

SAR TEST REPORT

Test Report No. 15375714H-G-R1

Customer	Nintendo Co., Ltd.
Description of EUT	Wireless device
Model Number of EUT	CLO-001
FCC ID	BKECLO001
Test Regulation	FCC47CFR 2.1093
Test Result	Complied
Issue Date	September 5, 2024
Remarks	*The highest reported SAR Body: 0.44 W/kg (1 g) Total exposure ratio (Body): 0.32 *Wireless LAN (2.4 GHz band) part

Representative Test Engineer T. Na kagawa	Approved By Lakayuki . L
Tomohisa Nakagawa Engineer	Takayuki Shimada Leader ACCREDITED
The testing in which "Non-accreditation" is displayed There is no testing item of "Non-accreditation".	CERTIFICATE 5107.02 is outside the accreditation scopes in UL Japan, Inc.

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15375714H-G-R1 Page 2 of 66

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers SAR technical requirements.
 It does not cover administrative issues such as Manual or non-SAR test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 15375714H-G

This report is a revised version of 15375714H-G. 15375714H-G is replaced with this report.

Revision	Test report No.	Date	Page Revised Contents
- (Original)	15375714H-G	August 23, 2024	-
1	15375714H-G-R1	September 5, 2024	Revised: interval from 36 to 24 for lims ID
			141457 in SECTION 13

Test Report No. 15375714H-G-R1 Page 3 of 66

Reference: Abbreviations (Including words undescribed in this report)

AAN	Asymmetric Artificial Network	GPS	Global Positioning System
AC	Alternating Current	Hori.	Horizontal
AM	Amplitude Modulation	ICES	Interference-Causing Equipment Standard
AMN	Artificial Mains Network	I/O	Input/Output
Amp, AMP	Amplifier	IEC	International Electrotechnical Commission
ANSI	American National Standards Institute	IEEE	Institute of Electrical and Electronics Engineers
Ant, ANT	Antenna Antenna	IF	Intermediate Frequency
AP.	Access Point	ILAC	International Laboratory Accreditation Conference
			Innovation, Science and Economic Development
ASK	Amplitude Shift Keying	ISED	Canada Canada
Atten., ATT	Attenuator	ISN	Impedance Stabilization Network
AV	Average	ISO	International Organization for Standardization
BPSK	Binary Phase-Shift Keying	JAB	Japan Accreditation Board
BR	Bluetooth Basic Rate	LAN	Local Area Network
BT	Bluetooth	LCL	Longitudinal Conversion Loss
BT LE	Bluetooth Low Energy	LIMS	Laboratory Information Management System
BW	BandWidth	LISN	Line Impedance Stabilization Network
C.F	Correction Factor	MRA	Mutual Recognition Arrangement
Cal Int	Calibration Interval	N/A	Not Applicable
CAV	CISPR AV	NIST	National Institute of Standards and Technology
CCK	Complementary Code Keying	NS	No signal detect.
CDN	Coupling Decoupling Network	NSA	Normalized Site Attenuation
Ch., CH	Channel	OBW	Occupied BandWidth
CISPR	Comite International Special des Perturbations Radioelectriques	OFDM	Orthogonal Frequency Division Multiplexing
Corr.	Correction	PER	Packet Error Rate
CPE	Customer premise equipment	PK	Peak
CW	Continuous Wave	P _{LT}	long-term flicker severity
DBPSK	Differential BPSK	POHC(A)	Partial Odd Harmonic Current
DC	Direct Current	Pol., Pola.	Polarization
DET	Detector	PR-ASK	Phase Reversal ASK
D-factor	Distance factor	P _{ST}	short-term flicker severity
Dmax	maximum absolute voltage change during an observation period	QAM	Quadrature Amplitude Modulation
DQPSK	Differential QPSK	QP	Quasi-Peak
DSSS	Direct Sequence Spread Spectrum	QPSK	Quadrature Phase Shift Keying
DUT	Device Under Test	r.m.s., RMS	Root Mean Square
EDR	Enhanced Data Rate	RBW	Resolution BandWidth
e.i.r.p., EIRP	Equivalent Isotropically Radiated Power	RE	Radio Equipment
EM clamp	Electromagnetic clamp	REV	Reverse
EMC	ElectroMagnetic Compatibility	RF	Radio Frequency
EMI	ElectroMagnetic Interference	RFID	Radio Frequency Identifier
EMS	ElectroMagnetic Susceptibility	RNSS	Radio Navigation Satellite Service
EN	European Norm	RSS	Radio Standards Specifications
e.r.p., ERP	Effective Radiated Power	Rx	Receiving
ETSI	European Telecommunications Standards Institute	SINAD	Ratio of (Signal + Noise + Distortion) to (Noise + Distortion)
EU	European Union	S/N	Signal to Noise ratio
EUT	Equipment Under Test	SA, S/A	Spectrum Analyzer
Fac.	Factor	SG, S/A	Signal Generator
FCC	Federal Communications Commission	SVSWR	Site-Voltage Standing Wave Ratio
FHSS			Total Harmonic Current
FM	Frequency Hopping Spread Spectrum Frequency Modulation	THC(A) THD(%)	Total Harmonic Current Total Harmonic Distortion
Freq. FSK	Frequency Chiff Koving	TR, T/R	Test Receiver
	Frequency Shift Keying	Tx	Transmitting
		VBW	Video BandWidth
Fund	Fundamental		
Fund FWD	Forward	Vert.	Vertical
Fund FWD GFSK	Forward Gaussian Frequency-Shift Keying	Vert. WLAN	Vertical Wireless LAN
Fund FWD	Forward	Vert.	Vertical

CONTENTS	PAGE
SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	
2.1 Identification of EUT	5
2.2 Product Description	
SECTION 3: Test standard information	
3.1 Test Specification	
3.2 Procedure	
3.3 Additions or deviations to standard	7 7
3.4 Exposure limit	
3.5 SAR	
3.6 Test Location	
SECTION 4: Test result	
4.1 Result	
4.2 Stand-alone SAR result	9
4.3 Simultaneous transmission SAR result	9
SECTION 5: Tune-up tolerance information and software information	10
5.1 Maximum tune-up tolerance limit	10
5.2 Duty confirmation	
SECTION 6: RF Exposure Conditions (Test Configurations)	11
6.1 Summary of the distance between antenna and surface of EUT	11
6.2 SAR-based Exemption - FCC section 1.1307	12
SECTION 7: Description of the Body setup	13
7.1 Procedure for SAR test position determination	13
7.2 Test position for Body setup	
SECTION 8: Description of the operating mode	14
8.1 Output Power and SAR test required	
SECTION 9: Test surrounding	15
9.1 Measurement uncertainty	
SECTION 10: Parameter Check	
10.1 Liquid check results	16
SECTION 11: System Check confirmation	17
SECTION 12: Measured and Reported (Scaled) SAR Results	18
12.1 Result of Body SAR of WLAN 2.4 GHz Band	19
SECTION 13: Test instruments	20
APPENDIX 1: System Check	22
APPENDIX 2: SAR Measurement data	
APPENDIX 3: System specifications	
APPENDIX 4: Photographs of test setup	

Test Report No. 15375714H-G-R1 Page 5 of 66

SECTION 1: Customer information

Company Name	Nintendo Co., Ltd.
Address	11-1 Hokotate-cho, Kamitoba, Minami-ku, Kyoto 601-8501, Japan
Telephone Number	+81-75-662-9600
Contact Person	Hideki Ohashi

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 5: Tune-up tolerance information and software information

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Description	Wireless device
Model Number	CLO-001
Serial Number	CAL01000010686
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	February 21, 2024 (For Output power measurement)
	February 21, 2024 (For SAR measurement)
Test Date	March 4, 2024 (For Output power measurement)
	March 8, 2024 (For SAR measurement)

Test Report No. 15375714H-G-R1 Page 6 of 66

2.2 Product Description

General Specification

Rating	DC 5.0 V
Option battery	N/A
Body-worn accessory	N/A

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

WLAN (IEEE802.11b/11q/11n-20)

**LAI* (ILLE002.115/11g/1111-20)		
Equipment Type	Transceiver	
Frequency of Operation	2412 MHz to 2472 MHz	
Type of Modulation	DSSS, OFDM	
Antenna Type	Inverted F Antenna	
Antenna Gain a)	3.85 dBi	

24 GHz Sensor

27 One Concor		
Equipment Type	Transceiver	
Frequency of Operation	24.150 GHz	
Frequency range	24.059 GHz to 24.239 GHz	
Modulation	FMCW	
Antenna type	Patch Antenna	
Antenna Gain	3.5 dBi	
Steerable Antenna	None	
Usage location	Fixed use	
Receiver Category	1	

Test Report No. 15375714H-G-R1 Page 7 of 66

SECTION 3: Test standard information

3.1 Test Specification

Title : FCC47CFR 2.1093 Radiofrequency radiation exposure evaluation: portable devices.

3.2 Procedure

Category	SAR
Note: UL Japan, Inc.'s Sa	AR Work Procedures: Work Instructions-ULID-003598 and Work Instructions-
ULID-003599	

Published RF exposure KDB procedures		
☐ KDB 447498 D01(v06)	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices	
☑ KDB 447498 D04(v01)	Interim General RF Exposure Guidance	
☐ KDB 447498 D02(v02r01)	SAR Measurement Procedures for USB Dongle Transmitters	
☐ KDB 648474 D04(v01r03)	SAR Evaluation Considerations for Wireless Handsets	
☐ KDB 941225 D01(v03r01)	3G SAR Measurement Procedures	
☐ KDB 941225 D05(v02r05)	SAR Evaluation Considerations for LTE Devices	
☐ KDB 941225 D06(v02r01)	SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities (Hot Spot SAR)	
☐ KDB 941225 D07(v01r02)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices	
☐ KDB 616217 D04(v01r02)	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers	
☑ KDB 865664 D01(v01r04)	SAR Measurement Requirements for 100 MHz to 6 GHz	
⋈ KDB 248227 D01(v02r02)	SAR Guidance for 802.11(Wi-Fi) Transmitters	

Reference

- [1] Schmid & Partner Engineering AG, DASY Manual, September 2019
- [2] IEEE Std 1528-2013
- [3] IEC/IEEE 62209-1528 Edition 1.0 2020-10
- [4] RF Exposure Policies and Procedures: TCB Workshop October 2020

3.3 Additions or deviations to standard

Other than above, no addition, exclusion nor deviation has been made from the standard.

Test Report No. 15375714H-G-R1 Page 8 of 66

3.4 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

- 4	. ,	1 (• 3/				
	Spatial Average	Spatial Peak	Spatial Peak			
ı	(averaged over the whole	(averaged over any 1 g of	(hands/wrists/feet/ankles averaged over 10			
	body)	tissue)	g)			
	0.4	8.0	20.0			

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average	Spatial Peak	Spatial Peak
(averaged over the whole	(averaged over any 1 g of	(hands/wrists/feet/ankles averaged over
body	tissue)	10 g)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1 g of tissue) LIMIT 1.6 W/kg

3.5 SAR

Specific Absorption Rate (SAR): The time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ), as shown in the following equation:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg) or equivalently milliwatts per gram (mW/g).

SAR is related to the E-field at a point by the following equation:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms E-field strength (V/m)

3.6 Test Location

UL Japan, Inc. Ise EMC Lab. Shielded room for SAR testing

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81-596-24-8999

Test Report No. 15375714H-G-R1 Page 9 of 66

SECTION 4: Test result

4.1 Result

Complied

Highest values at each band are listed next section.

4.2 Stand-alone SAR result

RF Exposure	Conditions	Equipment Class - Highest Reported SAR (W/kg)					
		PCE	DTS	NII	DSS		
			(Include BT LE)		(Bluetooth		
					BR/EDR)		
Standalone	Head	N/A	N/A	N/A	N/A		
Tx	Body-worn	N/A	0.44	N/A	N/A		
(1-g SAR)	Hotspot	N/A	N/A	N/A	N/A		
Standalone	Limbs	N/A	N/A	N/A	N/A		
Tx							
(10-g SAR)							

^{*}Details are shown at appendix.

4.3 Simultaneous transmission SAR result

According to the standards, total exposure ration calculation is applied.

PD value is quoted from test report number 15375714H-I and 15375714H-J respectively FCC and ISED published by UL Japan, inc.

The combinations of modes that can be transmitted simultaneously are as follows. WLAN + 24 GHz sensor

Rat	Reported value	Exposure ratio
24 GHz mmW	0.41 W/m ²	0.041
WLAN	0.44 W/kg	0.275
	Total exposure ratio	0.316

Exposure ratio: reported value / applicable limit Total exposure ratio: sum of exposure ratio

Test Report No. 15375714H-G-R1 Page 10 of 66

SECTION 5: Tune-up tolerance information and software information

5.1 Maximum tune-up tolerance limit

Mode	Band	Freq [MHz]	Maximum tune-up tolerance limit (Burst Average) [dBm]
WLAN	2.4 GHz	2412 to 2462	12.00
WLAN	2.4 GHz	2467	8.00
WLAN	2.4 GHz	2472	6.00

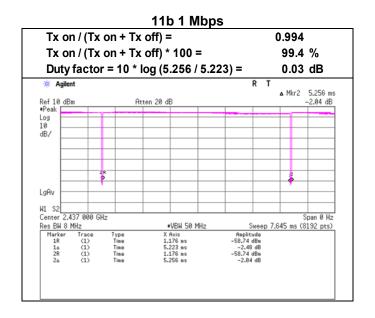
Software setting

*The power value of the EUT was set for testing as follows (setting value might be different from product specification value);

Power settings: 2412 MHz to 2462 MHz (1 to 11 ch): 10 [dBm]

2467 MHz (12 ch): 6 [dBm] 2472 MHz (13 ch): 4 [dBm]

Software: WLAN Test Version: X4


*This setting of software is the worst case.

The test was performed with condition that obtained the maximum average power (Burst) in pre-check.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

5.2 Duty confirmation

Test Report No. 15375714H-G-R1 Page 11 of 66

SECTION 6: RF Exposure Conditions (Test Configurations)

6.1 Summary of the distance between antenna and surface of EUT

Test position	Distance [mm]
Front	7.07
Rear	75.83
Left	84.70
Right	8.30
Right tilt A	6.82
Right tilt B	7.09
Тор	38.60
Bottom	39.70

Details are shown in appendix.

Test Report No. 15375714H-G-R1 Page 12 of 66

6.2 SAR-based Exemption - FCC section 1.1307

Exception condition as per section 1.1307 (b)(3)(i)(B)

the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by:

$$P_{th} (mW) = \begin{cases} ERP_{20dm} (d/20 \ cm)^{x} & d \le 20 \ cm \\ ERP_{20cm} & 20 \ cm < d \le 40 cm \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{ERP_{20dm}\sqrt{f}}\right)$$
 and f is in GHz;

And

$$ERP_{20cm}(mW) = \begin{cases} 2040 \, f & 0.3 \, GHz \leq f < 1.5 \, GHz \\ 3060 & 1.5 \, GHz \leq f \leq 6 \, GHz \end{cases}$$

d = the separation distance.

In the table below, when the minimum test separation distance is < 5 mm, a distance, 5 mm, is applied to determine SAR test exclusion.,

As per section 1.1307 (b)(2)

Separation distance is the minimum distance in any direction from any part of a radiating structure and any part of the body of a nearby person.

Radiating structure is an unshielded RF current-carrying conductor that generates an RF reactive near electric or magnetic field and/or radiates an RF electromagnetic wave. It is the component of an RF source that transmits, generates, or reradiates an RF fields, such as an antenna, aperture, coil, or plate.

Anter	nna	RAT	Frequency	Output Power		Ant Gain	t Gain ERP S		Separation Dista	eparation Distances / Pth / Jadge						
			[MHz]	dBm	mW	dBi	dBm	mW	Front	Rear	Left	Right	Right tilt A	Right tilt B	Top	Bottom
									7.07 mm /	75.83 mm /	84.7 mm /	8.3 mm /	6.82 mm/	7.09 mm /	38.6 mm /	39.7 mm/
									5.27 mW /	482.77 mW /	595.96 mW /	7.15 mW /	4.92 mW /	5.3 mW /	133.46 mW /	140.8 mW /
Main		WLAN 2.4	2472	12.00	15.85	3.85	13.71	23.50	Required	Excluded	Excluded	Required	Required	Required	Excluded	Excluded

The calculation uses worst pattern, the highest frequency and the highest tune up limit.

Test Report No. 15375714H-G-R1 Page 13 of 66

SECTION 7: Description of the Body setup

7.1 Procedure for SAR test position determination

The tested procedure was performed according to the KDB 447498 D04 (Interim General RF Exposure Guidance).

7.2 Test position for Body setup

Position	Test distance	WLAN
		Tested
Front	0 mm	\boxtimes
Rear	0 mm	
Left	0 mm	
Right	0 mm	\boxtimes
Right tilt A	0 mm	\boxtimes
Right tilt B	0 mm	
Тор	0 mm	
Bottom	0 mm	

^{*}The test was conservatively performed with test distance 0 mm.

Test Report No. 15375714H-G-R1 Page 14 of 66

SECTION 8: Description of the operating mode

8.1 Output Power and SAR test required

Date of Output power measurement March 4, 2024
Temperature / Humidity 22 deg. C / 38 % RH

According to KDB 248227 D01, The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- 1. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

WLAN 2.4 GHz (DTS Band)

Freq.	Result						
	(Burst power average)						
[MHz]	[dBm]	[mW]					
2412	11.42	13.87					
2437	11.29	13.46					
2462	11.19	13.15					
2467	7.39	5.48					
2472	4.74	2.98					

Test Report No. 15375714H-G-R1 Page 15 of 66

SECTION 9: Test surrounding

9.1 Measurement uncertainty

This measurement uncertainty budget is suggested by IEEE Std 1528(2013) and determined by Schmid & Partner Engineering AG (DASY Uncertainty Budget). Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz Section 2.8.1., when the highest measured SAR(1 g) within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

300 MHz to 3 GHz

		Uncert.		Prob.	Div.	(ci)	(ci)	Std. Unc.	Std.Unc.
Error Description		value	Dist.		1g	10g	(1g)	(10g)	
Measurement System Errors									
Probe Calibration	±	13.10	%	N	2	1	1	±6.6%	±6.55%
Probe Calibration Drift	±	1.7	%	R	√3	1	1	±1.0%	±1.0%
Probe Linearity	±	4.7	%	R	√3	1	1	±2.7%	±2.7%
Broadband Signal	±	2.6	%	R	√3	1	1	±1.5%	±1.5%
Probe Isotropy	±	7.6	%	R	√3	1	1	±4.4%	±4.4%
Other Probe +Electronic	±	1.2	%	N	1	1	1	±1.2%	±1.2%
RF Ambient	±	1.8	%	N	1	1	1	±1.8%	±1.8%
Probe Positioning	±	0.005	mm	N	1	0.29	0.29	±0.2%	±0.2%
Data Processing	±	2.3	%	N	1	1	1	±2.3%	±2.3%
Phantom and Device Errors									
Conductivity (meas.)DAK	±	5.0	%	N	1	0.78	0.71	±3.9%	±3.6%
Conductivity (temp.)BB	±	3.4	%	R	√3	0.78	0.71	±1.5%	±1.4%
Phantom Permittivity	±	14.0	%	R	√3	0.25	0.25	±2.0%	±2.0%
Distance DUT - TSL	±	2.0	%	N	1	2	2	±4.0%	±4.0%
Device Positioning (+/- 0.5mm)	±	1.0	%	N	1	1	1	±1.0%	±1.0%
Device Holder	±	3.6	%	N	1	1	1	±3.6%	±3.6%
DUT Modulation ^m	±	2.4	%	R	√3	1	1	±1.4%	±1.4%
Time-average SAR	±	1.7	%	R	√3	1	1	±1.0%	±1.0%
DUT drift	±	2.5	%	N	1	1	1	±2.5%	±2.5%
Val Antenna Unc. val	±	0.0	%	N	1	1	1	±0.0%	±0.0%
Unc. Input Power ^{val}	±	0.0	%	N	1	1	1	±0.0%	±0.0%
Correction to the SAR results									
Deviation to Target	±	1.9	%	N	1	1	0.84	±1.9%	±1.6%
SAR scaling ^p	±	0.0	%	R	√3	1	1	±0.0%	±0.0%
Combined Std. Uncertainty								±12.1%	±12.0%
Expanded STD Uncertainty (κ=2	2)							±24.3%	±23.9%

Note: This uncertainty budget for validation is worst-case. Table of uncertainties are listed for ISO/IEC 17025.

Test Report No. 15375714H-G-R1 Page 16 of 66

SECTION 10: Parameter Check

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit. The dielectric parameters measurement is reported in each correspondent section.

The dielectric parameters are measured within 24 hours before the SAR measurements.

According to KDB 865664 D01, +/- 5 % tolerances are required for ϵr and σ and then below table which is the target value of the simulated tissue liquid is quoted from KDB 865664 D01.

Table 10standard parameters on the KDB 865664 D01

Target Frequency	He	ad
(MHz)	ε _r	σ (S/m)
150	52.3	0.76
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
915	41.5	0.98
1450	40.5	1.20
1610	40.3	1.29
1800 – 2000	40.0	1.40
2450	39.2	1.80
3000	38.5	2.40
5800	35.3	5.27

The dielectric parameters are linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

10.1 Liquid check results

Date	Tem	Humidity	Frequency	Permittivity			Conductivity	Note		
				Measured Target Delta Me		Measured	Target	Delta		
	[deg. C]	[RH %]	[MHz]	٤'	ε'	+/- 5 [%]	σ [S/m]	σ [S/m]	+/- 5 [%]	
2024/3/8	24	42	2412	37.8	39.3	-3.6	1.69	1.77	-4.5	
2024/3/8	24	42	2437	37.8	39.2	-3.6	1.71	1.79	-4.6	
2024/3/8	24	42	2450	37.8	39.2	-3.6	1.72	1.80	-4.6	SPC
2024/3/8	24	42	2462	37.8	39.2	-3.6	1.73	1.81	-4.8	

SPC: System performance check

Test Report No. 15375714H-G-R1 Page 17 of 66

SECTION 11: System Check confirmation

The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.

The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm ± 0.5 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm ± 0.5 cm for measurements > 3 GHz.

The DASY system with an E-Field Probe was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom).

The standard measuring distance was 10 mm (above 1 GHz to 6 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.

The coarse grid with a grid spacing of 15 mm (below 2 GHz), 12 mm (2 GHz to 4 GHz) and 10 mm (4 GHz to 6 GHz) was aligned with the dipole.

Around this point found in the coarse grid, a volume of 30 mm x 30 mm x 30 mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3 GHz, a volume of 28 mm x 28 mm x 34 mm or more was assessed by measuring 8 x 8 x 8(ratio step method) points at least for 3 GHz to 5 GHz and a volume of 28 mm x 28 mm x 24 mm or more was assessed by measuring 8 x 8 x 8(ratio step method) points at least for 5 GHz to 6 GHz.

Distance between probe sensors and phantom surface was set to 1.4 mm.

The dipole input power (forward power) was 100 mW or 250 mW.

The results are normalized to 1 W input power.

Above 6GHz, the standard measuring distance was 5 mm (6.5 GHz) from dipole center to the simulating liquid surface.

The coarse grid with a grid spacing of 8.5 mm (6.5 GHz) was aligned with the dipole.

Around this point found in the coarse grid, a volume of 22 mm x 22 mm x 22 mm or more was assessed by measuring 7 x 7 x 7(ratio step method) points at least for above 6GHz.

Distance between probe sensors and phantom surface was set to 1.4 mm.

The dipole input power (forward power) was 100 mW.

The results are normalized to 1 W input power.

All SAR measurement is performed within 24 hours after the system check are measured.

Target Value

Freq [MHz]		Model,S/N	Head	
			(SPEAG)	(SPEAG)
			1 g [W/kg]	10 g
				[W/kg]
	2450	D2450V2,713	53.20	24.76

The target(reference) SAR values can be obtained from the calibration certificate of system validation dipoles (Refer to Appendix 3). The target SAR values are SAR measured value in the calibration certificate scaled to 1 W.

Conditions					Meas value Normalized to 1W		Daily Reference value of regulation				
Date	Frequency [MHz]	Temp [deg. C]	Humid [% RH]	1g [W/kg]	10g [W/kg]	1g [W/kg]	10g [W/kg]	(SPEAG) 1g [W/kg]			[%]
3/8	2450	24	42	12.1	5.65	48.4	22.6	53.2	24.76	-9.02	-8.72

Test Report No. 15375714H-G-R1 Page 18 of 66

SECTION 12: Measured and Reported (Scaled) SAR Results

• KDB 248227 D01 (SAR Guidance for 802.11(Wi-Fi) Transmitters):

SAR test reduction for 802.11 WLAN transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the <u>initial test position(s)</u> by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The <u>initial test position(s)</u> is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the <u>reported</u> SAR for the <u>initial test position</u> is:

- ♦ ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- → > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- ♦ When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- ♦ When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the <u>initial test position</u>, Area Scans were performed to determine the position with the *Maximum Value of SAR (measured)*. The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the <u>initial test position</u>.

Note: Measured value is rounded round off to three decimal places.

Test Report No. 15375714H-G-R1 Page 19 of 66

12.1 Result of Body SAR of WLAN 2.4 GHz Band

				Power	(dBm)	Power		Duty	1-g SAF	R (W/kg)	
Test Position	Dist. (mm)	Mode	Freq. (MHz)	Tune-up upper Power	Measured average Power	Scaled factor	Duty (%)	Scaled factor	Meas.	Reported	Plot No.
Front	0	11b	2412	12.00	11.42	1.14	99.4	1.01	0.382	0.439	WL24
			2437	12.00	11.29	1.18	99.4	1.01	0.365	0.432	
			2462	12.00	11.19	1.21	99.4	1.01	0.346	0.419	
Right	0	11b	2412	12.00	11.42	1.14	99.4	1.01	0.204	0.235	
			2437	12.00	11.29	1.18	99.4	1.01			
			2462	12.00	11.19	1.21	99.4	1.01			
Right tilt A	0	11b	2412	12.00	11.42	1.14	99.4	1.01	0.104	0.120	
			2437	12.00	11.29	1.18	99.4	1.01			
			2462	12.00	11.19	1.21	99.4	1.01			
Right tilt B	0	11b	2412	12.00	11.42	1.14	99.4	1.01	0.264	0.304	
			2437	12.00	11.29	1.18	99.4	1.01	0.266	0.315	
			2462	12.00	11.19	1.21	99.4	1.01	0.283	0.343	

OFDM was excluded from the following table according to KDB 248227 D01.

SAR is not required for the following 2.4 GHz OFDM conditions according to KDB 248227 D01.

- 1) When KDB 447498 D01 SAR test exclusion applies to the OFDM configuration.
- 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Since same tune up limit whole range of 2.4 GHz, OFDM scaled factor is 1, so estimated SAR of OFDM is same as 11b result which is \leq 1.2 W/kg.

Note

- OFDM scaled factor = Maximum tune-up tolerance limit of OFDM [mW] / Maximum tune-up tolerance limit of DSSS [mW]
- 2. Estimated SAR of OFDM= Reported SAR of DSSS[W/kg] · OFDM scaled factor

Test Report No. 15375714H-G-R1 Page 20 of 66

SECTION 13: Test instruments

Test Name	LIMS ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interval
AT	141568	Thermo- Hygrometer	CUSTOM. Inc	CTH-201	2901	2024/01/10	12
AT	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	2024/01/26	12
AT	141810	Power Meter	Anritsu Corporation	ML2495A	824014	2023/12/12	12
AT	141832	Power sensor	Anritsu Corporation	MA2411B	738174	2023/12/12	12
AT	141414	Microwave Cable	Junkosha	MWX221	1207S407	2023/08/01	12
AT	195231	Microwave Cable	Huber+Suhner	SF102D/11PC24/ 11PC24/ 1000mm	537062/ 126E	2024/02/13	12
AT	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	2023/11/17	12
AT	141174	Attenuator(20dB) (above1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-120	901247	2024/01/15	12
AT	141420	Attenuator	Weinschel Associates	WA56-10	56100307	2023/05/18	12
AT	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	2024/02/01	12
SAR	141483	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE4	1369	2023/05/23	12
SAR	141597	Dosimetric E-Field Probe	Schmid & Partner Engineering AG	EX3DV4	3825	2023/07/12	12
SAR	141457	Dipole Antenna	Schmid & Partner Engineering AG	D2450V2	713	2022/09/12	24
SAR	176484	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600- 10000V6	SL AAH U16 BC	-	-
SAR	141182	Dielectric assessment software	Schmid & Partner Engineering AG	DAK	-	-	-
SAR	141471	Dielectric assessment kit	Schmid & Partner Engineering AG	DAKS-3.5	0008	2023/04/17	12
SAR	141551	Vector Reflectometer	Copper Mountain Technologies	PLANAR R140	0030913	2023/04/13	12
SAR	141574	Digital thermometer	LKM electronic	DTM3000	-	2023/07/18	12
SAR	142865	Water, distilled	KISHIDA CHEMICAL Co.,Ltd.	020-85566	K70244M	-	-
SAR	173900	Software for MA24106A	Anritsu Corporation	Anritsu PowerXpert	-	-	-
SAR	142313	Attenuator	Telegrartner	J01156A0011	42294119	-	-
SAR	141808	Dual Power Meter	Keysight Technologies Inc	E4419B	MY45102060	2023/08/25	12
SAR	221492	Power sensor	Keysight Technologies Inc	E9300H	MY62080002	2023/08/25	12
SAR	221493	Power Sensor	Anritsu Corporation	MA24118A	2123074	2023/08/24	12
SAR	221497	Power Sensor	Anritsu Corporation	MA24118A	2123095	2023/08/24	12
SAR	142559	Dual Directional Coupler	Hewlett Packard	772D	2839A0016	-	-
SAR	141875	Pre Amplifier	R&K	R&K CGA020M602- 2633R	B30550	2023/06/27	12
SAR	141890	Signal Generator	Keysight Technologies Inc	N5181A	MY47421098	2023/11/10	12
SAR	141573	Digital thermometer	HANNA INSTRUMENTS	Checktemp 4	-	2023/07/18	12
SAR	142248	SAR robot	Schmid & Partner Engineering AG	TX60 Lspeag	F13/5PP1D1/A /01	2023/04/26	12
SAR	142057	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1203	2023/05/10	12

Test Report No. 15375714H-G-R1 Page 21 of 66

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

SAR room is checked before every testing and ambient noise is <0.012 W/kg

AT: Output power measurement SAR: For SAR measurement

Test Report No. 15375714H-G-R1 Page 22 of 66

APPENDIX 1: System Check

System check result Body 2450 MHz

SAR1 Exposure Conditions

Phantom Section	Frequency [MHz]	Conversion Factor	TSL Permittivity	TSL Conductivity [S/m]
Flat	2450.000	7.75	37.8	1.72

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration
			Date
ELI V5.0 (20deg probe	HBBL-600-10000 Checked:2024-Mar-08 /	EX3DV4 - SN3825,	DAE4 Sn1369, 2023-
tilt) - 1203	2.45, 2024-Mar-08	2023-07-12	05-23

Scans Setup	-	-
Scan	Area Scan	Zoom Scan
Grid Extents [mm]	40.0 x 80.0	30.0 x 30.0 x 30.0
Grid Steps [mm]	10.0 x 10.0	5.0 x 5.0 x 1.5
Sensor Surface [mm]	3.0	1.4
Graded Grid	N/A	Yes
Grading Ratio	N/A	1.5
MAIA	N/A	N/A
Surface Detection	VMS + 6p	VMS + 6p
Scan Method	Measured	Measured
Measurement Results	-	-
Scan	Area Scan	Zoom Scan
Date	2024-03-08, 07:23	2024-03-08, 07:30
psSAR1g [W/Kg]	12.5	12.1
psSAR8g [W/Kg]	6.46	6.24
psSAR10g [W/Kg]	5.84	5.65
Power Drift [dB]	-0.03	0.01
Power Scaling	Disabled	Disabled
TSL Correction	No correction	No correction
M2/M1 [%]	-	80.6
Dist 3dB Peak [mm]	-	9.0

Test Report No. 15375714H-G-R1 Page 23 of 66

APPENDIX 2: SAR Measurement data

Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm, 12 mm x 12 mm, 10 mm x 10 mm or 8.5 mm x 8.5 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30 mm x 30 mm x 30 mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3 GHz, a volume of 28 mm x 28 mm x 34 mm or more was assessed by measuring 8 x 8 x 8(ratio step method (*1)) points at least for 3 GHz to 5 GHz, a volume of 28 mm x 28 mm x 24 mm or more was assessed by measuring 8 x 8 x 8(ratio step method) points at least for 5 GHz to 6 GHz and a volume of 22 mm x 22 mm or more was assessed by measuring 7 x 7 x 7 (ratio step method) points above 6 GHz.

And for any secondary peaks found in the Step2 which are within 2 dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

(1). The data at the surface were extrapolated, since the center of the dipoles is 1 mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes.

This polynomial was then used to evaluate the points between the surface and the probe tip.

- (2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- (3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

*1. Ratio step method parameters used;

The first measurement point: 1.4 mm from the phantom surface, the initial grid separation: 1.4 mm, subsequent graded grid ratio: 1.4

These parameters comply with the requirement of the KDB 865664 D01.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

Confirmation after SAR testing

It was checked that the power drift [W] is within +/-5 %. The verification of power drift during the SAR test is that DASY system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

```
DASY system calculation Power drift value[dB] =20log(Ea)/(Eb)
```

Before SAR testing : Eb [V/m]
After SAR testing : Ea [V/m]

Limit of power drift[W] = +/- 5 %

X[dB] = 10log[P] = 10log(1.05/1) = 10log(1.05) -10log(1) = 0.212 dB

from E-filed relations with power.

p=E^2/η

Therefore, The correlation of power and the E-filed

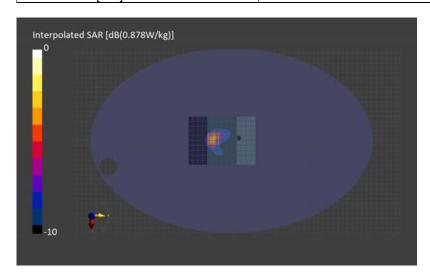
 $X dB = 10log(P) = 10log(E)^2 = 20log(E)$

Therefore.

The calculated power drift of DASY System must be the less than +/- 0.212 dB.

Test Report No. 15375714H-G-R1 Page 24 of 66

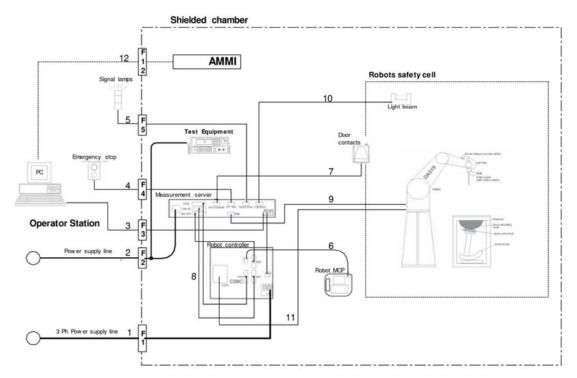
Measurement data


Plot No. WL24

Phantom	Position, Test	Band	Frequency [MHz],	Conversion	TSL Conductivity	TSL
Section, TSL	Distance [mm]		Channel Number	Factor	[S/m]	Permittivity
Flat, HSL	EDGE FRONT,	WLAN	2412.000	7.75	1.69	37.8
	0.00	2.4GHz				

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration
			Date
ELI V5.0 (20deg probe	HBBL-600-10000 Checked:2024-Mar-08 /	EX3DV4 - SN3825,	DAE4 Sn1369, 2023-
tilt) - 1203	2.45, 2024-Mar-08	2023-07-12	05-23


Scans Setup	-	-
Scan	Area Scan	Zoom Scan
Grid Extents [mm]	100.0 x 100.0	30.0 x 30.0 x 30.0
Grid Steps [mm]	10.0 x 10.0	5.0 x 5.0 x 1.5
Sensor Surface [mm]	3.0	1.4
Graded Grid	N/A	Yes
Grading Ratio	N/A	1.5
MAIA	N/A	N/A
Surface Detection	All points	All points
Scan Method	Measured	Measured
Measurement Results	-	-
Scan	Area Scan	Zoom Scan
Date	2024-03-08, 14:03	2024-03-08, 14:20
psSAR1g [W/Kg]	0.384	0.382
psSAR8g [W/Kg]	0.195	0.190
psSAR10g [W/Kg]	0.176	0.172
Power Drift [dB]	-0.21	0.01
Power Scaling	Disabled	Disabled
TSL Correction	No correction	No correction
M2/M1 [%]	-	75.3
Dist 3dB Peak [mm]	-	8.7

Test Report No. 15375714H-G-R1 Page 25 of 66

APPENDIX 3: System specifications

Configuration and peripherals

The DASY system for performing compliance tests consist of the following items:

- a) A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- b) An isotropic field probe optimized and calibrated for the targeted measurement.
- c) A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- d) The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- e) The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- f) The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- g) A computer running Windows 10 and the DASY software.
- h) Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- i) The phantom, the device holder and other accessories according to the targeted measurement.

Test Report No. 15375714H-G-R1 Page 26 of 66

Specifications

a) Robot TX60L

Number of Axes 6 **Nominal Load** 2 kg Maximum Load 5 kg Reach 920 mm Repeatability +/-0.03 mm **Control Unit** CS8c **Programming Language:** VAL3 Weight 52.2 kg

Manufacture : Stäubli Robotics

b) E-Field Probe

Model : EX3DV4

Construction : Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material

(resistant to organic solvents, e.g., glycol ether)

Frequency: 10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity : +/-0.3 dB in HSL (rotation around probe axis)

+/-0.5 dB in tissue material (rotation normal probe axis)

Dynamic Range : 10 uW/g to > 100 mW/g;Linearity

+/-0.2 dB(noise: typically < 1 uW/g)

Dimensions : Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1 mm

Application: Highprecision dosimetric measurement in any exposure scenario

(e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30 %.

Manufacture : Schmid & Partner Engineering AG

EX3DV4 E-field Probe

Test Report No. 15375714H-G-R1 Page 27 of 66

c) Data Acquisition Electronic (DAE4)

Features : Signal amplifier, multiplexer, A/D converter and control logic

Serial optical link for communication with DASY embedded system (fully remote

controlled)

Two step probe touch detector for mechanical surface detection and emergency

robot stop

Measurement Range : -100 to +300 mV (16 bit resolution and two range settings: 4 mV, 400 mV)

Input Offset voltage : $< 5 \mu V$ (with auto zero)

Battery Power : > 10 h of operation (with two 9.6 V NiMH accus)

Dimension : $60 \times 60 \times 68 \text{ mm}$

Manufacture : Schmid & Partner Engineering AG

d) Electro-Optic Converter (EOC)

Version : EOC 61

Description: for TX60 robot arm, including proximity sensor

Manufacture : Schmid & Partner Engineering AG

e) DASY Measurement server

Features : Intel ULV Celeron 400 MHz

128 MB chip disk and 128 MB RAM

16 Bit A/D converter for surface detection system

Vacuum Fluorescent Display

Robot Interface

Serial link to DAE (with watchdog supervision)

Door contact port (Possibility to connect a light curtain) Emergency stop port (to connect the remote control)

Signal lamps port Light beam port

Three Ethernet connection ports

Two USB 2.0 Ports Two serial links

Expansion port for future applications

Dimensions (L x W x H) : 440 x 241 x 89 mm

Manufacture : Schmid & Partner Engineering AG

f) Light Beam Switches

Version : LB5

Dimensions (L x H):110 x 80 mmThickness:12 mmBeam-length:80 mm

Manufacture : Schmid & Partner Engineering AG

g) Software

Item : Dosimetric Assessment System DASY

Type No. : SD 000 401A, SD 000 402A Software version No. : Details in instrument list

Manufacture / Origin : Schmid & Partner Engineering AG

h) Robot Control Unit

Weight : 70 Kg
AC Input Voltage : selectable
Manufacturer : Stäubli Robotics

Test Report No. 15375714H-G-R1 Page 28 of 66

i) Phantom and Device Holder

Phantom

Type : SAM Twin Phantom V4.0

Description: The shell corresponds to the specifications of the Specific Anthropomorphic

Mannequin

(SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Material : Vinylester, glass fiber reinforced (VE-GF)

Shell Material : Fiberglass
Thickness : 2.0 +/- 0.2 mm

Dimensions : Length: 1000 mm Width: 500 mm Height: adjustable feet

Volume : Approx. 25 liters

Manufacture : Schmid & Partner Engineering AG

Type : 2 mm Flat phantom ELI4.0 or 5

Description: Phantom for compliance testing of handheld and body-mounted wireless

devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4.5 and higher and is

compatible with all SPEAG dosimetric probes and dipoles.

Material : Vinylester, glass fiber reinforced (VE-GF)

Shell Thickness : $2.0 \pm 0.2 \text{ mm} \text{ (sagging: < 1 \%)}$

Filling Volume : Approx. 30 liters

Dimensions: Major ellipse axis: 600 mm Minor axis: 400 mm

Manufacture : Schmid & Partner Engineering AG

Device Holder

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Material : POM

Laptop Extensions kit

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM, ELI4 Phantoms.

Material : POM, Acrylic glass, Foam

<u>Urethane</u>

For this measurement, the urethane foam was used as device holder.

Test Report No. 15375714H-G-R1 Page 29 of 66

j) Simulated Tissues (Liquid)

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Product identifier

Trade name	Broad Band Tissue Simulation Liquid
	HBBL600-10000V6, MBBL600-6000V6, HU16B, MU16B
Manufacturer/Supplier	Schmid & Partner Engineering AG

Declarable components:

Deciarable components.		
CAS: 107-21-1	Ethanediol	< 5.2%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

Test Report No. 15375714H-G-R1 Page 30 of 66

System Check Dipole SAR Calibration Certificate -Dipole 2450 MHz (D2450V2 S/N: 713)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst
- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

UL Japan Head Office (RCC)

Certificate No: D2450V2-713_Sep22

CALIBRATION CERTIFICATE D2450V2 - SN:713 Object QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: September 12, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-22 (No. 217-03525/03524) Apr-23 Power sensor NRP-Z91 SN: 103244 04-Apr-22 (No. 217-03524) Apr-23 Power sensor NRP-Z91 SN: 103245 04-Apr-22 (No. 217-03525) Apr-23 SN: BH9394 (20k) Reference 20 dB Attenuator 04-Apr-22 (No. 217-03527) Apr-23 Type-N mismatch combination SN: 310982 / 06327 04-Apr-22 (No. 217-03528) Apr-23 Reference Probe EX3DV4 SN: 7349 31-Dec-21 (No. EX3-7349_Dec21) Dec-22 DAE4 SN: 601 31-Aug-22 (No. DAE4-601_Aug22) Aug-23 ID# Secondary Standards Check Date (in house) Scheduled Check SN: GB39512475 Power meter E4419B 30-Oct-14 (in house check Oct-20) In house check: Oct-22 SN: US37292783 Power sensor HP 8481A 07-Oct-15 (in house check Oct-20) In house check: Oct-22 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 SN: US41080477 Network Analyzer Agilent E8358A 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Name Function Calibrated by: Michael Weber Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: September 13, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-713_Sep22

Page 1 of 8

Test Report No. 15375714H-G-R1 Page 31 of 66

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna

 SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.
Certificate No: D2450V2-713_Sep22 Page 2 of 8

Test Report No. 15375714H-G-R1 Page 32 of 66

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-713_Sep22

Page 3 of 8

Test Report No. 15375714H-G-R1 Page 33 of 66

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 1.9 jΩ
Return Loss	- 29.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 4.7 jΩ
Return Loss	- 26.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns
Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2450V2-713_Sep22

Page 4 of 8

Test Report No. 15375714H-G-R1 Page 34 of 66

DASY5 Validation Report for Head TSL

Date: 12.09.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\epsilon_f = 37.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

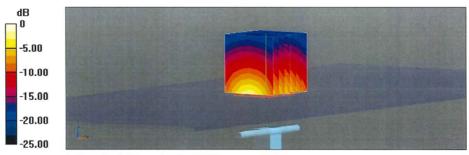
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 114.4 V/m; Power Drift = 0.07 dB

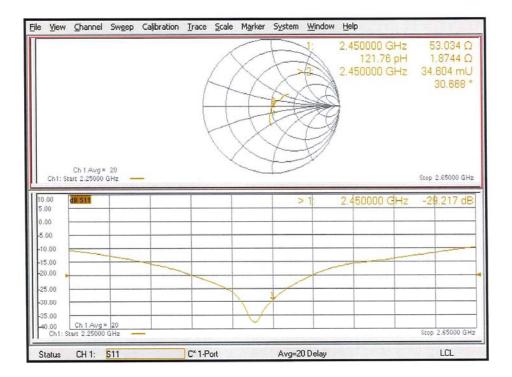

Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.19 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 51.3%

Maximum value of SAR (measured) = 21.6 W/kg



0 dB = 21.6 W/kg = 13.34 dBW/kg

Certificate No: D2450V2-713_Sep22

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-713_Sep22

Page 6 of 8

Test Report No. 15375714H-G-R1 Page 36 of 66

DASY5 Validation Report for Body TSL

Date: 12.09.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

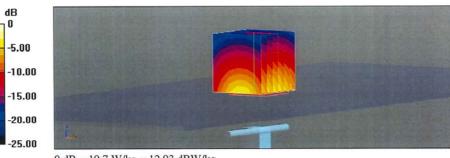
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.3 V/m; Power Drift = -0.07 dB

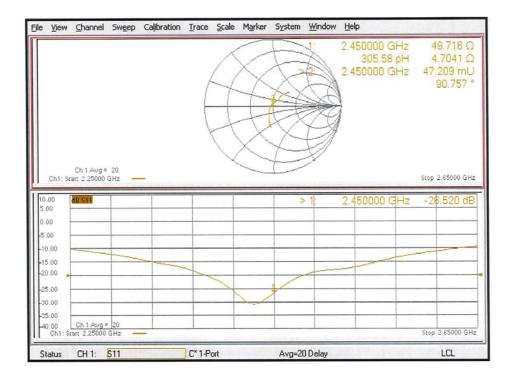

Peak SAR (extrapolated) = 24.2 W/kg

SAR(1 g) = 13.0 W/kg; SAR(10 g) = 6.15 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 55.3%

Maximum value of SAR (measured) = 19.7 W/kg


0 dB = 19.7 W/kg = 12.93 dBW/kg

Certificate No: D2450V2-713_Sep22

Page 7 of 8

Test Report No. 15375714H-G-R1 Page 37 of 66

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-713_Sep22

Page 8 of 8

Test Report No. 15375714H-G-R1 Page 38 of 66

D2450V2 Calibration for Impedance and Return-loss

	Equipment	Dipole Antenna	Model	D2450V2
	Manufacture Schmid & Partner Engineering AG		Serial	713
Ī	Tested by	Hisayoshi Sato		

1. Test environment

Date	August 1, 2023		
Ambient Temperature	22.5 deg.C	Relative humidity	40 %RH

2. Equipment used

Local ld	LIMS ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interval
MOS-33	88581	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/07/18	12
			Schmid & Partner Engineering				
MPSAM-02	142060	SAM Phantom	AG	QD000P40CB	1333	2023/05/10	12
			Schmid & Partner Engineering				
MPF-02	142056	2mm Oval Flat Phantom	AG	QDOVA001BB	1045	2023/05/10	12
			Schmid & Partner Engineering		SL AAH U16		
MHBBL600-10000	176484	Head Simulating Liquid	AG	HBBL600-10000V6	BC	-	-
			Schmid & Partner Engineering		SL AAM U16		
MMBBL600-6000	176483	Body Simulating Liquid	AG	MBBL600-6000	BC	-	-
EST-63	150815	Netw ork Analyzer	Keysight Technologies Inc	E5071C	MY46523746	2022/08/23	12
EST-57	141991	2.4mm Calibration Kit	Keysight Technologies Inc	85056A	MY44300225	2022/08/18	12

3. Test Result

		Head	Head	Deviation	Deviation		
Impeadance, Transformed to feed poin	cal day	(real part) [Ω]	(img part) [jΩ]	(real part) [Ω]	(img part) [jΩ]	Tolerance	Result
Calibration (SPEAG)	2022/9/12	53.03	1.87	-	-	-	-
Calibration(ULJ)	2023/8/1	50.87	3.23	-2.17	1.36	+/- 5 Ω +/- 5 jΩ	Complied

		Head	Deviation	viation Deviation		Tolerance	
Return loss	cal day	[dB]	[%]	[dB]	[%]	[+/- dB]	Result
Calibration (SPEAG)	2022/9/12	-29.22	-	-	-	-	-
Calibration(ULJ)	2023/8/1	-29.58	-1.25	-0.37	+/- 20.00	5.84	Complied

	Body		Body	dy Deviation [
Impeadance,Transformed to feed poin	cal day	(real part) [Ω]	(img part) [jΩ]	(real part) [Ω]	(img part) [jΩ]	Tolerance	Result
Calibration (SPEAG)	2022/9/12	49.72	4.70	-	-	-	-
Calibration(ULJ)	2023/8/1	48.03	4.17	-1.69	-0.54	+/- 5 Ω +/- 5 jΩ	Complied

		Body	Deviation	Deviation	Tolerance	Tolerance	
Return loss	cal day	[dB]	[%]	[dB]	[%]	[+/- dB]	Result
Calibration (SPEAG)	2022/9/12	-26.52	-	-	-	-	-
Calibration(ULJ)	2023/8/1	-26.62	-0.38	-0.10	+/- 20.00	5.30	Complied

Tolerance: According to the KDB 865664 D1

Test Report No. 15375714H-G-R1 Page 39 of 66

Dosimetric E-Field Probe Calibration Certificate (EX3DV4, S/N: 3825)

Calibration Laboratory of Schmid & Partner Engineering AG

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- C
- Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL Japan Head Office

lse, Japan

Certificate No.

EX-3825_Jul23

CALIBRATION CERTIFICATE

EX3DV4 - SN:3825 Object

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

July 12, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013 Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeton Kastrati	Laboratory Technician	-W
Approved by	Sven Kühn	Technical Manager	5-6
		n full without written approval of the la	Issued: July 12, 2023

Certificate No: EX-3825_Jul23

Page 1 of 23

Test Report No. 15375714H-G-R1 Page 40 of 66

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- C Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Polarization φ φ rotation around probe axis

Polarization ∂ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization

 0 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800\,\mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800\,\mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch
- · Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-3825 Jul23 Page 2 of 23

Test Report No. 15375714H-G-R1 Page 41 of 66

EX3DV4 - SN:3825

July 12, 2023

Parameters of Probe: EX3DV4 - SN:3825

Basic Calibration Parameters

2.0	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)$ A	0.42	0.37	0.41	±10.1%
DCP (mV) B	102.7	105.1	100.8	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Max Unc ^E
				v F .		l db	1117	uev.	k = 2
0	CW	X	0.00	0.00	1.00	0.00	165.7	±3.5%	±4.7%
		Y	0.00	0.00	1.00	-	155.5	20.070	17.776
		Z	0.00	0.00	1.00	1	168.9	+	İ
10352	Pulse Waveform (200Hz, 10%)	X	20.00	90.90	20.52	10.00	60.0	±2.9%	±9.6%
		Y	3.73	69.18	12.62		60.0		20.070
		Z	20.00	90.08	20.34		60.0	1	
10353	Pulse Waveform (200Hz, 20%)	X	20.00	93.63	20.84	6.99	80.0	±1.6%	±9.6%
		Y	3.13	70.00	11.73		80.0	1.070	20.070
		Z	20.00	90.59	19.60		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	99.41	22.25	3.98	95.0	±1.1%	±9.6%
		Ŷ	1.38	66.24	8.83		95.0		20.070
		Z	20.00	92.55	19.25		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	105.72	23.71	2.22	120.0	±1.1%	±9.6%
		Y	0.32	60.00	4.76		120.0		20.070
		Z	20.00	94.23	18.75		120.0		
10387	QPSK Waveform, 1 MHz	X	1.58	65.95	14.72	1.00	150.0	±3.3%	±9.6%
		Y	1.37	65.87	13.85		150.0		
		Z	1.59	65.49	14.48		150.0	-	
10388	QPSK Waveform, 10 MHz	X	2.11	67.58	15.47	0.00	150.0	±0.9%	±9.6%
		Y	1.88	66.80	14.86		150.0		
		Z	2.12	67.40	15.27		150.0		
10396	64-QAM Waveform, 100 kHz	X	2.47	67.58	17.43	3.01	150.0	±0.8%	±9.6%
		Y	2.72	70.40	18.49		150.0		
		Z	3.04	70.79	18.78		150.0		
10399	64-QAM Waveform, 40 MHz	Х	3.41	66.86	15.60	0.00	150.0	±2.6%	±9.6%
		Y	3.25	66.59	15.32		150.0		
		Z	3.44	66.86	15.55		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.74	65.44	15.40	0.00	150.0	±4.7%	±9.6%
		Y	4.55	65.44	15.30		150.0		
		Z	4.81	65.49	15.40		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX-3825_Jul23

Page 3 of 23

A The uncertainties of Norm X,YZ do not affect the E²-field uncertainty inside TSL (see Pages 5 to 7).

B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Test Report No. 15375714H-G-R1 Page 42 of 66

EX3DV4 - SN:3825

July 12, 2023

Parameters of Probe: EX3DV4 - SN:3825

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 msV ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
X	42.8	316.86	35.06	14.77	0.07	5.10	0.04	0.40	1.01
У	33.2	244.38	34.63	7.67	0.64	5.03	1 17	0.40	1.01
Z	46.3	345.41	35.48	20.26	0.16	5.10	1.08	0.20	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	
Mechanical Surface Detection Mode	156.5°
Optical Surface Detection Mode	enabled
Probe Overall Length	disabled
Probe Body Diameter	337 mm
Tip Length	10 mm
Tip Diameter	9 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1 mm
Inte: Measurement distance from ourfees are being and the control of the control	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Test Report No. 15375714H-G-R1 Page 43 of 66

EX3DV4 - SN:3825

July 12, 2023

Parameters of Probe: EX3DV4 - SN:3825

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	9.79	9.79	9.79	0.32	1.03	±12.0%
835	41.5	0.90	9.64	9.64	9.64	0.27	1.05	±12.0%
900	41.5	0.97	9.37	9.37	9.37	0.25	1.12	±12.0%
1750	40.1	1.37	8.77	8.77	8.77	0.27	0.86	±12.0%
1900	40.0	1.40	8.51	8.51	8.51	0.24	0.86	±12.0%
1950	40.0	1.40	8.35	8.35	8.35	0.25	0.86	±12.0%
2450	39.2	1.80	7.75	7.75	7.75	0.22	0.90	±12.0%
3500	37.9	2.91	6.71	6.71	6.71	0.30	1.30	
3700	37.7	3.12	6.67	6.67	6.67	0.30	1.30	±14.0%
3900	37.5	3.32	6.53	6.53	6.53	0.40	1.70	±14.0%
4600	36.7	4.04	6.15	6.15	6.15	0.40		±14.0%
5250	35.9	4.71	5.19	5.19	5.19	0.40	1.70	±14.0%
5600	35.5	5.07	4.70	4.70			1.80	±14.0%
5800	35.3	5.27	4.72	4.72	4.70 4.72	0.40	1.80	±14.0%

C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

The probes are calibrated using tissue simulating liquids (TSL) that deviate for \$e\$ and \$o\$ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% of 0.3 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Test Report No. 15375714H-G-R1 Page 44 of 66

EX3DV4 - SN:3825 July 12, 2023

Parameters of Probe: EX3DV4 - SN:3825

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	55.5	0.96	10.33	10.33	10.33	0.41	0.80	±12.0%
835	55.2	0.97	10.00	10.00	10.00	0.34	0.80	±12.0%
1750	53.4	1.49	8.25	8.25	8.25	0.25	0.86	±12.0%
1900	53.3	1.52	7.93	7.93	7.93	0.30	0.86	±12.0%
2450	52.7	1.95	7.88	7.88	7.88	0.15	0.90	±12.0%
3500	51.3	3.31	6.51	6.51	6.51	0.35	1.35	±14.0%
3700	51.0	3.55	6.41	6.41	6.41	0.40	1.35	±14.0%
3900	50.8	3.78	6.22	6.22	6.22	0.40	1.70	±14.0%
4600	49.8	4.60	5.70	5.70	5.70	0.40	1.80	±14.0%
5250	48.9	5.36	4.54	4.54	4.54	0.50	1.90	±14.0%
5600	48.5	5.77	3.92	3.92	3.92	0.50	1.90	±14.0%
5800	48.2	6.00	4.05	4.05	4.05	0.50	1.90	±14.0%

C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

F The probes are calibrated using tissue simulating liquidis (TSL) that deviate for \$\epsilon\$ and \$\epsilon\$ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below +2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the

Certificate No: EX-3825_Jul23 Page 6 of 23

than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Test Report No. 15375714H-G-R1 Page 45 of 66

July 12, 2023

EX3DV4 - SN:3825

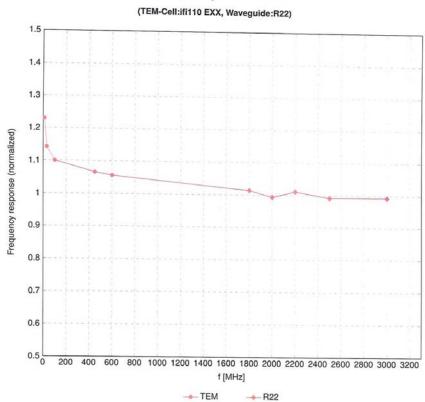
Parameters of Probe: EX3DV4 - SN:3825

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G	Unc (k = 2)
6500	34.5	6.07	5.20	5.20	5.20	0.20	2.50	±18.6%

C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration

Certificate No: EX-3825_Jul23

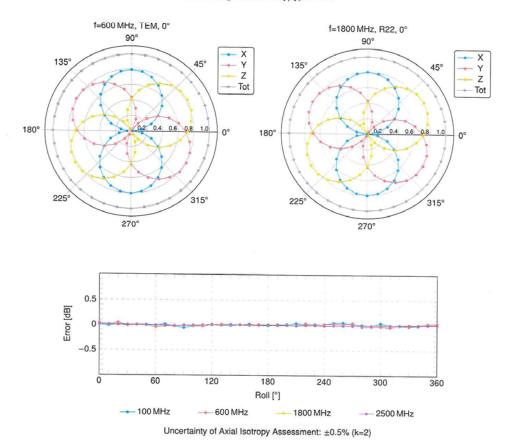

Page 7 of 23

frequency and the uncertainty for the indicated frequency band. The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) of the target values (typically better than $\pm 6\%$).

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3–6 GHz; and below ±4% for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

July 12, 2023

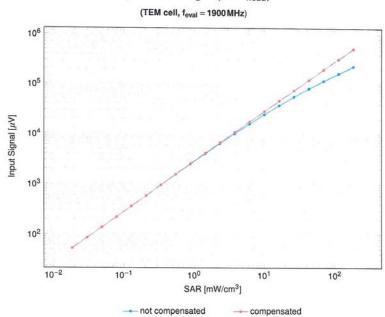
Frequency Response of E-Field

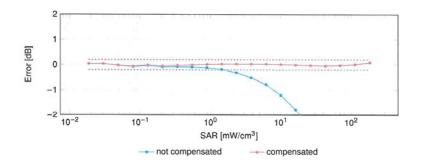

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Certificate No: EX-3825_Jul23

Page 8 of 23

EX3DV4 - SN:3825 July 12, 2023

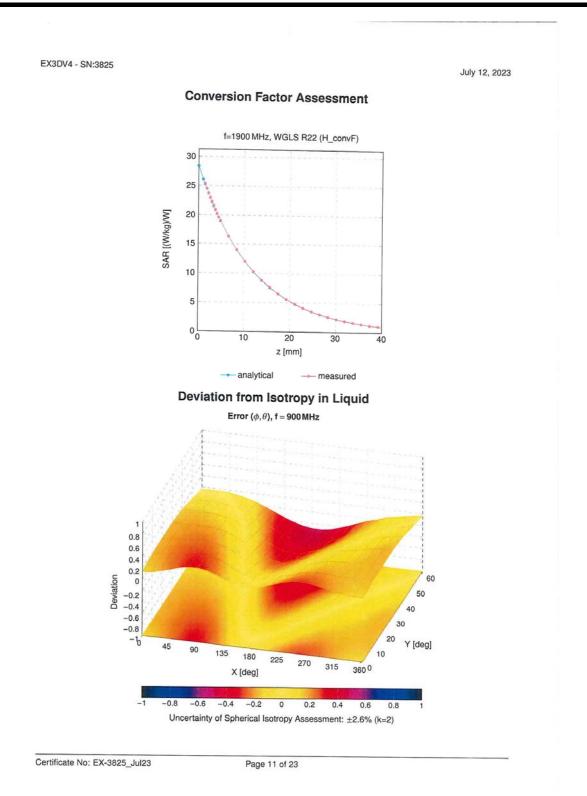

Receiving Pattern (ϕ), ϑ = 0°



Certificate No: EX-3825_Jul23 Page 9 of 23

July 12, 2023

Dynamic Range f(SAR_{head})



Uncertainty of Linearity Assessment: ±0.6% (k=2)

Certificate No: EX-3825_Jul23

Page 10 of 23

July 12, 2023

EX3DV4 - SN:3825

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name			
0		CW	Group	PAR (dB)	Unc ^E k = 2
10010	CAB	SAR Validation (Square, 100 ms, 10 ms)	CW	0.00	±4.7
10011	CAC	UMTS-FDD (WCDMA)	Test	10.00	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WCDMA	2.91	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	1.87	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	WLAN	9.46	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.39	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	9.57	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	6.56	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	12.62	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	9.55	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	4.80	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	3.55	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	GSM	7.78	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	5.30	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.87	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	1.16	±9.6
10034	CAA	IEEE 802.15.1 Bluetouth (PV4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
		CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	ÇAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9,62	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	CAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10103	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.29	±9.6
10105	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TOD	10.01	±9.6
10108	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	
10109	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10110	CAH	LTE-FDD (SC-FDMA, 100% RB, 5MHz, QPSK)	LTE-FDD	5.75	±9.6
10111	CAH	LTE-FDD (SC-FDMA, 100% RB, 5MHz, 16-QAM)	LTE-FDD	6.44	±9.6
			LILATIO	0.44	±9.6

July 12, 2023

UID	Rev	Communication System Name	T-0		
10112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	Group	PAR (dB)	Unc ^E $k=2$
10113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10114	CAD	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	LTE-FDD WLAN	6.62	±9.6
10115	CAD	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.10	±9.6
10116	CAD	IEEE 802,11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.46	±9.6
10117	CAD	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.15	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.07	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.59	±9.6
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	8.13 6.49	±9.6
10141	CAF	LTE-FDD (SC-FDMA, 100% RB, 15MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152 10153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10154		LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% HB, 5 MHz, 64-QAM) LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	6.56	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	5.82	±9.6
10162	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 15MHz, 64-QAM) LTE-FDD (SC-FDMA, 50% RB, 1.4MHz, QPSK)	LTE-FDD	6.58	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.21	±9.6
10169	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	6.79	±9.6
10170	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	5.73	±9.6
10171	AAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.52 6.49	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
10173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6 ±9.6
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAJ	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAH	LTE-FDD (SC-FDMA, 1 RB, 5MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAF	LTE-FDD (SC-FDMA, 1 RB, 15MHz, QPSK)	LTE-FDD	5.72	±9.6
10182	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	AAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10185	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186	AAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	AAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193	CAD	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	CAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.12	±9.6
10196	CAD	IEEE 802.11n (HT Greentied, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10197	CAD	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.10	±9.6
10198	CAD	IEEE 802.11n (HT Mixed, 39 Mipps, 16-QAM)	WLAN	8.13	±9.6
10219	CAD	IEEE 802.11n (HT Mixed, 65 Mops, 64-QAM)	WLAN	8.27	±9.6
10220	CAD	IEEE 802.11n (HT Mixed, 7.2 Mbps, 16-QAM)	WLAN	8.03	±9.6
10221	CAD	IEEE 802.11n (HT Mixed, 43.3 Midps, 18-QAM)	WLAN	8.13	±9.6
10222	CAD	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.27	±9.6
10223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN WLAN	8.06	±9.6
10224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.48 8.08	±9.6
		(**LAIN	80.6	±9.6

July 12, 2023

UID	Rev	Communication System Name			
10225	CAC	UMTS-FDD (HSPA+)	Group	PAR (dB)	Unc ^E $k=2$
10226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	WCDMA	5.97	±9.6
10227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.49	±9.6
10228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4MHz, QPSK)	LTE-TDD	10.26	±9.6
10229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.22	±9.6
10230	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	9.48	±9.6
10231	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	10.25	±9.6
10232	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.19	±9.6
10233	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	9.48	±9.6
10234	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	10.25	±9.6
10235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.21	±9.6
10236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	9.48	±9.6
10237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	10.25	±9.6
10238	CAG	LTE-TDD (SC-FDMA, 1 RB, 15MHz, 16-QAM)	LTE-TDD	9.21	±9.6
10239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	9.48	±9.6
10240	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TOD	10.25	±9.6
10241	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.21	±9.6
10242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.82	±9.6
10243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.86	±9.6
10244	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)		9.46	±9.6
10245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAE	LTE-TDD (SC-FDMA, 50% RB, 3MHz, QPSK)	LTE-TDD	10.06	±9.6
10247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5MHz, 16-QAM)		9.30	±9.6
10248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5MHz, 64-QAM)	LTE-TDD	9.91	±9.6
10249	CAH	LTE-TDD (SC-FDMA, 50% RB, 5MHz, QPSK)		10.09	±9.6
10250	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.29	±9.6
10251	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	9.81	±9.6
10252	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	10.17	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.24	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	9.90	±9.6
10255	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	10.14	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.20	±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)		9.96	±9.6
10258	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	10.08 9.34	±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TOD	9.34	±9.6
10260	CAE	LTE-TDD (SC-FDMA, 100% RB, 3MHz, 64-QAM)	LTE-TDD		±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.97 9.24	±9.6
10262	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD		±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TOD	9.83	±9.6
10264	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TOD	10.16 9.23	±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TOD	9.23	±9.6
10266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10270	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD		±9.6
10274	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	9.58 4.87	±9.6
10275	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10277	CAA	PHS (QPSK)	PHS		±9.6
10278	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.46	±9.6
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.6 ±9.6
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	
10297	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10301	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	WiMAX		±9.6
10302	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	WiMAX	12.03	±9.6
10303	AAA	IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	WIMAX	12.57	±9.6
10304	AAA	IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	WIMAX		±9.6
10305	AAA	IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols)	WIMAX	11.86 15.24	±9.6
10306	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC, 18 symbols)	WIMAX		±9.6
			AMIMIAV	14.67	±9.6

July 12, 2023

UID	Rev				
10307		Communication System Name	Group	PAR (dB)	UncE k = 2
	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols)	WiMAX	14.49	±9.6
10308	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WiMAX	14.46	±9.6
10309	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols)	WIMAX	14.58	±9.6
10310	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols)	WiMAX	14.57	±9.6
10311	AAE	LTE-FDD (SC-FDMA, 100% RB, 15MHz, QPSK)	LTE-FDD	6.06	
10313	AAA	iDEN 1:3	IDEN		±9.6
10314	AAA	IDEN 1:6	IDEN	10.51	±9.6
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)		13.48	±9.6
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6
10317	AAD	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200Hz, 10%)	WLAN	8.36	±9.6
10353	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6
10354	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6
10355	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6
10356		Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6
	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	
10400	AAE	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle)	WLAN		±9.6
10401	AAE	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±9.6
10402	AAE	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle)		8.60	±9.6
10403	AAB	CDMA2000 (1xEV-DQ, Rev. 0)	WLAN	8.53	±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10406	AAB		CDMA2000	3.77	±9.6
10400	AAH	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6
		LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10417	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	±9.6
10422	AAC	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	
10423	AAC	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6 ±9.6
10424	AAC	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	
10425	AAC	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN		±9.6
10426	AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)		8.41	±9.6
10427	AAC	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.45	±9.6
10430	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	WLAN	8.41	±9.6
10430			LTE-FDD	8.28	±9.6
	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAB	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10447	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6
10449	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
10450	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAB	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.46	
10453	AAE	Validation (Square, 10 ms, 1 ms)	Test		±9.6
10456	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle)		10.00	±9.6
10456	AAB		WLAN	8.63	±9.6
		UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6
10460	AAB	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	±9.6
10463	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10465	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10466	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.57	
10467	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)			±9.6
10467	AAG		LTE-TDD	7.82	±9.6
		LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10469	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10470	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10471	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6

July 12, 2023

UID	Rev	Communication System Name			
10472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Group	PAR (dB)	Unc ^E k = 2
10473	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10474	AAF	LIE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-OAM, LB, Subfrome, 2.2.4.7.5.0)	LTE-TDD	7.82	±9.6
10475	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10477	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10478	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10480	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10481	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6
10482	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10483	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	±9.6
10484	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	±9.6
10485	AAG	LIE-TDU (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe-2 3 4 7 8 9)	LTE-TDD	8.47	±9.6
10486	AAG	LIE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-OAM, LIL Subfrage 2.2.4.7.9.0)	LTE-TDD	7.59	±9.6
10487	AAG	LIE-TDD (SC-FDMA, 50% RB, 5MHz, 64-QAM, III, Subframe 2.3.4.7.9.0)	LTE-TDD	8.38	±9.6
10488	AAG	LIE-TDD (SC-FDMA, 50% RB, 10 MHz, OPSK TIL Subframe=2.3.4.7.9.0)	LTE-TDD	8.60	±9.6
10489	AAG	LIE-IDD (SC-FDMA, 50% RB, 10 MHz, 16-OAM, III, Subframe 2.2.4.7.9.0)	LTE-TDD	7.70	±9.6
10490	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2 3 4 7 8 9)		8.31	±9.6
10491	AAF	LIE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2 3 4 7 8 9)	LTE-TDD	8.54	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2 3 4 7 8 9)	LTE-TDD	7.74	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2 3 4 7 8 9)	LTE-TDD	8.41	±9.6
10494	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2 3 4 7 8 9)	LTE-TOD	8.55	±9.6
10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2 3 4 7 8 9)	LTE-TDD	7.74	±9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2 3 4 7 8 9)	LTE-TDD	8.37 8.54	±9.6
10497	AAC	LIE-IDD (SC-FDMA, 100% RB, 1.4MHz, QPSK, UI, Subframe=2.3.4.7.8.9)	LTE-TDD	7.67	±9.6
10498	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD		±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2.3 4.7.8.9)	LTE-TOD	8.40 8.68	±9.6
10500	AAD	LIE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2 3 4 7 8 9)	LTE-TDD	7.67	±9.6
10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UI, Subframe-2 3 4 7 8 9)	LTE-TOD	8.44	±9.6
10502	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.52	±9.6
10503	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	±9.6
10504	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2.3,4,7,8,9)	LTE-TDD	8.31	±9.6
10505	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2 3 4 7 8 9)	LTE-TDD	8.54	±9.6
10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10507	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.36	±9.6
10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.55	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2 3 4 7 8 9)	LTE-TDD	8,49	±9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10513	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6
10514	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WL.AN	1.58	±9.6
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10518	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10519	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	±9.6
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	±9.6
10521	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	±9.6
10522	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	±9.6
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.6
10526	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.42	±9.6
10527	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.6
10528	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.36	±9.6
10529	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.36	±9.6
10531	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.43	±9.6
10532	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10533	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.38	±9.6
10534	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6
10535	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle)	WLÄN	8.45	±9.6
10536	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.32	±9.6
10537	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
10538	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6
10540	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc duty cycle)	WLAN		

July 12, 2023

UID	Rev	Communication System Name		1 545 (15)	
10541	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle)	Group WLAN	PAR (dB)	Unc ^E $k=2$
10542	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle)		8.46	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6
10544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.65	±9.6
10545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.55	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.35	±9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.49	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.37	±9.6
10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.38	±9.6
10552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.50	±9.6
10553	AAC	IEEE 802.11ac WIFI (80 MIF, MOSS, 99pc duty cycle)	WLAN	8.42	±9.6
10554	AAD	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle) IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6
10555	AAD	IEEE 802.11ac WiFi (160 MHz, MCS), 99pc duty cycle)	WLAN	8.48	±9.6
10556	AAD	IEEE 802.11ac WiF1 (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.47	±9.6
10557	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6
10558	AAD	IFFE 802 11ac MIFI (160 MIFI, MCC4, 90- daty cycle)	WLAN	8.52	±9.6
10560	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc duty cycle) IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.61	±9.6
10561	AAD	IEEE 902.11ac WIFI (160 MIFI, MCSb, 99pc duty cycle)	WLAN	8.73	±9.6
10562	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.56	±9.6
10563	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.69	±9.6
10564	AAA	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.77	±9.6
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	±9.6
10566		IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	±9.6
10568		IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	±9.6
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	±9.6
10569		IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	±9.6
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.30	±9.6
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
		IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10578 10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
-		IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10580 10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10583	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10584	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10585	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10586	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10587	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10588	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10589	AAC	IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10590	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10591	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle)	WLAN	8.63	±9.6
10592	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10593	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle)	WLAN	8.64	±9.6
10594	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10595	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6
10596	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.6
10597	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle)	WLAN	8.72	±9.6
10598	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle)	WLAN	8.50	±9.6
10599	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6
10600	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10601	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle)	WLAN	8.82	±9.6
10602	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.6
10603	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle)	WLAN	9.03	±9.6
10604	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN	8.76	±9.6
10605	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9.6
10606	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10607	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle)	WLAN	8.64	±9.6
10608	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.77	±9.6

July 12, 2023

UID	Rev	Communication System Name			
10609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	Group	PAR (dB)	Unc ^E $k=2$
10610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.57	±9.6
10611	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.78	±9.6
10612	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.70	±9.6
10613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.77	±9.6
10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.94	±9.6
10615	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.59	±9.6
10616	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6
10617	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN WLAN	8.82	±9.6
10618	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc duty cycle)		8.81	±9.6
10619	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle)	WLAN WLAN	8.58	±9.6
10620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.86	±9.6
10621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.87 8.77	±9.6
10622	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6
10623	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10624	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.96	±9.6
10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
10626	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10627	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10628	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6
10629	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10630	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6
10631	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.81	±9.6
10632	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10633	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6
10634	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.6
10635	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6
10636	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10637	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10638	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.86	±9.6
10639	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10640	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6
10641	AAD	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
10642	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6
10643	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6
10645	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6
10646	AAH	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	WLAN	9.11	±9.6
10647	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10648	AAA	CDMA2000 (1x Advanced)	LTE-TDD	11.96	±9.6
10652	AAF	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	CDMA2000	3.45	±9.6
10653	AAF	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)		6.91	±9.6
10654	AAE	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42 6.96	±9.6
10655	AAF	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAB	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6
10659	AAB	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6
10660	AAB	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6 ±9.6
10661	AAB	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6
10662	AAB	Pulse Waveform (200Hz, 80%)	Test	0.97	±9.6
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10671	AAC	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	9.09	±9.6
10672	AAC	IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.57	±9.6
10673	AAC	IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.6
10674	AAC	IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10675	AAC	IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.6
10676	AAC	IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10677	AAC	IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.73	±9.6
10678	AAC	IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.78	±9.6
10679	AAC	IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.89	±9.6
10680	AAC	IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6
10681	AAC	IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6
10682	AAC	IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6
10683	AAC	IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10684	AAC	IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.26	±9.6
10685	AAC	IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10686	AAC	IEEE 802.11ax (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.6

July 12, 2023

UID	Rev	Communication System Name			
10687	AAC		Group	PAR (dB)	Unc ^E $k=2$
10688	AAC	IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle)	WLAN	8.45	±9.6
10689	AAC	IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle)	WLAN	8.29	±9.6
10690	AAC	IEEE 802.11ax (20 MHz, MCSS, 99pc duty cycle)	WLAN	8.55	±9.6
10691	AAC	IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10692	AAC	IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.25	±9.6
10693	AAC	IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle)	WLAN	8.29	±9.6
10694	AAC	IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle)	WLAN	8.25	±9.6
10695	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle)	WLAN	8.57	±9.6
10696	AAC	IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.78	±9.6
10697	AAC	IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.91	±9.6
10698	AAC	IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.61	±9.6
10699	AAC	IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.89	±9.6
10700	AAC	IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.82	±9.6
10701	AAC	IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.73	±9.6
10702	AAC	IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.86	±9.6
10703	AAC	IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.70	±9.6
10704	AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.82	±9.6
10705	AAC	IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle)	WLAN	8.56	±9.6
10706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle)	WLAN	8.69	±9.6
10707	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.66	±9.6
10708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.32	±9.6
10709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.55	±9.6
10710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.33	±9.6
10711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.29	±9.6
10712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle)	WLAN	8.39	±9.6
10713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle)	WLAN WLAN	8.67	±9.6
10714	AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.33	±9.6
10715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.26	±9.6
10716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6
10717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN	8.30 8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle)	WLAN		±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.24 8.81	±9.6 ±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6
10721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.76	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.55	±9.6
10723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10724	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.6
10725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.72	±9.6
10727	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.66	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6
10730	AAC	IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle)	WLAN	8.67	±9.6
10731	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10732	AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.46	±9.6
10733	AAC	IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.40	±9.6
10734	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9.6
10735	AAC	IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.33	±9.6
10736	AAC	IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle)	WLAN	8.27	±9.6
10737	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.42	±9.6
10739	AAC	IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.29	±9.6
10740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.48	±9.6
10741 10742	AAC AAC	IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle)	WLAN	8.40	±9.6
		IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle)	WLAN	8.43	±9.6
10743	AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.94	±9.6
10744	AAC AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle)	WLAN	9.16	±9.6
10745	AAC	IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.93	±9.6
10746	AAC	IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle)	WLAN	9.11	±9.6
	AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle)	WLAN	9.04	±9.6
	0.00			0.00	±9.6
10748	AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN	8.93	I3.0
10748 10749	AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN	8.90	±9.6
10748 10749 10750	AAC AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle)	WLAN WLAN	8.90 8.79	
10748 10749	AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN	8.90	±9.6

July 12, 2023

10755 AAC EEE 802.11st (1900ME, MCS11, 990c duly cycle)	UID	Rev	Communication System Name		T =	
10755 ACC BEES 802.11xx (160 MHz, MCS1), 80pc day, cycle)	10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle)	Group	PAR (dB)	Unc ^E $k=2$
10756 AAC EEE 802.11 tx (150HHz, MCS), 98pc duty cycle)	10754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle)			
10756 AAC IEEE 802.111x (109MHz, MCSS, 1990 duly cycle)	10755	AAC	IEEE 802,11ax (160 MHz, MCS0, 99pc duty cycle)			
10756 AAC IEEE 802.111x (160MHz, MCS.5, 990c duty grole)		AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle)			
10759 AAC IEEE 802.111x (160MHz, MCSS, 99pc duty cycle)			IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle)			
10750 AAC IEEE 802.111x (160 MHz, MCS4, 990 duty yorlo)			IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle)			
19756 AAC REEE 802.11ax (ROMHz, MCSS, 990c duty cycle)			IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle)			
10762 AAC IEEE 802.11ac (160 MHz, MCSR, 98pc duly cycle)			IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle)			
10762 AAC IEEE 802.11ac (160 MHz, MCS7, 98pc duty cycle)			IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle)			
10768 AAC IEEE 802.11a (160MHz, MCS8, 99pc duly cycle)			IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle)			
10765 AAC IEEE 802 11ax (160MHz, MCS0, 99pc duty cycle)			IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle)			
10/56 AAC IEEE 802 11x (160MHz, MCS11), 999c outy cycle)			IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle)			
10767 AAB SG NR (CP-OPENA, TBR. 5MHz, CPSK, 15MHz) SG NR FRI TDD 8.01 ±9.6			IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle)			
10768 AAD			IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle)			
10769 AAD 5G NR (ICP-OPUM, 1 RB, 15MHz, OPSK, 15MHz) 5G NR FRI TOD 6.01 ±9.8			5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD		
1977 AAC SG NR (CP-OFDM, 198, 1914; CPSK, 158Hz) SG NR FRI TOD 8.02 ±9.8			5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)			
10777 AAD SG NR (CP-CPM, 1 HB, 20 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.02 4.9.6 10772 AAD SG NR (CP-CPM, 1 RB, 20 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.02 4.9.6 10773 AAD SG NR (CP-CPM, 1 RB, 30 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.02 4.9.6 10774 AAD SG NR (CP-CPM, 1 RB, 30 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.03 4.9.6 10774 AAD SG NR (CP-CPDM, 1 RB, 80 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.02 4.9.6 10775 AAD SG NR (CP-CPDM, 50% RB, 80 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.02 4.9.6 10776 AAD SG NR (CP-CPDM, 50% RB, 80 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.03 4.9.6 10776 AAD SG NR (CP-CPDM, 50% RB, 80 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.30 4.9.6 10776 AAD SG NR (CP-CPDM, 50% RB, 10 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.30 4.9.6 10776 AAD SG NR (CP-CPDM, 50% RB, 10 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.30 4.9.6 10778 AAD SG NR (CP-CPDM, 50% RB, 20 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.30 4.9.6 10778 AAD SG NR (CP-CPDM, 50% RB, 20 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.34 4.9.6 10780 AAD SG NR (CP-CPDM, 50% RB, 20 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.32 4.9.6 10781 AAD SG NR (CP-CPDM, 50% RB, 20 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.32 4.9.6 10782 AAD SG NR (CP-CPDM, 50% RB, 30 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.38 4.9.6 10782 AAD SG NR (CP-CPDM, 50% RB, 50 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.38 4.9.6 10782 AAD SG NR (CP-CPDM, 50% RB, 50 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.39 4.9.6 10782 AAD SG NR (CP-CPDM, 50% RB, 50 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.39 4.9.6 10782 AAD SG NR (CP-CPDM, 50% RB, 50 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.43 4.9.6 10782 AAD SG NR (CP-CPDM, 100% RB, 20 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.43 4.9.6 10782 AAD SG NR (CP-CPDM, 100% RB, 20 MHz, CPSK, 15 MHz) SG NR FR1 TDD 8.49 4.9.6 10782 AAD SG NR (CP-CPDM, 100% RB, 20 MHz, CPSK, 30 MHz) SG NR FR1 TDD 8.49 4.9.6 10782 A			5G NR (CP-OFDM, 1 RB, 15MHz, QPSK, 15kHz)	5G NR FR1 TDD	8.01	
10772 AAD SG NR (CP-OFDM, 1 RB, 30MHz, OPSK, 15Mz) SG NR FHT IDD 8.22 9.8 9.8 10774 AAD SG NR (CP-OFDM, 1 RB, 30MHz, OPSK, 15Mz) SG NR FHT IDD 8.23 9.8 10775 AAD SG NR (CP-OFDM, 1 RB, 30MHz, OPSK, 15Mz) SG NR FHT IDD 8.03 9.8 10776 AAD SG NR (CP-OFDM, 50% RB, 5MHz, OPSK, 15Mz) SG NR FHT IDD 8.02 9.8 10776 AAD SG NR (CP-OFDM, 50% RB, 5MHz, OPSK, 15Mz) SG NR FHT IDD 8.01 9.8 10776 AAD SG NR (CP-OFDM, 50% RB, 5MHz, OPSK, 15Mz) SG NR FHT IDD 8.30 9.9 8.1 10777 AAC SG NR (CP-OFDM, 50% RB, 5MHz, OPSK, 15Mz) SG NR FHT IDD 8.30 9.9 8.1 10777 AAC SG NR (CP-OFDM, 50% RB, 5MHz, OPSK, 15Mz) SG NR FHT IDD 8.30 9.9 8.1 10778 AAD SG NR (CP-OFDM, 50% RB, 5MHz, OPSK, 15MHz) SG NR FHT IDD 8.30 9.9 8.1 10778 AAC SG NR (CP-OFDM, 50% RB, 5MHz, OPSK, 15MHz) SG NR FHT IDD 8.30 9.9 8.1 10780 AAD SG NR (CP-OFDM, 50% RB, 5MHz, OPSK, 15MHz) SG NR FHT IDD 8.42 9.9 8.1 10781 AAD SG NR (CP-OFDM, 50% RB, 40MHz, OPSK, 15MHz) SG NR FHT IDD 8.42 9.9 8.1 9.9 8.1 9.9 8.1 9.9 8.1 9.9 8.1 9.9 9.			5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD		
10773 AAD 5G NR (CP-CPM, 1 RB, 40MHz, CPSK, 15kHz) 5G NR FRI TIDD 8.03 5.65 5.07 5.0			3G NR (CP-OFDM, 1 RB, 25MHz, QPSK, 15kHz)			
107774 AAD SG NR (CP-CPDM, 1 RB, 50MHz, OPSK, 15kHz) SG NR FRI TDD 8.02 ±9.6 10775 AAD SG NR (CP-CPDM, 1 RB, 50MHz, OPSK, 15kHz) SG NR FRI TDD 8.31 ±9.8 10776 AAD SG NR (CP-CPDM, 50% RB, 50MHz, OPSK, 15kHz) SG NR FRI TDD 8.31 ±9.8 10777 AAC SG NR (CP-CPDM, 50% RB, 15MHz, OPSK, 15kHz) SG NR FRI TDD 8.30 ±9.6 SG NR FRI TDD 8.34 ±9.6 SG NR FRI TDD 8.35 ±9.6 SG NR FRI TDD 8.36 ±9.6 SG NR FRI TDD 8.37 ±9.6 SG NR FRI TDD 8.37 ±9.6 SG NR FRI TDD 8.38 ±9.6 SG NR FRI TDD 8.39 ±9.6 SG NR FRI TDD 8.39 ±9.6 SG NR FRI TDD 8.39 ±9.6 SG NR FRI TDD 8.30 ±9.6 SG NR F			30 NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15kHz)	5G NR FR1 TDD	8.23	
107776 AAD SG NR (CP-CPUM, 50% RB, 50MHz, CPSK, 15HHz) SG NR FRI TDD 8.30 9.58 9.58 10776 AAD SG NR (CP-CPUM, 50% RB, 50MHz, CPSK, 15HHz) SG NR FRI TDD 8.30 9.58 10776 AAD SG NR (CP-CPUM, 50% RB, 50MHz, CPSK, 15HHz) SG NR FRI TDD 8.30 9.58 9.58 10778 AAD SG NR (CP-CPUM, 50% RB, 50MHz, CPSK, 15HHz) SG NR FRI TDD 8.30 9.58 9.58 10778 AAD SG NR (CP-CPUM, 50% RB, 50MHz, CPSK, 15HHz) SG NR FRI TDD 8.34 9.56 10778 AAD SG NR (CP-CPUM, 50% RB, 25MHz, CPSK, 15HHz) SG NR FRI TDD 8.34 9.56 10780 AAD SG NR (CP-CPUM, 50% RB, 25MHz, CPSK, 15HHz) SG NR FRI TDD 8.42 9.58 10781 AAD SG NR (CP-CPUM, 50% RB, 40MHz, CPSK, 15HHz) SG NR FRI TDD 8.34 9.56 10781 AAD SG NR (CP-CPUM, 50% RB, 40MHz, CPSK, 15HHz) SG NR FRI TDD 8.34 9.56 10782 AAD SG NR (CP-CPUM, 50% RB, 50MHz, CPSK, 15HHz) SG NR FRI TDD 8.34 9.56 10783 AAE SG NR (CP-CPUM, 50% RB, 50MHz, CPSK, 15HHz) SG NR FRI TDD 8.34 9.56 10783 AAE SG NR (CP-CPUM, 50% RB, 50MHz, CPSK, 15HHz) SG NR FRI TDD 8.35 9.56 10783 AAE SG NR (CP-CPUM, 100% RB, 50MHz, CPSK, 15HHz) SG NR FRI TDD 8.37 9.58 10783 AAE SG NR (CP-CPUM, 100% RB, 50MHz, CPSK, 15HHz) SG NR FRI TDD 8.29 9.58 10786 AAD SG NR (CP-CPUM, 100% RB, 50MHz, CPSK, 15HHz) SG NR FRI TDD 8.29 9.58 10786 AAD SG NR (CP-CPUM, 100% RB, 25MHz, CPSK, 15HHz) SG NR FRI TDD 8.30 9.58 9.58 10786 AAD SG NR (CP-CPUM, 100% RB, 25MHz, CPSK, 15HHz) SG NR FRI TDD 8.30 9.58 9.58 10786 AAD SG NR (CP-CPUM, 100% RB, 30MHz, CPSK, 15HHz) SG NR FRI TDD 8.30 9.58 9.58 10786 AAD SG NR (CP-CPUM, 100% RB, 30MHz, CPSK, 15HHz) SG NR FRI TDD 8.39 9.58 9.58 10786 AAD SG NR (CP-CPUM, 100% RB, 30MHz, CPSK, 15HHz) SG NR FRI TDD 8.39 9.58 9.58 10786 AAD SG NR (CP-CPUM, 100% RB, 30MHz, CPSK, 30HHz) SG NR FRI TDD 8.39 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.58			50 NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD		
10776 AAD SG NR (CP-OFDM, 50% RB, 50MHz, CPSK, 15kHz) SG NR FRI TDD S.30 ±9.6				5G NR FR1 TDD	8.02	
10777 AAD SG NR (CP-CPDM, 50% RB, 10 MHz, QPSK, 15 kHz) SG NR FR1 TDD 8.30 ±9.6			50 NR (CP-UFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	
10777 AAC SG NR (CP-CP-DM, 50% RB, 20 MHz, CPSK, 15 kHz) SG NR FR1 TDD S.30 ±9.6			5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	
10779 AAU SG NR (CP-CPOM, 50% RB, 26 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.34 ±9.6 10780 AAD SG NR (CP-CPOM, 50% RB, 30 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.32 ±9.6 10780 AAD SG NR (CP-CPOM, 50% RB, 30 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.38 ±9.6 10782 AAD SG NR (CP-CPOM, 50% RB, 30 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.38 ±9.6 10782 AAD SG NR (CP-CPOM, 50% RB, 50 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.38 ±9.6 10783 AAE SG NR (CP-CPOM, 50% RB, 50 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.31 ±9.6 10784 AAD SG NR (CP-CPOM, 100% RB, 50 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.31 ±9.6 10785 AAD SG NR (CP-CPOM, 100% RB, 50 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.40 ±9.6 10786 AAD SG NR (CP-CPOM, 100% RB, 15 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.40 ±9.6 10787 AAD SG NR (CP-CPOM, 100% RB, 15 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.40 ±9.6 10788 AAD SG NR (CP-CPOM, 100% RB, 25 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.40 ±9.6 10787 AAD SG NR (CP-CPOM, 100% RB, 25 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.44 ±9.6 10788 AAD SG NR (CP-CPOM, 100% RB, 25 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.39 ±9.6 10789 AAD SG NR (CP-CPOM, 100% RB, 25 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.39 ±9.6 10789 AAD SG NR (CP-CPOM, 100% RB, 30 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.39 ±9.6 10799 AAD SG NR (CP-CPOM, 100% RB, 30 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.37 ±9.6 10799 AAD SG NR (CP-CPOM, 100% RB, 50 MHz, CPSK, 15 kHz) SG NR FRI TDD 8.39 ±9.6 10799 AAD SG NR (CP-CPOM, 100% RB, 50 MHz, CPSK, 30 kHz) SG NR FRI TDD 7.62 ±9.6 10799 AAD SG NR (CP-CPOM, 1 RB, 50 MHz, CPSK, 30 kHz) SG NR FRI TDD 7.83 ±9.6 10799 AAD SG NR (CP-CPOM, 1 RB, 50 MHz, CPSK, 30 kHz) SG NR FRI TDD 7.82 ±9.6 10799 AAD SG NR (CP-CPOM, 1 RB, 50 MHz, CPSK, 30 kHz) SG NR FRI TDD 7.82 ±9.6 10799 AAD SG NR (CP-CPOM, 1 RB, 50 MHz, CPSK, 30 kHz) SG NR FRI TDD 7.82 ±9.6 10799 AAD SG			3G NR (CP-UFUM, 50% RB, 15MHz, QPSK, 15kHz)		8.30	
10780 AAD SG NR (CP-OFDM, 50% RB, 30MHz, CPSK, 15kHz) SG NR FR1 TDD B.38 19.6					8.34	±9.6
10781 AAD SG NR (CP-OFDM, 50% RB, 40 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.38 49.6 10782 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.43 49.6 10784 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.43 49.6 10784 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.29 49.6 10785 AAD SG NR (CP-OFDM, 100% RB, 15 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.29 49.6 10786 AAD SG NR (CP-OFDM, 100% RB, 15 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.35 49.6 10787 AAD SG NR (CP-OFDM, 100% RB, 25 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.35 49.6 10788 AAD SG NR (CP-OFDM, 100% RB, 25 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.35 49.6 10788 AAD SG NR (CP-OFDM, 100% RB, 25 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.35 49.6 10789 AAD SG NR (CP-OFDM, 100% RB, 30 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.39 49.6 10789 AAD SG NR (CP-OFDM, 100% RB, 30 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.39 49.6 10790 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, CPSK, 15 KHz) SG NR FR1 TDD 8.39 49.6 10791 AAE SG NR (CP-OFDM, 18, 50 MHz, CPSK, 30 KHz) SG NR FR1 TDD 7.82 49.6 10792 AAD SG NR (CP-OFDM, 1 RB, 5 MHz, CPSK, 30 KHz) SG NR FR1 TDD 7.82 49.6 10793 AAD SG NR (CP-OFDM, 1 RB, 5 MHz, CPSK, 30 KHz) SG NR FR1 TDD 7.92 49.6 10794 AAD SG NR (CP-OFDM, 1 RB, 5 MHz, CPSK, 30 KHz) SG NR FR1 TDD 7.92 49.6 10795 AAD SG NR (CP-OFDM, 1 RB, 5 MHz, CPSK, 30 KHz) SG NR FR1 TDD 7.82 49.6 10796 AAD SG NR (CP-OFDM, 1 RB, 5 MHz, CPSK, 30 KHz) SG NR FR1 TDD 7.82 49.6 10797 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, CPSK, 30 KHz) SG NR FR1 TDD 7.82 49.6 10798 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, CPSK, 30 KHz) SG NR FR1 TDD 7.82 49.6 10799 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, CPSK, 30 KHz) SG NR FR1 TDD 7.89 49.6 10799 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, CPSK, 30 KHz) SG NR FR1 TDD 7.89 49			5G NR (CP-OFDM, 50% RB, 25MHz, QPSK, 15kHz)		8.42	±9.6
10782 AAD SG NR (CP-OFDM, 50% RB, 50MHz, QPSK, 15kHz) SG NR FR1 TDD 8.49 49.6 10783 AAE SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 15kHz) SG NR FR1 TDD 8.43 49.6 10784 AAD SG NR (CP-OFDM, 100% RB, 10MHz, QPSK, 15kHz) SG NR FR1 TDD 8.29 49.6 10785 AAD SG NR (CP-OFDM, 100% RB, 10MHz, QPSK, 15kHz) SG NR FR1 TDD 8.29 49.6 10786 AAD SG NR (CP-OFDM, 100% RB, 10MHz, QPSK, 15kHz) SG NR FR1 TDD 8.40 49.6 10786 AAD SG NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15kHz) SG NR FR1 TDD 8.35 49.6 10787 AAD SG NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15kHz) SG NR FR1 TDD 8.35 49.6 10788 AAD SG NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15kHz) SG NR FR1 TDD 8.35 49.6 10789 AAD SG NR (CP-OFDM, 100% RB, 30MHz, QPSK, 15kHz) SG NR FR1 TDD 8.39 49.6 10789 AAD SG NR (CP-OFDM, 100% RB, 40MHz, QPSK, 15kHz) SG NR FR1 TDD 8.39 49.6 10789 AAD SG NR (CP-OFDM, 100% RB, 40MHz, QPSK, 15kHz) SG NR FR1 TDD 8.39 49.6 10791 AAE SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 15kHz) SG NR FR1 TDD 8.39 49.6 10791 AAE SG NR (CP-OFDM, 178, 15MHz, QPSK, 30kHz) SG NR FR1 TDD 7.83 49.6 10792 AAD SG NR (CP-OFDM, 178, 15MHz, QPSK, 30kHz) SG NR FR1 TDD 7.83 49.6 10793 AAD SG NR (CP-OFDM, 178, 15MHz, QPSK, 30kHz) SG NR FR1 TDD 7.92 49.6 10794 AAD SG NR (CP-OFDM, 178, 25MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 49.6 10794 AAD SG NR (CP-OFDM, 178, 25MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 49.6 10795 AAD SG NR (CP-OFDM, 178, 25MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 49.6 10797 AAD SG NR (CP-OFDM, 178, 25MHz, QPSK, 30kHz) SG NR FR1 TDD 7.89 49.6 10799 AAD SG NR (CP-OFDM, 178, 50MHz, QPSK, 30kHz) SG NR FR1 TDD 7.89 49.6 10799 AAD SG NR (CP-OFDM, 178, 50MHz, QPSK, 30kHz) SG NR FR1 TDD 7.89 49.6 10799 AAD SG NR (CP-OFDM, 178, 50MHz, QPSK, 30kHz) SG NR FR1 TDD 7.89 49.6 10799 AAD SG NR (CP-OFDM, 178, 50MHz, QPSK, 30kHz) SG NR FR1 TDD 7.83 49.			5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)		8.38	
10783 AAE SG NR (CP-OFDM, 100% RB, 5MHz, QPSK, 15kHz) SG NR FR1 TDD 8.43 ±9.6	-		5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)			±9.6
10784 AAD SG NR (CP-OFDM, 100% RB, 15MHz, QPSK, 15kHz) SG NR FR1 TDD 8.29 ±9.6 10786 AAD SG NR (CP-OFDM, 100% RB, 15MHz, QPSK, 15kHz) SG NR FR1 TDD 8.40 ±9.6 10787 AAD SG NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15kHz) SG NR FR1 TDD 8.40 ±9.6 10788 AAD SG NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15kHz) SG NR FR1 TDD 8.44 ±9.6 10788 AAD SG NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15kHz) SG NR FR1 TDD 8.44 ±9.6 10789 AAD SG NR (CP-OFDM, 100% RB, 30MHz, QPSK, 15kHz) SG NR FR1 TDD 8.39 ±9.6 10790 AAD SG NR (CP-OFDM, 100% RB, 40MHz, QPSK, 15kHz) SG NR FR1 TDD 8.39 ±9.6 10791 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 15kHz) SG NR FR1 TDD 8.39 ±9.6 10792 AAD SG NR (CP-OFDM, 1RB, 5MHz, QPSK, 30kHz) SG NR FR1 TDD 7.92 ±9.6 10793 AAD SG NR (CP-OFDM, 1 RB, 5MHz, QPSK, 30kHz) SG NR FR1 TDD 7.92 ±9.6 10794 AAD SG NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30kHz) SG NR FR1 TDD 7.92 ±9.6 10795 AAD SG NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30kHz) SG NR FR1 TDD 7.92 ±9.6 10796 AAD SG NR (CP-OFDM, 1 RB, 25MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 ±9.6 10797 AAD SG NR (CP-OFDM, 1 RB, 25MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 ±9.6 10798 AAD SG NR (CP-OFDM, 1 RB, 25MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 ±9.6 10799 AAD SG NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 ±9.6 10799 AAD SG NR (CP-OFDM, 1 RB, 30MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 ±9.6 10799 AAD SG NR (CP-OFDM, 1 RB, 30MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 ±9.6 10799 AAD SG NR (CP-OFDM, 1 RB, 30MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 ±9.6 10799 AAD SG NR (CP-OFDM, 1 RB, 30MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 ±9.6 10799 AAD SG NR (CP-OFDM, 1 RB, 30MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 ±9.6 10799 AAD SG NR (CP-OFDM, 1 RB, 30MHz, QPSK, 30kHz) SG NR FR1 TDD 7.82 ±9.6 10799 AAD SG NR (CP-OFDM, 1 RB, 30MHz,			5G NR (CP-OFDM, 50% RB, 50 MHZ, QPSK, 15 KHZ)			
10785 AAD 5G NR (CP-OFDM, 100% RB, 15MHz, QPSK, 15KHz) 5G NR FRI TDD 8.40 ±9.6 10786 AAD 5G NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15kHz) 5G NR FRI TDD 8.44 ±9.6 10787 AAD 5G NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15kHz) 5G NR FRI TDD 8.35 ±9.6 10788 AAD 5G NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15kHz) 5G NR FRI TDD 8.39 ±9.6 10788 AAD 5G NR (CP-OFDM, 100% RB, 30MHz, QPSK, 15kHz) 5G NR FRI TDD 8.39 ±9.6 10789 AAD 5G NR (CP-OFDM, 100% RB, 30MHz, QPSK, 15kHz) 5G NR FRI TDD 8.37 ±9.6 10790 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, QPSK, 15kHz) 5G NR FRI TDD 8.37 ±9.6 10791 AAE 5G NR (CP-OFDM, 100% RB, 50MHz, QPSK, 15kHz) 5G NR FRI TDD 7.83 ±9.6 10792 AAD 5G NR (CP-OFDM, 1RB, 50MHz, QPSK, 30kHz) 5G NR FRI TDD 7.33 ±9.6 10793 AAD 5G NR (CP-OFDM, 1RB, 50MHz, QPSK, 30kHz) 5G NR FRI TDD 7.92 ±9.6 10794 AAD 5G NR (CP-OFDM, 1RB, 15MHz, QPSK, 30kHz) 5G NR FRI TDD 7.92 ±9.6 10795 AAD 5G NR (CP-OFDM, 1RB, 15MHz, QPSK, 30kHz) 5G NR FRI TDD 7.92 ±9.6 10795 AAD 5G NR (CP-OFDM, 1RB, 25MHz, QPSK, 30kHz) 5G NR FRI TDD 7.82 ±9.6 10795 AAD 5G NR (CP-OFDM, 1RB, 25MHz, QPSK, 30kHz) 5G NR FRI TDD 7.82 ±9.6 10795 AAD 5G NR (CP-OFDM, 1RB, 25MHz, QPSK, 30kHz) 5G NR FRI TDD 7.82 ±9.6 10799 AAD 5G NR (CP-OFDM, 1RB, 30MHz, QPSK, 30kHz) 5G NR FRI TDD 7.82 ±9.6 10799 AAD 5G NR (CP-OFDM, 1RB, 30MHz, QPSK, 30kHz) 5G NR FRI TDD 7.82 ±9.6 10799 AAD 5G NR (CP-OFDM, 1RB, 50MHz, QPSK, 30kHz) 5G NR FRI TDD 7.93 ±9.6 10799 AAD 5G NR (CP-OFDM, 1RB, 50MHz, QPSK, 30kHz) 5G NR FRI TDD 7.93 ±9.6 10799 AAD 5G NR (CP-OFDM, 1RB, 50MHz, QPSK, 30kHz) 5G NR FRI TDD 7.93 ±9.6 10799 AAD 5G NR (CP-OFDM, 1RB, 50MHz, QPSK, 30kHz) 5G NR FRI TDD 7.93 ±9.6 10799 AAD 5G NR (CP-OFDM, 1RB, 50MHz, QPSK, 30kHz) 5G NR FRI TDD 7.93 ±9.6 10799 AAD 5G NR (CP-OFDM, 1RB, 50MHz, QPSK, 30kHz) 5G NR FRI TDD 8.34 ±9.6 10800 AAD			SG NR (CP-OFDM, 100% RB, SMHZ, QPSK, 15KHZ)			
10796 AAD 56 NR (CP-OFDM, 100% RB, 20MHz, QPSK, 15kHz)			5G NR (CP OFDM, 100% RB, 10 MHz, QPSK, 15 KHz)			±9.6
10797 AAD 5G NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15 kHz) SG NR FRI TDD 8.44 49.6			50 NR (CP-OFDM, 100% RB, 20MHz, QPSK, 15KHz)			
10788 AAD 5G NR (CP-OFDM, 100% RB, 30MHz, CPSK, 15kHz) 5G NR FRI TDD 8.39 49.6 10789 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, CPSK, 15kHz) 5G NR FRI TDD 8.37 49.6 10780 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, CPSK, 15kHz) 5G NR FRI TDD 8.37 49.6 10791 AAE 5G NR (CP-OFDM, 1 RB, 5MHz, CPSK, 30kHz) 5G NR FRI TDD 7.83 49.6 10792 AAD 5G NR (CP-OFDM, 1 RB, 5MHz, CPSK, 30kHz) 5G NR FRI TDD 7.92 49.6 10793 AAD 5G NR (CP-OFDM, 1 RB, 15MHz, CPSK, 30kHz) 5G NR FRI TDD 7.92 49.6 10794 AAD 5G NR (CP-OFDM, 1 RB, 15MHz, CPSK, 30kHz) 5G NR FRI TDD 7.92 49.6 10795 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, CPSK, 30kHz) 5G NR FRI TDD 7.92 49.6 10796 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, CPSK, 30kHz) 5G NR FRI TDD 7.84 49.6 10797 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, CPSK, 30kHz) 5G NR FRI TDD 7.82 49.6 10798 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, CPSK, 30kHz) 5G NR FRI TDD 7.82 49.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, CPSK, 30kHz) 5G NR FRI TDD 7.82 49.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 40MHz, CPSK, 30kHz) 5G NR FRI TDD 7.82 49.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, CPSK, 30kHz) 5G NR FRI TDD 7.89 49.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, CPSK, 30kHz) 5G NR FRI TDD 7.89 49.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, CPSK, 30kHz) 5G NR FRI TDD 7.89 49.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, CPSK, 30kHz) 5G NR FRI TDD 7.89 49.6 10800 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, CPSK, 30kHz) 5G NR FRI TDD 7.89 49.6 10801 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, CPSK, 30kHz) 5G NR FRI TDD 7.89 49.6 10802 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, CPSK, 30kHz) 5G NR FRI TDD 7.87 49.6 10803 AAD 5G NR (CP-OFDM, 1 RB, 50MHz, CPSK, 30kHz) 5G NR FRI TDD 8.34 49.6 10804 AAD 5G NR (CP-OFDM, 50% RB, 15MHz, CPSK, 30kHz) 5G NR FRI TDD 8.34 49.6 10805 AAD 5G NR (CP-OFDM, 50% RB, 50MHz, CPSK, 30kH			5G NR (CP-OFDM, 100% RB, 25MHz, QPSK, 15kHz)			
10789 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR FR1 TDD 8.37 ±9.6			5G NR (CP-OFDM, 100% RR, 30 MHz, OPSK, 15 kHz)			
10790 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz)						
10791 AAE 5G NR (CP-OFDM, 1 RB, 5MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.83 ±9.6 10792 AAD 5G NR (CP-OFDM, 1 RB, 10MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.92 ±9.6 10793 AAD 5G NR (CP-OFDM, 1 RB, 15MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.92 ±9.6 10794 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.82 ±9.6 10795 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.82 ±9.6 10796 AAD 5G NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.84 ±9.6 10797 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.82 ±9.6 10798 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.82 ±9.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.89 ±9.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.89 ±9.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.89 ±9.6 10801 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.93 ±9.6 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.87 ±9.6 10803 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.87 ±9.6 10803 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.87 ±9.6 10804 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.87 ±9.6 10805 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.87 ±9.6 10806 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30kHz) 5G NR FR1 TDD 7.87 ±9.6 10807 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30kHz) 5G NR FR1 TDD 8.34 ±9.6 10808 AAD 5G NR (CP-OFDM, 50% RB, 10MHz, QPSK, 30kHz) 5G NR FR1 TDD 8.34 ±9.6 10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30kHz) 5G NR FR1 TDD 8.34 ±9.6 10810 AAD 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 30kHz) 5G NR FR1 TDD 8.34 ±9.6 10811 AAD 5G NR (CP-OFDM, 50% RB, 50 MHz						
10792 AAD SG NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 KHz) SG NR FR1 TDD 7.92 ±9.6			5G NR (CP-OFDM, 1 RB, 5MHz, OPSK, 30 kHz)			
10793 AAD SG NR (CP-OFDM, 1 RB, 15 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.95 ±9.6 10794 AAD SG NR (CP-OFDM, 1 RB, 20 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9.6 10795 AAD SG NR (CP-OFDM, 1 RB, 20 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9.6 10796 AAD SG NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9.6 10797 AAD SG NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9.6 10797 AAD SG NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9.6 10798 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.89 ±9.6 10799 AAD SG NR (CP-OFDM, 1 RB, 60 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.89 ±9.6 10801 AAD SG NR (CP-OFDM, 1 RB, 60 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.89 ±9.6 10802 AAD SG NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.87 ±9.6 10803 AAD SG NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.87 ±9.6 10804 AAD SG NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.87 ±9.6 10805 AAD SG NR (CP-OFDM, 1 RB, 100 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.87 ±9.6 10806 AAD SG NR (CP-OFDM, 50% RB, 10 MHz, OPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10807 AAD SG NR (CP-OFDM, 50% RB, 15 MHz, OPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10808 AAD SG NR (CP-OFDM, 50% RB, 15 MHz, OPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10810 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, OPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10812 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, OPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10812 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, OPSK, 30 kHz) SG NR FR1 TDD 8.35 ±9.6 10813 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, OPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10814 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, OPSK, 30 kHz) SG NR FR1 TDD 8.35 ±9.6 10815 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6						
10794 AAD SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9.6 10795 AAD SG NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.84 ±9.6 10796 AAD SG NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9.6 10797 AAD SG NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.01 ±9.6 10798 AAD SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.89 ±9.6 10799 AAD SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.89 ±9.6 10799 AAD SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.89 ±9.6 10801 AAD SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.89 ±9.6 10802 AAD SG NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.87 ±9.6 10803 AAD SG NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.87 ±9.6 10803 AAD SG NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.87 ±9.6 10803 AAD SG NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.87 ±9.6 10805 AAD SG NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.93 ±9.6 10806 AAD SG NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10806 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.37 ±9.6 10807 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10808 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10809 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10810 AAD SG NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10812 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.35 ±9.6 10813 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10820 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6						
10795 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.84 ±9.6 10796 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.82 ±9.6 10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.82 ±9.6 10798 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 ±9.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 ±9.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 ±9.6 10801 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 ±9.6 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 ±9.6 10803 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.87 ±9.6 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 ±9.6 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 7.89 ±9.6 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 ±9.6 10802 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.37 ±9.6 10802 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 ±9.6 10812 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 ±9.6 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.34 ±9.6 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.35 ±9.6 10813 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.35 ±9.6 10812 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.35 ±9.6 10812 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.35 ±9.6 10812 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.36 ±9.6 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 Hz) 5G NR FR1 TDD 8.36 ±9.6 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30						
10796 AAD GG NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.82 ±9.6						
10797 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.01 ±9.6						
10798 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.89 ±9.6 10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.89 ±9.6 10802 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.87 ±9.6 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.87 ±9.6 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.87 ±9.6 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.87 ±9.6 10806 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.37 ±9.6 10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10810 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.35 ±9.6 10818 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.35 ±9.6 10818 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10819 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10820 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10821 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)			
10799 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.93 ±9.6 10801 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.89 ±9.6 10802 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.87 ±9.6 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.87 ±9.6 10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 7.87 ±9.6 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.37 ±9.6 10809 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10810 AAD 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.34 ±9.6 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.35 ±9.6 10812 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.35 ±9.6 10813 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.35 ±9.6 10814 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.35 ±9.6 10819 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.35 ±9.6 10820 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.33 ±9.6 10820 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.30 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.30 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G						
10801 AAD SG NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.89 ±9.6 10802 AAD SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.87 ±9.6 10803 AAD SG NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) SG NR FR1 TDD 7.87 ±9.6 10805 AAD SG NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10806 AAD SG NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.37 ±9.6 10809 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.37 ±9.6 10810 AAD SG NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10810 AAD SG NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10812 AAD SG NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.35 ±9.6 10817 AAE SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.35 ±9.6 10818 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.35 ±9.6 10819 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.34 ±9.6 10820 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.33 ±9.6 10821 AAD SG NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.30 ±9.6 10822 AAD SG NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.41 ±9.6 10822 AAD SG NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.41 ±9.6 10822 AAD SG NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.41 ±9.6 10822 AAD SG NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.36 ±9.6 10822 AAD SG NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.41 ±9.6 10822 AAD SG NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.36 ±9.6 10822 AAD SG NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.41 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) SG NR FR1 TDD 8.42 ±9.6 10827 AAD	10799	AAD				***************************************
10802 AAD SG NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 30 kHz) SG NR FR1 TDD 7.87 ±9.6	10801	AAD				
10803 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 7.93 ±9.6 10805 AAD 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9.6 10806 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.37 ±9.6 10809 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9.6 10810 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9.6 10811 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9.6 10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9.6 10818 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9.6 10818 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9.6 10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9.6 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9.6 10821 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9.6 10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9.6 10824 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.44 ±9.6 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.44 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.44 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.44 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.44 ±9.6 10827	10802	AAD				
10805 AAD SG NR (CP-OFDM, 50% RB, 10MHz, QPSK, 30kHz) SG NR FR1 TDD 8.34 ±9.6			5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)			
10806 AAD SG NR (CP-OFDM, 50% RB, 15MHz, QPSK, 30kHz) SG NR FR1 TDD 8.37 ±9.6			5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)			
10809 AAD SG NR (CP-OFDM, 50% RB, 30MHz, QPSK, 30KHz) SG NR FR1 TDD 8.34 ±9.6 10810 AAD SG NR (CP-OFDM, 50% RB, 40MHz, QPSK, 30KHz) SG NR FR1 TDD 8.34 ±9.6 10812 AAD SG NR (CP-OFDM, 50% RB, 40MHz, QPSK, 30KHz) SG NR FR1 TDD 8.35 ±9.6 10817 AAE SG NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30KHz) SG NR FR1 TDD 8.35 ±9.6 10818 AAD SG NR (CP-OFDM, 100% RB, 5MHz, QPSK, 30KHz) SG NR FR1 TDD 8.34 ±9.6 10819 AAD SG NR (CP-OFDM, 100% RB, 15MHz, QPSK, 30KHz) SG NR FR1 TDD 8.33 ±9.6 10820 AAD SG NR (CP-OFDM, 100% RB, 20MHz, QPSK, 30KHz) SG NR FR1 TDD 8.30 ±9.6 10821 AAD SG NR (CP-OFDM, 100% RB, 25MHz, QPSK, 30KHz) SG NR FR1 TDD 8.41 ±9.6 10822 AAD SG NR (CP-OFDM, 100% RB, 30MHz, QPSK, 30KHz) SG NR FR1 TDD 8.41 ±9.6 10823 AAD SG NR (CP-OFDM, 100% RB, 30MHz, QPSK, 30KHz) SG NR FR1 TDD 8.41 ±9.6 10824 AAD SG NR (CP-OFDM, 100% RB, 30MHz, QPSK, 30KHz) SG NR FR1 TDD 8.41 ±9.6 10825 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.36 ±9.6 10826 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.39 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.41 ±9.6 10826 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.41 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.41 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.41 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.42 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.42 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.42 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.42 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.42 ±9.6 108	10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)			
10810 AAD SG NR (CP-OFDM, 50% RB, 40MHz, QPSK, 30KHz) SG NR FR1 TDD 8.34 ±9.6 10812 AAD SG NR (CP-OFDM, 50% RB, 60MHz, QPSK, 30KHz) SG NR FR1 TDD 8.35 ±9.6 10817 AAE SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.35 ±9.6 10818 AAD SG NR (CP-OFDM, 100% RB, 10MHz, QPSK, 30KHz) SG NR FR1 TDD 8.34 ±9.6 10819 AAD SG NR (CP-OFDM, 100% RB, 15MHz, QPSK, 30KHz) SG NR FR1 TDD 8.33 ±9.6 10820 AAD SG NR (CP-OFDM, 100% RB, 25MHz, QPSK, 30KHz) SG NR FR1 TDD 8.30 ±9.6 10821 AAD SG NR (CP-OFDM, 100% RB, 25MHz, QPSK, 30KHz) SG NR FR1 TDD 8.41 ±9.6 10822 AAD SG NR (CP-OFDM, 100% RB, 30MHz, QPSK, 30KHz) SG NR FR1 TDD 8.41 ±9.6 10823 AAD SG NR (CP-OFDM, 100% RB, 30MHz, QPSK, 30KHz) SG NR FR1 TDD 8.36 ±9.6 10824 AAD SG NR (CP-OFDM, 100% RB, 40MHz, QPSK, 30KHz) SG NR FR1 TDD 8.36 ±9.6 10825 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.39 ±9.6 10826 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.41 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.42 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.44 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.44 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.44 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.42 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.42 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.44 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.44 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.44 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 50MHz, QPSK, 30KHz) SG NR FR1 TDD 8.44 ±9.6			5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)			
10812 AAD 5G NR (CP-OFDM, 50% RB, 60 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9.6 10817 AAE 5G NR (CP-OFDM, 100% RB, 5 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.35 ±9.6 10818 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.34 ±9.6 10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9.6 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9.6 10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9.6 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9.6 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.44 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, CPSK, 30 kHz) 5G NR FR1 TDD 8.44 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, CPSK			5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		
10817 AAE 5G NR (CP-OFDM, 100% RB, 5MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.35 ±9.6 10818 AAD 5G NR (CP-OFDM, 100% RB, 10MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.34 ±9.6 10819 AAD 5G NR (CP-OFDM, 100% RB, 15MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.33 ±9.6 10820 AAD 5G NR (CP-OFDM, 100% RB, 25MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.30 ±9.6 10821 AAD 5G NR (CP-OFDM, 100% RB, 25MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 30MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.41 ±9.6 10823 AAD 5G NR (CP-OFDM, 100% RB, 30MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.36 ±9.6 10824 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.39 ±9.6 10825 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.41 ±9.6 10825 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.41 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.41 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.42 ±9.6 10828 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.42 ±9.6 10828 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.42 ±9.6 10828 AAD 5G NR (CP-OFDM, 100% RB, 50MHz, OPSK, 30kHz) 5G NR FR1 TDD 8.42 ±9.6			5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		
10819 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.33 ±9.6 10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9.6 10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10823 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9.6 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9.6 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9.6 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10828 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10828 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10828 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10828 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10828 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10828 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10828 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10828 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QP						
10820 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.30 ±9.6 10821 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9.6 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9.6 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6				5G NR FR1 TDD	8.34	±9.6
10821 AAD 5G NR (CP-OFDM, 100% RB, 25MHz, QPSK, 30KHz) 5G NR FR1 TDD 8.41 ±9.6 10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30KHz) 5G NR FR1 TDD 8.41 ±9.6 10823 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30KHz) 5G NR FR1 TDD 8.36 ±9.6 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30KHz) 5G NR FR1 TDD 8.39 ±9.6 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30KHz) 5G NR FR1 TDD 8.41 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30KHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30KHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30KHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) 5G NR FR1 TDD 8.42 ±9.6 10827 AAD 5G NR FR1 TDD 8.42					8.33	±9.6
10822 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10823 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9.6 10824 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9.6 10825 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6						±9.6
10823 AAD SG NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.36 ±9.6 10824 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9.6 10825 AAD SG NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10827 AAD SG NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6						±9.6
10824 AAD 5G NR CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.39 ±9.6 10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6						±9.6
10825 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.41 ±9.6 10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6		_				
10827 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.42 ±9.6						
SCHITTI IDD 8.42 ±5.6			5G NH (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)			±9.6
10628 AAU 3G NH (CP-OFDM, 100% HB, 90 MHz, QPSK, 30 kHz) 5G NR FR1 TDD 8.43 ±9.6						
	10828	AAD	ов ин (СР-ОНОМ, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	±9.6

July 12, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
10831	AAD	5G NR (CP-OFDM, 1 RB, 15MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10836	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6
10837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	±9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	±9.6
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10857 10858	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10860 10861	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10863	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10865		5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10866	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10868	AAD	5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 30 KHz) 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	5.68	±9.6
10869	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	5.89	±9.6
10870	AAE	5G NR (DFT-s-OFDM, 100 MRz, QPSK, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	5.75	±9.6
10871	AAE	5G NR (DFT-s-OFDM, 100 % NS, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.86 5.75	±9.6 ±9.6
10872	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
10873	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10874	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10875	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10876	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6
10877	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	±9.6
10878	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10879	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	±9.6
10880	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
10881	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10882	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10883	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6
10884	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9.6
10885	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10886	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10887	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10888	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	±9.6
10889	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	±9.6
10890	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	±9.6
10891	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	±9.6
10892	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10897	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6
10898	AAB	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10899	AAB	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10900	AAB	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10901	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10902	AAB	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10903	AAB	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10904	AAB	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10905	AAB	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.68 5.68	±9.6 ±9.6
10907	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	±9.6
10908	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93 5.96	±9.6
	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	1		±9.6
10910	LAAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6

July 12, 2023

UID	Rev	Communication System Name			
10911	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	Group	PAR (dB)	Unc ^E k = 2
10912	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10913	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10915	AAB	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85 5.83	±9.6
10916	AAB	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917	AAB	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10918	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10920	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10921	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10922	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10923	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10924	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
10926	AAB	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10927	AAB	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10928	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10929	AAC	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10930	AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10931	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10932	AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10934	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10935	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10937	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6
10938	AAC	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
10941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAC	5G NR (DFT-s-OFDM, 100% RB, 5MHz, QPSK, 15kHz) 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15kHz)	5G NR FR1 FDD	5.81	±9.6
10945	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% NB, 15MRZ, QFSK, 15KRZ)	5G NR FR1 FDD 5G NR FR1 FDD	5.83 5.87	±9.6
10947	AAC	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10950	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10951	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5MHz, 64-QAM, 15kHz)	5G NR FR1 FDD	8.25	±9.6
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	±9.6
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.6
10960	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	±9.6
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	±9.6
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	±9.6
10964	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	±9.6
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.6
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	±9.6
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	±9.6
10974		5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	±9.6
10978	AAA	ULLA BDR	ULLA	1.16	±9.6
10979		ULLA HDR4	ULLA	8.58	±9.6
10980	AAA	ULLA HDR8	ULLA	10.32	±9.6
10981	AAA	ULLA HDRp4	ULLA	3.19	±9.6
10982	AAA	ULLA HDRp8	ULLA	3.43	±9.6

Certificate No: EX-3825_Jul23

Page 22 of 23

Test Report No. 15375714H-G-R1 Page 61 of 66

EX3DV4 - SN:3825 July 12, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6
11003	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	10.24	±9.6
11004	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	10.73	±9.6
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	±9.6
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	±9.6
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.46	±9.6
11008	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.51	±9.6
11009	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.76	±9.6
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.95	±9.6
11011	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.96	±9.6
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68	±9.6
11013	AAA	IEEE 802.11be (320 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
11014	AAA	IEEE 802.11be (320 MHz, MCS2, 99pc duty cycle)	WLAN	8.45	±9.6
11015	AAA	IEEE 802.11be (320 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
11016	AAA	IEEE 802.11be (320 MHz, MCS4, 99pc duty cycle)	WLAN	8.44	±9.6
11017	AAA	IEEE 802.11be (320 MHz, MCS5, 99pc duty cycle)	WLAN	8.41	±9.6
11018	AAA	IEEE 802.11be (320 MHz, MCS6, 99pc duty cycle)	WLAN	8.40	±9.6
11019	AAA	IEEE 802.11be (320 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
11020	AAA	IEEE 802.11be (320 MHz, MCS8, 99pc duty cycle)	WLAN	8.27	±9.6
11021	AAA	IEEE 802.11be (320 MHz, MCS9, 99pc duty cycle)	WLAN	8.46	±9.6
11022	AAA	IEEE 802.11be (320 MHz, MCS10, 99pc duty cycle)	WLAN	8.36	±9.6
11023	AAA	IEEE 802.11be (320 MHz, MCS11, 99pc duty cycle)	WLAN	8.09	±9.6
11024	AAA	IEEE 802.11be (320 MHz, MCS12, 99pc duty cycle)	WLAN	8.42	±9.6
11025	AAA	IEEE 802.11be (320 MHz, MCS13, 99pc duty cycle)	WLAN	8.37	±9.6
11026	AAA	IEEE 802.11be (320 MHz, MCS0, 99pc duty cycle)	WLAN	8.39	±9.6

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX-3825_Jul23 Page 23 of 23

Test Report No. 15375714H-G-R1 Page 62 of 66

System check uncertainty
The uncertainty budget has been determined for the DASY measurement system according to the SPEAG documents and is given in the following Table.

Repeatability Budget for System Check

<0.3 to 3 GHz range Body>

Error Description	Uncertainty	Probability	divisor	(ci)	(ci)	Standard Uncertainty	Standard Uncertainty (10g) %	
terminal additions are all for to Proper set 10 or	value ± %	distribution		1g	10g	(1g) %		
Measurement Syster	n		'	•	_	_	_	
Probe calibration	± 1.8	Normal	1	1	1	± 1.8	±	1.8
Axial isotropy of the probe	± 0.0	Rectangular	√3	1	1	± 0.0	±	0.0
Spherical isotropy of the probe	± 0.0	Rectangular	√3	1	0	± 0.0	±	0.0
Boundary effects	± 0.0	Rectangular	√3	1	1	± 0.0	±	0.0
Probe linearity	± 0.0	Rectangular	√3	1	1	± 0.0	±	0.0
Detection limit	± 0.0	Rectangular	√3	1	1	± 0.0	±	0.0
Modulation response	± 0.0	Rectangular	√3	1	1	± 0.0	±	0.0
Readout electronics	± 0.0	Normal	1	1	1	± 0.0	±	0.0
Response time	± 0.0	Rectangular	√3	1	1	± 0.0	±	0.0
Integration time	± 0.0	Rectangular	√3	1	1	± 0.0	±	0.0
RF ambient Noise	± 0.0	Rectangular	√3	1	1	± 0.0	±	0.0
RF ambient Reflections	± 0.0	Rectangular	√3	1	1	± 0.0	±	0.0
Probe Positioner	± 0.02	Rectangular	√3	1	1	± 0.0	±	0.0
Probe positioning	± 0.4	Rectangular	√3	1	1	± 0.2	±	0.2
Max.SAR Eval.	± 0.0	Rectangular	√3	1	1	± 0.0	±	0.0
Dipole Related					Market and the second			
Dev. of experimental dipole	± 0.0	Rectangular	√3	1	1	± 0.0	±	0.0
Dipole Axis to Liquid Distance	± 2.0	Rectangular	√3	1	1	± 1.2	±	1.2
Input power and SAR drift meas.	± 3.4	Rectangular	√3	1	1	± 2.0	±	2.0
Phantom and Setup		42					_	
Phantom uncertainty	± 4.0	Rectangular	√3	1	1	± 2.3	±	2.3
SAR correction	± 1.9	Rectangular	√3	1	0.84	± 1.1	±	0.9
Liquid conductivity (meas.)	± 5.0	Normal	1	0.78	0.71	± 3.9	±	3.6
Liquid permittivity (meas.)	± 5.0	Normal	1	0.26	0.26	± 1.3	±	1.3
Temp. unc. - Conductivity	± 3.4	Rectangular	√3	0.78	0.71	± 1.5	±	1.4
Temp. unc. - Permittivity	± 0.4	Rectangular	√3	0.23	0.26	± 0.1	±	0.1
		1			_			
Combined Standard					1	± 5.9	±	5.6
Expanded Uncertain	ty (k=2)	j.				± 11.8	±	11.2

Table of uncertainties are listed for ISO/IEC 17025.