

RADIO TEST REPORT

Applicant	: SEIKO EPSON CORPORATION 281 Fujimi, Fujimi-machi, Suwa-gun, Nagano-ken, 399-0293, Japan
Type of Equipment	: Heart Rate Activity Monitor
Model Number	: PS-500
Trade Name	: EPSON
FCC ID	: BKMAP004
Standard	: 47 CFR Part 15 Subpart C: 2013
Classification	: Digital Transmission Systems (DTS)
Receipt Date of Sample	: 2013-11-28
Date Tested	: 2013-11-28 and 2013-12-02
Date Report Issued	: 2014-01-15
Report Number	: EMC13206

The measurements and tests covered by this document have been performed in accordance with the requirements of ISO/IEC 17025 and are traceable to national or international standards of measurement.

This report summarizes the result of a single investigation performed on the described test object and test results relate only to tested sample. The report shall not be reproduced except in full without the written approval of IPS Corporation.

APPROVED by:

Tetsushi Yamaguchi / Director

TESTS SUPERVISED by:

<u>// Kuurazaura</u> Nobuyuki Kuwazawa / Manager

IPS Corporation 1878-1, Ono, Tatsuno-machi, Kamiina-gun, Nagano-ken, 399-0601 Japan Phone: +81-266-44-5200 Fax: +81-266-44-5300

IPS Corporation

Page 1 of 45

MY

Contents	Page
1 GENERAL INFORMATION	4
1.1 Product Description	4
1.2 Product Specification	
1.3 Summary of Test Result	5
1.4 Measurement Uncertainty	5
1.5 Tested Systems Details	6
1.6 Test Facility	6
2 SYSTEM TEST CONFIGURATION	7
2.1 Justification	7
2.2 EUT Exercise Software	7
2.3 Special Accessories	7
2.4 Equipment Conditions	7
2.5 Configuration of Tested System	7
3 RADIATED EMISSION TEST 9 kHz to 30 MHz	8
3.1 Test Setup	8
3.2 Testing System	8
3.3 Description of Measurement Procedure	8
3.3.1 Exploratory Test	8
3.3.2 Final Test	9
3.4 Field Strength Calculation	10
3.5 Test Details	10
4 RADIATED EMISSION TEST 30 MHz to 25 GHz	11
4.1 Test Setup	11
4.2 Testing System	
4.3 Description of Measurement Procedure	12
4.3.1 Exploratory Test	12
4.3.2 Final Test	12
4.4 Field Strength Calculation	13
4.5 Test Details	14
5 6 dB BANDWIDTH	18
5.1 Test Procedures and Limits	18
5.2 Testing System	18
5.3 Test Details	
6 MAXIMUM PEAK CONDUCTED OUTPUT POWER	
6.1 Test Procedures and Limits	19
6.2 Testing System	
6.3 Test Details	
7 CONDUCTED SPURIOUS EMISSION TEST	
7.1 Test Procedures and Limits	
7.2 Testing System	
7.3 Test Details	20

<u>Contents</u>

Contents	Page
8 MAXIMUM POWER SPECTRAL DENSITY	21
8.1 Test Procedures and Limits	
8.2 Testing System	
8.3 Test Details	
9 99 % OCCUPIED BANDWIDTH	22
9.1 Test Procedures and Limits	22
9.2 Testing System	22
9.3 Test Details	22
10 TEST DATA	23
11 TEST CONFIGURATION PHOTO	41
11.1.1 Radiated Emission Test	42
11.1.2 Radiated Emission Test	43
11.2 6 dB Bandwidth, Conducted Spurious Emission, Maximum Peak Conducted Output Pow	wer and
99 % Occupied Bandwidth	44
11.3 Maximum Power Spectral Density	45

1 GENERAL INFORMATION

1.1 Product Description

The Equipment Under Test (EUT) Model: PS-500 is a Heart Rate Activity Monitor.

PS-500 is an activity monitor to measure the pulse rate of the watch-type. The optical sensor in the bottom plate of the watch captures a pulse rate and analyzes it. This function can guide combustion of effective fat from pulse rate. This product has a function to connect to a personal computer in USB interface. This product is equipped with a charge-type lithium-ion rechargeable battery. This product was tested according to the standards below.

Condition of EUT

□ : Mass-production	☑ : Pre-production	□ : Engineering prototype
1.2 Product Specificatio	'n	
• Power Supply Rating	: DC3.7 V	

- Dimensions : W 38 mm \times D 55 mm \times H 17 mm
- Weight : 0.04 kg
- Highest frequency used : 48 MHz

Radio Part

•	Equipment Type	: Transceiver
•	Classification	: Digital Transmission Systems
•	Frequency range of operation	: 2402 to 2480 MHz
•	Bandwidth/Channel Spacing	: 1 MHz / 2 MHz
•	Type of Modulation	: GFSK
•	Antenna type	: $1/4 \lambda$ chip antenna
•	Antenna Connector Type	: None
•	ITU Code	: FID
•	Operation Temperature Range	: - 5 to $+$ 40 deg.C

Power source

AC/DC	Phases and Wires, or Volt		EUT
	Circal a Dharas	: Without PE	
	Single Phase	: With PE	
AC	TI	: Three wires with PE	
	Three Phases	: Four wires with PE	
DC	3.7	V from Lithium-ion Battery	\checkmark

1.3 Summary of Test Result

Standard	Measurement Frequency Range	Result
Code of Federal Regulation 47 Part 15 Subpart C	C: 2013, Intentional Radiators	
Section 15.209 Radiated Emission	9 kHz to 25 GHz	Pass
Section 15.247 Operation within the bands	2400 MHz to 2483.5 MHz	Pass
(a)(2) : 6 dB Bandwidth		
(b)(3) : Maximum Peak Conducted O	Putput Power	
(d) : Conducted Spurious Emission	1	
(e) : Maximum Power Spectral De	ensity	
Additional Test		
99% Occupied Bandwidth		-

1.4 Measurement Uncertainty

Emission Test

						U ((dB)				
Conducted Emission Test	AMN	Frequency range	Polarization	Oper	n Site	Semi-A	No3, 10 m Semi-Anechoic Chamber		No2, 3 m Semi-Anechoic Chamber		
Main port	LISN (ESH2-Z5, KNW-407, KNW-411)	9 kHz to 30 MHz	-	1.	.7	1.	1.7		1.7 1.7		7
Telecommunication	ISN (ISN T8, ISN ST08)	150 kHz to 30 MHz	-	1.	.1	1.	.1	1.	1		
port	Probe (CVP 2200A, F-35A)	150 kHz to 30 MHz	-	1	.2	1.	.2	1.	2		
						U ((dB)				
Radiated Emission Test	Antenna, Clamp	Frequency range	Polarization	Open Site		No3, 10 m Semi-Anechoic Chamber		No2, 3 m Semi-Anechoic Chamber			
				10 m	3 m	10 m	3 m	10 m	3 m		
	Biconical	30 MHz to 300 MHz	Horizontal	3.9	3.9	3.9	3.9	-	4.0		
	(BBA9106)	30 MHZ to 300 MHZ	Vertical	4.1	4.1	4.0	4.0	-	4.1		
	LogPeriodic	Periodic P9108-A) 300 MHz to 1 GHz	Horizontal	4.1	4.1	4.1	4.1	-	4.1		
	(UHALP9108-A)		Vertical	4.2	4.1	4.1	4.1	-	4.1		
	Dipole	30 MHz to 300 MHz	Horizontal	3.9	3.9	3.8	3.8	-	3.8		
	(VHA9103)	50 MHZ 10 500 MHZ	Vertical	4.0	4.1	4.0	4.0	-	4.0		
Radiated Emission	Dipole	300 MHz to 1 GHz	Horizontal	3.9	3.9	3.8	3.8	-	3.8		
	(UHA9105)	500 WHIZ to 1 OHZ	Vertical	4.1	4.1	4.0	4.0	-	4.0		
	Bilog	30 MHz to 1 GHz	Horizontal	4.6	-	4.2	-	-	-		
	(CBL6111, CBL6112B)	50 MHZ to 1 GHZ	Vertical	4.3	-	4.2	-	-	-		
	Guide (EMCO3115, 3117)	1 GHz to 18 GHz	Horizontal & Vertical	-	2.6	-	2.6	-	2.6		
	Horn * (EMCO3116)	18 GHz to 40 GHz	& vertical				ļ		ļ		
Magnetic Field	Loop (HLA6120)	9 kHz to 30 MHz	-	-	2.6	-	2.6	-	2.6		
Emission	Large loop (MLA2000-L)	9 kHz to 30 MHz	-		-	2.	.9	-			
Disturbance Power	Absorbing (KT-10)	30 MHz to 300 MHz	-		-	3.	.5	3.	5		

Note : Coverage factor k=2

: * Applied for Code of Federal Regulation 47 Part 15

1.5 Tested Systems Details EUT, PERIPHERALS, AND CABLES USED

EUT

	Equipment	Manufasturar	Madal Na	Corrich Mo	Nata
ID	Name	Manufacturer	Model No.	Serial No.	Note
A1	Heart Rate Activity Monitor	EPSON	PS-500	ES50B00010	1)
A2	Heart Rate Activity Monitor	EPSON	PS-500	ES50B00014	2)

Note

1) Used for Radiated Emission test.

2) Used except for Radiated Emission test.

Peripherals

None

Interface Cables

None

1.6 Test Facility

The test facilities are located in following places of IPS Corporation.

Nagano EMC Center
1878-1, Ono, Tatsuno-machi, Kamiina-gun, Nagano-ken, 399-0601 Japan

The test site is registered to FCC pursuant to title 47 CFR §2.948 (e)(1)

- MRA; US-Japan MRA
- Test Firm Registration Number (MRA); 171180
- Designation Number; JP5085
- FCC Registration Number (FRN); 0006-2272-27

2 SYSTEM TEST CONFIGURATION

2.1 Justification

- Code of Federal Regulation 47 Part 15 Subpart C tests were performed without any deviation from the ANSI C63.10:2009.
- The system was configured for testing a typical fashion (as a customer would normally use it).
- Tests were performed in the following one mode.
 - Continuously Transmitting mode

Softwear: RF Test Proglam Ver 2.00

Worst Case

	Conducted Axis							
	9 kHz to 30 MHz	9 kHz to 30 MHz 30 MHz to 1 GHz 1 GHz to 18 GHz 18 GHz to 25 GHz						
2402 MHz (Low)	N/A	N/A	X, Y, Z	N/A				
2440 MHz (Middle)	N/A	N/A	X, Y, Z	N/A				
2480 MHz (High)	Y	Y	X, Y (*), Z	Y				

(*): Firstly, the carrier level and noise levels were confirmed the 3 axis and 3 tested frequency between 1 GHz to 18 GHz, and determined that worst case is Y axis of 2480 MHz.

Therefore required another frequency were measured Y axis of 2480 MHz.

2.2 EUT Exercise Software

The EUT exercise program used during all testing was designed to exercise the various system components in manner similar to a typical use.

2.3 Special Accessories

None.

2.4 Equipment Conditions

1 1	
The condition at the time of receipt of EUT	: Good
The condition at the time of return of EUT	: Good
Limited conditions	: None
No modification has been carried out by the test lab	oratory.

2.5 Configuration of Tested System

<u>Figure</u>

	A EUT	
Table		

Key

A Heart Rate Activity Monitor

Note: This figure shows Radiated Emission Test as a representative figure. Refer to the figure/photos of each test for the actual test arrangement

3 RADIATED EMISSION TEST 9 kHz to 30 MHz

3.1 Test Setup

The test setup was made according to ANSI C63.10: 2009.

The measurement distances were 3 m.

- The test was performed with frequency range 9 kHz to 30 MHz.
- The center of EUTs was aligned to the center of a non-conductive table.
- The table size was 0.8 m high \times 1.5 m wide \times 1.0 m deep.
- The dimension of Loop Antenna can be completely enclosed by a square having sides of 60 cm in length.
- The antenna was located at 3 m of distance horizontally from the boundary of the EUT. The antenna height was 1 m.

3.2 Testing System

Instruments

Equipment	Manufacturer Model	Madal	I S/N	Calibration		Note
Equipment	Manufacturer	Widdei	5/1N	Date	Due	Note
Semi-Anechoic Chamber	Otsuka Science	10 m	No.3	2013-01-25	2014-01-31	
EMI Test Receiver	Rohde & Schwarz	ESCS30	836858/002	2013-04-11	2014-04-30	1)
EXA Signal Analyzer	Agilent Technologies	N9010A	MY52221120	2013-05-27	2014-05-31	2)
Loop Antenna	Chase	HLA6120	1131	2013-03-08	2014-03-31	
Cable System	IPS Corporation	RE (31)	N/A	2013-02-20	2014-02-28	

Note: 1) System Bandwidth=9 kHz, Detector Mode= Quasi-Peak 2) Detector Mode=Peak

Software:

Toyo Corporation, EP5/RE, Version 5.5.10

3.3 Description of Measurement Procedure

3.3.1 Exploratory Test

EUT is tested in all operating modes.

<Step1>

EUT and system are set up according to "IPS measurement procedures" and "ANSI C63.10:2009".

<Step2>

The operator selects an antenna from among the following depending on the measurement frequency.

• Loop Antenna

<Step3>

The Spectrum analyzer is controlled by PC EMI software as follows:

- Set to Peak Detector mode and Max-Hold mode.
- Sweep measurement frequency range.

Following parameters are also controlled by PC EMI software:

- Turntable (rotate 0° to 360°)
- Antenna polarization (vertical: 0° and 90°, horizontal: not rotated)
- Antenna height (1 m)

3.3.1 Exploratory Test (Continued)

<Step4>

The operator performs following operations.

- Prints out the Spectrum chart from PC EMI software.
- Records frequency (ies) with minimum margin(s).
- Determines the operating mode where maximum emission is detected.

3.3.2 Final Test

<Step1>

EUT system is operated in the operation mode determined by Exploratory Test.

<Step2>

The operator selects an antenna from among the following depending on the measurement frequency.

• Loop Antenna

<Step3>

Following operation is performed by the operator:

EMC Test Receiver is set to the system bandwidth and detection mode specified by the test standard.

<Step4>

The operator controls turntable, antenna polarization and rotate to determine the combination where maximum emission was detected.

• Loop Antenna

The center of the loop antenna was 1 m above the ground.

Loop antenna was positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. Also, loop antenna was positioned with its plane horizontal at the specified distance from EUT.

<Step5>

The operator arranges the apparatus and the cables to determine the configuration where maximum emission was detected.

<Step6>

The operator enters the values displayed on EMC Test Receiver into PC EMI software.

The measurement result is calculated by PC EMI software.

The same operation is repeated for all modes that should be measured.

3.4 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

c. f. = AF + CL - AGF S = RA + c.f.

Where	c.f.	= Correction Factor
	FS	= Field Strength (Emission Level - Result)
	RA	= Receiver Amplitude (Reading Level)
	AF	= Antenna Factor
	CL	= Cable Loss
	AG	= Amplifier Gain

Assume a receiver reading of 52.5 dBµV is obtained. The Antenna Factor of 7.4 dB/m and a Cable Loss of 1.1 dB is added. The Amplifier Gain of 29.0 dB is subtracted, giving a field strength of 32.0 dBµV/m. The 32.0 dBµV/m value was mathematically converted to its corresponding level in μ V/m. FS = 52.5 dBµV + 7.4 dB/m + 1.1 dB - 29.0 dB = 32.0 dBµV/m Level in μ V/m = Common Antilogarithm [(32.0 dBµV/m)/20] = 39.8 μ V/m

3.5 Test Details For 2480 MHz (High): Axis; Y Test Date: <u>2013-11-28</u>

Test data: Refer to Section 10 of this report for spectrum chart. (Spectrum chart is presented)

4 RADIATED EMISSION TEST 30 MHz to 25 GHz

4.1 Test Setup

The test setup was made according to ANSI C63.10:2009.

The measurement distance was 3 m

- The test was performed with frequency range 30 MHz to 25 GHz.
- The center of EUTs was aligned to the center of a non-conductive table.
- The table size was 0.8 m high \times 1.5 m wide \times 1.0 m deep.
- Measurements were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was scanned in height from 1 m to 4 m.

4.2 Testing System

Instruments 1: For 30 MHz to 1 GHz

Equipmont	Manufacturer	Madal	C/NI	Calib	Note	
Equipment	Manufacturer	Model	S/N	Date	Due	Note
Semi-Anechoic Chamber	Otsuka Science	10 m	No. 3	2013-01-25	2014-01-31	
EMI Test Receiver	Rohde & Schwarz	ESCS30	836858/002	2013-04-11	2014-04-30	1)
EXA Signal Analyzer	Agilent Technologies	N9010A	MY52221120	2013-05-27	2014-05-31	2)
Biconical Antenna	Schwarzbeck	BBA9106	1513	2013-11-14	2014-11-30	3)
Log-Periodic Antenna	Schwarzbeck	UHALP9108-A	0715	2013-11-14	2014-11-30	4)
Cable System	IPS Corporation	RE (28)	N/A	2013-02-20	2014-02-28	

Note: 1) System Bandwidth=120 kHz, Detector Mode=Quasi-Peak.

2) Detector Mode=Peak

3) For 30 MHz to 300 MHz

4) For 300 MHz to 1 GHz

Software:

Toyo Corporation, EP5/RE, Version 5.5.10

Instruments 2: For 1 GHz to 25 GHz

Equipment	Manufaaturar	anufacturer Model	S/N	Calibi	Note	
Equipment	Manufacturer	Model	3/1N	Date	Due	Note
Semi-Anechoic Chamber	Otsuka Science	10 m	No. 3	2013-01-25	2014-01-31	
EXA Signal Analyzer	Agilent Technologies	N9010A	MY52221120	2013-05-27	2014-05-31	1)
Guide Horn Antenna	EMCO	3115	9609-4953	2013-11-19	2014-11-30	2)
Guide Horn Antenna	EMCO	3116	9512-2277	2013-11-20	2014-11-30	3)
Cable System	IPS Corporation	RE (8)	N/A	2013-02-08	2014-02-28	2)
Cable System	IPS Corporation	RE (9)	N/A	2013-02-08	2014-02-28	3)

Note: 1) System Bandwidth=1 MHz, Detector Mode=Peak and Average.

2) For 1 GHz to 18 GHz

3) For 18 GHz to 25 GHz

Software:

Toyo Corporation, EP5/RE, Version 5.5.10

4.3 Description of Measurement Procedure

4.3.1 Exploratory Test

EUT is tested in all operating modes.

<Step1>

EUT and system are set up according to "IPS measurement procedures" and "ANSI C63.10:2009".

<Step2>

The operator selects an antenna from among the following depending on the measurement frequency.

- Broadband Antenna (This Antenna is used for 30 MHz to 1 GHz)
- Double Rigid Guide Antenna (This Antenna is used for over 1 GHz)

<Step3>

The Spectrum analyzer is controlled by PC EMI software as follows:

- Set to Peak Detector mode and Max-Hold mode.
- Sweep measurement frequency range.

Following parameters are also controlled by PC EMI software:

- Turntable (rotate 0° to 360°)
- Antenna polarization (horizontal and vertical)
- Antenna height (1 m to 4 m)

<Step4>

The operator performs following operations.

- Prints out the Spectrum chart from PC EMI software.
- Records frequency (ies) with minimum margin(s).
- Determines the operating mode where maximum emission is detected.

4.3.2 Final Test

<Step1>

EUT system is operated in the operation mode determined by Exploratory Test.

<Step2>

The operator selects an antenna from among the following depending on the measurement frequency.

- Broadband Antenna (This Antenna is used for 30 MHz to 1 GHz)
- Double Rigid Guide Antenna (This Antenna is used for over 1 GHz)

<Step3>

Following operation is performed by the operator:

EMC Test Receiver is set to the system bandwidth and detection mode specified by the test standard.

<Step4>

For 30 MHz to 1 GHz, the operator controls the turntable and antenna height and polarization to reproduce the combination where maximum emission was detected during the Exploratory Test.

For over 1 GHz, the operator controls the turntable and antenna height, polarization, azimuth and elevation to reproduce the combination where maximum emission was detected during the Exploratory Test.

IPS Corporation

4.3.2 Final Test (Continued)

<Step5>

The operator arranges the apparatus and the cables to reproduce the configuration where maximum emission was detected during the Exploratory Test.

<Step6>

The operator enters the values displayed on EMC Test Receiver into PC EMI software.

The measurement result is calculated by PC EMI software.

The same operation is repeated for all modes that should be measured.

4.4 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

c. f. = AF + CL - AGF S = RA + c.f.

Where	c.f.	= Correction Factor
	FS	= Field Strength (Emission Level - Result)
	RA	= Receiver Amplitude (Reading Level)
	AF	= Antenna Factor
	CL	= Cable Loss
	AG	= Amplifier Gain

Assume a receiver reading of 52.5 dBµV is obtained. The Antenna Factor of 7.4 dB/m and a Cable Loss of 1.1 dB is added. The Amplifier Gain of 29.0 dB is subtracted, giving a field strength of 32.0 dBµV/m. The 32.0 dBµV/m value was mathematically converted to its corresponding level in μ V/m. FS = 52.5 dBµV + 7.4 dB/m + 1.1 dB - 29.0 dB = 32.0 dBµV/m Level in μ V/m = Common Antilogarithm [(32.0 dBµV/m)/20] = 39.8 μ V/m

4.5 Test Details

<u>30 MHz to 1 GHz</u> <u>Test Details 1; For 2480 MHz (High): Axis; Y</u> Test Date: <u>2013-11-26</u>

Test data: Refer to Section 10 of this report for spectrum chart. (Spectrum chart is presented)

Test configuration photo: Refer to Section 11.1.1 and 11.1.2

<u>1 GHz to 18 GHz</u> <u>Test Details 2; For 2402 MHz (Low): Axis; X</u> Test Date: <u>2013-11-28</u>

Test data: Refer to Section 10 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Vertical Polarization, 7206.019 MHz, 55.8 dB(μ V/m) Peak Value and it has 18.2 dB margin from the limit(74.0 dB(μ V/m)). Vertical Polarization, 7206.019 MHz, 43.0 dB(μ V/m) Average Value and it has 11.0 dB margin from the limit(54.0 dB(μ V/m)).

Test configuration photo: Refer to Section 11.1.1 and 11.1.2

Test Details 3; For 2402 MHz (Low): Axis; Y Test Date: 2013-11-28

Test data: Refer to Section 10 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Horizontal Polarization, 7206.019 MHz, 55.7 dB(μ V/m) Peak Value and it has 18.3 dB margin from the limit(74.0 dB(μ V/m)). Horizontal Polarization, 7206.019 MHz, 43.4 dB(μ V/m) Average Value and it has 10.6 dB margin from the limit(54.0 dB(μ V/m)).

4.5 Test Details (Continued)

Test Details 4; For 2402 MHz (Low): Axis; Z Test Date: 2013-11-28

Test data: Refer to Section 10 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Horizontal Polarization, 7206.001 MHz, 55.4 dB(μ V/m) Peak Value and it has 18.6 dB margin from the limit(74.0 dB(μ V/m)). Horizontal Polarization, 7206.001 MHz, 43.3 dB(μ V/m) Average Value and it has 10.7 dB margin from the limit(54.0 dB(μ V/m)).

Test configuration photo: Refer to Section 11.1.1 and 11.1.2

<u>Test Details 5; For 2440 MHz (Middle): Axis; X</u> Test Date: <u>2013-11-28</u>

Test data: Refer to Section 10 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Vertical Polarization, 7320.050 MHz, 58.2 dB(μ V/m) Peak Value and it has 15.8 dB margin from the limit(74.0 dB(μ V/m)). Vertical Polarization, 7320.050 MHz, 45.0 dB(μ V/m) Average Value and it has 9.0 dB margin from the limit(54.0 dB(μ V/m)).

Test configuration photo: Refer to Section 11.1.1 and 11.1.2

<u>Test Details 6; For 2440 MHz (Middle): Axis; Y</u> Test Date: <u>2013-11-28</u>

Test data: Refer to Section 10 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Vertical Polarization, 7320.050 MHz, 58.2 dB(μ V/m) Peak Value and it has 15.8 dB margin from the limit(74.0 dB(μ V/m)). Vertical Polarization, 7320.050 MHz, 45.0 dB(μ V/m) Average Value and it has 9.0 dB margin from the limit(54.0 dB(μ V/m)).

4.5 Test Details (Continued)

<u>Test Details 7; For 2440 MHz (Middle): Axis; Z</u> Test Date: <u>2013-11-28</u>

Test data: Refer to Section 10 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Horizontal Polarization, 7320.006 MHz, 57.7 dB(μ V/m) Peak Value and it has 16.3 dB margin from the limit(74.0 dB(μ V/m)). Horizontal Polarization, 7320.006 MHz, 44.3 dB(μ V/m) Average Value and it has 9.7 dB margin from the limit(54.0 dB(μ V/m)).

Test configuration photo: Refer to Section 11.1.1 and 11.1.2

<u>Test Details 8; For 2480 MHz (High): Axis; X</u> Test Date: <u>2013-11-28</u>

Test data: Refer to Section 10 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Vertical Polarization, 7439.900 MHz, 63.5 dB(μ V/m) Peak Value and it has 10.5 dB margin from the limit(74.0 dB(μ V/m)). Vertical Polarization, 7439.900 MHz, 48.9 dB(μ V/m) Average Value and it has 5.1 dB margin from the limit(54.0 dB(μ V/m)).

Test configuration photo: Refer to Section 11.1.1 and 11.1.2

Test Details 9; For 2480 MHz (High): Axis; Y Test Date: 2013-11-28

Test data: Refer to Section 10 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Horizontal Polarization, 7440.080 MHz, 63.6 dB(μV/m) Peak Value and it has 10.4 dB margin from the limit(74.0 dB(μV/m)). Horizontal Polarization, 7440.080 MHz, 49.5 dB(μV/m) Average Value and it has 4.5 dB margin from the limit(54.0 dB(μV/m)).

4.5 Test Details (Continued)

Test Details 10; For 2480 MHz (High): Axis; Z Test Date: 2013-11-28

Test data: Refer to Section 10 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Horizontal Polarization, 7439.250 MHz, 61.3 dB(μ V/m) Peak Value and it has 12.7 dB margin from the limit(74.0 dB(μ V/m)). Vertical Polarization, 7440.050 MHz, 61.3 dB(μ V/m) Peak Value and it has 12.7 dB margin from the limit(74.0 dB(μ V/m)). Horizontal Polarization, 7439.250 MHz, 49.2 dB(μ V/m) Average Value and it has 4.8 dB margin from the limit(54.0 dB(μ V/m)).

Test configuration photo: Refer to Section 11.1.1 and 11.1.2

<u>18 GHz to 25 GHz</u> <u>Test Details 11; For 2480 MHz (High): Axis; Y</u> Test Date: <u>2013-11-28</u>

Test data: Refer to Section 10 of this report for spectrum chart. (Spectrum chart is presented)

5 6 dB BANDWIDTH

5.1 Test Procedures and Limits

- The test procedure is according to ANSI C63.10:2009.
- According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 928 MHz, 2400 2483.5 MHz, and 5725 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

5.2 Testing System

Instruments

Equipment	Manufacturer	r Model	Model S/N		Calib	Note
Equipment	Manufacturer	Model	5/1N	Date	Due	Note
EXA Signal Analyzer	Agilent Technologies	N9010A	MY52221120	2013-05-27	2014-05-31	
Cable System	IPS Corporation	RE (42)	N/A	2013-11-29	2014-11-30	

5.3 Test Details

Test location: Testing Room (EMC Center)

Environmental Condition:

Test date: <u>2013-12-02</u> Temperature: <u>23.5 °C</u> Humidity: <u>32 %</u> Pressure: <u>920 hPa</u>

Channel	Frequency(MHz)	Bandwidth(MHz)	Limit(kHz)
Low	2402	0.791	> 500
Middle	2440	0.786	> 500
High	2480	0.734	> 500

Test data: Refer to Section 10 of this report for test waveform.

Test configuration photo: Refer to Section 11.2

6 MAXIMUM PEAK CONDUCTED OUTPUT POWER

6.1 Test Procedures and Limits

- The test procedure is according to ANSI C63.10:2009.
- The maximum peak output power of the intentional radiator shall not exceed the following:
- According to \$15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.

6.2 Testing System

Instruments

Equipment	Manufacturer Model	S/N	Calibration		Note	
Equipment	Manufacturer	Widdei	5/1N	Date	Due	Note
Dual-channel Power Meter	Rohde & Schwarz	NRVD	101614	2013-08-23	2014-08-31	
Peak Power Sensor	Rohde & Schwarz	NRV-Z31	100312	2013-08-23	2014-08-31	
Cable System	IPS Corporation	RE (42)	N/A	2013-11-29	2014-11-30	

6.3 Test Details

Test location: Testing Room (EMC Center)

Environmental Condition:

Test date: <u>2013-12-02</u> Temperature: <u>23.5 °C</u> Humidity: <u>32 %</u> Pressure: <u>920 hPa</u>

Channel	Frequency (MHz)	Reading (dBm)	Cable and Attenuator Loss(dB)	Result (dBm)	Result (mW)	Limit (dBm)	Margin (dB)
Low	2402	-11.24	11.77	0.53	1.13	30.00	29.47
Middle	2440	-11.64	11.78	0.14	1.03	30.00	29.86
High	2480	-12.71	11.80	-0.91	0.81	30.00	30.91

Test data: Refer to Section 10 of this report for test waveform.

Test configuration photo: Refer to Section 11.2

7 CONDUCTED SPURIOUS EMISSION TEST

- 7.1 Test Procedures and Limits
- The test procedure is according to ANSI C63.10:2009.
- According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

7.2 Testing System

Instruments

Equipment	Manufacturer Model	C/NI	Calibration		Note	
		Widdel	S/N	Date	Due	Note
EXA Signal Analyzer	Agilent Technologies	N9010A	MY52221120	2013-05-27	2014-05-31	
Cable System	IPS Corporation	RE (42)	N/A	2013-11-29	2014-11-30	

7.3 Test Details

Test location: Testing Room (EMC Center)

Environmental Condition:

Test date: <u>2013-12-02</u> Temperature: <u>23.5 °C</u> Humidity: <u>32 %</u> Pressure: <u>920 hPa</u>

Test data: Refer to Section 10 of this report for test waveform.

Test configuration photo: Refer to Section 11.2

8 MAXIMUM POWER SPECTRAL DENSITY

- 8.1 Test Procedures and Limits
- The test procedure is according to ANSI C63.10:2009.
- The test limits is according to FCC Part15C Section 15.247 (e).
 - According to \$15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.2 Testing System

Instruments

Equipment	Manufacturer Mode	Madal	Model S/N	Calib	Note	
		Widdel		Date	Due	note
EXA Signal Analyzer	Agilent Technologies	N9010A	MY52221120	2013-05-27	2014-05-31	
Cable System	IPS Corporation	RE (42)	N/A	2013-11-29	2014-11-30	

8.3 Test Details

Test location: Testing Room (EMC Center)

Environmental Condition:

Test date: <u>2013-12-02</u> Temperature: <u>23.5 °C</u> Humidity: <u>32 %</u> Pressure: <u>920 hPa</u>

Channel	Frequency (MHz)	Frequency Reading (dBm)	Reading (dBm)	Cable and Attenuator Loss(dB)	Result (dBm)	Limit (dBm)	Margin (dB)
Low	2402	2401.98	-23.89	11.77	-12.12	8.00	20.12
Middle	2440	2439.98	-25.03	11.78	-13.25	8.00	21.25
High	2480	2479.98	-25.42	11.80	-13.62	8.00	21.62

Test data: Refer to Section 10 of this report for test waveform.

Test configuration photo: Refer to Section 11.3

9 99 % OCCUPIED BANDWIDTH

9.1 Test Procedures and Limits

- The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.
- Limits: None; for reporting purposes only.

9.2 Testing System

Instruments

Equipment	Manufacturer	Model	S/N	Calib	ration	Note	
Equipment	Manufacturer Model		5/1N	Date	Due	note	
EXA Signal Analyzer	Agilent Technologies	N9010A	MY52221120	2013-05-27	2014-05-31		
Cable System	IPS Corporation	RE (42)	N/A	2013-11-29	2014-11-30		

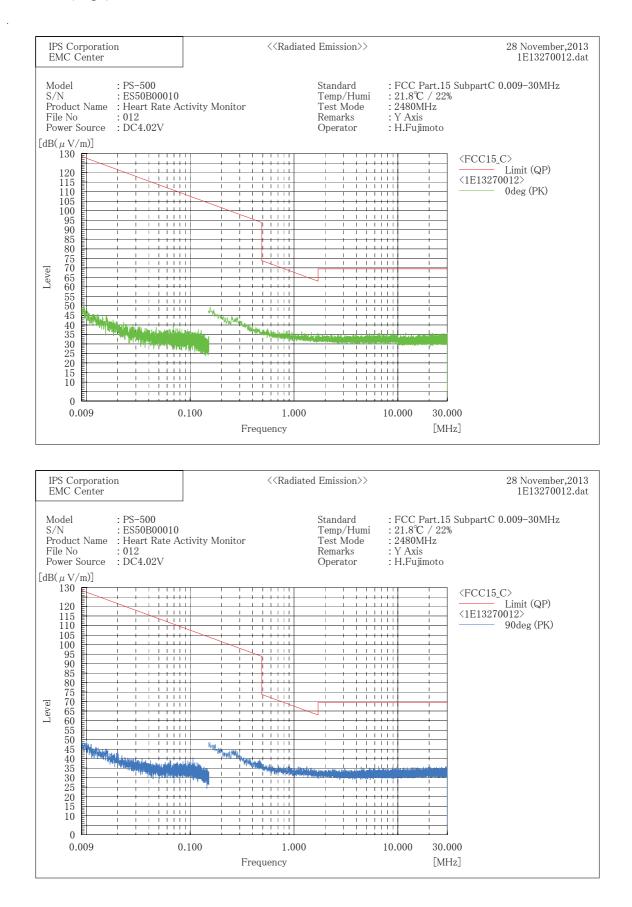
9.3 Test Details

Test location: Testing Room (EMC Center)

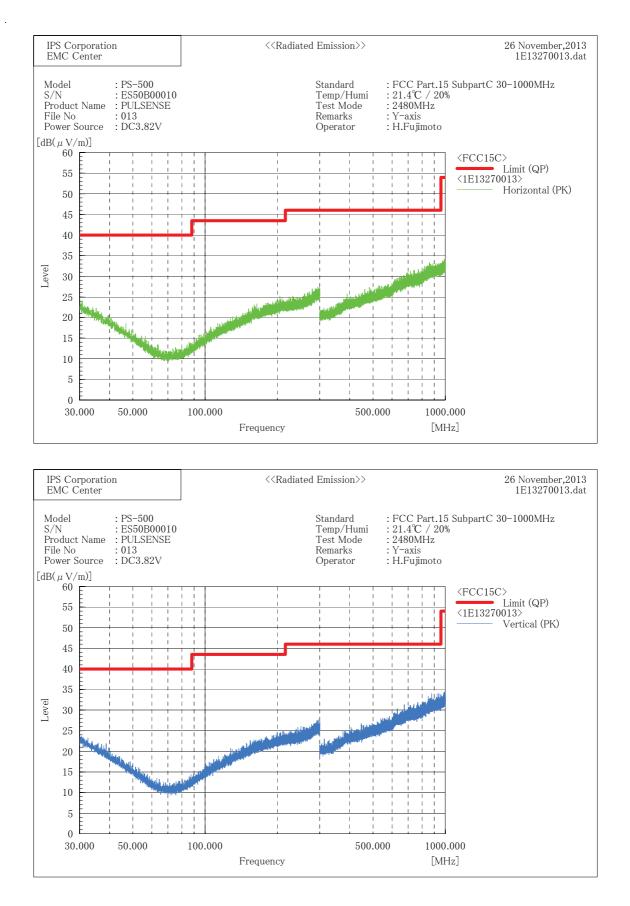
Environmental Condition:

Test date: 2013-12-02 Temperature: 23.5 °C Humidity: 32 % Pressure: 920 hPa

Channel	Frequency (MHz)	Occupied Bandwidth (MHz)
Low	2402	3.271
Middle	2440	3.649
High	2480	3.221

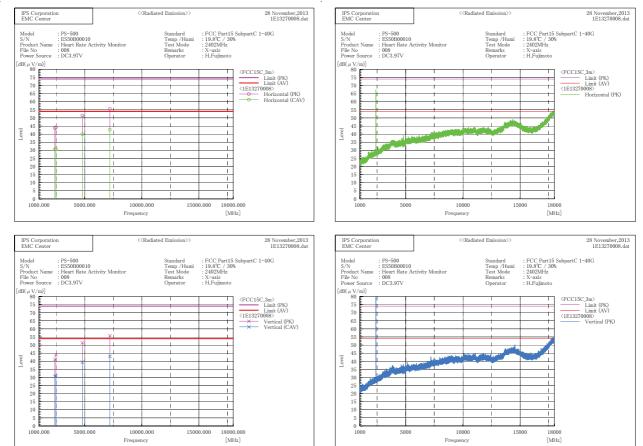

Test data: Refer to Section 10 of this report for test waveform.

Test configuration photo: Refer to Section 11.2


10 TEST DATA

	mission Test Data 9 kHz to 30 MHz	
	MHz (High)	
Axis; Y	(Spectrum Chart)	Page 24
Radiated Ei	mission Test Data 30 MHz to 1 GHz	
For 2480	MHz (High)	
	(Spectrum Chart)	Page 25
Radiated Ei	mission Test Data 1 GHz to 18 GHz	
	MHz (Low)	
		Раде 26
		-
		-
	MHz (Middle)	1 4 5 2 5
		Раде 20
		-
	MHz (High)	1 460 51
		Раде 32
,		
• Radiated En	mission Test Data 18 GHz to 25 GHz	
For 2480	MHz (High)	
Axis; Y	(Spectrum Chart) ·····	Page 35
• 6 dB Bandy	vidth Waveform	
	z (Low)	Page 36
	z (Middle)	e
	z (High)	
• Conducted	Spurious Emission Test Waveform	
	z (Low)	Раде 37
	z (Middle)	
	z (High)	_
Maximum	Power Spectral Density Waveform	
	z (Low)	
	z (Middle)	•
	z (High)	•
• 99 % Occur	pied Bandwidth Waveform	
-	z (Low)	Ρασε Δ1
	z (Middle)	_
	z (High)	-
2700 WIII	2 (1151)	1 age 41

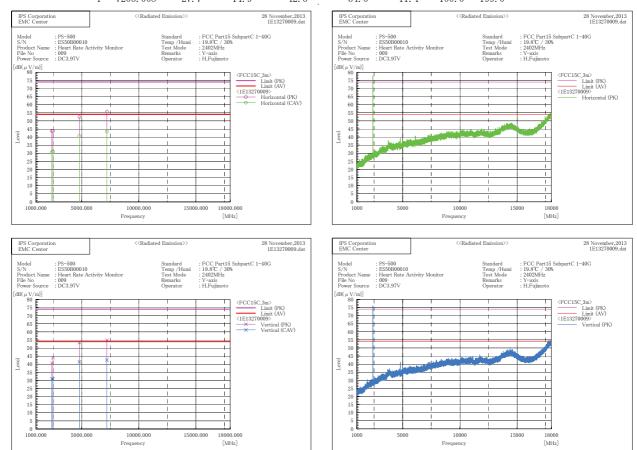
Radiated Emission Test Data 9 kHz to 30 MHz For 2480 MHz (High) Axis; Y



Radiated Emission Test Data 30 MHz to 1 GHz For 2480 MHz (High) Axis; Y

Radiated Emission Test Data 1 GHz to 18 GHz For 2402 MHz (Low) Axis; X

*********	*****		orporation * ted Emission>		*****	**************************************
Standard Model S/N Product Name File No Power Source Temp /Humi Test Mode Remarks Operator ************************************	: FCC Part15 Subpa : PS-500 : ES50B00010 : Heart Rate Activ : 008 : DC3.97V : 19.8°C / 30% : 2402MHz : X-axis : H.Fujimoto	ity Monitor	****	*****	****	****
Horizontal No. Frequency [MHz] 1 2390.000 2 2483.500 3 4804.005 4 7206.079	$\begin{array}{c} \mbox{Polarization (PK)} \\ \mbox{Reading c.f} \\ \mbox{[dB(μV)] [dB($1/m)]} \\ \mbox{39.5} & 4.2 \\ \mbox{39.8} & 4.4 \\ \mbox{42.1} & 9.4 \\ \mbox{40.7} & 14.9 \end{array}$	Result [dB(µV/m)] 43.7 44.2 51.5 55.6	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 30.3 29.8 22.5 18.4	Height [cm] 131.8 131.8 100.0 100.0	Angle [°] 183.0 183.0 7.0 175.0
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Result	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.4 23.1 14.0 11.3	Height [cm] 131.8 131.8 100.0 100.0	Angle [°] 183.0 183.0 7.0 175.0
	Delarization (PK) Reading c. f [dB(μV)] [dB(1/m)] 36.8 4.2 39.6 4.4 42.1 9.4 40.9 14.9	Result [dB(µV/m)] 41.0 44.0 51.5 55.8	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0 74.0	Margin [dB] 33.0 30.0 22.5 18.2	Height [cm] 112.8 112.8 100.0 100.0	Angle [°] 358.0 358.0 358.0 349.0 141.0
	$\begin{array}{c} \text{Darization (CAV)}{}\\ \text{Reading c. f}\\ [\text{dB}(\mu\text{V})] [\text{dB}(1/\text{m})]\\ 26.5 4.2\\ 26.5 4.4\\ 30.1 9.4\\ 28.1 14.9 \end{array}$	Result [dB(µV/m)] 30.7 30.9 39.5 43.0	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.3 23.1 14.5 11.0	Height [cm] 112.8 112.8 100.0 100.0	Angle [°] 358.0 358.0 349.0 141.0

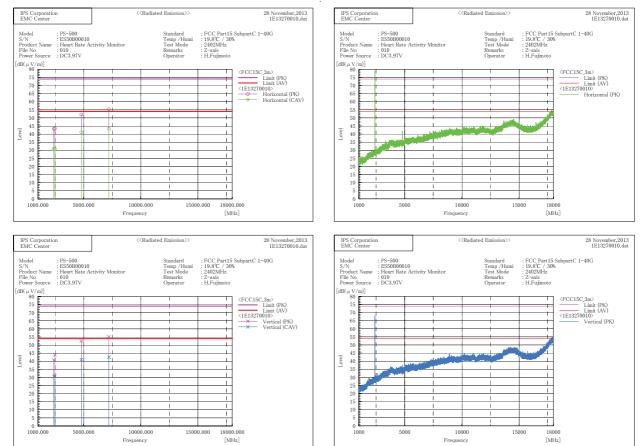


IPS Corporation

Page 26 of 45

Radiated Emission Test Data 1 GHz to 18 GHz For 2402 MHz (Low) Axis; Y

***********	******	110 00	orporation * ted Emission>		******		********* nber,2013
							70009.dat
Standard Model S/N Product Name File No Power Source Temp /Humi Test Mode Remarks Operator *********************	: FCC Part15 Subpa : PS-500 : ES50B00010 : Heart Rate Activ : 009 : DC3.97V : 19.8°C / 30% : 2402MHz : Y-axis : H.Fujimoto	vity Monitor	****	*****	****	****	*****
Horizontal No. Frequency [MHz] 1 2390.000 2 2483.500 3 4804.020 4 7206.019	$\begin{bmatrix} dB(\mu V) \end{bmatrix} \begin{bmatrix} dB(1/m) \end{bmatrix} \\ 39.6 \\ 4.2 \\ 39.4 \\ 4.4 \end{bmatrix}$	Result [dB(µV/m)] 43.8 43.8 52.5 55.7	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0 74.0	Margin [dB] 30.2 30.2 21.5 18.3	Height [cm] 119.1 119.1 100.0 100.0	Angle [°] 2.0 2.0 40.0 207.0	
	26.6 4.4	Result	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.3 23.0 13.3 10.6	Height [cm] 119.1 119.1 100.0 100.0	Angle [°] 2.0 2.0 40.0 207.0	
	39.7 4.4	Result [dB(µV/m)] 40.7 44.1 53.4 54.9	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 33.3 29.9 20.6 19.1	Height [cm] 121.7 121.7 111.0 100.0	Angle [°] 208.0 208.0 171.0 199.0	
	$\begin{array}{c} \text{Darization (CAV)}{}\\ \text{Reading c. f}\\ [\text{dB}(\mu V)] [\text{dB}(1/m)]\\ 26.7 4.2\\ 26.6 4.4\\ 32.2 9.4\\ 27.7 14.9 \end{array}$	Result [dB(µV/m)] 30.9 31.0 41.6 42.6	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.1 23.0 12.4 11.4	Height [cm] 121.7 121.7 111.0 100.0	Angle [°] 208.0 208.0 171.0 199.0	



IPS Corporation

Page 27 of 45

Radiated Emission Test Data 1 GHz to 18 GHz For 2402 MHz (Low) Axis; Z

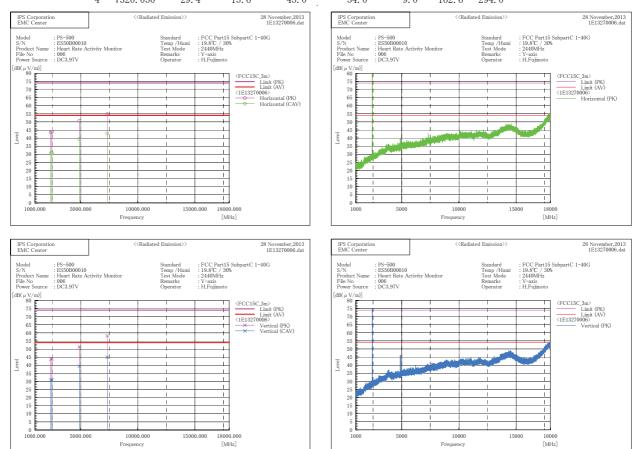
**********	*****		orporation * ted Emission>		******	**************************************
						1E13270010.dat
Standard Model S/N Product Name File No Power Source Temp /Humi Test Mode Remarks Operator **********************	: FCC Part15 Subpa : PS-500 : ES50B00010 : Heart Rate Activ : 010 : DC3.97V : 19.8°C / 30% : 2402MHz : Z-axis : H.Fujimoto ************************	ity Monitor	****	******	****	*****
Horizontal No. Frequency [MHz] 1 2390.000 2 2483.500 3 4804.013 4 7206.001	$\begin{bmatrix} dB(\mu V) \end{bmatrix} \begin{bmatrix} dB(1/m) \end{bmatrix} \\ 39.1 & 4.2 \\ 39.1 & 4.4 \end{bmatrix}$	Result [dB(µV/m)] 43.3 43.5 52.1 55.4	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 30.7 30.5 21.9 18.6	Height [cm] 137.1 137.1 100.0 100.0	Angle [°] 179.0 179.0 25.0 189.0
	26.5 4.4	Result	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.2 23.1 12.8 10.7	Height [cm] 137.1 137.1 100.0 100.0	Angle [°] 179.0 179.0 25.0 189.0
Vertical Period No. Frequency [MHz] 1 2390.000 2 2483.500 3 4804.010 4 7206.008	$\begin{bmatrix} dB(\mu V) \end{bmatrix} \begin{bmatrix} dB(1/m) \end{bmatrix} \\ 36.5 & 4.2 \\ 39.5 & 4.4 \end{bmatrix}$	Result [dB(µV/m)] 40.7 43.9 52.6 55.2	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 33.3 30.1 21.4 18.8	Height [cm] 136.7 136.7 111.0 100.0	Angle [°] 167.0 167.0 189.0 22.0
	26.5 4.2	Result [dB(µV/m)] 30.7 31.0 41.0 42.5	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.3 23.0 13.0 11.5	Height [cm] 136.7 136.7 111.0 100.0	Angle [°] 167.0 167.0 189.0 22.0

IPS Corporation

Page 28 of 45

Radiated Emission Test Data 1 GHz to 18 GHz For 2440 MHz (Middle) Axis; X

*****	*******		orporation * ted Emission>			28 Nove	********* mber,2013 70005.dat
Standard Model S/N Product Name File No Power Source Temp /Humi Test Mode Remarks Operator *****************	: FCC Part15 Subpa : PS-500 : ES50B00010 : Heart Rate Activ : 005 : DC3.97V : 19.8°C / 30% : 2440MHz : X-axis : H.Fujimoto	vity Monitor	****	******	*****	****	******
Horizontal No. Frequency [MHz] 1 2390.000 2 2483.500 3 4880.060 4 7320.060	$\begin{bmatrix} dB(\mu V) \\ 39.1 \\ 40.3 \\ 41.1 \\ 9.7 \end{bmatrix} \begin{bmatrix} dB(1/m) \\ 4.2 \\ 4.4 \\ 41.7 \\ 9.7 \end{bmatrix}$	Result [dB(µV/m)] 43.3 44.7 50.8 54.8	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 30.7 29.3 23.2 19.2	Height [cm] 121.0 121.0 100.0 100.0	Angle [°] 7.0 7.0 21.0 207.0	
Horizontal No. Frequency [MHz] 1 2390.000 2 2483.500 3 4880.060 4 7320.060	$\begin{bmatrix} dB(\mu V) \\ 26.6 \\ 4.2 \\ 26.5 \\ 4.4 \\ 29.7 \\ 9.7 \end{bmatrix}$	Result	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.2 23.1 14.6 11.2	Height [cm] 121.0 121.0 100.0 100.0	Angle [°] 7.0 7.0 21.0 207.0	
	$\begin{array}{ccc} 40.1 & & 4.4 \\ 41.8 & & 9.7 \end{array}$	Result [dB(µV/m)] 43.4 44.5 51.5 58.2	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	[dB] 30. 6 29. 5	Height [cm] 100.0 100.0 100.0 162.6	Angle [°] 186.0 186.0 174.0 294.0	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Result [dB(µV/m)] 30.7 31.2 39.5 45.0	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.3 22.8 14.5 9.0	Height [cm] 100.0 100.0 100.0 162.6	Angle [°] 186.0 186.0 174.0 294.0	

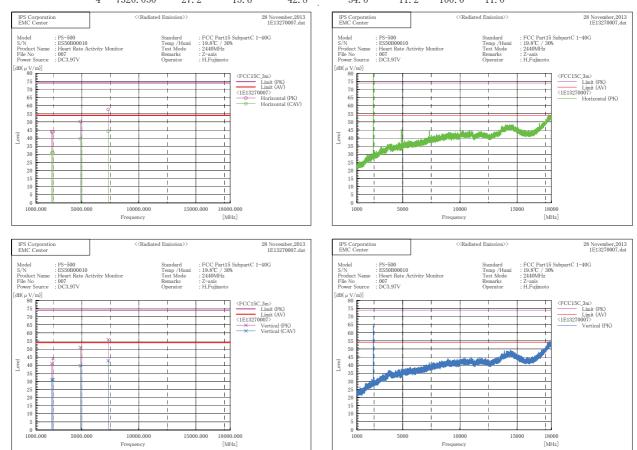


IPS Corporation

Page 29 of 45

Radiated Emission Test Data 1 GHz to 18 GHz For 2440 MHz (Middle) Axis; Y

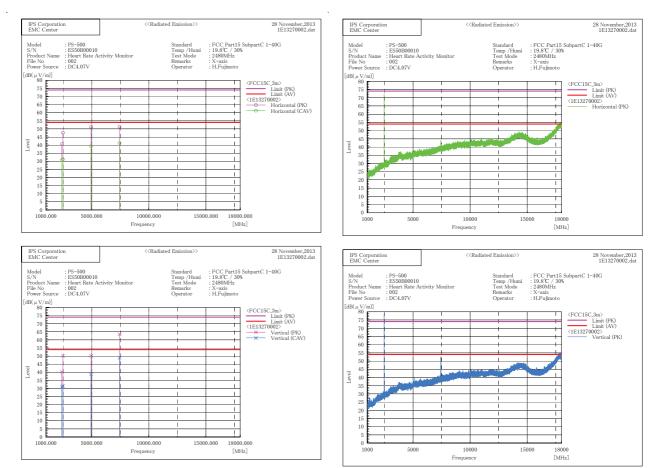
*****	*****		orporation * ted Emission>		******	**************************************
Standard Model S/N Product Name File No Power Source Temp /Humi Test Mode Remarks Operator **********************	: FCC Part15 Subpa : PS-500 : ES50B00010 : Heart Rate Activ : 006 : DC3,97V : 19.8°C / 30% : 2440MHz : Y-axis : H.Fujimoto ***********************************	vity Monitor	****	****	******	***
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Result [dB(µV/m)] 43.5 44.0 50.8 54.8	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0 74.0	Margin [dB] 30.5 30.0 23.2 19.2	Height [cm] 116.2 116.2 100.0 100.0	Angle [°] 183.0 183.0 21.0 207.0
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Result	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.3 23.1 14.6 11.2	Height [cm] 116.2 116.2 100.0 100.0	Angle [°] 183.0 183.0 21.0 207.0
Vertical Po No. Frequency [MHz] 1 2390.000 2 2483.500 3 4879.910 4 7320.050	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Result [dB(µV/m)] 43.8 44.1 51.5 58.2	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 30.2 29.9 22.5 15.8	Height [cm] 100.0 100.0 100.0 162.6	Angle [°] 21.0 21.0 174.0 294.0
	$\begin{array}{c} \text{Darization (CAV)} &\\ \text{Reading c. f} \\ [\text{dB}(\mu \text{V})] & [\text{dB}(1/\text{m})] \\ 26.7 & 4.2 \\ 26.5 & 4.4 \\ 29.8 & 9.7 \\ 29.4 & 15.6 \end{array}$	Result [dB(µV/m)] 30.9 30.9 39.5 45.0	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.1 23.1 14.5 9.0	Height [cm] 100.0 100.0 100.0 162.6	Angle [°] 21.0 21.0 174.0 294.0



IPS Corporation

Page 30 of 45

Radiated Emission Test Data 1 GHz to 18 GHz For 2440 MHz (Middle) Axis; Z


*******	*****		orporation * ted Emission>		*****	**************************************
Standard Model S/N Product Name File No Power Source Temp /Humi Test Mode Remarks Operator	: FCC Part15 Subpan : PS-500 : ES50B00010 : Heart Rate Activ: : 007 : DC3.97V : 19.8°C / 30% : 2440MHz : Z-axis : H.Fujimoto	ity Monitor		*****	****	
Final Result	والمرابعة					
	$\begin{bmatrix} dB(\mu V) \\ 0 & 39.7 \\ 0 & 39.5 \\ 40.6 \\ 9.7 \end{bmatrix} \begin{bmatrix} dB(1/m) \\ 42.0 \\ 40.6 \\ 0 & 9.7 \end{bmatrix}$	Result [dB(µV/m)] 43.9 43.9 50.3 57.7	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0 74.0	Margin [dB] 30.1 30.1 23.7 16.3	Height [cm] 123.4 123.4 100.0 100.0	Angle [°] 181.0 181.0 182.0 50.0
Horizonta No. Frequenc [MHz] 1 2390.00 2 2483.50 3 4880.06 4 7320.00	$\begin{bmatrix} dB(\mu V) \\ 0 & 26.6 \\ 0 & 26.5 \\ 0 & 29.9 \\ 9.7 \end{bmatrix} \begin{bmatrix} dB(1/m) \\ 0 \\ 4.2 \\ 0 \\ 29.9 \\ 9.7 \end{bmatrix}$	Result [dB(μV/m)] 30.8 30.9 39.6 44.3	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.2 23.1 14.4 9.7	Height [cm] 123.4 123.4 100.0 100.0	Angle [°] 181.0 181.0 182.0 50.0
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Result [dB(μV/m)] 41.1 44.2 51.1 55.9	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0 74.0	Margin [dB] 32.9 29.8 22.9 18.1	Height [cm] 127.5 127.5 100.0 100.0	Angle [°] 124.0 124.0 16.0 11.0
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Result [dB(µV/m)] 30.9 31.2 39.7 42.8	Limit $[dB(\mu V/m)]$ 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.1 22.8 14.3 11.2	Height [cm] 127.5 127.5 100.0 100.0	Angle [°] 124.0 124.0 16.0 11.0

IPS Corporation

Radiated Emission Test Data 1 GHz to 18 GHz For 2480 MHz (High) Axis; X

****	*****	110 0	orporation * ted Emission>		*******	**************************************
Standard Model S/N Product Name File No Power Source Temp /Humi Test Mode Remarks Operator ********************	: FCC Part15 Subp : PS-500 : ES50B0010 : Heart Rate Acti : 002 : DC4.07V : 19.8°C / 30% : 2480MHz : X-axis : H.Fujimoto	vity Monitor	*****	******	****	****
Horizontal No. Frequency [MHz] 1 2390.000 2 2483.500 3 4959.990 4 7440.005	$\begin{bmatrix} dB(\mu V) \end{bmatrix} \begin{bmatrix} dB(1/m) \end{bmatrix} \\ 36.5 & 4.2 \\ 43.2 & 4.4 \end{bmatrix}$	Result	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 33.3 26.4 22.8 22.7	Height [cm] 112.0 112.0 100.0 100.0	Angle [°] 188.0 188.0 323.0 18.5
Horizontal No. Frequency [MHz] 1 1 2390.000 2 2483.500 3 4959.990 4 7440.005		Result	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.2 22.8 14.7 12.7	Height [cm] 112.0 112.0 100.0 100.0	Angle [°] 188.0 188.0 323.0 18.5
Vertical Pc No. Frequency [MHz] 1 2390.000 2 2483.500 3 4960.008 4 7439.900	$\begin{bmatrix} dB(\mu V) \end{bmatrix} \begin{bmatrix} dB(1/m) \end{bmatrix} \\ 36.1 & 4.2 \\ 45.8 & 4.4 \end{bmatrix}$	Result [dB(µV/m)] 40.3 50.2 50.2 63.5	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 33.7 23.8 23.8 10.5	Height [cm] 110.6 110.6 100.0 156.7	Angle [°] 1.0 1.0 70.0 130.0
Vertical Pc No. Frequency [MHz] 1 2390.000 2 2483.500 3 4960.008 4 7439.900	$\begin{bmatrix} dB(\mu V) \end{bmatrix} \begin{bmatrix} dB(1/m) \end{bmatrix} \\ 26.9 \\ 4.2 \end{bmatrix}$	Result [dB(µV/m)] 31.1 31.5 38.6 48.9	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0 54.0	Margin [dB] 22.9 22.5 15.4 5.1	Height [cm] 110.6 110.6 100.0 156.7	Angle [°] 1.0 1.0 70.0 130.0



IPS Corporation

Page 32 of 45

Radiated Emission Test Data 1 GHz to 18 GHz For 2480 MHz (High) Axis; Y

*****	*****		orporation ¥ ted Emission>		*****	28 Nove	********* mber,2013 70003.dat
Standard Model S/N Product Name File No Power Source Temp /Humi Test Mode Remarks Operator ***********	: FCC Part15 Sub : PS-500 : ES50B00010 : Heart Rate Act : 003 : DC4.07V : 19.8°C / 30% : 2480MHz : Y-axis : H.Fujimoto	ivity Monitor		*****	*****	****	*****
Horizontal No. Frequency [MHz] 1 2390.000 2 2483.500 3 4959.500 4 7440.080	Polarization (PK) Reading c.f [dB(μV)] [dB(1/m) 39.1 4.2 47.5 4.4 42.1 10.0 47.9 15.7	Result	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 30.7 22.1 21.9 10.4	Height [cm] 116.0 116.0 100.0 115.0	Angle [°] 1.0 1.0 14.0 155.0	
Horizontal No. Frequency [MHz] 1 2390.000 2 2483.500 3 4959.500 4 7440.080	$\begin{array}{c} \mbox{Polarization (CAV)} - \\ \mbox{Reading c.f} \\ \mbox{[dB}(\mu V)] & \mbox{[dB}(1/m) \\ 26.6 & 4.2 \\ 27.2 & 4.4 \\ 28.9 & 10.0 \\ 33.8 & 15.7 \end{array}$	Result	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.2 22.4 15.1 4.5	Height [cm] 116.0 116.0 100.0 115.0	Angle [°] 1.0 1.0 14.0 155.0	
Vertical Po No. Frequency [MHz] 1 2390.000 2 2483.500 3 4959.670 4 7440.800	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} \text{Result} \\ [\text{dB}(\mu \text{ V/m})] \\ 43.4 \\ 46.6 \\ 52.3 \\ 58.8 \end{array} $	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 30.6 27.4 21.7 15.2	Height [cm] 103.0 103.0 100.0 106.1	Angle [°] 12.0 12.0 149.0 29.0	
Vertical Po No. Frequency [MHz] 1 2390.000 2 2483.500 3 4959.670 4 7440.800	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Result	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.2 22.8 13.8 7.8	Height [cm] 103.0 103.0 100.0 106.1	Angle [°] 12.0 12.0 149.0 29.0	



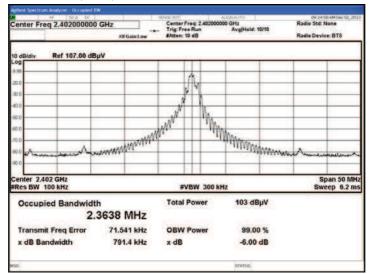
IPS Corporation

Page 33 of 45

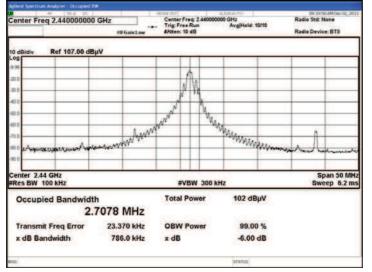
Radiated Emission Test Data 1 GHz to 18 GHz For 2480 MHz (High) Axis; Z

*****	*****		orporation * ted Emission>		*******	**************************************
Standard Model S/N Product Name File No Power Source Temp /Humi Test Mode Remarks Operator ************************************	: FCC Part15 Subp. : PS-500 : ES50B00010 : Heart Rate Acti : 004 : DC4.07V : 19.8°C / 30% : 2480MHz : Z-axis : H.Fujimoto	vity Monitor	*****	*****	****	****
Horizontal No. Frequency [MHz] 1 2390.000 2 2483.500 3 4959.500 4 7439.250	$\begin{array}{c} \mbox{Polarization (PK)} \\ \mbox{Reading c.f} \\ \mbox{[dB(μV)] [dB($1/m$)]} \\ \mbox{39.2 4.2} \\ \mbox{45.6 4.4} \\ \mbox{41.8 10.0} \\ \mbox{45.6 15.7} \end{array}$	Result [dB(µV/m)] 43.4 50.0 51.8 61.3	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 30.6 24.0 22.2 12.7	Height [cm] 123.1 130.1 100.0 100.0	Angle [°] 29.0 29.0 22.0 215.0
Horizontal No. Frequency [MHz] 1 2390.000 2 2483.500 3 4959.500 4 7439.250	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Result	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.2 22.6 14.7 4.8	Height [cm] 123.1 130.1 100.0 100.0	Angle [°] 29.0 29.0 22.0 215.0
Vertical Po No. Frequency [MHz] 1 2390.000 2 2483.500 3 4959.670 4 7440.050	$\begin{array}{c} \text{plarization} (\text{PK}) =\\ \text{Reading} & \text{c.f} \\ [\text{dB}(\mu \text{V})] [\text{dB}(1/\text{m})] \\ 39.2 & 4.2 \\ 40.0 & 4.4 \\ 42.5 & 10.0 \\ 45.6 & 15.7 \end{array}$	Result [dB(µV/m)] 43.4 44.4 52.5 61.3	Limit [dB(µV/m)] 74.0 74.0 74.0 74.0 74.0	Margin [dB] 30.6 29.6 21.5 12.7	Height [cm] 110.0 110.0 100.0 100.0	Angle [°] 293.0 293.0 163.0 196.0
Vertical Po No. Frequency [MHz] 1 2390.000 2 2483.500 3 4959.670 4 7440.050	$\begin{array}{c} \text{Plarization} (\text{CAV})\\ \text{Reading} \text{c.f} \\ [\text{dB}(\mu \text{V})] [\text{dB}(1/\text{m})] \\ 26.6 4.2 \\ 26.8 4.4 \\ 29.9 10.0 \\ 32.6 15.7 \end{array}$	Result [dB(µV/m)] 30.8 31.2 39.9 48.3	Limit [dB(µV/m)] 54.0 54.0 54.0 54.0 54.0	Margin [dB] 23.2 22.8 14.1 5.7	Height [cm] 110.0 110.0 100.0 100.0	Angle [°] 293.0 293.0 163.0 196.0

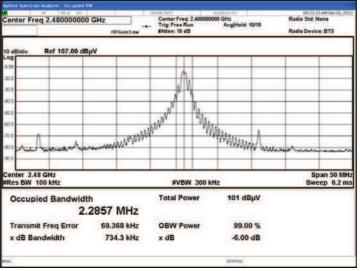
IPS Corporation


Page 34 of 45

Radiated Emission Test Data 18 GHz to 25 GHz For 2480 MHz (High) Axis; Y

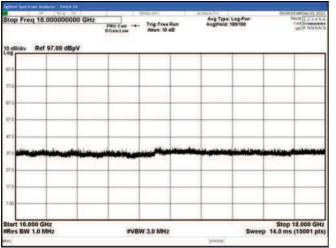


6 dB Bandwidth

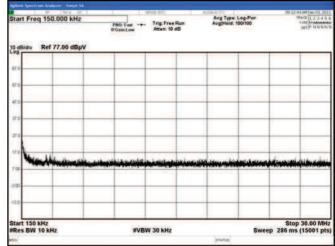

2402 MHz (Low)

2440 MHz (Middle)

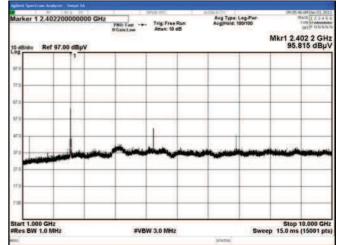
2480 MHz (High)

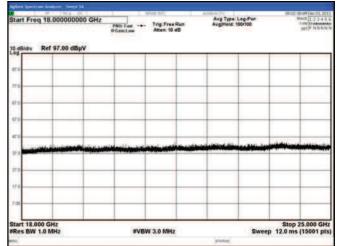

Conducted Spurious Emission Test 2402 MHz (Low) 9 kHz to 150 kHz

tart Freq 9.000 kHz	987498		Avg Type: L	og-Pwr	1	1 AM Dec 03, 2013 RACE 1, 2, 3, 4, 5, 6
a Bidiv Ref 77.00 dBuV	FNO: Wide Tr #Gain:Auto A	ig:FreeRun Iten: 10 dB	Avg Hold: 10	0/100		DET P N'S N N
og						
7.0						
20						
10				<i>.</i>	-	
7.0				-	-	-
70 1						
"MAN LONG PRINTER I						
70 Networks and a standard and a standard	when we are branching the	1				
00		and the second strate	hat an and and and	and the states	MANN MUS	hater win
00						AUX ALMA
						1
30				-	-	-
tart 9.00 kHz Res BW 200 Hz	#VBW 6	20 Hz	Su	een (EET)		150.00 kHz (15001 pts)
nes on coone			STATUS	ach (i.i.i)	12.0 1115	(reset his)


$30\ \text{MHz}$ to $1\ \text{GHz}$

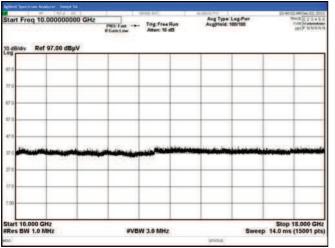
IF TO E DO		SEVENT)	ALNOVALITO	09109-21 AM Dec 03, 2013
tart Freq 30.000000 MHz	PNO: Fast #Gain:Low	- Trig: Free Run Atten: 10 dB	Avg Type Log-Pwr Avg(Hold: 100/100	THREE [1 2 3 4 5 6 THREE AN INCOMENTATION CET IN 19 19 19 19 19
o dB/div Ref 77.00 dBµV				
57.0				
20				
7.0				
0			and the second	March March March 199
7.0 voltable de la constation de la cons			with the second state of the second	niteriti ne antini interpe
00	_			2
90				
130				
itart 30.0 MHz Res BW 100 kHz	#VE	300 kHz	Swee	Stop 1.0000 GHz p 93.0 ms (15001 pts)
50			STATUS	


$10\ \mathrm{GHz}$ to $18\ \mathrm{GHz}$


150 kHz to 30 MHz

1 GHz to 10 GHz

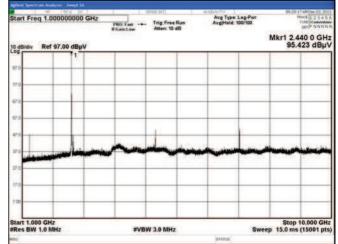
18 GHz to 25 GHz


Conducted Spurious Emission Test 2440 MHz (Middle) 9 kHz to 150 kHz

Agilent Spectrum Analyzer - Swept SA			
Start Freq 9.000 kHz	PRO: Wide Trig: Free R IFGain: Auto		10:07 47 AM (Sec 03, 2013) 10:02 1 2 3 4 5 6 17:02 0 4 4 5 6 17:02 0 4 5 6 10 4 5 6 10 10 10 10 10 10 10 10 10 10 10 10 10
odB/div Ref 77.00 dBµV			
67.0			
67.0			
00			
12.0			
Construction in the second			
17:0	an and the second second		
7.00		and the second second second second	manulant birtoning him of fam
2.00			
13.D			
Start 9,00 kHz			Stop 150.00 kHz
Res BW 200 Hz	#VBW 620 Hz	Sweep (FF	T) -12.0 ms (15001 pts)

$30\ \text{MHz}$ to $1\ \text{GHz}$

Agilent Spectrum Analyzer - Swept SA				
Start Freq 30.000000 MHz	PNO: Fast IFGainst ow	Trig: Free Run Atten: 10 dB	Avg Type: Log-Pwr Avg Hold: 100/100	99-31:34 AM (Dec 03, 2013) TRACE 12 3 4 5 6 5798 M ANALASA 2017 P 14 14 14 14 2017 P 14 14 14 14
odBidiv Ref 77.00 dBµV				
67.0	_			
57 0				
47.0				
20		_		
27.0				
7 00				
100				
13.0	_			
Start 30.0 MHz Res BW 100 kHz	#VBI	V 300 kHz	Swe	Stop 1.0000 GHz
RG	N045678	0.0000000	STATUS	


$10\ \mathrm{GHz}$ to $18\ \mathrm{GHz}$

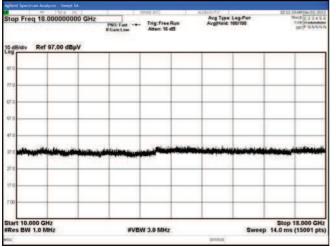
$150\ kHz$ to $30\ MHz$

Arg Type Log-Per Arg Hold: 100100
an a
Stop 30.00 MH

$1\ \mathrm{GHz}$ to $10\ \mathrm{GHz}$

18 GHz to 25 GHz

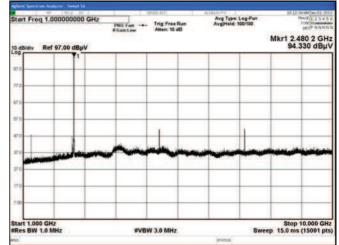
Start Freq 18.00000000 GH	Z PND: Fast Trig: Free Run	Avg Type: Log-Pwr Avg[Hold: 100/100	199-22-12 AM Dec 03, 201 Thece 1 2 3 4 5 Type Myddiadau
10 dB/div Ref 97.00 dBµV	IFGain Low Atten: 10 dB	a secondaria	per P fa fa fa fa
og			
87.0			
72 0			
67.0		-	
57.0			
47.0			
P D COLORED WING			
20			
17.0			
7.00			
Start 18.000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Swee	Stop 25.000 GH p 12.0 ms (15001 pt


Conducted Spurious Emission Test 2480 MHz (High) 9 kHz to 150 kHz

Agilent Spectrum Analyzer - Swept SA						
Start Freq 9.000 kHz	PNO: Wide Trig: Fre If Gain Auto Atten: 10		Avg Type: Lo Avg Hold: 100	g-Pwr 1100	Type .	Der: 03, 2013 1 2 3 4 5 6 Muthanian P 14 14 14 14 14
odB/div Ref 77.00 dBµV						
67.0		-		_	_	_
67.0		-		-	-	-
<i>t</i> 70				-	-	
37.0						_
270 a utonalisationaldisationalisation 1700 200						
100	without a subscription of the subscription of	white market	alutions under the	tank		
3:00				A 10.000 000	hand the state of	nihtifusini
13.0		-		-	-	-
Start 9.00 kHz #Res BW 200 Hz	#VBW 620 Hz		Swe	en (FFT) -	Stop 15	0.00 kHz
rsg			STATUS			are i proj

$30\ \text{MHz}$ to $1\ \text{GHz}$

Agilent Spectrum Analyzer - Swept SA				
Start Freq 30.000000 MHz	PNO: Fast +++	Trig: Free Run Atten: 10 dB	Avg Type: Log-Por Avg Hold: 100/100	10:12:15:44 Cer. 03, 2013 TRACE 12, 23 4 5 6 F778 M MARKAN DRT P 10 10:11:10 DRT P 10 10:11:10
o dB/div Ref 77.00 dBjiV	_		_	
67.0	_			
570		_		
00				
37.0				
and the second s	-	Man In Street	المتحديد ويستجل	a la contract de la contracta d
20				
100				
13.0	_			
Start 30.0 MHz Res BW 100 kHz	#VBI	V 300 kHz	S	Stop 1.0000 GHz weep 93.0 ms (15001 pts)
ISG	1.11	1.0000000	STATUS	


$10\ \mathrm{GHz}$ to $18\ \mathrm{GHz}$

$150\ \text{kHz}$ to $30\ \text{MHz}$

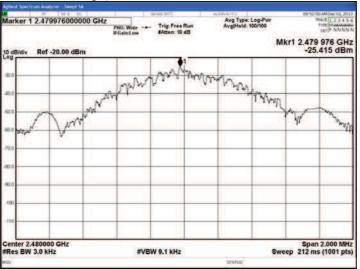
Start Freq 150.000 kHz	PNO: Fast Trig: Fra IFGain1.ove Atten: 1	e Run A	Avg Type: Log-Por vg Hold: 100/100	10:14:50 AM Dec 03, 201 TRACE 1 2 3 4 5 Trifle M Manager Det P 14 14 14 14
10 dB/div Ref 77.00 dBµV				
67.0			-	
57.0				
47.0		-		
32.0		-		
27.0			_	
17.0	a final sea of the local sector	107 10		10-11-12 J. 10-14
7 00	where the state of			Say Arguin dury him
3.00			_	
13.0			_	
Start 150 kHz #Res BW 10 kHz	#VBW 30 kH			Stop 30.00 MH

1 GHz to 10 GHz

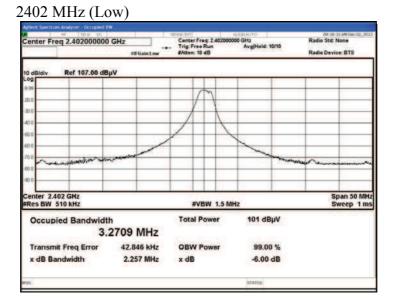
18 GHz to 25 GHz

Start Freq 18.000000000	SHz PNO Feet	Trig: Free Run	Avg Type: Log-Por Avg[Hold: 100/100	10-10-21 AM Cell 03, 201 WALE 1 2 3 4 5 THE M WALE
	IF Gain:Low	Atten: 10 dB		DET IP TO TO TO TO TO
10 dB/div Ref 97.00 dBpV				
67.0				
77.0				
67.0				
57.0	_			
47.0				
-	and the second sec	-	nine trains which have	aliter territory and the second s
27.0				
17.0				
7 00				
Start 18.000 GHz				Stop 25.000 GH
Res BW 1.0 MHz	EVBM	V 3.0 MHz	Swe	ep 12.0 ms (15001 pt

Maximum Power Spectral Density

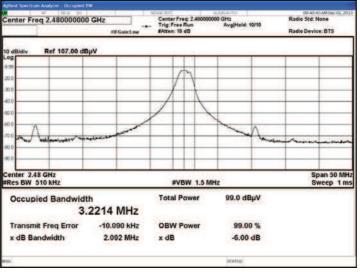

2402 MHz (Low)

IFGainLow	#Atten: 10 dB	Avg Type: Log-Pwr Avg Held: 100/100	1kr1 2.401	980 GH
°°	the state of the second st		-20.	
no Martin	ANA A MAN	www.www.		
0.0 North Contraction		way	man	
			man	- And - Contraction
0.0 K				
0.0			-	
0.0				
80				
10	0 0		-	
enter 2.402000 GHz Res BW 3.0 kHz #VI	BW 9.1 kHz	Sw	Span reep 212 ms	2.000 MH


2440 MHz (Middle)

Marker 1 2.439982000000	GHz PNO: Wide ++- Trig: Free Run #Gain:Low #Atten: 10 dB	Avg Type: Log-Pwr Avg Hold: 100/100	00 51 56 AMORE 02, 201 PRACE 1, 2 3 4 5 6 TYPE MUMANANA DET P NANNA			
10 dB/div Ref -20.00 dBm	•	M	kr1 2.439 982 GHz -25.026 dBm			
20.0	man man war from the second	monorman				
600 M	Nari	. www	n m			
oo a mar	_		my/			
20.0						
81.0						
100						
-110						
Center 2.440000 GHz Res BW 3.0 kHz	#VBW 9.1 kHz	Swe	Span 2.000 MH ep 212 ms (1001 pts			
190	STATUS					

2480 MHz (High)


99 % Occupied Bandwidth

2440 MHz (Middle)

Agilent Spectrum A	inalyzer - Occupied BV	N					09-40-02 AM Dec 02, 2011
Center Freq	2.440000000	GHz #IFGain:Low	1		q: 2.4400000 Run	AugiHeld: 10/10	Radio Std: None Radio Device: BTS
10 dB/div	Ref 107.00 dB	ΨV					
9.99			-				
20.0			-		1		
30.0			-	1	1		
40.0				4			
50.0			X				
70.0		and the				-	Λ
10.0 verseeling 10.0	and the second second						have have a have a series
90.0					_		
enter 2.44	CH2				_		Span 50 MHz
Res BW 51				#VB	W 1.5 M	Hz	Sweep 1 ms
Occupied Bandwidth			ा	Total Power		101 dBµV	
	3.6	6488 MHz					
Transmit Freq Error -3.734 kHz		c	OBW Power		99.00 %		
x dB Bandwidth		2.405 MHz	z x dB			-6.00 dB	
156						STATUS	

2480 MHz (High)

