><th>0050</th><th></th><th>112</th><th>00.00</th><th>13730</th><th>0.00 103</th><th>00.00</th><th>10000.0</th><th>0 21</th><th>400.00</th><th>,</th><th>20300.00</th><th>JMNZ</th></td<>		00.000	222	0.00	010	0.00	0050		112	00.00	13730	0.00 103	00.00	10000.0	0 21	400.00	,	20300.00	JMNZ
No. Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dB Detector cm degree Comment 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 </th <th></th> <th></th> <th></th> <th></th> <th>Rea</th> <th>ding</th> <th>Corr</th> <th>ect</th> <th>Meas</th> <th>sure-</th> <th></th> <th></th> <th></th> <th>Anten</th> <th>ina Ta</th> <th>able</th> <th></th> <th></th> <th></th>					Rea	ding	Corr	ect	Meas	sure-				Anten	ina Ta	able			
MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG	No	Mk	F	rea	ا م	vel	Fac	tor	me	nt	Limit	Over		Heial	nt De	aree			
MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree Comment 1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG				4.	20	ver	1 40		ine					rieigi		gree			
1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG			Ν	ИНz	dB	uV	dE	3	dBuV	′/m	dBuV/m	ı dB	Detector	cm	de	gree	Comment	i	
1 4804.000 58.82 -4.86 53.96 74.00 -20.04 peak 2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG																-			
2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG	1	4	804	.000	58	.82	-4.8	36	53.9	96	74.00	-20.04	peak						
2 * 4804.000 47.53 -4.86 42.67 54.00 -11.33 AVG 3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG										_									
3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG	2	* 4	804	.000	47	.53	-4.8	36	42.6	57	54.00	-11.33	AVG						
3 7206.000 53.69 -0.58 53.11 74.00 -20.89 peak 4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG					50	~~			50		74.00								
4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG	3	-	206	.000	53	.69	-0.5	58	53.1	11	74.00	-20.89	peak						
4 7206.000 42.21 -0.58 41.63 54.00 -12.37 AVG 5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG		-		000	40	24		- 0	44.0		E 4 00	40.07	A) (O						
5 9608.000 45.73 4.81 50.54 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG	4		206	.000	42	.21	-0.9	58	41.6	53	54.00	-12.37	AVG						
5 9608.000 43.73 4.81 30.34 74.00 -23.46 peak 6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG	5		000	000	15	73	1	21	50 5	1	74.00	22.46	naak						
6 9608.000 34.26 4.81 39.07 54.00 -14.93 AVG 7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG	Э		0000	.000	40	.13	4.0		50.5	74	74.00	-23.40	реак						
7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG	6	6	2026	000	31	26	1	21	30 0	17	54 00	-1/ 03							
7 11540.00 37.14 10.39 47.53 74.00 -26.47 peak 8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG	0		,000	.000	54	.20	4.0		55.0		54.00	-14.00	AvG						
8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG	7		154	0 00	37	14	10 (39	47 5	53	74 00	-26 47	peak						
8 11540.00 29.88 10.39 40.27 54.00 -13.73 AVG	'		104	2.00	01		.0.		47.0		74.00	20.41	peak						
	8		154	0.00	29	.88	10.3	39	40.2	27	54.00	-13.73	AVG						

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Lowest channel: 2402 MHz

Data rate: 1Mbps

Report No. ATT2017SZ0417108F - Page 20 of 52 -

(a) Antenna polarization: Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	2	1882.000	56.14	-4.73	51.41	74.00	-22.59	peak			
2	4	1882.000	44.38	-4.73	39.65	54.00	-14.35	AVG			
3	7	7323.000	53.67	-0.30	53.37	74.00	-20.63	peak			
4	7	7323.000	41.28	-0.30	40.98	54.00	-13.02	AVG			
5	ç	9764.000	49.34	5.26	54.60	74.00	-19.40	peak			
6	* (9764.000	37.54	5.26	42.80	54.00	-11.20	AVG			
7		12654.30	35.33	13.40	48.73	74.00	-25.27	peak			
8		12654.30	28.87	13.40	42.27	54.00	-11.73	AVG			

Report No. ATT2017SZ0417108F - Page 21 of 52 -

(b) A 80.0	ntenr dBu	na polariz V/m	ation: Ver	tical									
Γ											Limit:	-	
- F											AVG:		
40			1 3 × 5 2 4 × 5		5 		/ / /						
0.0													
100	0.000	3550.00	6100.00	8650.00	11200.00	13750	.00 163	00.00	18850.00	21400.00		26500.00 M	4Hz
No.	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Commer	nt	
1	2	\$82.000	58.72	-4.73	53.99	74.00	-20.01	peak					
2	4	1882.000	47.33	-4.73	42.60	54.00	-11.40	AVG					
3	7	7323.000	54.64	-0.30	54.34	74.00	-19.66	peak					
4	7	7323.000	42.68	-0.30	42.38	54.00	-11.62	AVG					
5	ç	9764.000	48.67	5.26	53.93	74.00	-20.07	peak					
6	ç	9764.000	36.72	5.26	41.98	54.00	-12.02	AVG					
7	1	4125.10	34.97	14.71	49.68	74.00	-24.32	peak					
8	*	4125.10	29.88	14.71	44.59	54.00	-9.41	AVG					-

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier Middle Channel: 2441 MHz Data rate: 1Mbps

Report No. ATT2017SZ0417108F - Page 22 of 52 -

80.0	dBu	V/m															_
- F															Limit:	_	-
H								_							AVG:		
40			1 X 2 X		3 4 ×		5 X 6 X	7	, , , , , , , , , , , , , , , , , , ,								
0.0	0.000	3550.00		6100.1	00	8650.0	0 11	200.00	13750	0.00 16	;300.00	18850.00	214	00.00		26500.0)0 MH2
				Read	ina	Correc	t Mea	asure-				Antenn	a Tak	ole			
No.	Mk.	Freq		Leve	əl	Factor	r m	ent	Limit	Over		Height	Deg	ree			
		MHz		dBu	V	dB	dBu	ıV/m	dBuV/m	ı dB	Detector	cm	degi	ree	Comment		
1	2	1960.00	0	57.1	4	-4.60	52	.54	74.00	-21.46	peak						
2	4	1960.00	0	45.2	8	-4.60	40	.68	54.00	-13.32	AVG						
3	7	7440.00	0	53.4	.1	-0.02	53	.39	74.00	-20.61	peak						
4	*	7440.00	כ	43.2	:5	-0.02	43	.23	54.00	-10.77	AVG						
5	Ş	9920.00	כ	45.2	2	5.66	50	.88	74.00	-23.12	peak						
6	Ş	920.00	כ	34.6	57	5.66	40	.33	54.00	-13.67	AVG						
7		12085.3	6	36.7	'1	11.77	48	.48	74.00	-25.52	peak						
8	-	12085.3	6	30.8	5	11.77	42	.62	54.00	-11.38	AVG						

(a) Antenna polarization: Horizontal

Report No. ATT2017SZ0417108F - Page 23 of 52 -

(b) Antenna polarization: Vertical

Note:

10~25GHz at least have 20dB margin. No recording in the test report.

Measurement Level = Reading Level + Factor

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Highest Channel: 2480 MHz

Data rate: 1Mbps

Report No. ATT2017SZ0417108F - Page 24 of 52 -

4.3 Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power: Connent antenna port into power meter and reading Peak values.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Remark: We test maximum peak output power at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5

4.3.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	3.18	21	PASS
39	2441	3.29	21	PASS
78	2480	3.35	21	PASS

Note:

1. The test results including the cable lose.

Report No. ATT2017SZ0417108F - Page 25 of 52 -

4.4 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

4.4.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.094	Plot 4.4.1 A	/	PASS
39	2441	1.095	Plot 4.4.1 B	/	PASS
78	2480	1.093	Plot 4.4.1 C	/	PASS

Note: 1.The test results including the cable lose.

B. Test Plots

(Plot 4.4.1 A: Channel 00: 2402MHz @ GFSK)

Shenzhen Asia Test Technology Co.,Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page 26 of 52 -

Date: 2 M AY .2017 18:16:37

(Plot 4.4.1 B: Channel 39: 2441MHz @ GFSK)

Date: 2 MAY 2017 18:16:24

(Plot 4.4.1 C: Channel 78: 2480MHz @ GFSK)

Report No. ATT2017SZ0417108F - Page 27 of 52 -

4.5 Band Edge

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

TEST CONFIGURATION

For Conducted

Shenzhen Asia Test Technology Co.,Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page

EUT

28 of 52 -

SPECTRUM ANALYZER

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m(1.5m above 1G) above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed...
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
	Peak Value: RBW=1MHz/VBW=3MHz,	Peak
19112-409112	Sweep time=Auto	(Receiver)
	Average Value: RBW=1MHz/VBW=3MHz,	Average
IGHZ-40GHZ	Sweep time=Auto	(Receiver)

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

Remark:

1. We test Band Edge at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.

2. "---" means not recorded as emission levels lower than limit.

4.5.1 For Radiated Bandedge Measurement

Remark: we tested radiated bandedge at both hopping and no-hopping modes, recorded worst case at nohopping mode

4.5.1.1 Test data

		Ant D		Rea	ding		A	ct	Limit		
Data rate	Test channel	ol. H/V	Freq. (MHz)	Peak (dBuv)	AV (dBuv)	Ant/CF CF(dB)	Peak (dBuv/m)	AV (dBuv/m)	Peak (dBuv/m)	AV (dBuv/ m)	
1Mbps	CH00	V	2390	43.68	32.58	-5.79	37.89	26.79	74	54	
	CH00	н	2390	45.86	33.72	-5.79	40.07	27.93	74	54	
	CH78	V	2483.5	47.22	34.17	-4.98	42.24	29.19	74	54	
	CH78	н	2483.5	41.56	30.99	-4.98	36.58	26.01	74	54	

Remark:

- (1) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode.
- During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 (2)dB cone of radiation BW of the used antenna
- Corr.Factor = Antenna Factor + Cable Loss Pre-amplifier. (3)

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page 29 of 52 -

4.5.2 For Conducted Bandedge Measurement

4.5.2.1 GFSK Test Mode

We tested hopping mode and non-hopping mode, and recorded the worst case at the hopping mode.

A. Test Plots

Date: 2 MAY 2017 18:20:30

Date: 2 MAY 2017 18:21:20

(Plot 4.5.2.1 B: Hopping Mode @ GFSK)

Report No. ATT2017SZ0417108F - Page 30 of 52 -

4.6 Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz.

<u>LIMIT</u>

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5) and all test channels, recorded worst case at DH5 and middle channel.

4.6.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
38	2440	1 0026	Plot 4 6 1 A	0 9702	DASS
39	2441	1.0030	F101 4.0.1 A	0.0702	FA33

B. Test Plots

Date: 2 MAY 2017 18:18:50

(Plot 4.6.1 A: Channel 39: 2441MHz @ GFSK)

Report No. ATT2017SZ0417108F - Page 31 of 52 -

4.7 Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator.Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=100 KHz and VBW=300 KHz.

LIMIT

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.

4.7.1 GFSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.1 A1	≥15	PASS

B. Test Plots

Date: 2 MAY 2017 18:27:41

(Plot 4.7.1 A1: @ GFSK)

Shenzhen Asia Test Technology Co.,Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page 32 of 52 -

4.8 Time of Occupancy (Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=1MHz, Span=0Hz.

<u>LIMIT</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation:0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.

The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s] The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch]=3.38 [hop/s];

The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

Remark: 1. We test Frequency Separation at all test channels, recorded worst case at middle channel.

A. Test Verdict

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict			
	2402	0.428	0.137	0.4	Plot 4.8.1 A	PASS			
	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 2 ·	÷ 79) ×31.6 Sec	ond				
	2402	1.686	0.280	0.4	Plot 4.8.1 B	PASS			
DH3	Note: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second								
	2402	2.937	0.313	0.4	Plot 4.8.1 C	PASS			
DHS	Note: Dwell tin	Note: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second							

4.8.1 GFSK Test Mode

Report No. ATT2017SZ0417108F - Page 33 of 52 -

B. Test Plots

Date: 2 MAY 2017 18:28:28

(Plot 4.8.1.B: Channel 00: 2402MHz @ GFSK @ DH3)

Date:2MAY.2017 18:30:48

Report No. ATT2017SZ0417108F - Page 35 of 52 -

4.9 Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10:2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBM= 300KHz to measure the peak field strength , and measurement frequency range from 9KHz to 26.5GHz.

<u>LIMIT</u>

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

TEST RESULTS

Remark:

1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.

2.For 9KHz -30MHz, The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4.9.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Sweep Points	Refer to Plot	Limit (dBc)	Verdict
		30MHz-1GHz	9700	Plot 4.9.1 A1	-20	PASS
00	2402	1MHz-3GHz	20000	Plot 4.9.1 A2	-20	PASS
00	2402	3GHz-13GHz	100000	Plot 4.9.1 A3	-20	PASS
		13GHz-25GHz	120000	Plot 4.9.1 A4	-20	PASS
	2441	30MHz-1GHz	9700	Plot 4.9.1 B1	-20	PASS
20		1MHz-3GHz	20000	Plot 4.9.1 B2	-20	PASS
39		3GHz-13GHz	100000	Plot 4.9.1 B3	-20	PASS
		13GHz-25GHz	120000	Plot 4.9.1 B4	-20	PASS
	0.400	30MHz-1GHz	9700	Plot 4.9.1 C1	-20	PASS
70		1MHz-3GHz	20000	Plot 4.9.1 C2	-20	PASS
10	2400	3GHz-13GHz	100000	Plot 4.9.1 C3	-20	PASS
		13GHz-25GHz	120000	Plot 4.9.1 C4	-20	PASS

Note:

1. The test results including the cable lose.

B. Test Plots

Report No. ATT2017SZ0417108F - Page 36 of 52 -

Date: 2 MAY 2017 18:26:23

Date:2MAY.2017 18:26:01

(Plot 4.9.1 A2: Channel 00: 2402MHz @ GFSK)

Report No. ATT2017SZ0417108F - Page 37 of 52 -

Date: 2 MAY 2017 18:25:51

(Plot 4.9.1 A3: Channel 00: 2402MHz @ GFSK)

(Plot 4.9.1 A4: Channel 00: 2402MHz @ GFSK)

Spectrum	
Ref Level 10.00 dBm RBW 100 kHz Att 20 dB SWT 1.1 ms VBW 300 kHz Mode Auto FFT	
1Pk Max	
M1[1]	-67.90 dBm 794.1330 MHz
10 dBm	
20 dBm D1 -19.730 dBm	
30 dBm	
40 dBm	
50 dBm	
60 dBm	M1
29.48 m	pour a bin appoint a part of the play to a start a start a start appoint
nna ^{fa} r ywar f yw far yw er a plaes ⁶⁴ ywlffan galleff y leffan yw er yw yw y dy faraes. Ceferfan ywlfar galleff 80 dBm	neren en fan genegen den de ster ^{den} de geskelen in de geskelen generen en geste ^{ble} t nage de st
Start 30.0 MHz 32000 pts	Stop 1.0 GHz
larker	
Type Ref Trc X-value Y-value Function	Function Result

Date: 2 MAY 2017 18:24:50

Date: 2 MAY 2017 18:24:39

							Re	eport No - Pag	o. AT e 39	T2017SZ of 52 -	:04171(
Spect	rum										
Ref Le	evel	10.00 dBr	n	🖷 RE	3W 100 kHz						
Att		20 di	B SWT 10	10 ms 🖷 VI	300 kHz	Mode Au	to Sweep				
) TEK M	ax		Ĩ	Ĩ.	Î	M	1[1]			61.00 dBm	
							1[1]		7.3	823590 GHz	
) dBm—	-										
10 dBm	<u>ا</u> ـــــ										
20 dBm	D	1 -19.730) dBm								
30 dBm	-										
10 dBm	1-										
50 dBm	\										
50 dBm		1			M1						
a contraction		الالارمان المعالية	the base of a bart for the	International States	Wale Anna Marila	the definition of the second second second	pallituding and the	All a strand and a strand	المعدان أحتورا فالالاولان	and the state of the second	
An avhilt and the			destroyed intern	an Headerlying)	In the public parts of the	The second property of	an _{ter t} angan bertek ter	Prost of Street Contractor	N.T. STREPHOLIC	International Contraction	
80 dBm	1 										
start 3	.0 GH	z			3200	0 pts			Stop	0 13.0 GHz	
larker]	
Туре	Ref	Trc	X-value	e	Y-value	Func	tion	Func	tion Result	t	

Date: 2 MAY 2017 18:25:24

Date: 2 MAY 2017 18:25:33

Report No. ATT2017SZ0417108F

				· Page	40 of 52 -
Spectrum					
Ref Level 10.00 dB	m 👄 R JB SWT 1.1 ms 👄 V	BW 100 kHz BW 300 kHz M	1ode Auto FFT		
1Pk Max	15				
			M1[1]		-68.39 dBm
) dBm					817.3520 MHz
10 dBm					
20.dBm-D1 -20.86	0 dBm				
30 dBm					
40 dBm					
50 dBm					
60 dBm				41	
7.0 dBm			. I to a label at	India Indiana India	an electric little at the control
den geberten anderen in bereiten bei beiten	n filmen a standar and a standard and a standard and a standard a standard a standard a standard a standard a s	and a second	n jensen fremsens som sterne som senser som	and many mount of the	and the state of the state of the state
80 dBm	11.00	and the second second second	Color Protection (19		
Start 30.0 MHz		32000 į	ots		Stop 1.0 GHz
larker	14				
Type Ref Trc M1 1	X-value 817.352 MHz	Y-value -68.39 dBm	Function	Functio	n Result
)[Measu	uring Cart	III 🦇 ///

Date: 2 MAY 2017 18:23:20

Date: 2 MAY 2017 18:22:50

(Plot 4.9.1 C2: Channel 78: 2480MHz @ GFSK)

Report No. ATT2017SZ0417108F

- Page 41 of 52 -Spectrum RBW 100 kHz Ref Level 10.00 dB Att 20 dB SWT 100 ms - VBW 300 kHz Mode Auto Sweep ● 1Pk Ma> M1[1] -62.54 dBm 7.439840 GH 0 dBr -10 dBm -20 dBm D1 -20.860 dBm -30 dBm -40 dBr -50 dB -60 dBr -80 dBm Stop 13.0 GHz Start 3.0 GHz 32000 pts Marker Type Ref Trc Y-value -62.54 dBm 1 Function **Function Result** X-value 43984 GHz Measuring

Date:2MAY.2017 18:23:35

Date: 2 MAY 2017 18:23:47

Report No. ATT2017SZ0417108F - Page 42 of 52 -

4.10 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE

For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

0	2	4	6	62	64	78	1	 73 7	75 77
					Π				

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Report No. ATT2017SZ0417108F - Page 43 of 52 -

4.11 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.For normal BT devices, the GFSK mode is used.

Measurement parameters

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	1MHz			
Video bandwidth:	3MHz			
Trace-Mode:	Max hold			

Limits

antena type:PCB antena

FCC	IC				
Antenna Gain					
60	dBi				

Results

Antenna type:PCB antenna

T _{nom}	V _{nom}	Lowest Channel 2402 MHz	Middle Channel 2441 MHz	Highest Channel 2480 MHz
Conducted Measured with G	oower [dBm] GFSK modulation	3.18	3.29	3.35
Radiated power [dBm] Measured with GFSK modulation		4.05	3.99	3.96
Gain [dBi] Calculated		0.87	0.70	0.61
Measuremer	nt uncertainty	± 0.6	dB (cond.) / ± 2.56 dB	(rad.)

Report No. ATT2017SZ0417108F - Page 44 of 52 -

Setup photo

Report No. ATT2017SZ0417108F - Page 45 of 52 -

Report No. ATT2017SZ0417108F - Page 46 of 52 -

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page 47 of 52 -

Report No. ATT2017SZ0417108F - Page 48 of 52 -

0.5 mm

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page 49 of 52 -

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page 50 of 52 -

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page 51 of 52 -

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

Report No. ATT2017SZ0417108F - Page 52 of 52 -

.....End of Report.....