

Г

RADIO TEST REPORT

Test Report No. 15375714H-C-R1

Customer	Nintendo Co., Ltd.
Description of EUT	Wireless device
Model Number of EUT	CLO-001
FCC ID	BKECLO001
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	September 5, 2024
Remarks	Wireless LAN (2.4 GHz band) part

Representative Test Engineer	Approved By
J.O. Rung	Ryata Yamanaka
Junya Okuno	Ryota Yamanaka
Engineer	Engineer
	Hac-MRA Accredited
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	
Report Cover Pa	age - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15375714H-C

This report is a revised version of 15197671H-C. 15197671H-C is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents	
- (Original)	15375714H-C	August 23, 2024	-	
1	15375714H-C-R1	September 5, 2024	 Correction of the Antenna Gain for Conducted Spurious Emission data; From "3.9" to "3.85" In accordance with the above, correction of the notation of other values. 	

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard	
AC	Alternating Current	IEC	International Electrotechnical Commission	
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers	
AM	Amplitude Modulation	IF	Intermediate Frequency	
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference	
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada	
Ant, ANT	Antenna	ISO	International Organization for Standardization	
AP	Access Point	JAB	Japan Accreditation Board	
ASK	Amplitude Shift Keying	LAN	Local Area Network	
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System	
AV	Average	MCS	Modulation and Coding Scheme	
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement	
BR	Bluetooth Basic Rate	N/A	Not Applicable	
BT	Bluetooth	NIST	National Institute of Standards and Technology	
BT LE	Bluetooth Low Energy	NS	No signal detect.	
BW	BandWidth	NSA	Normalized Site Attenuation	
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program	
ССК	Complementary Code Keying	OBW	Occupied Band Width	
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing	
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter	
CW	Continuous Wave	PCB	Printed Circuit Board	
DBPSK	Differential BPSK	PER	Packet Error Rate	
DC	Direct Current	PHY	Physical Layer	
D-factor	Distance factor	PK	Peak	
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise	
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence	
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density	
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation	
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak	
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying	
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width	
EN	European Norm	RDS	Radio Data System	
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment	
EU	European Union	RF	Radio Frequency	
EUT	Equipment Under Test	RMS	Root Mean Square	
Fac.	Factor	RSS	Radio Standards Specifications	
FCC	Federal Communications Commission	Rx	Receiving	
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer	
FM	Frequency Modulation	SG	Signal Generator	
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio	
FSK	Frequency Shift Keying	TR	Test Receiver	
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting	
GNSS	Global Navigation Satellite System	VBW	Video BandWidth	
GPS	Global Positioning System	Vert.	Vertical	
Hori.	Horizontal	WLAN	Wireless LAN	

CONTENTS

PAGE

SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	
SECTION 3: Test Specification, Procedures & Results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Conducted Emission	
SECTION 6: Radiated Spurious Emission	
SECTION 7: Antenna Terminal Conducted Tests	
APPENDIX 1: Test Data	17
Conducted Emission	
99 % Occupied Bandwidth and 6 dB Bandwidth	
Maximum Peak Output Power	
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of Test Setup	55
Conducted Emission	
Radiated Spurious Emission	
Worst Case Position	
Antenna Terminal Conducted Tests	

SECTION 1: Customer Information

Company Name	Nintendo Co., Ltd.
Address	11-1 Hokotate-cho, Kamitoba, Minami-ku, Kyoto 601-8501, Japan
Telephone Number	+81-75-662-9600
Contact Person	Hideki Ohashi

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Wireless device
Model Number	CLO-001
Serial Number	Refer to SECTION 4.2
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	February 21, 2024
Test Date	March 4 and 5, 2024

2.2 Product Description

General Specification

Rating	DC 5 V
Operating temperature	5 deg. C to 35 deg. C

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

WLAN (IEEE802.11b/11g/11n-20)

Equipment Type	Transceiver
Frequency of Operation	2412 MHz to 2472 MHz
Type of Modulation	DSSS, OFDM
Antenna Type	Inverted F Antenna
Antenna Gain ^{a)}	3.85 dBi
Receiver Category	1

24 GHz Sensor

Equipment Type	Transceiver
Frequency of Operation	24.150 GHz
Frequency range	24.059 GHz to 24.239 GHz
Modulation	FMCW
Antenna type	Patch Antenna
Antenna Gain	3.5 dBi
Steerable Antenna	None
Usage location	Fixed use
Receiver Category	1

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C		
	The latest version on the first day of the testing period		
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators		
	Section 15.207 Conducted limits		
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,		
	and 5725-5850 MHz		

* Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	25.53 dB,	Complied	-
Emission	6. Standard test methods		0.15624 MHz, QP,		
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8	Phase N		
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)			
	Meas Guidance v05r02				
	ISED:	ISED: RSS-247 5.2(a)			
Maximum	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Peak	15.247	15.247(b)(3)			
Output Power	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247				
	Meas Guidance v05r02				
	ISED:	ISED: RSS-247 5.2(b)			
Spurious	FCC: KDB 558074 D01	FCC: Section15.247(d)	1.8 dB	Complied	Conducted
Emission	15.247		2483.5 MHz,		(below 30 MHz)/
Restricted	Meas Guidance v05r02		Vertical, AV		Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			(above 30 MHz)
		RSS-Gen 8.9			*1)
		RSS-Gen 8.10			
Note: UL Japan,	Inc.'s EMI Work Procedures:	Work Instructions-ULID-0035	91 and Work Instructi	ons-ULID-003	593.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

*1) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

The antenna is not removable from the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Conducted emission

Item	Frequency range	Unit	Calculated Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	dB	3.7
	0.15 MHz to 30 MHz	dB	3.3

Radiated emission

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz		dB	3.3
10 m	7		dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	4.8
		Vertical	dB	5.0
	200 MHz to 1000 MHz	Horizontal	dB	5.1
		Vertical	dB	6.2
10 m	30 MHz to 200 MHz	Horizontal	dB	4.8
		Vertical	dB	4.8
	200 MHz to 1000 MHz	Horizontal	dB	4.9
		Vertical	dB	5.0
3 m	1 GHz to 6 GHz	Test Receiver	dB	5.1
		Spectrum Analyzer	dB	4.9
	6 GHz to 18 GHz	Test Receiver	dB	5.4
		Spectrum Analyzer	dB	5.2
1 m	10 GHz to 18 GHz	Spectrum analyzer	dB	5.0
	18 GHz to 26.5 GHz	Spectrum analyzer	dB	5.6
	26.5 GHz to 40 GHz	Spectrum analyzer	dB	4.9
0.5 m	26.5 GHz to 40 GHz	Spectrum analyzer	dB	4.9
10 m	1 GHz to 18 GHz	Test Receiver	dB	5.4

Antenna Terminal Conducted

Item	Unit	Calculated
		Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg. C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power	10 m
chamber			source room	
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test): 2.0 x 3.0 m for No.1, No.2, No.3, No.4, and No.5 semi-anechoic chambers and No.3 and No.4 shielded rooms.

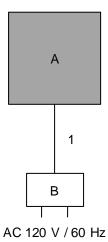
3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode		Remarks*	
IEEE 802.11b (11b)		1 Mbps, PN9	
IEEE 802.11g (1	1g)	18 Mbps, PN9	
IEEE 802.11n 20	MHz BW (11n-20)	MCS 1 (Long GI), PN9	
*The worst condi	tion was determined based on the t	est result of Maximum Peak Output Power (Mid	
Channel)			
*Power of the EU	T was set by the software as follow	/S;	
Power Setting:	2412 MHz to 2462 MHz (1 to 11	ch): 10 [dBm]	
	2467 MHz (12 ch): 6 [dBm]		
	2472 MHz (13 ch): 4 [dBm]		
Software:	WLAN Test Version: X4		
	(Date: 2024.02.21, Storage location: EUT memory)		
*This setting of set	oftware is the worst case.		
_	nder the normal use do not exceed	the condition of setting.	
In addition, end u	sers cannot change the settings of	the output power of the product.	
		ording to "Section 1 of 6 802.11 a/b/g/n testing -	
Managing Compl	ex Regulatory Approvals - " of TCB	Council Workshop October 2009.	


*The Details of Operating Mode(s)

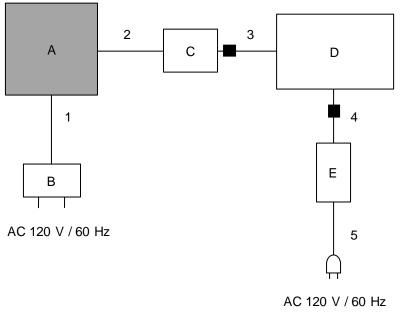
Tx 11n-20 *1) Tx 11b Tx 11g	2412 MHz 2412 MHz 2437 MHz
Tx 11g	
Tx 11g	
Tx 11g	
U U	2427 MU-
Tx 11n-20	2462 MHz
	2467 MHz
	2472 MHz
Tx 11b	2412 MHz
Tx 11n-20 *2)	2437 MHz
,	2462 MHz
	2467 MHz *3)
	2472 MHz *3)
	-

specification, test was performed on the representative mode that had the highest peak output power. *3) The test was performed only band-edge.

4.2 Configuration and Peripherals

Conducted Emission and Radiated Emission tests

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.


Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Wireless device	CLO-001	S-1657	Nintendo Co., Ltd.	EUT
В	AC Adapter	HAC-002	S-992	Nintendo Co., Ltd.	-

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	1.5	Shielded	Shielded	Part of Item B

Antenna Terminal Conducted test

: Standard Ferrite Core

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment

0000					
No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Wireless device	CLO-001	S-1658	Nintendo Co., Ltd.	EUT
В	AC Adapter	HAC-002	S-1461	Nintendo Co., Ltd.	-
С	Debug Board	SHR-DEBUG-X1	-	Nintendo Co., Ltd.	-
D	Laptop PC	CFSV9-2	0JKSC40298	Panasonic	-
				Corporation	
Е	AC Adapter	CF-AA65D2A M1	65D2AM1223010285WA	Panasonic	-
				Corporation	

List of Cables Used

No.	Name	Length (m)	Shield R		Remarks
			Cable	Connector	
1	DC Cable	1.5	Shielded	Shielded	Part of Item B
2	Flat Cable	0.3	Unshielded	Unshielded	-
3	USB Cable	1.0	Shielded	Shielded	-
4	DC Cable	1.0	Unshielded	Unshielded	-
5	AC Cable	0.8	Unshielded	Unshielded	-

SECTION 5: Conducted Emission

Test Procedure and Conditions

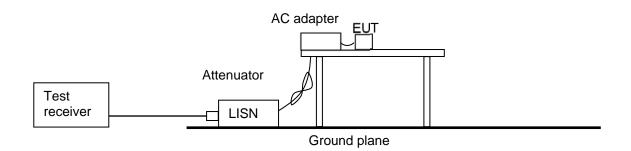
EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.


The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement Range	: 0.15 MHz to 30 MHz
Test Data	: APPENDIX
Test Result	: Pass

Figure 1: Test Setup

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

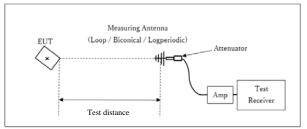
The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

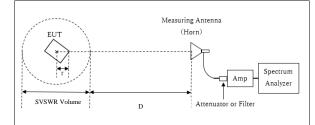
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz					
Antenna Type	Biconical	Logperiodic	Horn					


In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc			
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer			
Detector	QP	PK	AV	PK			
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz			
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz			
			VBW: 3 MHz				
			Detector:				
			Power Averaging (RMS)				
			Trace: 100 traces				
			<u>11.12.2.5.2</u>				
			The duty cycle was less				
			than 98% for detected				
			noise, a duty factor was				
			added to the 11.12.2.5.1				
			results.				


Figure 2: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz to 10 GHz

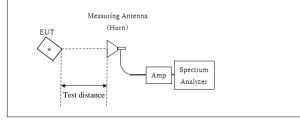
r : Radius of an outer periphery of EUT

× : Center of turn table

Test Distance: 3 m

1 GHz to 6 GHz

Distance Factor: $20 \times \log (3.95 \text{ m} / 3.0 \text{ m}) = 2.4 \text{ dB}$ * Test Distance: (D + SVSWR Volume /2) - r = 3.95 m


SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.05 m D = 3.0 m

6 GHz to 10 GHz

Distance Factor: $20 \times \log (4.95 \text{ m} / 3.0 \text{ m}) = 4.4 \text{ dB}$ * Test Distance: (D + SVSWR Volume /2) - r = 4.95 m

SVSWR Volume : 1.4 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.05 m D = 4.3 m

10 GHz to 26.5 GHz

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.5 dB *Test Distance: 1 m

× : Center of turn table

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	20 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *2)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *3) *4)	150 kHz to 30 MHz	10 kHz	30 kHz				

*1) Peak hold was applied as Worst-case measurement.

*2) Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

*3) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

*4) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data	: APPENDIX
Test Result	: Pass

APPENDIX 1: Test Data

Conducted Emission

Test place	Ise EMC Lab. No.4 Semi Anechoic Chamber
Date	March 5, 2024
Temperature / Humidity	20 deg. C / 39 % RH
Engineer	Yuichiro Yamazaki
Mode	Tx 11n-20 2412 MHz

Limit : FCC_Part 15 Subpart C(15.207)

0.15000

0.15381

0.21451

0.31861

0.41233

2.38227

10.32970

10

12

13

14

24.80

26.90

18.20

6.80

8.50

2.20

2.90

8.70

10.50

4.90

2.30

6.40

0.30

0.60

0.16

0.16

0.15

0.16

0.17

0.25

0.83

13.18

13.18 40.2

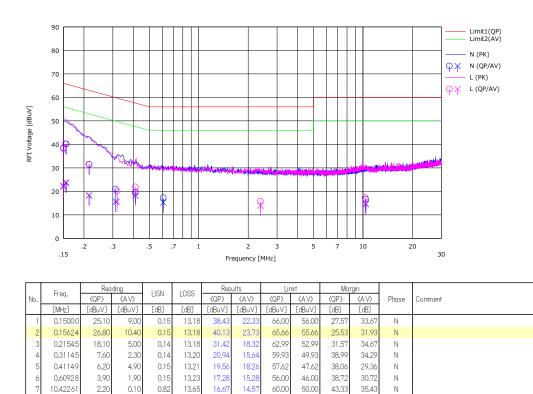
13.18

13.20

13.21

13.35

13.65


38.

20.

21.8

15.8

17.3

66.00

65.79

63.03

59.74

57.60

56.00

60.00

23.8

18.2

15.6

19.7

13.9

15.0

56.00

55.79

53.03

49.74

47.60

46.00

50.00

27.86

25.55

31.50

39.58

35.72

40.20

42.62

33.96

31.95

34.80

34.08

27.82

32.10

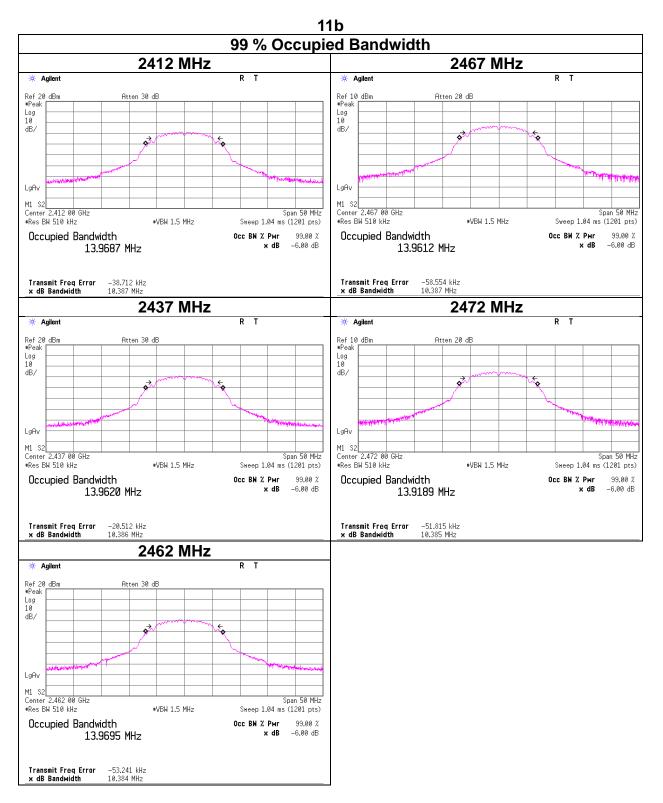
34.92

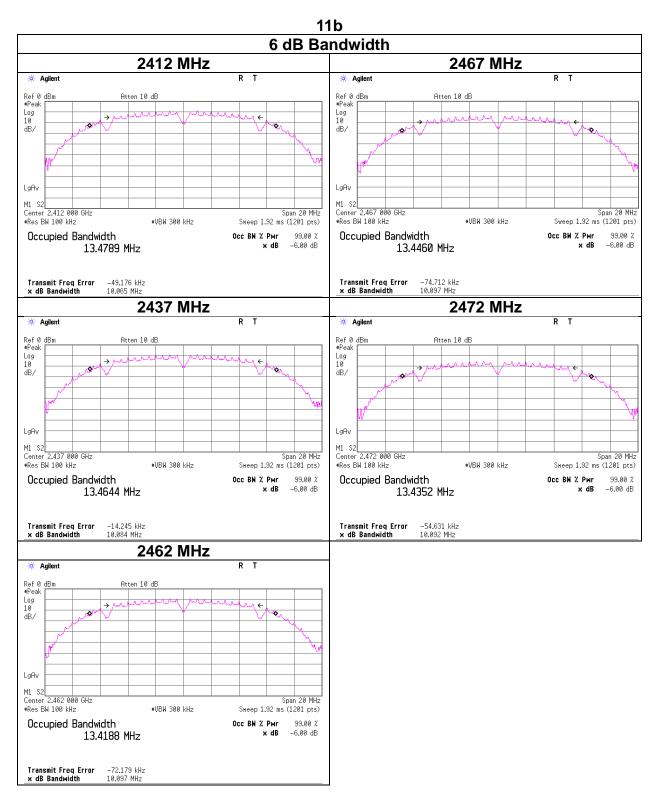
L

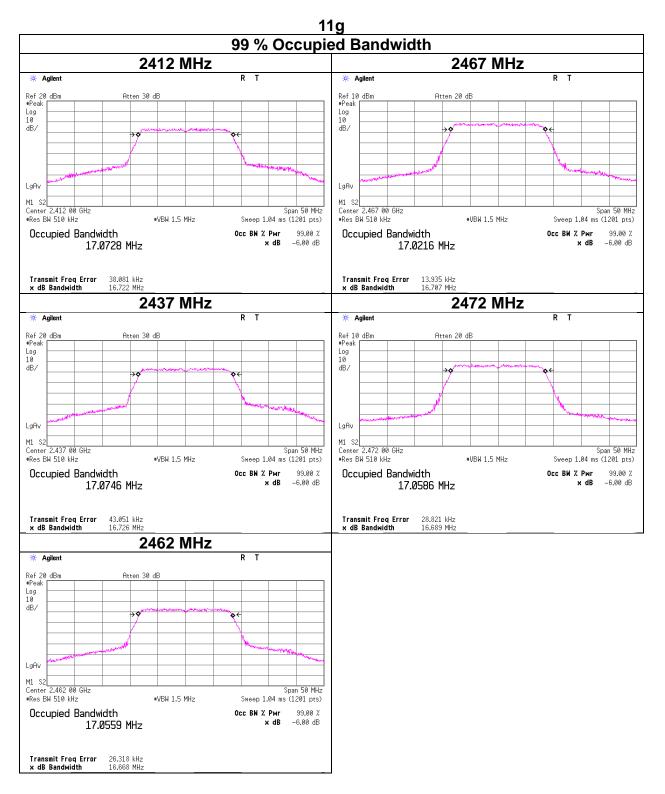
L

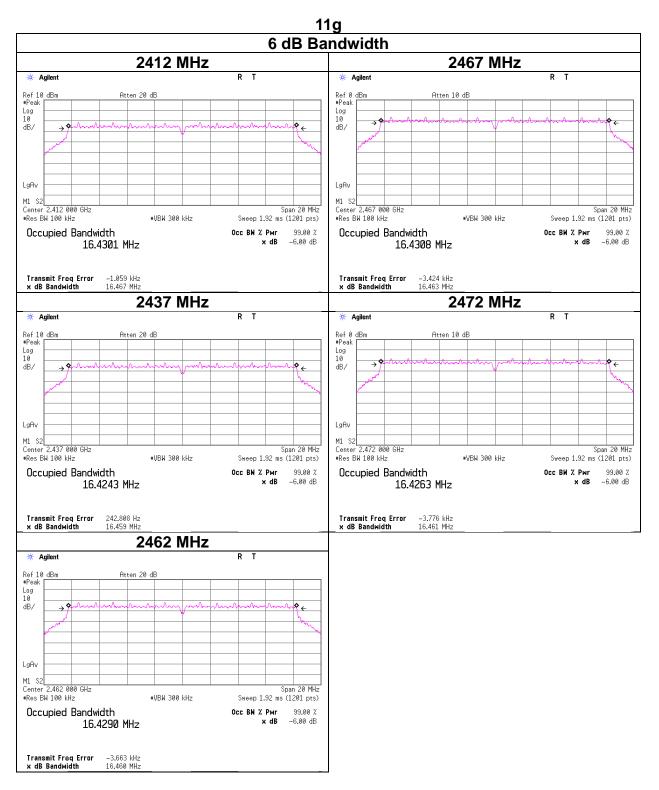
L

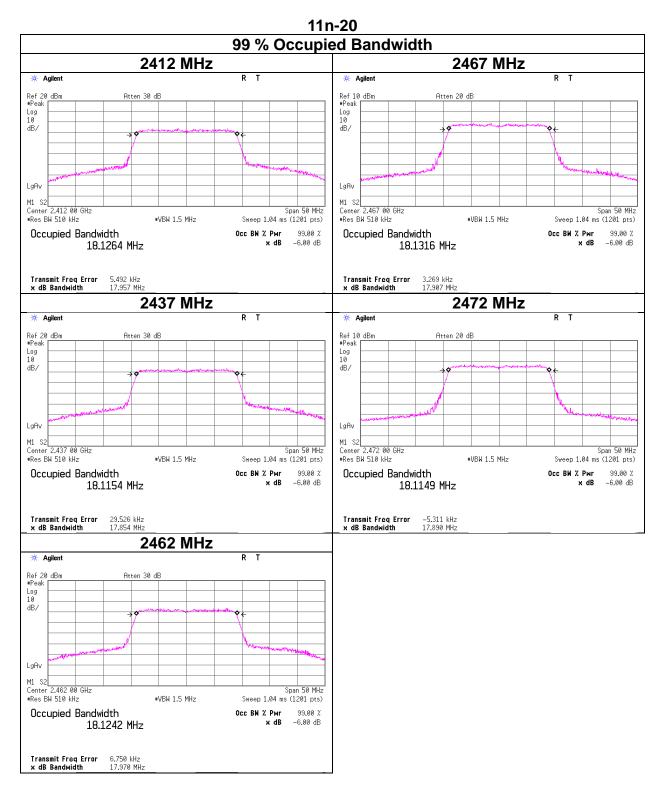
L

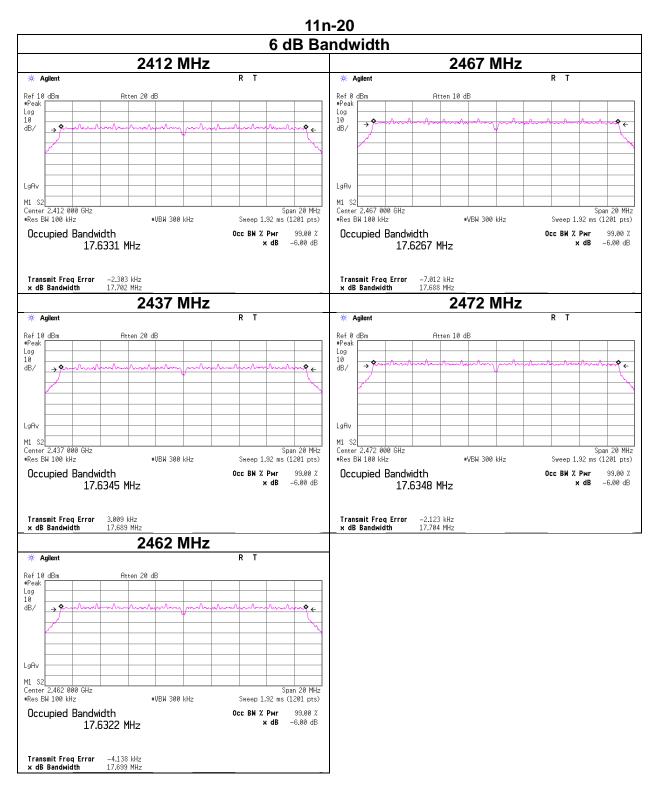

L


L


CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT) Except for the above table: adequate margin data below the limits.


Test place	Ise EMC Lab. No.1 Measurement Room
Date	March 4, 2024
Temperature / Humidity	22 deg. C / 38 % RH
Engineer	Junya Okuno
Mode	Tx


Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
11b	2412	13968.7	10.065	> 0.5000
	2437	13962.0	10.084	> 0.5000
	2462	13969.5	10.097	> 0.5000
	2467	13961.2	10.097	> 0.5000
	2472	13918.9	10.092	> 0.5000
11g	2412	17072.8	16.467	> 0.5000
	2437	17074.6	16.459	> 0.5000
	2462	17055.9	16.460	> 0.5000
	2467	17021.6	16.463	> 0.5000
	2472	17058.6	16.461	> 0.5000
11n-20	2412	18126.4	17.702	> 0.5000
	2437	18115.4	17.689	> 0.5000
	2462	18124.2	17.699	> 0.5000
	2467	18131.6	17.688	> 0.5000
	2472	18114.9	17.704	> 0.5000



Maximum Peak Output Power

Test place Date Temperature / Humidity Engineer Mode

Ise EMC Lab. No.1 Measurement Room March 4, 2024 22 deg. C / 38 % RH Junya Okuno Tx 11b

				Conducted Power					e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Re	sult	Limit		Margin	Antenna	Result		Limit		Margin
	_	Loss	Loss					-	Gain					_
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	-7.60	1.47	20.00	13.87	24.38	30.00	1000	16.13	3.85	17.72	59.16	36.02	4000	18.30
2437	-7.96	1.48	20.00	13.52	22.49	30.00	1000	16.48	3.85	17.37	54.58	36.02	4000	18.65
2462	-8.03	1.48	20.00	13.45	22.13	30.00	1000	16.55	3.85	17.30	53.70	36.02	4000	18.72
2467	-1.89	1.48	9.98	9.57	9.06	30.00	1000	20.43	3.85	13.42	21.98	36.02	4000	22.60
2472	-4.19	1.48	9.98	7.27	5.33	30.00	1000	22.73	3.85	11.12	12.94	36.02	4000	24.90

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain *The equipment and cables were not used for factor 0 dB of the data sheets.

2437 MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
1	-7.96	*
2	-7.99	
5.5	-8.20	
11	-8.24	
*· Woret	Doto	

: Worst Rate

Maximum Peak Output Power

Test place Date Temperature / Humidity Engineer Mode

Ise EMC Lab. No.1 Measurement Room March 4, 2024 22 deg. C / 38 % RH Junya Okuno Tx 11g

					Conc	lucted Po	ower		e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Re	esult	Lir	nit	Margin	Antenna	Result		Limit		Margin
	-	Loss	Loss					-	Gain					-
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	0.30	1.47	20.00	21.77	150.31	30.00	1000	8.23	3.85	25.62	364.75	36.02	4000	10.40
2437	-0.22	1.48	20.00	21.26	133.66	30.00	1000	8.74	3.85	25.11	324.34	36.02	4000	10.91
2462	-0.32	1.48	20.00	21.16	130.62	30.00	1000	8.84	3.85	25.01	316.96	36.02	4000	11.01
2467	5.73	1.48	9.98	17.19	52.36	30.00	1000	12.81	3.85	21.04	127.06	36.02	4000	14.98
2472	4.00	1.48	9.98	15.46	35.16	30.00	1000	14.54	3.85	19.31	85.31	36.02	4000	16.71

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain *The equipment and cables were not used for factor 0 dB of the data sheets.

2437 MHz							
Rate	Reading	Remark					
[Mbps]	[dBm]						
6	-1.49						
9	-1.41						
12	-1.35						
18	-0.22	*					
24	-1.05						
36	-0.66						
48	-1.22						
54	-0.97						

*: Worst Rate

Maximum Peak Output Power

Test place Date Temperature / Humidity Engineer Mode

Ise EMC Lab. No.1 Measurement Room March 4, 2024 22 deg. C / 38 % RH Junya Okuno Tx 11n-20

					Conducted Power					e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Re	sult	Limit		Margin	Antenna	Result		Lir	nit	Margin		
	_	Loss	Loss					-	Gain					-		
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]		
2412	0.32	1.47	20.00	21.79	151.01	30.00	1000	8.21	3.85	25.64	366.44	36.02	4000	10.38		
2437	-0.05	1.48	20.00	21.43	139.00	30.00	1000	8.57	3.85	25.28	337.29	36.02	4000	10.74		
2462	-0.20	1.48	20.00	21.28	134.28	30.00	1000	8.72	3.85	25.13	325.84	36.02	4000	10.89		
2467	5.85	1.48	9.98	17.31	53.83	30.00	1000	12.69	3.85	21.16	130.62	36.02	4000	14.86		
2472	4.07	1.48	9.98	15.53	35.73	30.00	1000	14.47	3.85	19.38	86.70	36.02	4000	16.64		

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain *The equipment and cables were not used for factor 0 dB of the data sheets.

2437 MHz

MCS	Reading	Reading	Remark
Number	Long GI	Short GI	
	[dBm]	[dBm]	
0	-0.72	-	
1	-0.05	-0.28	*Long GI
2	-1.22	-	
3	-0.93	-	
4	-0.61	-	
5	-1.18	-	
6	-0.88	-	
7	-1.20	-	

*: Worst MCS

Burst rate confirmation

Test place	Ise EMC Lab. No.1 Measurement Room
Date	March 4, 2024
Temperature / Humidity	22 deg. C / 38 % RH
Engineer	Junya Okuno
Mode	Tx

			11b 1 Mb	ps		11n-20 MCS	S 1 (Long G	ng GI)		
Тх	: on / (T	Tx on + T	x off) =		0.994	Tx on / (Tx on + Tx off) =		0.925		
Тх	on/(T	Tx on + T	x off) * 100 =		99.4 %	Tx on / (Tx on + Tx off) * 10	0 =	92.5 %		
Du	ity fact	tor = 10 *	log (5.256 / 5.	223) =	0.03 dB	Duty factor = 10 * log (465.	7 / 430.8) =	0.34 dB		
* /	Agilent			RT		🔆 Agilent	R	T		
Ref 10			Atten 20 dB		▲ Mkr2 5.256 ms -2.04 dB	Ref 10 dBm Atten 20 dB		▲ Mkr2 465.7 µs -0.47 dB		
Peak Log						Peak utilization ale manufactoritation	indelogian in general in the finder of the	in the second second second		
10 dB/							<mark>it in proprietations</mark>	in 14 day		
		2R			-					
LgAv						LgAv				
W1 \$2						W1 S2		114		
	r 2.437 000 W 8 MHz	0 GHz	●VBW 50 MHz	Sweep 7.	Span 0 Hz 645 ms (8192 pts)	Center 2.437 000 GHz Res BW 8 MHz •VBW	150 MHz Sw	Span 0 Hz eep 650 µs (8192 pts)		
Mari 1F 1c 2F 2c	ker Trace R (1) A (1) R (1)	e Type Time Time Time Time Time	*054 35 MM2 X Rixis 1.176 ms 5.223 ms 1.176 ms 5.256 ms	-2.84 dB -2.84 dB -2.84 dB -2.84 dB	043 IIIS (0132 pts)	Vers DN 0 rm2 *VDM Marker Trace Type X Ruis 1R (1) Time 188.5 1a (1) Time 458.5 2R (1) Time 108.5 2a (1) Time 465.7	Amplitude μs -67.22 dBm μs 0.19 dB μs -66.33 dBm	eep ose p 3 (0132 pt3)		

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Radiated Spurious Emission

Test place	lse EMC Lab.	
Semi Anechoic Chamber	No.1	No.4
Date	March 4, 2024	March 5, 2024
Temperature / Humidity	20 deg. C / 35 % RH	20 deg. C / 39 % RH
Engineer	Yuichiro Yamazaki	Yuichiro Yamazaki
	(1 GHz to 6 GHz,	(6 GHz to 10 GHz)
	Above 10 GHz)	
Mode	Tx 11b 2412 MHz	

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	57.3	40.9	27.7	5.7	36.0	-	54.6	38.3	73.9	53.9	19.3	15.6	
Hori.	4824.0	43.4	35.5	31.5	7.9	35.6	-	47.3	39.4	73.9	53.9	26.6	14.5	Floor noise
Hori.	7236.0	42.4	32.2	35.7	9.5	32.1	-	55.5	45.3	73.9	53.9	18.4	8.6	Floor noise
Hori.	9648.0	43.9	33.5	35.8	10.3	32.3	-	57.7	47.3	73.9	53.9	16.2	6.6	Floor noise
Vert.	2390.0	58.3	41.6	27.7	5.7	36.0	-	55.6	38.9	73.9	53.9	18.3	15.0	
Vert.	4824.0	44.0	35.5	31.5	7.9	35.6	-	47.8	39.4	73.9	53.9	26.1	14.5	Floor noise
Vert.	7236.0	42.5	32.3	35.7	9.5	32.1	-	55.6	45.4	73.9	53.9	18.3	8.5	Floor noise
Vert.	9648.0	43.7	33.7	35.8	10.3	32.3	-	57.4	47.5	73.9	53.9	16.5	6.4	Floor noise

/ PK) = Reading + Ant Factor + Loss (Cable+Attenuator+F ter+Distance factor(abo 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

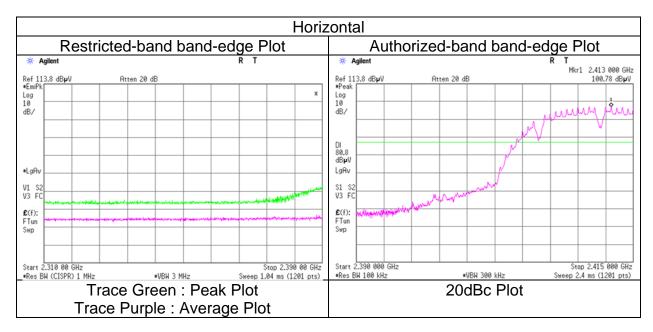
20dBc Data Sheet

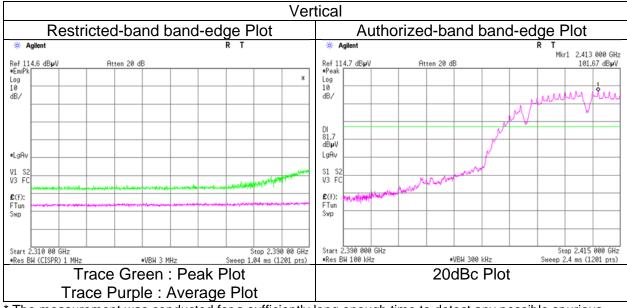
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	100.8	27.7	5.7	36.0	98.1	-	-	Carrier
Hori.	2400.0	53.1	27.7	5.7	36.0	50.4	78.1	27.7	
Vert.	2412.0	101.7	27.7	5.7	36.0	99.0	-	-	Carrier
Vert.	2400.0	54.8	27.7	5.7	36.0	52.2	79.0	26.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:

1 GHz to 6 GHz 6 GHz to 10 GHz 10 GHz to 26.5 GHz


20log(3.95 m / 3.00 m) = 2.4 dB 20log(4.95 m / 3.00 m) = 4.4 dB 20log(1.00 m / 3.00 m) = -9.5 dB


Radiated Spurious Emission (Reference Plot for band-edge)

Tx 11b 2412 MHz

Test placeIse EMC Lab.Semi Anechoic ChamberNo.1DateMarch 4, 2024Temperature / Humidity20 deg. C / 35 % RHEngineerYuichiro Yamazaki(1 GHz to 6 GHz)

Mode

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz, Above 10 GHz) Tx 11b 2437 MHz

No.4 March 5, 2024 20 deg. C / 39 % RH Yuichiro Yamazaki (6 GHz to 10 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4874.0	43.6	35.5	31.6	7.9	35.6	-	47.5	39.5	73.9	53.9	26.4	14.5	Floor noise
Hori.	7311.0	43.4	32.9	35.6	9.5	32.1	-	56.5	46.0	73.9	53.9	17.4	7.9	Floor noise
Hori.	9748.0	43.9	33.6	36.0	10.4	32.4	-	57.9	47.6	73.9	53.9	16.0	6.3	Floor noise
Vert.	4874.0	43.4	35.4	31.6	7.9	35.6		47.3	39.3	73.9	53.9	26.6	14.6	Floor noise
Vert.	7311.0	43.3	33.0	35.6	9.5	32.1	-	56.4	46.1	73.9	53.9	17.5	7.8	Floor noise
Vert.	9748.0	43.9	33.5	36.0	10.4	32.4	-	57.9	47.5	73.9	53.9	16.0	6.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

Distance factor:

1 GHz to 6 GHz 6 GHz to 10 GHz 10 GHz to 26.5 GHz

20log(3.95 m / 3.00 m) = 2.4 dB 20log(4.95 m / 3.00 m) = 4.4 dB 20log(1.00 m / 3.00 m) = -9.5 dB

Radiated Spurious Emission

Test place Ise EMC Lab. Semi Anechoic Chamber No.1 Date Temperature / Humidity Engineer

March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz, Above 10 GHz) Tx 11b 2462 MHz

No.4 March 5, 2024 20 deg. C / 39 % RH Yuichiro Yamazaki (6 GHz to 10 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	57.5	41.0	27.6	5.7	36.0	-	54.8	38.3	73.9	53.9	19.1	15.6	
Hori.	4924.0	43.4	35.4	31.7	7.9	35.6	-	47.4	39.4	73.9	53.9	26.5	14.5	Floor noise
Hori.	7386.0	42.6	32.1	35.6	9.6	32.1	-	55.6	45.0	73.9	53.9	18.3	8.9	Floor noise
Hori.	9848.0	43.9	33.7	36.2	10.4	32.4	-	58.0	47.8	73.9	53.9	15.9	6.1	Floor noise
Vert.	2483.5	59.1	42.6	27.6	5.7	36.0	-	56.4	39.9	73.9	53.9	17.5	14.0	
Vert.	4924.0	43.1	35.4	31.7	7.9	35.6	-	47.1	39.4	73.9	53.9	26.8	14.6	Floor noise
Vert.	7386.0	42.9	32.2	35.6	9.6	32.1	-	55.9	45.2	73.9	53.9	18.0	8.8	Floor noise
Vert.	9848.0	43.6	33.7	36.2	10.4	32.4	-	57.7	47.9	73.9	53.9	16.2	6.0	Floor noise

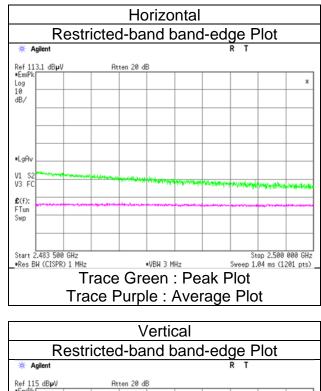
Result (QI PK) = Rea ing + Ant Factor + _oss (Cable+Attenuator+ er+Distance factor(abo GHz)) - Gain(Amplif

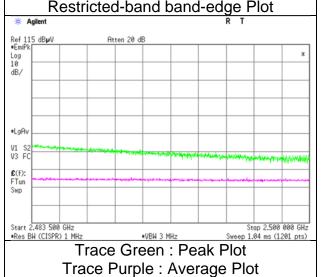
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor:

1 GHz to 6 GHz 6 GHz to 10 GHz 10 GHz to 26.5 GHz


20log(3.95 m / 3.00 m) = 2.4 dB 20log(4.95 m / 3.00 m) = 4.4 dB 20log(1.00 m / 3.00 m) = -9.5 dB


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz) Tx 11b 2462 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz) Tx 11b 2467 MHz

Mode

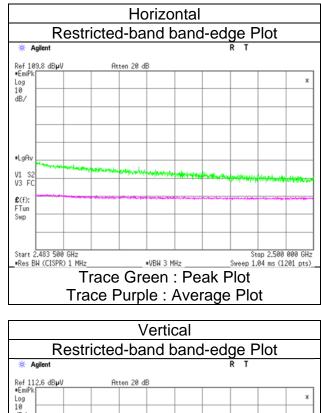
Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	58.8	42.9	27.6	5.7	36.0	-	56.1	40.2	73.9	53.9	17.8	13.7	
Vert.	2483.5	60.7	44.6	27.6	5.7	36.0	-	58.0	42.0	73.9	53.9	15.9	12.0	

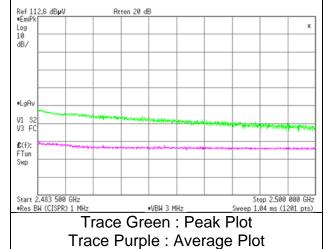
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor:

1 GHz to 6 GHz


20log(3.95 m / 3.00 m) = 2.4 dB


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz) Tx 11b 2467 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz) Tx 11b 2472 MHz

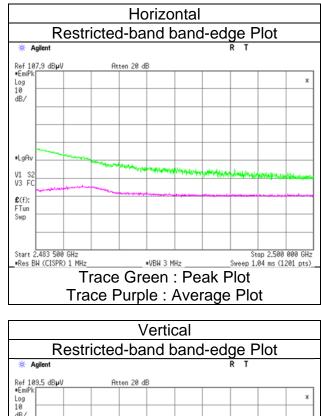
Mode

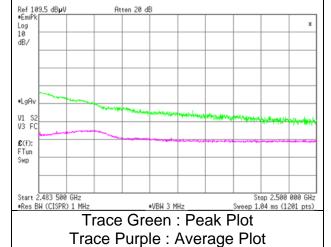
Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	64.9	47.4	27.6	5.7	36.0	-	62.2	44.7	73.9	53.9	11.7	9.2	
Hori.	2486.4	59.9	44.9	27.6	5.7	36.0	-	57.2	42.2	73.9	53.9	16.7	11.7	
Vert.	2483.5	66.2	49.3	27.6	5.7	36.0	-	63.5	46.6	73.9	53.9	10.4	7.3	
Vert.	2486.4	60.1	46.3	27.6	5.7	36.0	-	57.5	43.6	73.9	53.9	16.5	10.3	

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable-Attenuator+Filter+Distance factor(above 1 GH2)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor:


1 GHz to 6 GHz


20log(3.95 m / 3.00 m) = 2.4 dB

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz) Tx 11b 2472 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz, Above 10 GHz) Tx 11n-20 2412 MHz

No.4 March 5, 2024 20 deg. C / 39 % RH Yuichiro Yamazaki (6 GHz to 10 GHz, Below 1 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
-	. ,	(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	49.1	30.8	-	11.5	7.3	32.1	-	17.5	-	40.0	-	22.5	-	
Hori.	51.0	27.8	-	10.8	7.3	32.1	-	13.8	-	40.0	-	26.2	-	
Hori.	68.9	31.9	-	6.4	7.5	32.1	-	13.8	-	40.0	-	26.2	-	
Hori.	118.0	27.0	-	12.7	8.0	32.0	-	15.7	-	43.5	-	27.8	-	
Hori.	141.7	30.8	-	14.6	8.2	32.0	-	21.6	-	43.5	-	21.9	-	
Hori.	338.4	26.6	-	14.8	9.8	32.0	-	19.1	-	46.0	-	26.9	-	
Hori.	2390.0	61.1	47.0	27.7	5.7	36.0	0.3	58.5	44.7	73.9	53.9	15.4	9.2	*1)
Hori.	4824.0	43.5	35.7	31.5	7.9	35.6	-	47.4	39.5	73.9	53.9	26.5	14.4	Floor noise
Hori.	7236.0	43.3	32.8	35.7	9.5	32.1	-	56.4	45.9	73.9	53.9	17.5	8.0	Floor noise
Hori.	9648.0	44.5	33.9	35.8	10.3	32.3	-	58.3	47.7	73.9	53.9	15.6	6.2	Floor noise
Vert.	49.1	40.8	-	11.5	7.3	32.1	-	27.5	-	40.0	-	12.5	-	
Vert.	51.2	39.4	-	10.8	7.3	32.1	-	25.4	-	40.0	-	14.6	-	
Vert.	68.9	40.1	-	6.4	7.5	32.1	-	22.0	-	40.0	-	18.0	-	
Vert.	89.0	38.1	-	8.4	7.7	32.1	-	22.1	-	43.5	-	21.4	-	
Vert.	141.0	30.9	-	14.6	8.2	32.0	-	21.7	-	43.5	-	21.9	-	
Vert.	338.4	23.9	-	14.8	9.8	32.0	-	16.4	-	46.0	-	29.6	-	
Vert.	2390.0	62.5	48.7	27.7	5.7	36.0	0.3	59.9	46.4	73.9	53.9	14.1	7.5	*1)
Vert.	4824.0	43.8	35.3	31.5	7.9	35.6	-	47.6	39.2	73.9	53.9	26.3	14.7	Floor noise
Vert.	7236.0	43.5	33.0	35.7	9.5	32.1	-	56.6	46.1	73.9	53.9	17.3	7.8	Floor noise
Vert.	9648.0	44.6	33.7	35.8	10.3	32.3	-	58.4	47.5	73.9	53.9	15.5	6.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

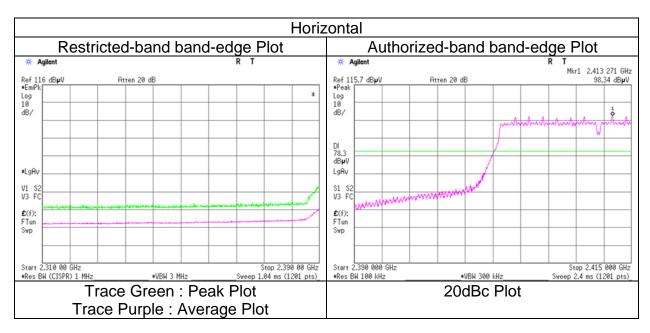
*QP detector was used up to 1GHz. *1) Not Out of Band emission(Leakage Power)

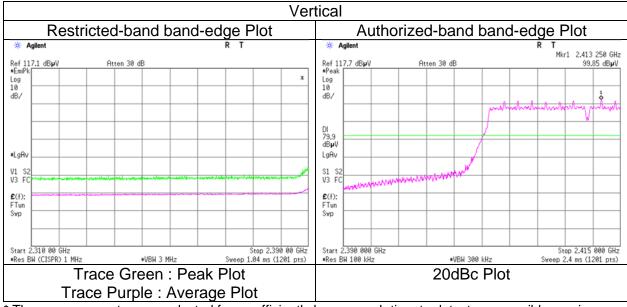
20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	98.3	27.7	5.7	36.0	95.7	-	-	Carrier
Hori.	2398.9	58.5	27.7	5.7	36.0	55.9	75.7	19.8	
Hori.	2400.0	57.9	27.7	5.7	36.0	55.3	75.7	20.4	
Vert.	2412.0	99.9	27.7	5.7	36.0	97.2	-	-	Carrier
Vert.	2398.9	60.3	27.7	5.7	36.0	57.6	77.2	19.6	
Vert.	2400.0	59.8	27.7	5.7	36.0	57.2	77.2	20.0	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:


1 GHz to 6 GHz 6 GHz to 10 GHz 10 GHz to 26.5 GHz


20log(3.95 m / 3.00 m) = 2.4 dB 20log(4.95 m / 3.00 m) = 4.4 dB 20log(1.00 m / 3.00 m) = -9.5 dB

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz) Tx 11n-20 2412 MHz

Mode

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz, Above 10 GHz) Tx 11n-20 2437 MHz

No.4 March 5, 2024 20 deg. C / 39 % RH Yuichiro Yamazaki (6 GHz to 10 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4874.0	43.6	35.3	31.6	7.9	35.6		47.5	39.3	73.9	53.9	26.4	14.7	Floor noise
Hori.	7311.0	43.4	33.3	35.6	9.5	32.1	-	56.5	46.4	73.9	53.9	17.4	7.5	Floor noise
Hori.	9748.0	43.9	33.7	36.0	10.4	32.4	-	57.9	47.6	73.9	53.9	16.0	6.3	Floor noise
Vert.	4874.0	43.9	35.4	31.6	7.9	35.6		47.8	39.3	73.9	53.9	26.1	14.6	Floor noise
Vert.	7311.0	43.7	33.5	35.6	9.5	32.1	-	56.7	46.5	73.9	53.9	17.2	7.4	Floor noise
Vert.	9748.0	43.9	33.4	36.0	10.4	32.4	-	57.9	47.4	73.9	53.9	16.0	6.5	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor:

1 GHz to 6 GHz 6 GHz to 10 GHz 10 GHz to 26.5 GHz 20log(3.95 m / 3.00 m) = 2.4 dB 20log(4.95 m / 3.00 m) = 4.4 dB 20log(1.00 m / 3.00 m) = -9.5 dB

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz, Above 10 GHz) Tx 11n-20 2462 MHz

No.4 March 5, 2024 20 deg. C / 39 % RH Yuichiro Yamazaki (6 GHz to 10 GHz)

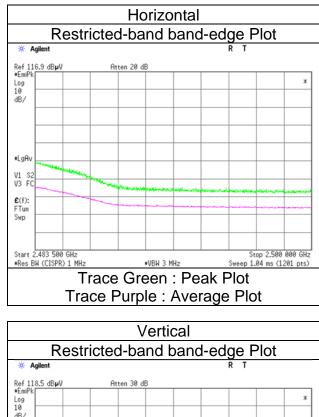
Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	66.4	52.3	27.6	5.7	36.0	0.3	63.7	50.0	73.9	53.9	10.2	3.9	*1)
Hori.	4924.0	43.3	35.5	31.7	7.9	35.6	-	47.3	39.5	73.9	53.9	26.6	14.4	Floor noise
Hori.	7386.0	32.8	32.1	35.6	9.6	32.1	-	45.8	45.1	73.9	53.9	28.1	8.8	Floor noise
Hori.	9848.0	44.1	33.6	36.2	10.4	32.4	-	58.2	47.8	73.9	53.9	15.7	6.1	Floor noise
Vert.	2483.5	68.5	54.4	27.6	5.7	36.0	0.3	65.8	52.1	73.9	53.9	8.1	1.8	*1)
Vert.	4924.0	43.6	35.4	31.7	7.9	35.6	-	47.6	39.4	73.9	53.9	26.3	14.5	Floor noise
Vert.	7386.0	43.0	32.1	35.6	9.6	32.1	-	56.0	45.0	73.9	53.9	17.9	8.9	Floor noise
Vert.	9848.0	43.7	33.7	36.2	10.4	32.4	-	57.9	47.8	73.9	53.9	16.0	6.1	Floor noise

Ant Fa Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)


Distance factor:

1 GHz to 6 GHz 6 GHz to 10 GHz 10 GHz to 26.5 GHz 20log(3.95 m / 3.00 m) = 2.4 dB 20log(4.95 m / 3.00 m) = 4.4 dB 20log(1.00 m / 3.00 m) = -9.5 dB

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz) Tx 11n-20 2462 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz) Tx 11n-20 2467 MHz

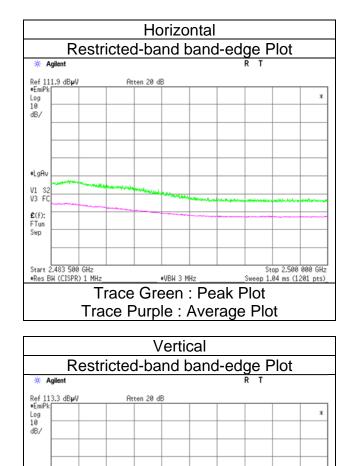
Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	58.4	47.1	27.6	5.7	36.0	0.3	55.7	44.8	73.9	53.9	18.2	9.1	*1)
Hori.	2484.6	59.4	46.7	27.6	5.7	36.0	0.3	56.7	44.4	73.9	53.9	17.2	9.5	*1)
Vert.	2483.5	59.6	49.1	27.6	5.7	36.0	0.3	56.9	46.8	73.9	53.9	17.0	7.1	*1)
Vert.	2484.6	61.6	48.9	27.6	5.7	36.0	0.3	58.9	46.5	73.9	53.9	15.0	7.4	*1)

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz. *1) Not Out of Band emission(Leakage Power)

Distance factor:


1 GHz to 6 GHz

20log(3.95 m / 3.00 m) = 2.4 dB

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz) Tx 11n-20 2467 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Trace Green : Peak Plot Trace Purple : Average Plot

Stop 2.500 000 GHz Sweep 1.04 ms (1201 pts)

Final result of restricted band edge was shown in tabular data.

Start 2.483 500 GHz Res BW (CISPR) 1 MHz

■LgAv V1 S2 V3 F(£(f): FTun Swp

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz) Tx 11n-20 2472 MHz

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	67.2	52.0	27.6	5.7	36.0	0.3	64.5	49.6	73.9	53.9	9.4	4.3	*1)
Vert.	2483.5	68.5	53.2	27.6	5.7	36.0	0.3	65.8	50.8	73.9	53.9	8.1	3.1	*1)

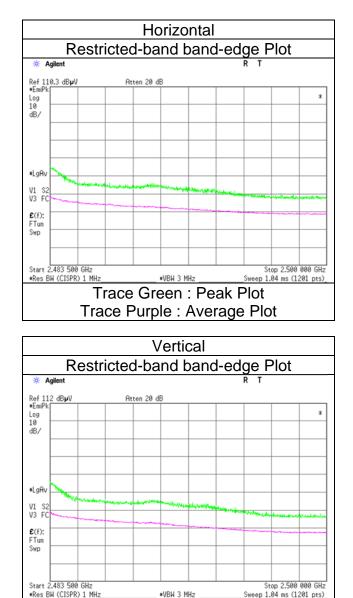
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

Distance factor:

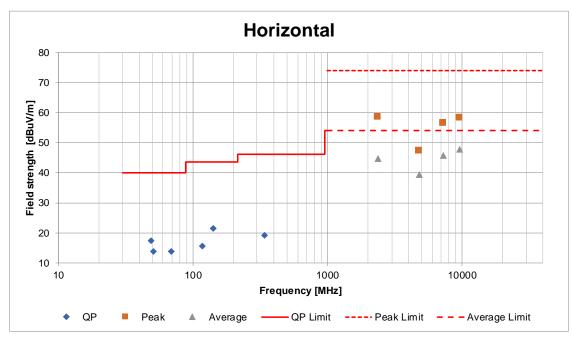

1 GHz to 6 GHz

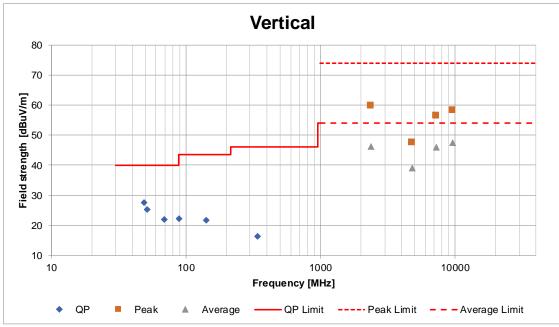
20log(3.95 m / 3.00 m) = 2.4 dB

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz) Tx 11n-20 2472 MHz


Trace Green : Peak Plot <u>Trace Purple : Average Plot</u> * The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.


Final result of restricted band edge was shown in tabular data.

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Ise EMC Lab. No.1 March 4, 2024 20 deg. C / 35 % RH Yuichiro Yamazaki (1 GHz to 6 GHz, Above 10 GHz) Tx 11n-20 2412 MHz

No.4 March 5, 2024 20 deg. C / 39 % RH Yuichiro Yamazaki (6 GHz to 10 GHz, Below 1 GHz)

*These plots data contain sufficient number to show the trend of characteristic features for EUT.

Mode

Conducted Spurious Emission

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.1 Measurement Room March 4, 2024 22 deg. C / 38 % RH Junya Okuno Tx 11n-20 2412 MHz

	9 kHz to 150 k	(Hz		150 kHz to 30	MHz
🔆 Agilent		RT	🔆 Agilent		RT
Ref -50 dBm Peak	#Atten 20 dB	Mkr1 10.06 kHz -87.58 dBm	Ref -50 dBm Peak	#Atten 20 dB	Mkr1 274 kH -80.05 dBm
Log 10 dB/		DC Coupled	Log 10 dB/		DC Coupled
LgAv	divition and the construction of the second	Min and taken and the state of the	LgAv	Mahammaharansa derhadersteradistradistration sin samarani	stanenstadendarphilis-tanalista mayou a
S1 S2 M3 FS		a de des al Millor d'anticipale de la constante constant d'anti-	S1 S2 M3 FS		
£(f): f<50k FFT			£(f): FTun Swp		
Start 9.00 kHz		Stop 150.00 kHz	Start 150 kHz		Stop 30.000 MH;
#Res BW 200 Hz	#VBW 620 Hz	Sweep 2.279 s (1201 pts)_	#Res BW 10 kHz	#VBW 30 kHz_	

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.06	-87.58	0.40	9.84	3.85	1	-73.49	300	6.00	-12.23	47.50	59.73	
274.00	-80.05	0.41	9.84	3.85	1	-65.95	300	6.00	-4.69	18.80	23.49	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

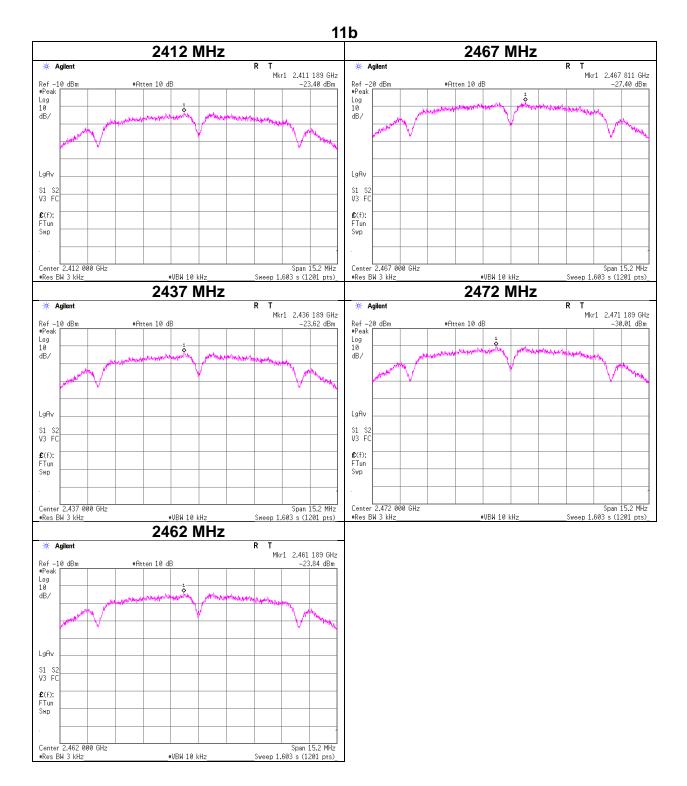
Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.1 Measurement Room March 4, 2024 22 deg. C / 38 % RH Junya Okuno Tx

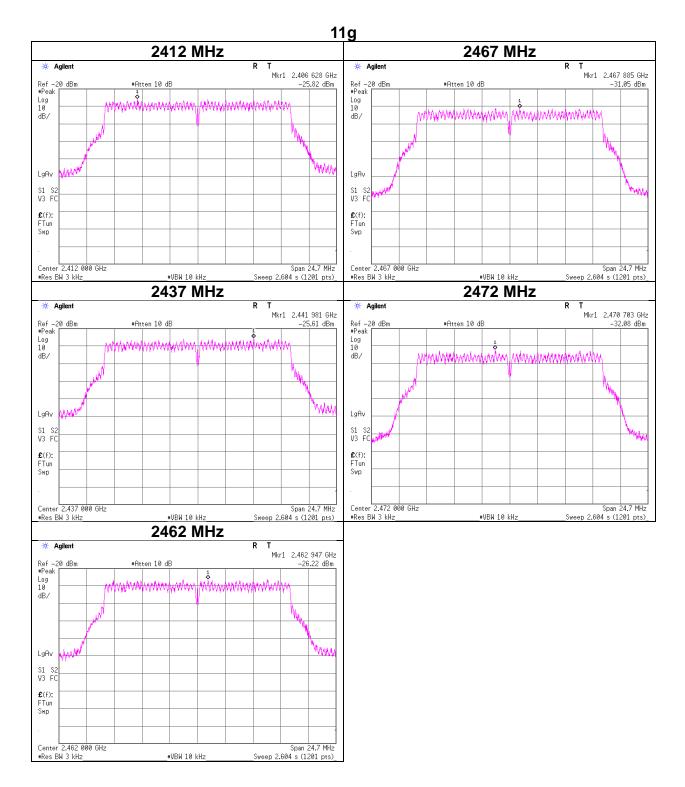
11b

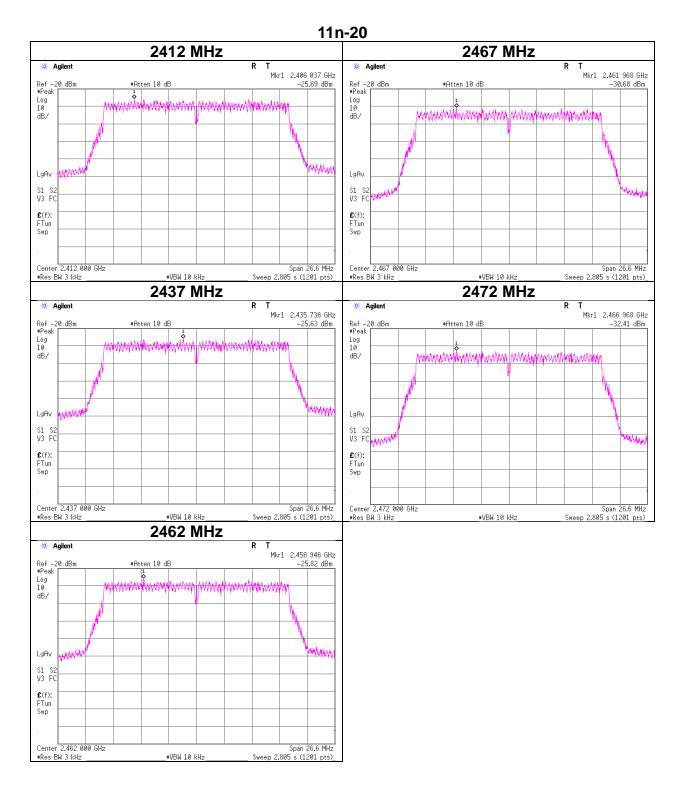
110						
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-23.40	1.47	9.98	-11.95	8.00	19.95
2437	-23.62	1.48	9.98	-12.16	8.00	20.16
2462	-23.84	1.48	9.98	-12.38	8.00	20.38
2467	-27.40	1.48	9.98	-15.94	8.00	23.94
2472	-30.01	1.48	9.98	-18.55	8.00	26.55

11g

<u></u>		<u> </u>	A			
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-25.82	1.47	9.98	-14.37	8.00	22.37
2437	-25.61	1.48	9.98	-14.15	8.00	22.15
2462	-26.22	1.48	9.98	-14.76	8.00	22.76
2467	-31.05	1.48	9.98	-19.59	8.00	27.59
2472	-32.08	1.48	9.98	-20.62	8.00	28.62


11n-20


Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-25.69	1.47	9.98	-14.24	8.00	22.24
2437	-25.63	1.48	9.98	-14.17	8.00	22.17
2462	-25.82	1.48	9.98	-14.36	8.00	22.36
2467	-30.68	1.48	9.98	-19.22	8.00	27.22
2472	-32.41	1.48	9.98	-20.95	8.00	28.95


Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

*The equipment and cables were not used for factor 0 dB of the data sheets.

APPENDIX 2: Test Instruments

Test Equipment (1/2)

Test Item	LIMSID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
CE	141217	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM141/ 421-010/ sucoform141-PE/ RFM-E121(SW)	-/04178	06/27/2023	12
CE	141248	Attenuator	JFW Industries, Inc.	50FP-013H2 N	-	12/08/2023	12
CE	141357	LISN(AMN)	Schwarzbeck Mess-Elektronik OHG	NSLK8127	8127-729	07/05/2023	12
CE	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	02/01/2024	12
CE	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	-	-
CE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
CE	142230	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
CE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-192	09/21/2023	12
RE	141296	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	002	09/01/2023	12
RE	141331	Attenuator(6dB)	TME	UFA-01	-	02/17/2024	12
RE	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/01/2023	12
RE	141397	Coaxial Cable	UL Japan	-	-	11/22/2023	12
RE	141404	High Pass Filter 3.5-24GHz	TOKIMEC	TF323DCA	601	05/29/2023	12
RE	141425	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+ BBA9106	VHA 91031302	08/10/2023	12
RE	141506	Horn Antenna 15-40GHz	Schwarzbeck Mess-Elektronik OHG		BBHA9170307	08/09/2023	12
RE	141511	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	253	09/25/2023	12
RE	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	02/01/2024	12
RE	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	02/01/2024	12
RE	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	-	-
RE	141568	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	2901	01/10/2024	12
RE	141576	Pre Amplifier	Keysight Technologies Inc	8449B	3008A01671	02/17/2024	12
RE	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/05/2023	12
RE	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	04/05/2023	12
RE	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/29/2023	12
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
RE	141994	AC1_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 10m	DA-06881	09/28/2023	24
RE	142011	AC4_Semi Anechoic Chamber(NSA)	ТДК	Semi Anechoic Chamber 3m	DA-10005	12/13/2023	24
RE	142017	AC4_Semi Anechoic Chamber(SVSWR)	ТДК	Semi Anechoic Chamber 3m	DA-10005	10/11/2023	12
RE	142226	Measure, Tape, Steel	KOMELON	KMC-36	-	-	1-
RE	142230	Measure, Tape, Steel	KOMELON	KMC-36	-	-	1-
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	238712	Double Ridge Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 C	687	08/10/2023	12
RE	238713	Double Ridge Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 C	688	08/10/2023	12

Test Equipment (2/2)

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/17/2023	12
AT	141174	Attenuator(20dB) (above1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-120	901247	01/15/2024	12
AT	141414	Microwave Cable	Junkosha	MWX221	1207S407	08/01/2023	12
AT	141420	Attenuator	Weinschel Associates	WA56-10	56100307	05/18/2023	12
AT	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	02/01/2024	12
AT	141568	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	2901	01/10/2024	12
AT	141810	Power Meter	Anritsu Corporation	ML2495A	824014	12/12/2023	12
AT	141832	Power sensor	Anritsu Corporation	MA2411B	738174	12/12/2023	12
AT	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/26/2024	12
AT	195231	Microwave Cable	Huber+Suhner	SF102D/11PC24/ 11PC24/1000mm	537062/126E	02/13/2024	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

- **CE: Conducted Emission**
- **RE: Radiated Emission**
- AT: Antenna Terminal Conducted test