MRT Technology (Taiwan) Co., Ltd

Phone: +886-3-3288388 www.mrt-cert.com

Report No.: 2301TW0110-U3 Report Version: Issue Date: 2023-03-23

RF MEASUREMENT REPORT

FCC ID : BKMAE-STI6290

APPLICANT : SEIKO EPSON CORPORATION

Product : WLAN / BT Module

Model No. : STI6290-D101

Brand Name : EPSON

FCC Classification: Digital Transmission System (DTS)

FCC Rule Part(s) : Part15 Subpart C (Section 15.247)

Result : Complies

Received Date : January 30, 2023

Test Date : February 2, 2023 ~ February 13, 2023

(Peter Syu) Test By

Reviewed By

Approved By

(Chenz Ker)

The test results only relate to the tested samples.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10 Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2301TW0110-U3	1.0	Original Report	2023-03-23	Valid

Page Number: 2 of 141

CONTENTS

	scription	Page
Gen	neral Information	5
1.	INTRODUCTION	6
1.1.	Scope	6
1.2.	MRT Test Location	6
2.	PRODUCT INFORMATION	7
2.1.	Equipment Description	7
2.2.	Product Specification Subjective to this Report	7
2.3.	Operation Frequency / Channel List	8
2.4.	Description of Available Antennas	8
2.5.	Test Mode	9
2.6.	Test Configuration	9
2.7.	Test System Details	10
2.8.	Test Software	10
2.9.		
2.10). Duty Cycle	11
2.11	EMI Suppression Device(s)/Modifications	11
2.12	2. Labeling Requirements	12
3.	DESCRIPTION of TEST	13
3.1.	Evaluation Procedure	13
3.2.	AC Line Conducted Emissions	13
3.3.	Radiated Emissions	14
4.	ANTENNA REQUIREMENTS	15
5.	TEST EQUIPMENT CALIBRATION DATE	16
6.	MEASUREMENT UNCERTAINTY	17
7.	TEST RESULT	18
7.1.	Summary	18
7.2.	•	
7.2.	1. Test Limit	19
7.2.2	2. Test Procedure used	19
7.2.3	3. Test Setting	19
7.2.4	4. Test Setup	19
7.2.5	5. Test Result	20
7.3.	Output Power Measurement	23
7.3.	1. Test Limit	23
7.3.2	2. Test Procedure Used	23

7.3.3.	Test Setting	23
7.3.4.	Test Setup	23
7.3.5.	Test Result	24
7.4.	Power Spectral Density Measurement	25
7.4.1.	Test Limit	25
7.4.2.	Test Procedure Used	25
7.4.3.	Test Setting	25
7.4.4.	Test Setup	26
7.4.5.	Test Result	27
7.5.	Out-of-Band Spurious Emissions Measurement	32
7.5.1.	Test Limit	32
7.5.2.	Test Procedure Used	32
7.5.3.	Test Settitng	32
7.5.4.	Test Setup	32
7.5.5.	Test Result	33
7.6.	Radiated Spurious Emission Measurement	46
7.6.1.	Test Limit	46
7.6.2.	Test Procedure Used	46
7.6.3.	Test Setting	47
7.6.4.	Test Setup	48
7.6.5.	Test Result	50
7.7.	Radiated Restricted Band Edge Measurement	76
7.7.1.	Test Limit	76
7.7.2.	Test Procedure Used	77
7.7.3.	Test Setting	77
7.7.4.	Test Setup	78
7.7.5.	Test Result	79
7.8.	AC Conducted Emissions Measurement	135
7.8.1.	Test Limit	135
7.8.2.	Test Setup	135
7.8.3.	Test Result	136
8. C	ONCLUSION	140
Apper	ndix A : Test Photograph	141
	ndix B : External Photograph	
	ndix C : Internal Photograph	
1, 1, A.		

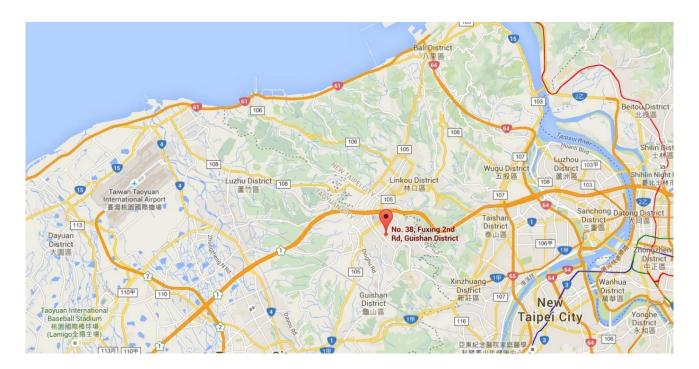
General Information

Applicant	SEIKO EPSON CORPORATION		
Applicant Address	3-3-5, Owa, Suwa-shi, Nagano-ken 392-8502 Japan		
Manufacturer	SEIKO EPSON CORPORATION		
Manufacturer Address	3-3-5, Owa, Suwa-shi, Nagano-ken 392-8502 Japan		
Test Site	MRT Technology (Taiwan) Co., Ltd		
Test Site Address	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C)		
MRT FCC Registration No.	291082		
FCC Rule Part(s)	Part 15.247		
Test Device Serial No.	41DC6005203 (Conducted) 41DC6005188 (Radiated)		

Test Facility / Accreditations

- 1. MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- 2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
- MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Taiwan, EU and TELEC Rules.

Page Number: 5 of 141


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	WLAN / BT Module	
Model No.	STI6290-D101	
Brand Name	EPSON	
Supports Radios Spec.	WLAN: 802.11a/b/g/n/ac WPAN: Bluetooth V5.0 (Dual Mode)	
Working Voltage	DC 5V	

2.2. Product Specification Subjective to this Report

Frequency Range	802.11b/g/n-HT20: 2412 ~ 2462 MHz
	802.11n-HT40: 2422 ~ 2452 MHz
Channel Number	802.11b/g/n-HT20: 11
	802.11n-HT40: 9
Type of Modulation	802.11b: DSSS
	802.11g/n: OFDM
Data Rate	802.11b: 1/2/5.5/11Mbps
	802.11g: 6/9/12/18/24/36/48/54Mbps
	802.11n: up to 300Mbps

Page Number: 7 of 141

2.3. Operation Frequency / Channel List

802.11b/g/n-HT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz		

802.11n-HT40

Channel	Frequency	Channel	Frequency	Channel	Frequency
03	2422 MHz	04	2427 MHz	05	2432 MHz
06	2437 MHz	07	2442 MHz	08	2447 MHz
09	2452 MHz				

2.4. Description of Available Antennas

Antenna Type	Frequency	Tx	Antenna Gain		CDD Directional Gain	
	Band (MHz)	Paths	(dBi)		(dBi)	
			Ant 1	Ant 2	For Power	For PSD
Wi-Fi Antenna	Wi-Fi Antenna					
	2412 ~ 2462	2	2.34	2.74	2.74	5.75
PIFA Antenna	5150 ~ 5250	2	3.58	3.39	3.58	6.59
	5725 ~ 5850	2	5.29	4.50	5.29	8.30

Note:

The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.

For CDD transmissions, directional gain is calculated as follows, N_{ANT} = 2, N_{SS} = 1.

If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

· For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log (N_{ANT}/N_{SS}) dB = 3.01$;

• For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB for $N_{ANT} \le 4$;

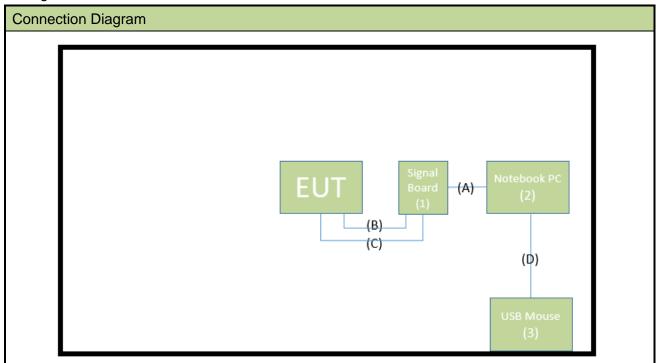
Report No.: 2301TW0110-U3

2.5. Test Mode

Mode 1: Transmit by	v 802 11b	Nss = 1	(1Mbps)	١
Wode I. Hallollik b	y 002.11D	1433 - 1	(LIVIDPS)	,

Mode 2: Transmit by 802.11g _ Nss = 1 (6Mbps)

Mode 3: Transmit by 802.11n-HT20 _ Nss = 1 (MCS0)


Mode 4: Transmit by 802.11n-HT40 Nss = 1 (MCS0)

Note:

- 1. For Radiated emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.
- For CDD mode, this device supports 2 N_{SS} and power level is the same of spatial multiplexing.
 The worst case is N_{SS}=1.
- 3. As Designated by manufacturer, the lowest data rate was the worst condition, so all the tests were done with lowest data rate.

2.6. Test Configuration

This device was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

Signal Cable Type		Signal Cable Description	
A USB Cable		Non-Shielded, 1.0m	
В	Signal Cable	Non-Shielded, 0.1m	
С	Signal Cable	Non-Shielded, 0.1m	
D	USB Mouse Cable	Shielded, 1.8m	

Page Number: 9 of 141

2.7. Test System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

No.	Product	Manufacturer	Model No.	S/N	Cable Description
1	Signal Board	Askey	STI6290- D101(RoHS)- EVB	N/A	N/A
2	Notebook PC	Lenovo	20Y7-006KTW	N/A	Non-shielded, 0.8m
3	USB Mouse	Logitech	M90	N/A	N/A

2.8. Test Software

The test utility software used during testing was "Putty" and command that provided by the customer.

Note: Final power setting please refer to operational description.

2.9. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.247
- KDB 558074 D01v05r02
- KDB 662911 D01v02r01
- ANSI C63.10-2013

2.10. Duty Cycle

2.4GHz WLAN (DTS) operation is possible in 20MHz and 40MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Duty Cycle
802.11b	96.58%
802.11g	93.25%
802.11 n-HT20	89.35%
802.11 n-HT40	89.47%

2.11. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.12. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

Page Number: 12 of 141

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) and were used in the measurement of the device.

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment which determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

Page Number: 13 of 141

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, which produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

Page Number: 14 of 141

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

• The antenna of the device uses the unique **I-PEX** connector.

Conclusion:

The EUT unit complies with the requirement of §15.203.

Page Number: 15 of 141

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions – SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date	
Two-Line V-Network	R&S	ENV216	MRTTWA00019	1 year	2023/3/7	
Cable	Daniel	N1C50-RG400-	MADITIMECOGAC	4	0000/0//0	
	Rosnol	B1C50-500CM	MRTTWE00013	1 year	2023/6/19	
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2023/3/9	

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00001	1 year	2023/12/21
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2023/3/9
Acitve Loop Antenna	Schwarzbeck	FMZB 1519B	MRTTWA00002	1 year	2023/5/24
Broadband Horn antenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2023/3/30
Breitband Hornantenna	Schwarzbeck	BBHA 9170	MRTTWA00004	1 year	2023/3/29
Broadband Amplifier	Schwarzbeck	BBV 9721	MRTTWA00006	1 year	2023/3/30
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	1 year	2023/3/30
Cable	HUBERSUHNER	SF106	MRTTWE00010	1 year	2023/5/23
Cable	Rosnol	K1K50-UP0264-	MRTTWE00012	1 year	2023/6/19
Gabio	1,001101	K1K50-4M		i you	2020/0/10

Conducted Test Equipment – SR5

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2023/10/5
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2023/7/19
USB Wideband Power Sensor	KEYSIGHT	U2021XA	MRTTWA00015	1 year	2023/3/16

Test Software

Software	Version	Function
e3	9.160520a	EMI Test Software
ЕМІ	V3	EMI Test Software

Page Number: 16 of 141

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Conducted Emission-Power Line

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

0.15MHz~30MHz: ± 2.53dB

Radiated Spurious Emission

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz~30MHz: ± 3.92dB 30MHz~1GHz: ± 4.25dB 1GHz~18GHz: ± 4.40dB 18GHz~40GHz: ± 4.45dB

Frequency Error

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±78.4Hz

Conducted Power

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 0.84dB

Conducted Spurious Emission

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):± 2.65 dB

Occupied Bandwidth

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 3.3%

Temp. / Humidity

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±0.82°C/ ±3%

DC Voltage

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±0.3%

Page Number: 17 of 141

7. TEST RESULT

7.1. Summary

FCC Section(s)	Test Description	Test Condition	Verdict	
15.247(a)(2)	6dB Bandwidth		Pass	
15.247(b)(3)	Output Power	Conducted ds Radiated	Pass	
15.247(e)	Power Spectral Density	Conducted	Pass	
15.247(d)	Out-of-Band Spurious Emission		Pass	
15.205	General Field Strength (Restricted Bands	Dedicted	Dana	
15.209	and Radiated Emission)	Radiated	Pass	
45.007	AC Conducted Emissions	Line Conducted	Door	
15.207	150kHz - 30MHz	Line Conducted	Pass	

Notes:

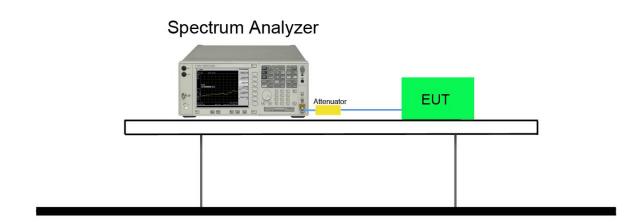
- Determining compliance is based on the test results met the regulation limits or requirements declared by clients, and the test results don't take into account the value of measurement uncertainty.
- 2) For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 3) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 4) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

Page Number: 18 of 141

7.2. 6dB Bandwidth Measurement

7.2.1. Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

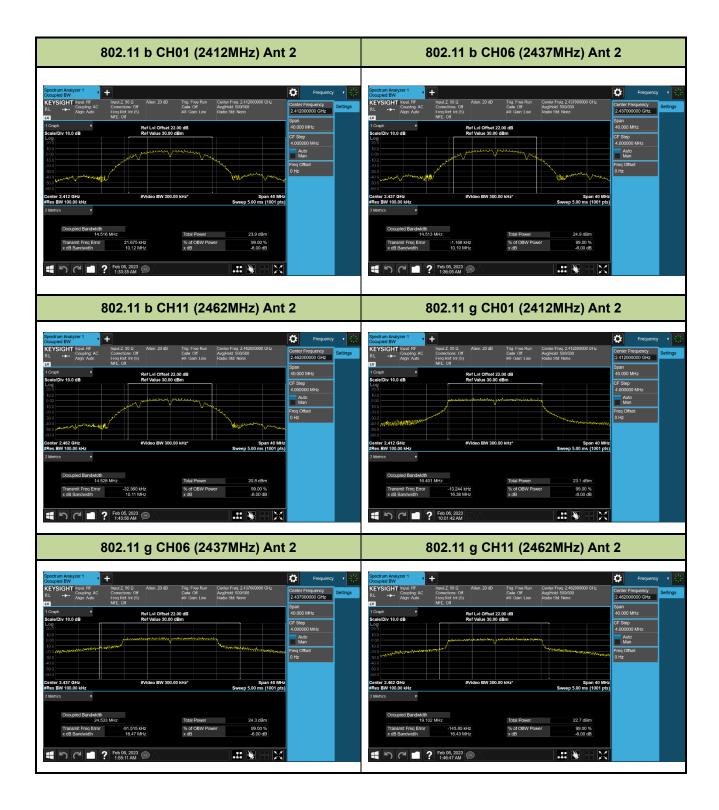

7.2.2. Test Procedure used

ANSI C63.10 - 2013 - Section 11.8

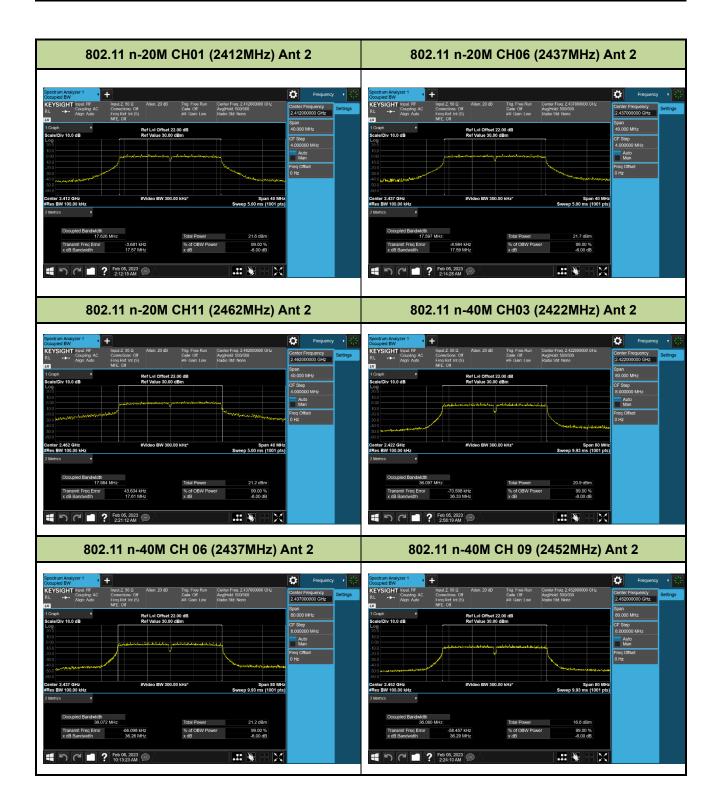
7.2.3. Test Setting

- The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. Set RBW = 100 kHz
- 3. $VBW \ge 3 \times RBW$
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize

7.2.4. Test Setup


7.2.5. Test Result

Product	WLAN / BT Module	Test Engineer	Peter
Test Site	SR2	Test Date	2023/2/5


Test Mode	Channel No.	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result
Ant 2					
802.11b	01	2412	10.120	≥ 0.5	Pass
802.11b	06	2437	10.100	≥ 0.5	Pass
802.11b	11	2462	10.110	≥ 0.5	Pass
802.11g	01	2412	16.401	≥ 0.5	Pass
802.11g	06	2437	16.470	≥ 0.5	Pass
802.11g	11	2462	16.430	≥ 0.5	Pass
802.11n-HT20	01	2412	17.570	≥ 0.5	Pass
802.11n-HT20	06	2437	17.590	≥ 0.5	Pass
802.11n-HT20	11	2462	17.610	≥ 0.5	Pass
802.11n-HT40	03	2422	36.330	≥ 0.5	Pass
802.11n-HT40	06	2437	36.260	≥ 0.5	Pass
802.11n-HT40	09	2452	36.290	≥ 0.5	Pass

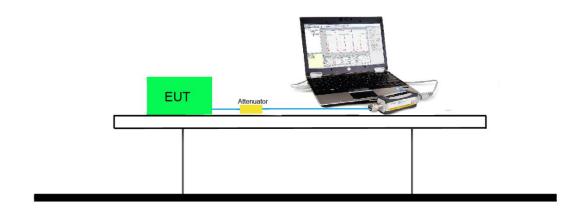
Page Number: 20 of 141

7.3. Output Power Measurement

7.3.1. Test Limit

The maximum out power shall be less 1 Watt (30dBm).

7.3.2. Test Procedure Used


ANSI C63.10 - 2013 - Section 11.9.2.3.2

7.3.3. Test Setting

Average Power Measurement

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

7.3.4. Test Setup

7.3.5. Test Result

Product	WLAN / BT Module	Test Engineer	Peter
Test Site	SR2	Test Date	2023/2/5

Mode	Rate	Ch.	Freq. (MHz)	AV Power (dBm)		Total AV Power	Power Limit (dBm)
				Ant 1	Ant 2	(dBm)	
	1M	1	2412	17.47	16.31	19.94	≤ 30.00
802.11b	1M	6	2437	19.09	19.21	22.16	≤ 30.00
002.110	1M	10	2457	16.75	15.61	19.23	≤ 30.00
	1M	11	2462	15.00	13.80	17.45	≤ 30.00
	6M	1	2412	17.48	16.99	20.25	≤ 30.00
802.11g	6M	6	2437	16.78	17.54	20.19	≤ 30.00
	6M	11	2462	16.31	16.12	19.23	≤ 30.00
802.11n-	MCS0	1	2412	16.12	16.33	19.24	≤ 30.00
HT20	MCS0	6	2437	14.58	17.55	19.32	≤ 30.00
11120	MCS0	11	2462	15.54	14.90	18.24	≤ 30.00
	MCS0	3	2422	16.19	16.56	19.39	≤ 30.00
802.11n-	MCS0	6	2437	15.06	17.32	19.35	≤ 30.00
HT40	MCS0	8	2447	13.45	13.82	16.65	≤ 30.00
	MCS0	9	2452	11.11	10.83	13.98	≤ 30.00

Note: The Total Power (dBm) = $10*\log \{10^{(Ant \ 1 \ Power \ /10)} + 10^{(Ant \ 2 \ Power \ /10)}\}$.

Page Number: 24 of 141

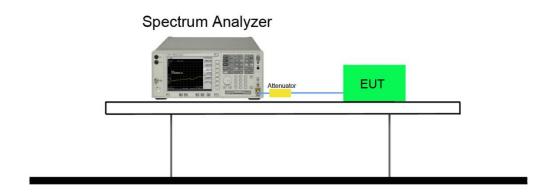
7.4. Power Spectral Density Measurement

7.4.1. Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

7.4.2. Test Procedure Used

ANSI C63.10 - 2013 - Section 11.10.5

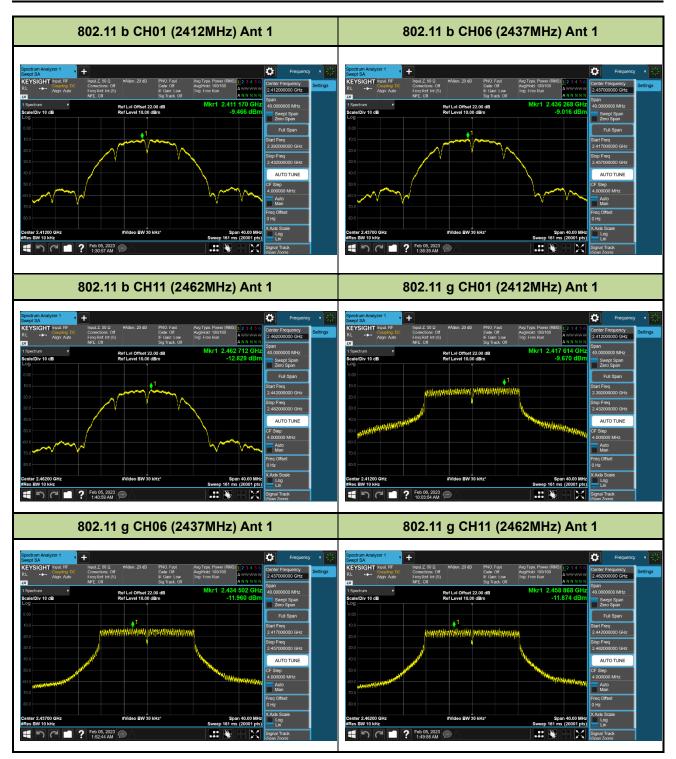

7.4.3. Test Setting

- 1. Measure the duty cycle (x) of the transmitter output signal.
- 2. Set instrument center frequency to DTS channel center frequency.
- 3. Set span to at least 1.5 times the OBW.
- 4. RBW = 10 kHz.
- 5. VBW = 30 kHz.
- 6. Detector = RMS.
- 7. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.
- 8. Sweep time = auto couple.
- 9. Don't use sweep triggering. Allow sweep to "free run".
- 10. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time. If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

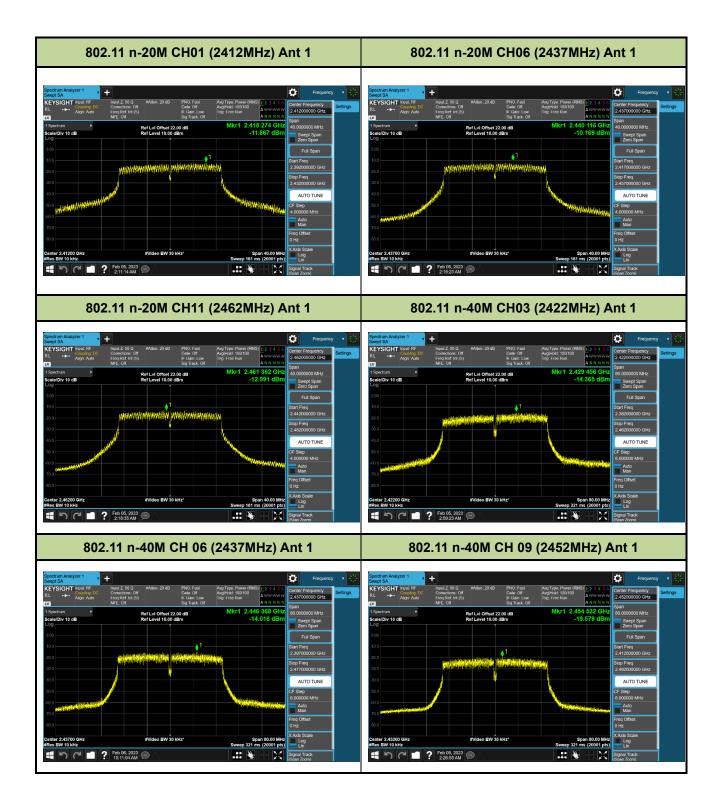
Page Number: 25 of 141

7.4.4. Test Setup

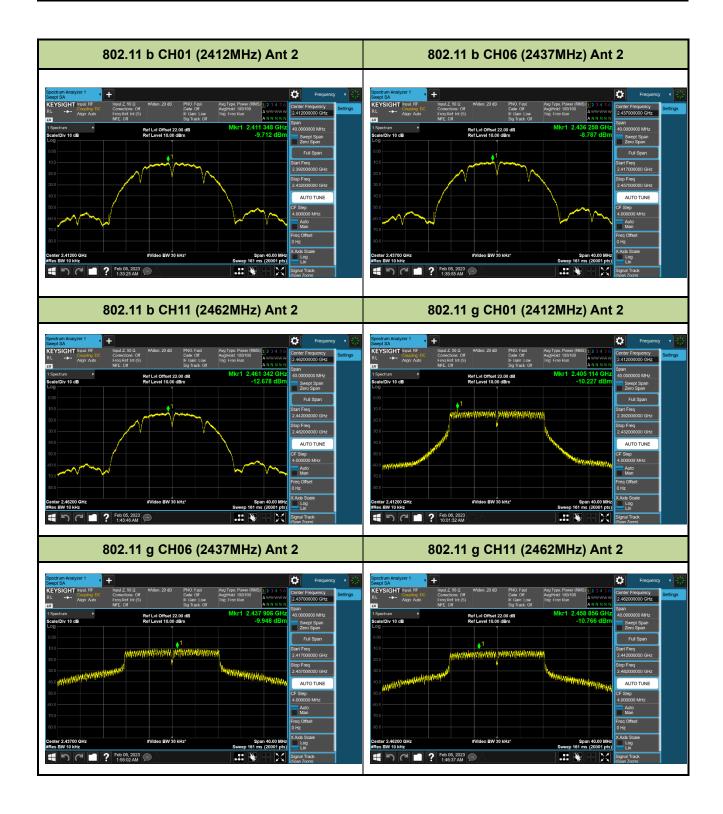
7.4.5. Test Result

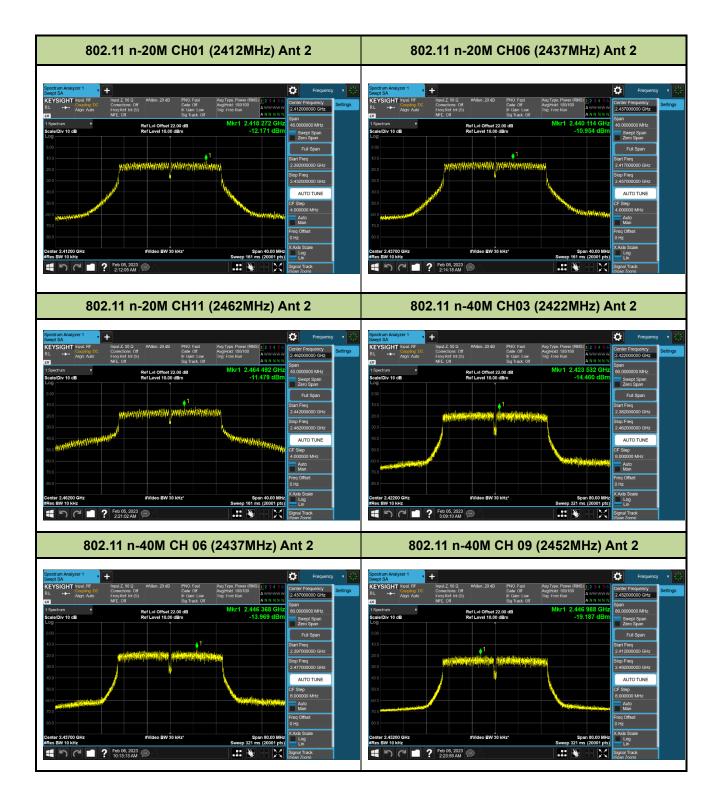

Product	WLAN / BT Module	Test Engineer	Peter
Test Site	SR2	Test Date	2023/2/5

Test Mode	Channel No.	Freq. (MHz)	PS (dBm/	SD 10kHz)	Duty Cycle (%)	Total PSD (dBm /	Limit (dBm/ 3kHz)	Result
		,	Ant 1	Ant 2	,	` 10kHz)	,	
	1	2412	-9.466	-9.712	96.58	-6.426	≤ 8	Pass
802.11b	6	2437	-9.016	-8.787	96.58	-5.739	≤ 8	Pass
	11	2462	-12.829	-12.678	96.58	-9.591	≤ 8	Pass
	1	2412	-9.670	-10.227	93.25	-6.626	≤ 8	Pass
802.11g	6	2437	-11.960	-9.948	93.25	-7.525	≤ 8	Pass
	11	2462	-11.874	-10.766	93.25	-7.971	≤ 8	Pass
	1	2412	-11.867	-12.171	89.35	-8.517	≤ 8	Pass
802.11n- HT20	6	2437	-10.169	-10.954	89.35	-7.044	≤ 8	Pass
20	11	2462	-12.991	-11.479	89.35	-8.670	≤ 8	Pass
	3	2422	-14.365	-14.400	89.47	-10.889	≤ 8	Pass
802.11n- HT40	6	2437	-14.016	-13.969	89.47	-10.499	≤ 8	Pass
	9	2452	-19.579	-19.187	89.47	-15.885	≤ 8	Pass


Note: When EUT duty cycle \leq 98%, Total PSD (dBm/10kHz) = 10*log {10^(Ant 1 PSD/10) + 10^(Ant 1 PSD/10)} (dBm/10kHz) + 10*log (1/Duty Cycle).

Page Number: 27 of 141

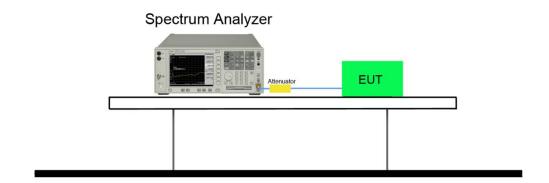




7.5. Out-of-Band Spurious Emissions Measurement

7.5.1. Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on RF conducted measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

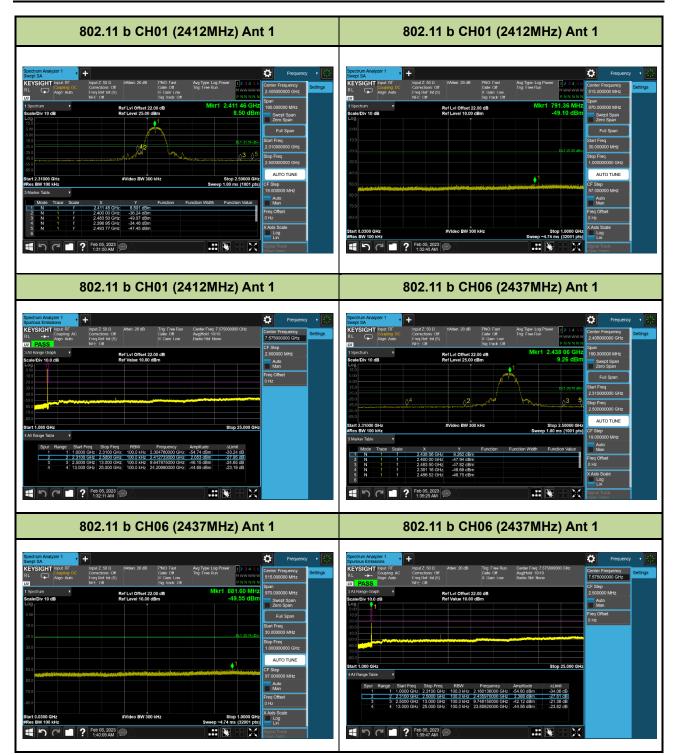

7.5.2. Test Procedure Used

ANSI C63.10 - 2013 Section 11.11 & 11.12

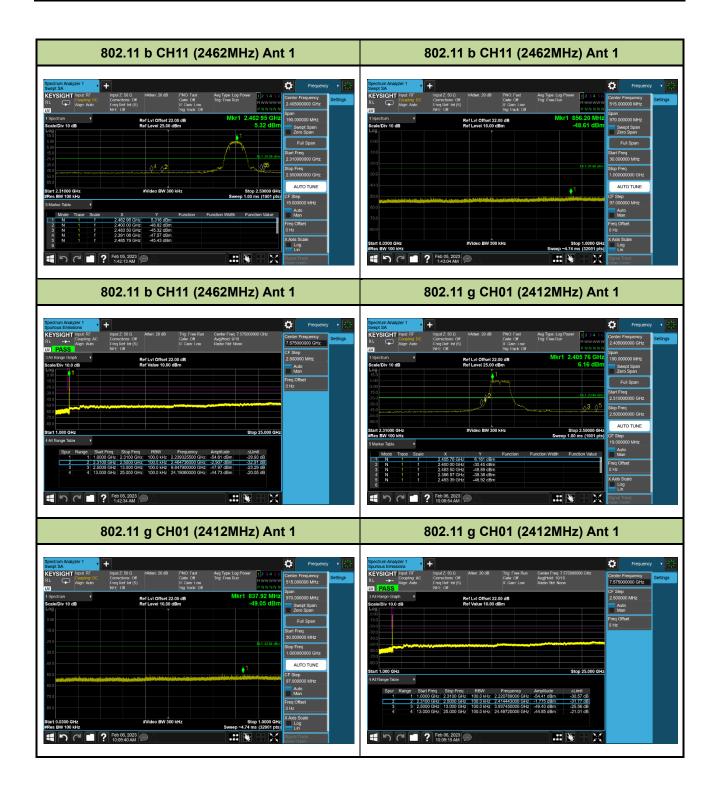
7.5.3. Test Settitng

- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to \geq 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW ≥ 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize

7.5.4. Test Setup


7.5.5. Test Result

Product	WLAN / BT Module	Test Engineer	Peter
Test Site	SR2	Test Date	2023/2/5


Test Mode	Channel No.	Frequency (MHz)	Limit	Result
802.11b	01	2412	≥ 30dBc	Pass
802.11b	06	2437	≥ 30dBc	Pass
802.11b	11	2462	≥ 30dBc	Pass
802.11g	01	2412	≥ 30dBc	Pass
802.11g	06	2437	≥ 30dBc	Pass
802.11g	11	2462	≥ 30dBc	Pass
802.11n-HT20	01	2412	≥ 30dBc	Pass
802.11n-HT20	06	2437	≥ 30dBc	Pass
802.11n-HT20	11	2462	≥ 30dBc	Pass
802.11n-HT40	03	2422	≥ 30dBc	Pass
802.11n-HT40	06	2437	≥ 30dBc	Pass
802.11n-HT40	09	2452	≥ 30dBc	Pass

Page Number: 33 of 141

