

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

PORTABLE GAME MACHINE WITH WIRELESS LAN

MODEL NUMBER: USG-001

FCC ID: BKEUSG-001

REPORT NUMBER: 06J10012-1B

ISSUE DATE: FEBRUARY 03, 2006

Prepared for NINTENDO CO., LTD. 11-1 KAMITOBA-HOKOTATE-CHO MINAMI-KU, KYOTO, JAPAN

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

т

Revision History

Rev.	Issue Date	Devisions	
A	01/25/06	Initial Issue	Thu
В	02/03/06	Added MPE Section	Thu

Page 2 of 65

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	
2.	TEST	METHODOLOGY	5
3.	FAC	LITIES AND ACCREDITATION	5
4.	CAL	IBRATION AND UNCERTAINTY	5
4	!.1. I	MEASURING INSTRUMENT CALIBRATION	
4	.2. I	MEASUREMENT UNCERTAINTY	5
5.	EQU	IPMENT UNDER TEST	6
5	.1.	DESCRIPTION OF EUT	6
5	5.2. I	MAXIMUM OUTPUT POWER	6
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5	.4.	SOFTWARE AND FIRMWARE	6
5	5.5.	WORST-CASE CONFIGURATION AND MODE	6
5	.6.	DESCRIPTION OF TEST SETUP	
6.	TEST	SAND MEASUREMENT EQUIPMENT	9
7.	LIM	TS AND RESULTS	
7	7.1.	CHANNEL TESTS FOR THE 2400 TO 2483.5 MHz BAND	
	7.1.1.		
	7.1.2.	99% BANDWIDTH	
	7.1.3.		
	7.1.4. 7.1.5.		
	7.1.5.	PEAK POWER SPECTRAL DENSITY	
	7.1.7.		
-		RADIATED EMISSIONS	
/	7.2. 1 7.2.1.		
	7.2.1.		
	7.2.3.		
7	7.3.	POWERLINE CONDUCTED EMISSIONS	
8.		ЛР PHOTOS	-0

1. ATTESTATION OF TEST RESULTS

STANDARD FCC PART 15 SUBF	
	APPLICABLE STANDARDS
DATE TESTED:	JANUARY 16-18, 2006
SERIAL NUMBER:	USGPPF2A123, USGPPF2A126
MODEL:	USG-001
EUT DESCRIPTION:	PORTABLE GAME MACHINE WITH WIRELESS LAN
COMPANY NAME:	NINTENDO CO., LTD. 11-1 KAMITOBA-HOKOTATE-CHO MINAMI-KU, KYOTO, JAPAN

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Chin Pany

CHIN PANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radia ted Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a portable game machine with a wireless LAN transceiver operating in the 2400-2483.5MHz band with 13 channels.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2472	802.11	2.82	1.91

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a dipole antenna, with a maximum gain of 4.45 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was WM Test.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2472 MHz.

The worst-case data rate for this channel is determined to be 1 Mb/s, based on previous experience with 802.11 WLAN product design architectures.

Thus all emissions tests were made in the 802.11 mode, 2412-2472MHz, 1 Mb/s.

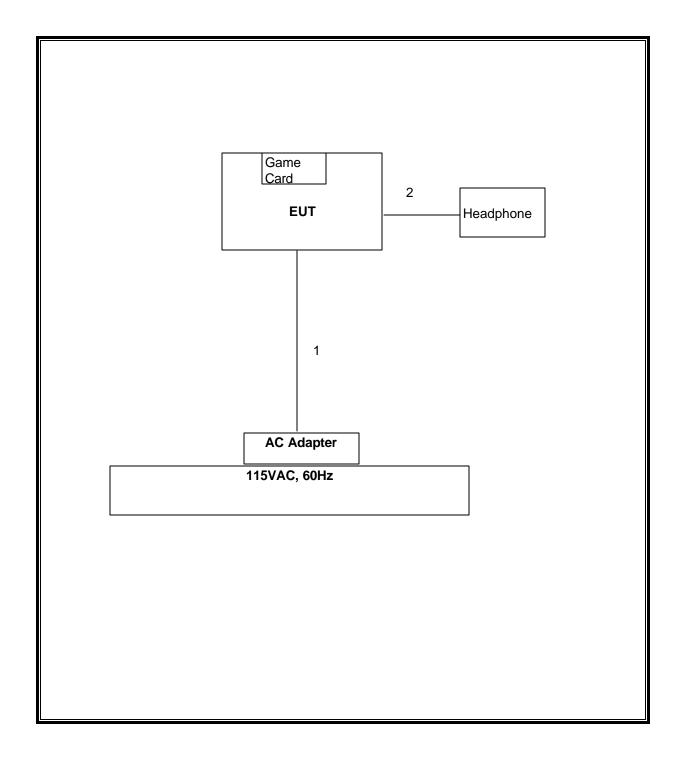
Page 6 of 65

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number FCC I						
AC Adapter	Kyushu Mitsumi Co., Ltd	USG-002	044-01	NA		
Head Phone	Nintendo Co., Ltd	AGS-005	1654	NA		
Game Card	Nintendo Co., Ltd	NTR-005	NA	NA		

I/O CABLES


	I/O CABLE LIST							
Cable Port # of Connector Cable Cable H				Remarks				
No.		Identical	Туре	Туре	Length			
		Ports						
1	DC	1	DC	Un-shielded	2m	NA		
2	Headphone	1	Din	Un-shielded	1m	Ferrite on EUT's end		

TEST SETUP

The EUT was set in continuous transmit mode. X, Y, and Z positions were investigated; "X" position was seemed worst case. High channel was deemed worst case due to the highest output power.

Page 7 of 65

SETUP DIAGRAM FOR TESTS

Page 8 of 65

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent	E4446A	US42070220	7/29/2006		
Preamplifier, 1 ~ 26 GHz	HP	8449B	3008A00931	6/24/2006		
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	4/22/2006		
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	3/3/2006		
Preamplifier, 1300 MHz	HP	8447D	1937A02062	1/7/2007		
Spectrum Analyzer, 26.5 GHz	HP	8593EM	3710A00205	7/26/2006		
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	8/30/2006		
EMI Test Receiver	R & S	ESHS 20	827129/006	6/3/2006		
Power Meter	R & S	NRVS	DE 12101	2/3/2007		
Power Sensor, 18 GHz, 300 mW	R&S	NVR-Z51	DE 13013	2/3/2007		
4.0 High Pass Filter	Micro Tronics	HPM13351	3	N/A		

Page 9 of 65

7. LIMITS AND RESULTS

7.1. CHANNEL TESTS FOR THE 2400 TO 2483.5 MHz BAND

7.1.1.6 dB BANDWIDTH

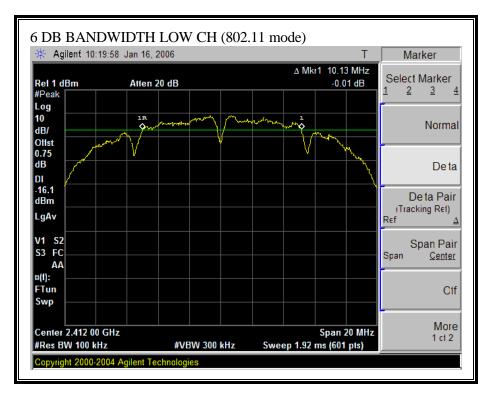
LIMIT

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

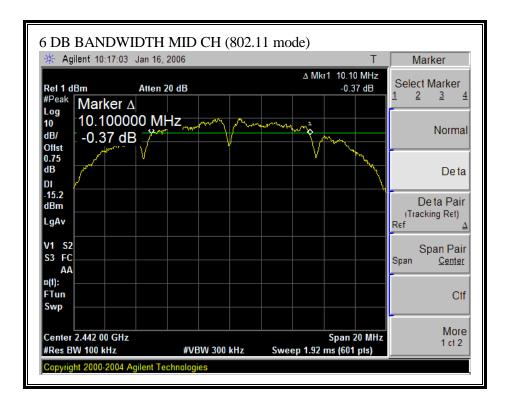
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

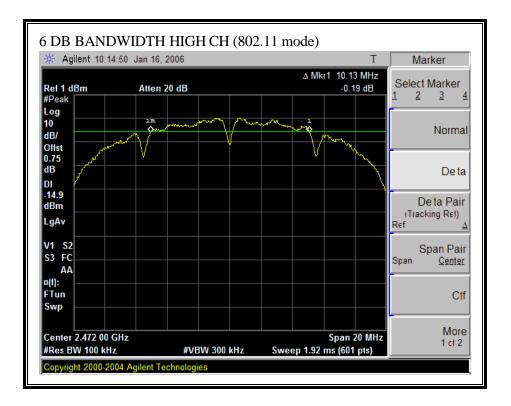
RESULTS


No non-compliance noted:

802.11 Mode


Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	10130	500	9630
Middle	2442	10100	500	9600
High	2472	10130	500	9630

Page 10 of 65


6 DB BANDWIDTH (802.11 MODE)

Page 11 of 65

Page 12 of 65

Page 13 of 65

7.1.2. 99% BANDWIDTH

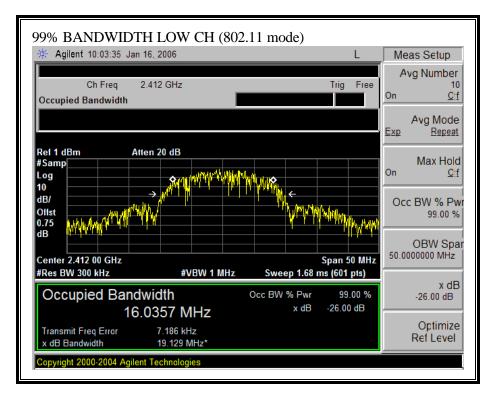
<u>LIMIT</u>

None; for reporting purposes only.

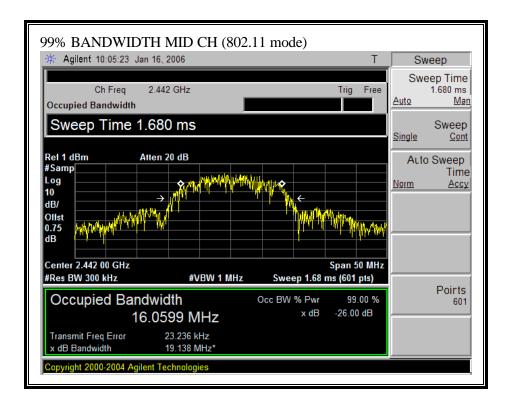
TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

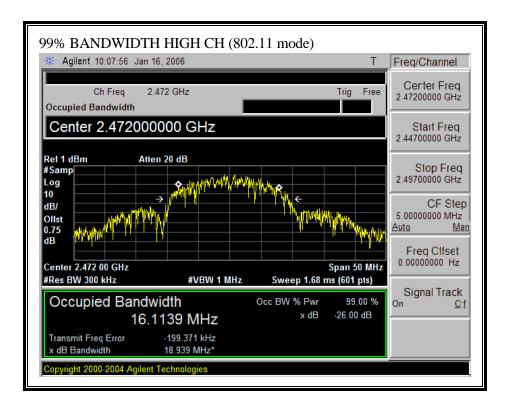
RESULTS


No non-compliance noted:

802.11 Mode						
Channel	Frequency	99% Bandwidth				
	(MHz)	(MHz)				
Low	2412	16.0357				
Middle	2442	16.0599				
High	2472	16.1139				


802.11 Mode

Page 14 of 65


99% BANDWIDTH (802.11 MODE)

Page 15 of 65

Page 16 of 65

Page 17 of 65

7.1.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

\$15.247 (b) (4) (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

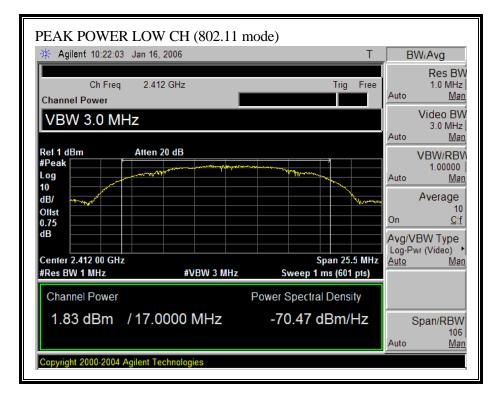
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

Page 18 of 65

RESULTS

The maximum antenna gain is 4.45 dBi for other than fixed, point-to-point operations, therefore the limit is 30 dBm.

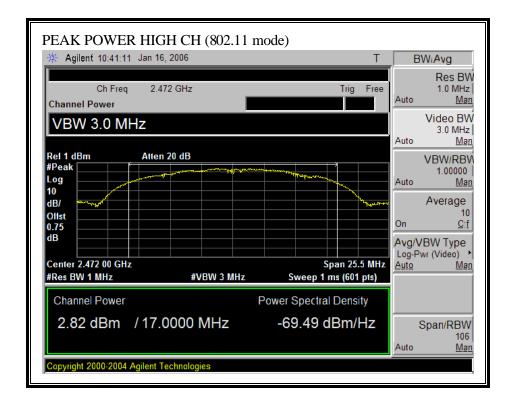

No non-compliance noted:

802.11 Mode

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	1.83	30	-28.17
Middle	2442	2.33	30	-27.67
High	2472	2.82	30	-27.18


Page 19 of 65

OUTPUT POWER (802.11 MODE)



Page 20 of 65

REPORT NO: 06J10012-1B

Page 21 of 65

Page 22 of 65

7.1.4. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f 0.163	*(900/f²) 1.0	6
30–300	61.4			
300–1500			f/300	(
1500–100,000			5	(
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34	614	1.63	*(100)	3/
1.34–30	824 <i>/</i> f	2.19/f	*(180/f ²)	3

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their mole in the persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

Page 23 of 65

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P (mW) = P (W) / 1000 and d (cm) = 100 * d (m)

vields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10 \wedge (P(dBm) / 10)$ and

G (numeric) = $10 \wedge (G (dBi) / 10)$

yields

 $d = 0.282 * 10 \wedge ((P + G) / 20) / \sqrt{S}$

where

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$

Page 24 of 65

LIMITS

From 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

Mode	MPE	Output	Antenna	Power	
	Distance	Power	Gain	Density	
	(cm)	(dBm)	(dBi)	(mW/cm^2)	
802.11	20.0	2.82	4.45	0.0011	

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 25 of 65

7.1.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 0.75dB was entered as an offset in the power meter to allow for direct reading of power.

802.11 Mode

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	-0.56
Middle	2437	0.14
High	2472	0.51

Page 26 of 65

7.1.6. PEAK POWER SPECTRAL DENSITY

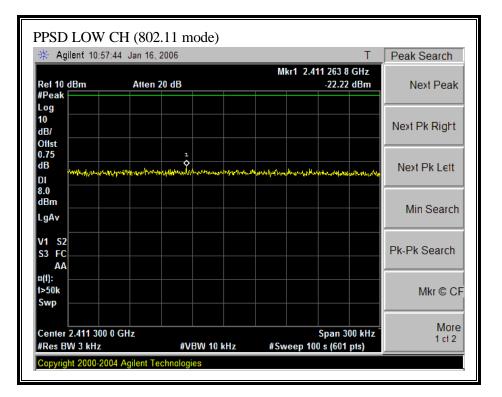
<u>LIMIT</u>

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

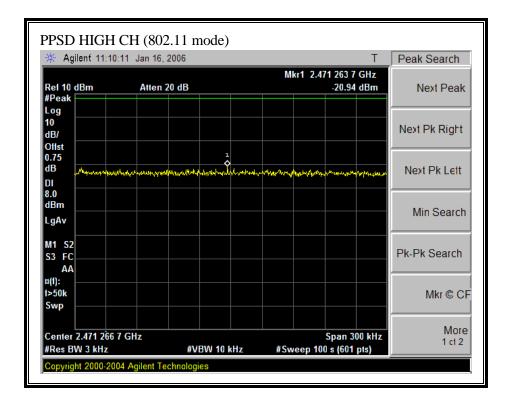
RESULTS


No non-compliance noted:

802.11 Mode

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-22.22	8	-30.22
Middle	2442	-22.20	8	-30.20
High	2472	-20.94	8	-28.94

Page 27 of 65


PEAK POWER SPECTRAL DENSITY (802.11 MODE)

Page 28 of 65

🔆 Agi	ilent 11:01:17	Jan 16, 2	2006					R	Т	Peak Search
Ref 10 o	dBm	Atten 2	0 dB			Μ	kr1 2.44	2 797 8 -22.20		Next Peak
10	Marker 2.44279 -22.20 c	7800	GHz							Next Pk Right
0.75 dB DI 8.0	hannashinaashina	دارسها اورام والمساسعون	een te de parties de parties de parties de la constancia de la constancia de la constancia de la constancia de La constancia de la constanc	hh.	yn ywryau y	i Sentimetrica Anatheologica	un anti-	- Angle All Marine	N WWW44	Next Pk Lett
dBm LgAv										Min Search
V1 S2 S3 FC AA										Pk-Pk Search
¤(1): t>50k Swp										Mkr © CF
	2.442 766 7 G W 3 kHz	iHz	#VB	W 10 kH	z	#Sw	eep 100	Span 30) s (601 i		More 1 ct 2

Page 29 of 65

Page 30 of 65

7.1.7. CONDUCTED SPURIOUS EMISSIONS

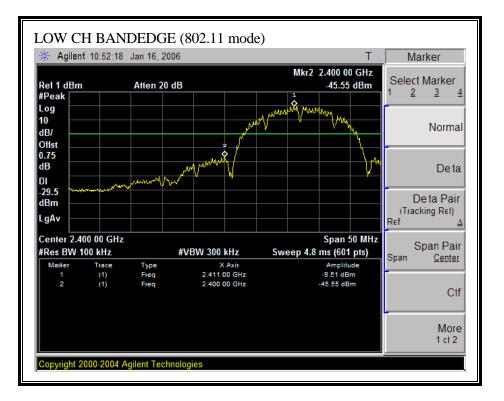
LIMITS

\$15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.205(c)).

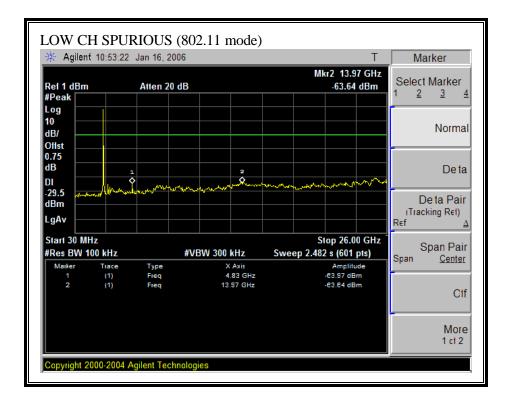
Conducted power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

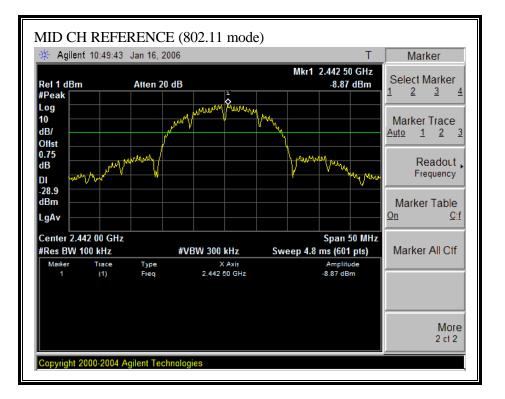

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

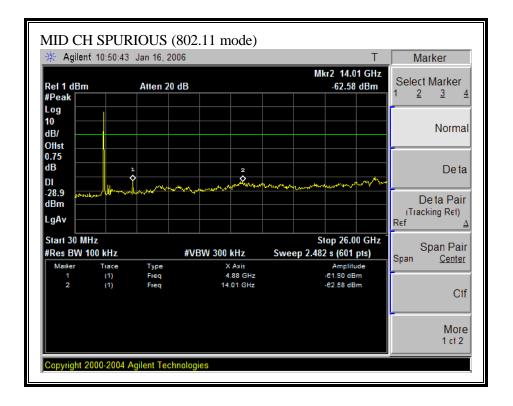

No non-compliance noted:

Page 31 of 65

SPURIOUS EMISSIONS, LOW CHANNEL (802.11 MODE)

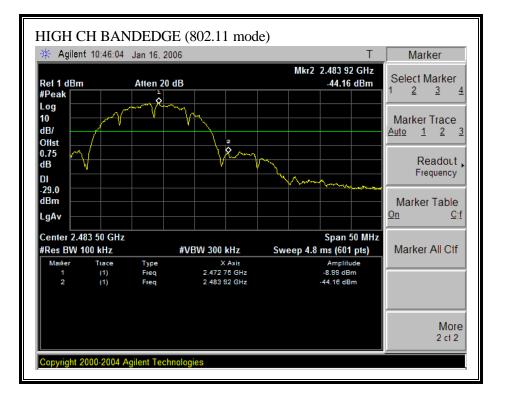


Page 32 of 65

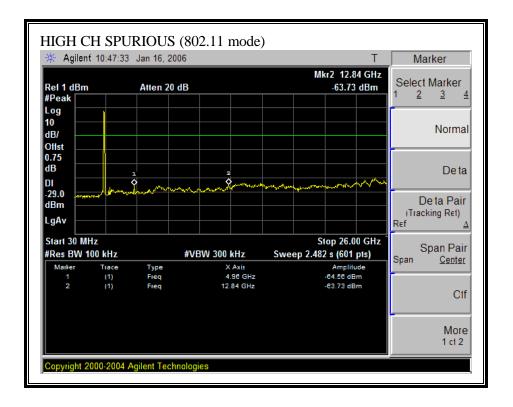


Page 33 of 65

SPURIOUS EMISSIONS, MID CHANNEL (802.11 MODE)



Page 34 of 65



Page 35 of 65

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11 MODE)

Page 36 of 65

Page 37 of 65

7.2. RADIATED EMISSIONS

7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

\$15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$(^{2})$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

\$15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 38 of 65

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 39 of 65

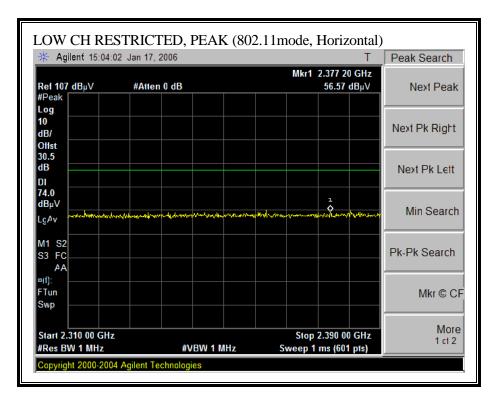
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

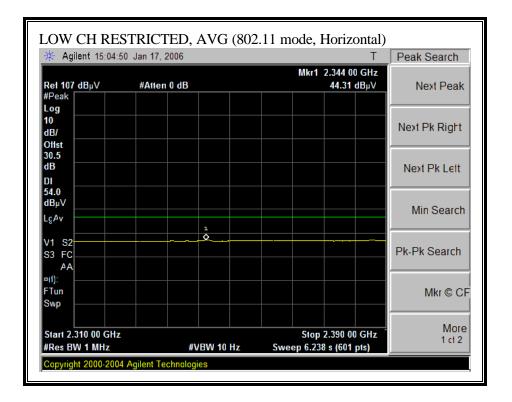
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

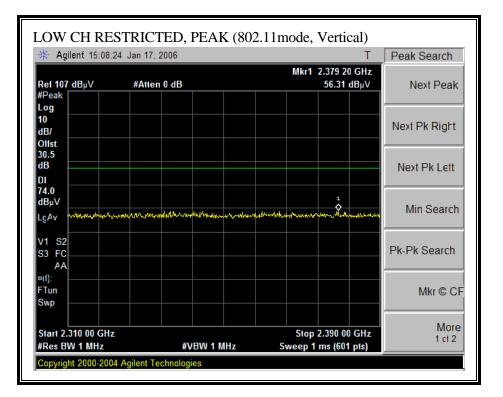

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.


Page 40 of 65

7.2.2. TRANSMITTER ABOVE 1 GHz FOR 2400 TO 2483.5 MHz BAND

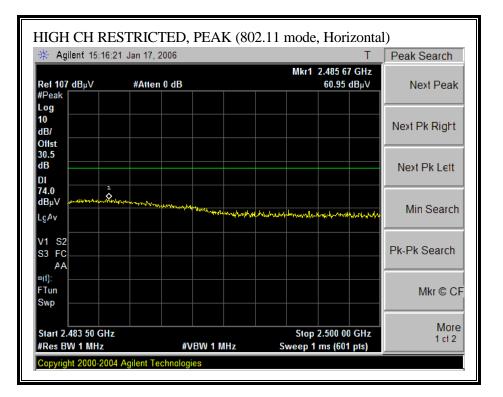
RESTRICTED BANDEDGE (801.11 MODE, LOW CHANNEL, HORIZONTAL)



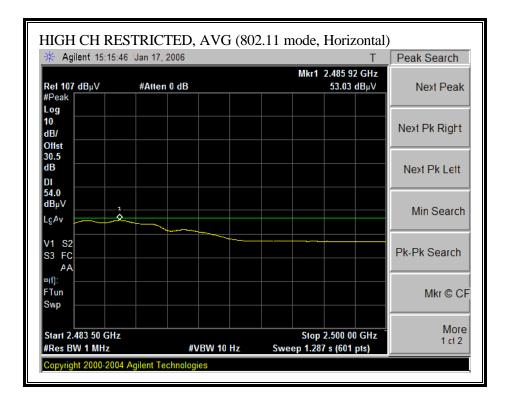
Page 41 of 65

Page 42 of 65

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

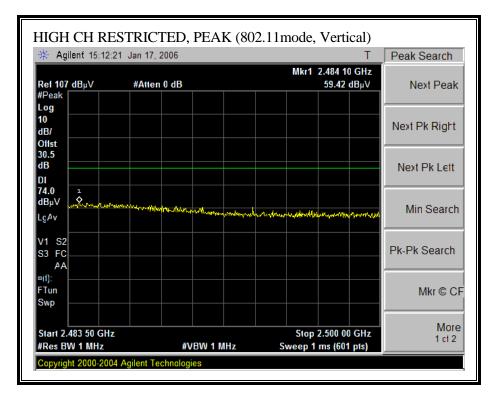


Page 43 of 65


🔆 Agilent 15:07:4	42 Jan 17, 2006		Т	Peak Search					
Ref 107 dBµV	Mkr1 2.340 27 GHz 7 dBμV #Atten 0 dB 44.11 dBμV								
#Peak Log									
10 dB/				Next Pk Right					
Offst 30.5 dB				Next Pk Lett					
DI									
dBμV				Min Search					
LgAv	1 •								
M1 S2 S3 FC AA				Pk-Pk Search					
¤(1):			î						
FTun Swp				Mkr © CF					
				More					
Start 2.310 00 GHz #Res BW 1 MHz	#VBW 10 H	Stop 2.390 z Sweep 6.238 s (60		1 ct 2					

Page 44 of 65

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 45 of 65

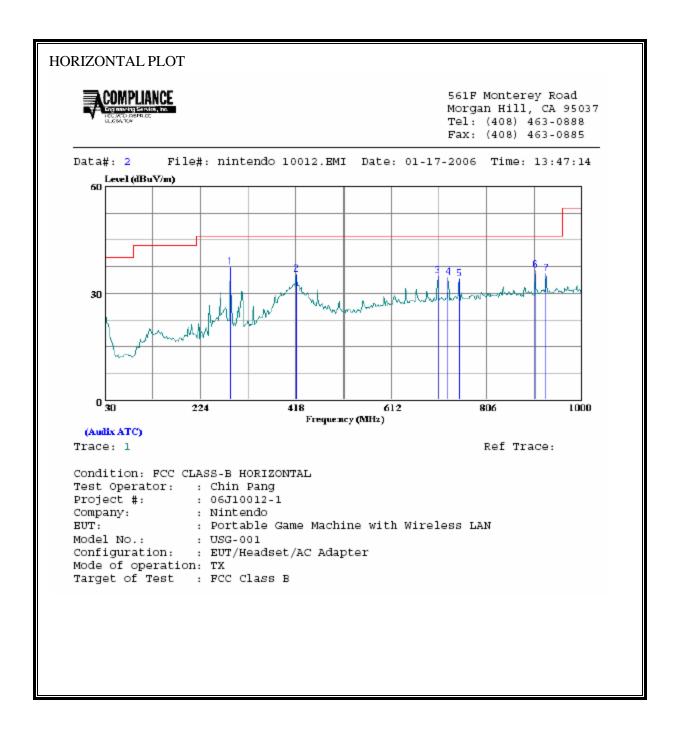
Page 46 of 65

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 47 of 65

🔆 Agilent 15:12:	59 Jan 17, 2006			Т	Peak Search
Ret 107 dBµV	#Atten 0 dB		Mkr1	Next Peak	
#Peak Log					
10 dB/					Next Pk Right
Offst 30.5 dB					Next Pk Lett
DI					
dBµV					Min Search
V1 S2 S3 FC AA					Pk-Pk Search
¤lt): FTun Swp					Mkr © CF
Swp					
Start 2.483 50 GHz #Res BW 1 MHz		W 10 Hz	More 1 ct 2		

Page 48 of 65


HARMONICS AND SPURIOUS EMISSIONS)

	uipmen orn 1-	<u>t:</u> 18GHz	Pre-ar	nplifer	1-26	GHz	Pre-am	plifer	26-40GH	z	H	orn > 180	GHz		Limit
T73; 9	S/N: 671	7 @3m	▼ T144 M	Aiteq 30	08A00	931 🗸				-				•	FCC 15.205
	uency Cal		3	foot c	able		12	foot c	able		HPF	Re	ject Filte		<u>x Measurements</u> W=VBW=1MHz
Chi	n 177079	0003	•			•	Chin 20	035400)1 •	HP	F_4.0GHz	•		Avera	ge Measurements 1MHz ; VBW=10Hz
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)
	412MHz 3.0		32.0	33.7	3.3	-36.5	0.0	0.6	45.4	33.2	74	54	-28.6	-20.8	Н
824 824	3.0	45.0	33.0	33.7	3.3	-36.5	0.0	0.6	46.2	34.2 34.2	74	54 54	-27.8	-19.8	V
id Ch, 2	442MHz														
884 884	3.0 3.0	46.0 44.6	34.0 32.0	33.8 33.8	3.4 3.4	-36.5 -36.5	0.0 0.0	0.6 0.6	47.3 45.9	35.3 33.3	74 74	54 54	-26.7 -28.1	-18.7 -20.7	H V
			32.0	33.0	3.4	-30.3	0.0	0.0	43.9	33.3	/4	24	-20.1	-20.7	
igh Ch, 944	2472MH 3.0	z 45.6	33.7	33.8	3.4	-36.5	0.0	0.6	47.0	35.1	74	54	-27.0	-18.9	Н
944	3.0	45.0	32.0	33.8	3.4	-36.5	0.0	0.6	46.4	33.4	74	54	-27.6	-20.6	V
ote: No	other emi	ssions were	detected above	the syste	em nois	e floor.									
												.			
		Measurem Distance to Analyzer R Antenna Fa Cable Lose	.eading actor	у		Amp D Corr Avg Peak HPF	Average	Correc Field S d Peak	et to 3 mete strength @ c Field Stre	3 m		Pk Lim Avg Mar	Peak Field Margin vs	Field Strengt d Strength Li Average Li Peak Limit	mit mit

Page 49 of 65

7.2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 50 of 65

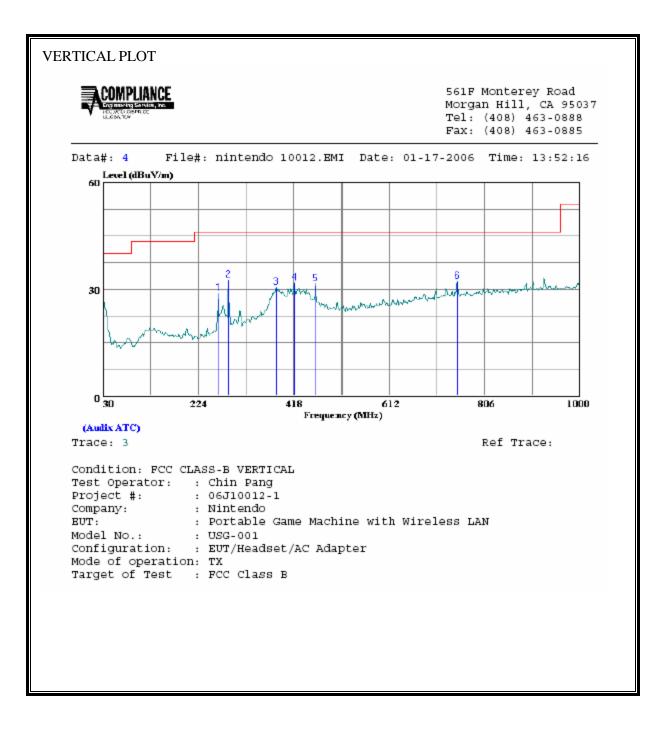
REPORT NO: 06J10012-1B EUT: PORTABLE GAME MACHINE WITH WIRELESS LAN

HORIZONTAL DATA Page: 1 Read Limit Over Line Limit Remark Freq Level Factor Level MHz dBuV dB dBuV/m dBuV/m dв 1 286.080 49.72 -12.40 37.32 46.00 -8.68 Peak
 286.080
 49.72
 -12.40
 37.32
 46.00
 -8.68
 Peak

 419.940
 44.36
 -9.04
 35.32
 46.00
 -10.68
 Peak

 706.090
 38.03
 -3.18
 34.85
 46.00
 -11.15
 Peak

 727.430
 37.29
 -2.78
 34.51
 46.00
 -11.49
 Peak


 749.740
 36.48
 -2.46
 34.02
 46.00
 -11.98
 Peak

 904.940
 37.60
 -0.95
 36.65
 46.00
 -9.35
 Peak

 926.280
 36.16
 -0.71
 35.45
 46.00
 -10.55
 Peak
 2 з 4 5 6 7

Page 51 of 65

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 52 of 65

REPORT NO: 06J10012-1B EUT: PORTABLE GAME MACHINE WITH WIRELESS LAN

VERTIC	CAL DATA							
	Freq	Read Level	Factor	Level	Limit Line		Remark	Page: 1
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1 2 3 4 5 6	264.740 286.080 383.080 419.940 463.590 749.740	45.09 40.29 40.85 39.64	-12.40 -9.82 -9.04 -7.99	32.69 30.47 31.81 31.65	46.00	-13.31 -15.53 -14.19 -14.35	Peak Peak Peak Peak	

Page 53 of 65

7.3. POWERLINE CONDUCTED EMISSIONS

LIMIT

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

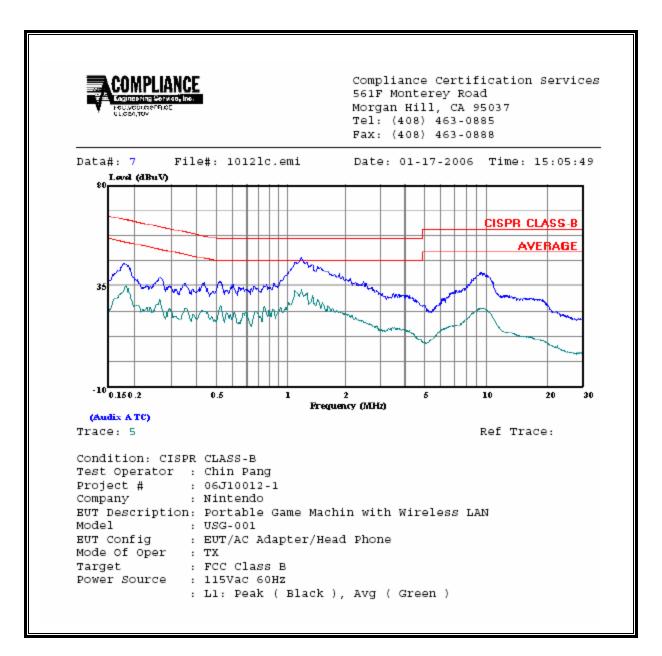
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

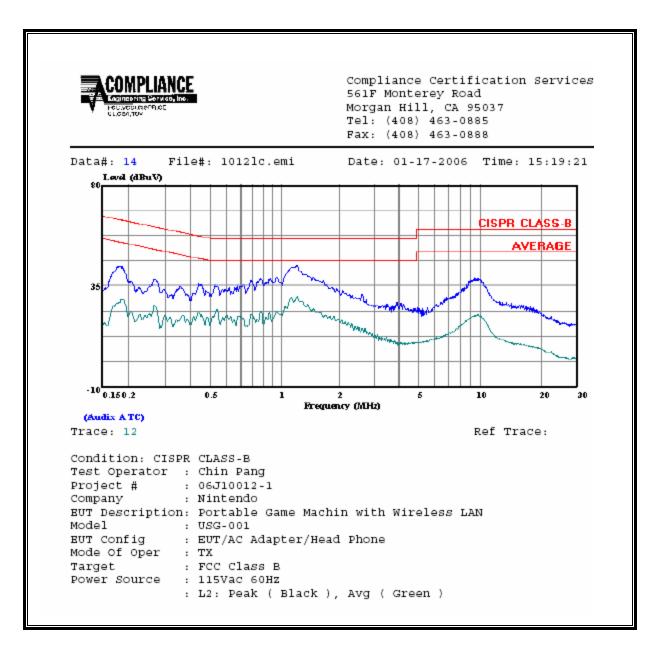
RESULTS

No non-compliance noted:


Page 54 of 65

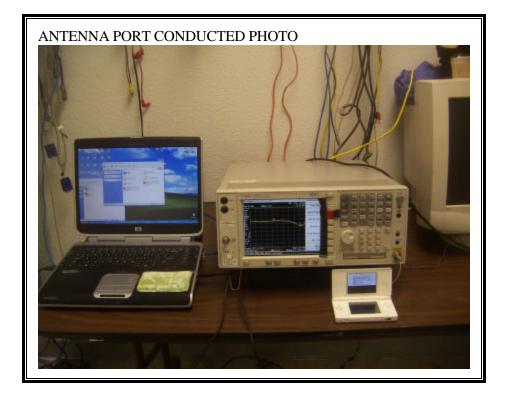
<u>6 WORST EMISSIONS</u>

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)											
Freq.		Reading		Closs	Limit	EN_B	Mar	gin	Remark			
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2			
0.18	44.44		35.08	0.00	64.39	54.39	-19.95	-19.31	L1			
1.29	47.50		33.11	0.00	56.00	46.00	-8.50	-12.89	L1			
9.65	40.68		25.25	0.00	60.00	50.00	-19.32	-24.75	L1			
0.18	43.40		28.95	0.00	64.39	54.39	-20.99	-25.44	L2			
1.32	43.84		30.39	0.00	56.00	46.00	-12.16	-15.61	L2			
9.60	38.40		22.17	0.00	60.00	50.00	-21.60	-27.83	L2			
6 Worst I	Data											

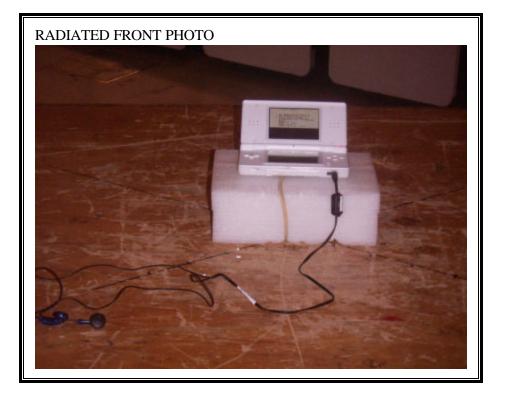

Page 55 of 65

LINE RESULTS

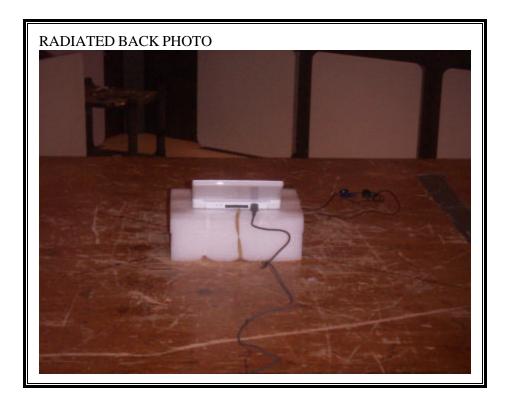
Page 56 of 65


LINE 2 RESULTS

Page 57 of 65

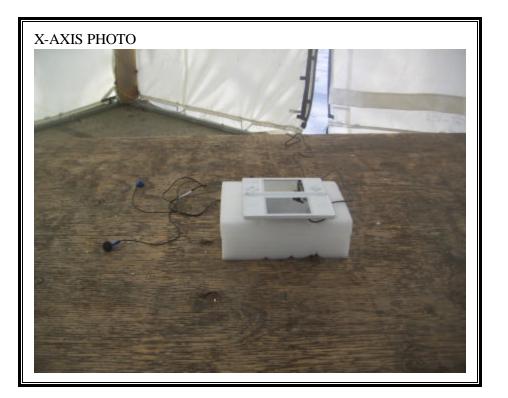

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP



Page 58 of 65

RADIATED RF MEASUREMENT SETUP FOR MOBILE CONFIGURATION



Page 59 of 65



Page 60 of 65

RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION

Page 61 of 65

Page 62 of 65

Page 63 of 65

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

Page 64 of 65

END OF REPORT

Page 65 of 65