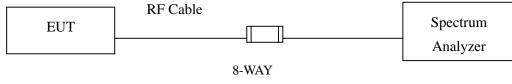
6. Undesirable Emission


6.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
Х	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2010
Х	8-WAY Power Divider	JFW	50PD-647 / 526770 0916	Apr., 2010

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. The power combiner is used for measure 11n mode.

6.2. Test Setup

Power Divider

6.3. Limits

Inside of the restricted band(section 2.7 table1): Apply to section 2.7 table2 limit. Outside of the restricted band (section A9):

5 .15GHz - 5.35 GHz < -27 dBm/MHz EIRP, 5.47GHz - 5.725 GHz < -27 dBm/MHz EIRP, 5.725GHz - 5.825 GHz < -27 dBm/MHz EIRP, <-17 dBm/MHz EIRP (all

<-17 dBm/MHz EIRP (all emission within the frequency range from the band edge to 10 MHz above or below the band edge).

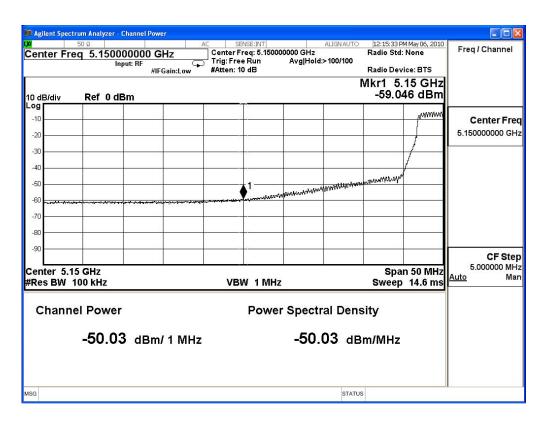
6.4. Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.

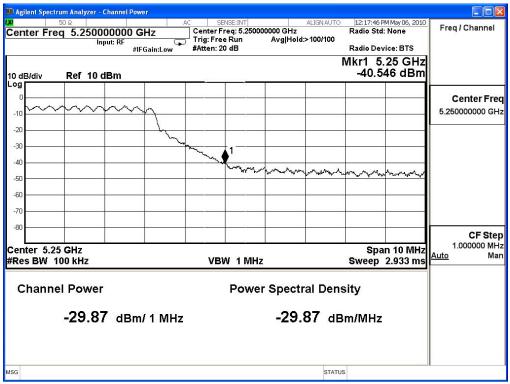
6.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

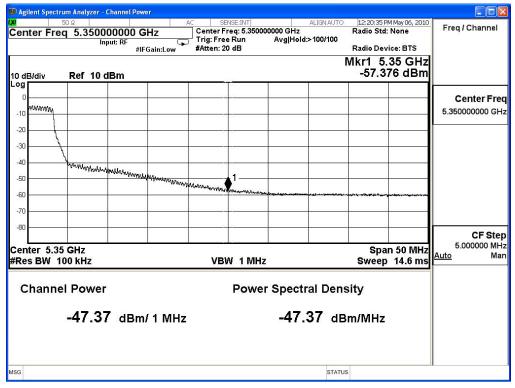
6.6. Test Result of Undesirable Emission


Product	:	ROS Video DMA
Test Item	:	Undesirable Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11a-6Mbps)

CONDCUT	CONDCUTED BAND EDGE EMISSIONS TEST RESULTS												
Test Freq.	TX	Power Spec Den.	Antenna	Corrected	Limits	Margin(dB)	Test						
(MHz)	Chain	Reading	Gain(dBi)	Measurement	(dBm/MHz)	+=FAIL	Channel						
		(dBm/MHz)		(dBm/MHz)									
802.11a	802.11a												
5150	А	-59.046	4.87	-54.176	-27	-27.176	5180						
5250	А	-40.546	4.87	-35.676	-27	-8.676	5240						
5250	А	-42.527	4.87	-37.557	-27	-10.557	5260						
5350	А	-57.376	4.87	-52.506	-27	-25.506	5320						
5470	А	-55.792	4.87	-50.922	-27	-23.922	5500						
5725	А	-54.031	4.87	-49.161	-27	-22.161	5700						


Note: Corrected Measurement = Power Spec Den. Reading + Antenna Gain

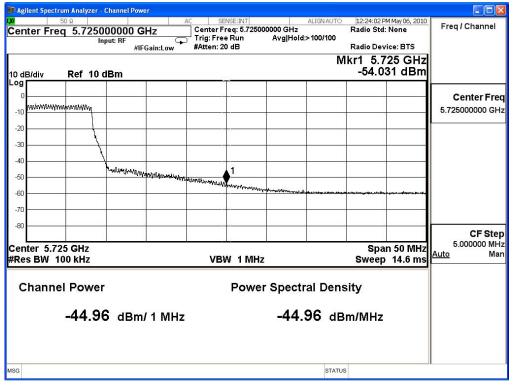
Channel 48:



DAgilent Spec	trum Analyzer - Cl	nannel Power								
10 dB/div	50 Ω eq 5.25000 Inpt Ref 10 dB	ıt: RF #IFG			e Run	000000 GHz Avg Hol	ALIGN AUTO d:>100/100	Radio Sto Radio De Mkr1 5		Freq / Channel
-10						[~~~	~~~	Center Freq 5.250000000 GHz
-20 -30 -40					1					
-50 a. M. M.	Mr. Mr. Mr. Harris	May and the Mary	alwor Welling	and and the						
-70										CF Step
Center 5.2 #Res BW				VBI	N/1MH	z		Spa Sweep	an 10 MHz 2.933 ms	<u>Auto</u> Man
Chann	el Power				Powe	r Spect	ral Dens	sity		
	-31.12	dBm/	1 MHz			-31	.12 dB	m/MHz		
MSG							STATUS	3		

Channel 52:

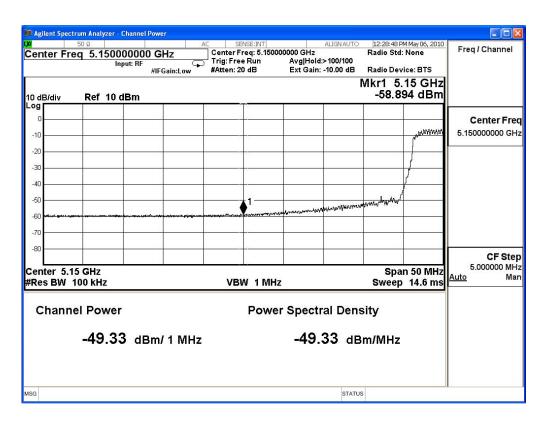
Channel 64:



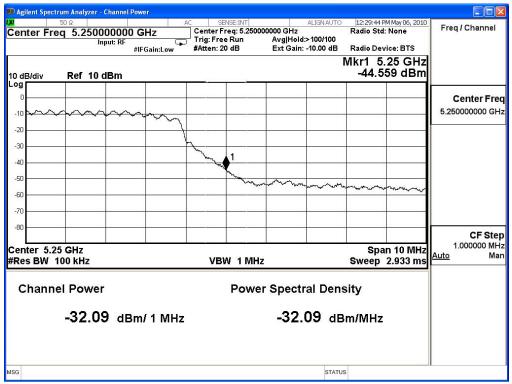
💯 Agilent Spectrum Analyzer - Channel Power		
02 50 2 A Center Freq 5.47000000 GHz Input: RF #IFGain:Low 10 dB/div Ref 10 dBm	Center Freq: 5.470000000 GHz Trig: Free Run Avg Hold:>100/100 #Atten: 20 dB	12:21:49 PM May 06, 2010 Freq / Channel Radio Std: None Freq / Channel Radio Device: BTS Mkr1 5.47 GHz -55.792 dBm
Log 0 -10 -20 -30 -40 -50 -60		Center Fre 5.47000000 GF
-70 -80 Center 5.47 GHz #Res BW 100 kHz	VBW 1 MHz	CF Ste 5.000000 MHz Sweep 14.6 ms Ma
Channel Power -46.38 dBm/ 1 MHz	Power Spectral Dens -46.38 dB	Bm/MHz
MSG	STATU	S

Channel 100:

Channel 140:


Product	:	ROS Video DMA
Test Item	:	Undesirable Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmitter (802.11n-20BW 13Mbps)

CONDCUT	CONDCUTED BAND EDGE EMISSIONS TEST RESULTS												
Test Freq.	TX	Power Spec Den.	Antenna	Corrected	Limits	Margin(dB)	Test						
(MHz)	Chain	Reading	Gain(dBi)	Measurement	(dBm/MHz)	+=FAIL	Channel						
		(dBm/MHz)		(dBm/MHz)									
802.11n (20M	802.11n (20MHz Wide)												
5150	A+B	-58.894	4.87	-54.024	-27	-27.02	5180						
5250	A+B	-44.559	4.87	-39.689	-27	-12.69	5240						
5250	A+B	-45.539	4.87	-40.669	-27	-13.67	5260						
5350	A+B	-59.725	4.87	-54.855	-27	-27.86	5320						
5470	A+B	-60.859	4.87	-55.989	-27	-28.99	5500						
5725	A+B	-60.248	4.87	-55.378	-27	-28.38	5570						


Note: Corrected Measurement = Power Spec Den. Reading + Antenna Gain

Channel 3	36:
-----------	-----

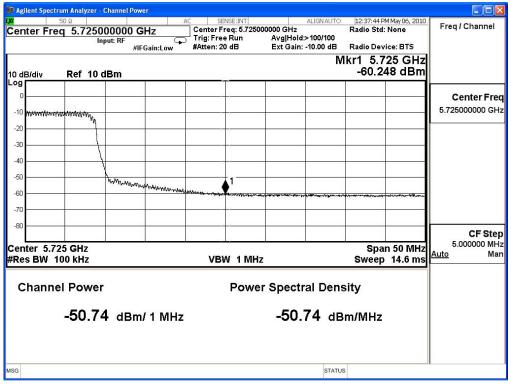
Channel 48:



🎾 Agilent Spec	trum Analyzer - Chai 50 Ω							
Center Fr	eq 5.250000 Input: Ref 10 dBr	DOO GHz RF #IFGain:Low	AC SENSE:INT Center Freq: 5.2500 Trig: Free Run #Atten: 20 dB	Avg Hold	-10.00 dB	Radio Std Radio Dev Mkr1 5.		Freq / Channel
-10		veran and a share a sh	1			<u> </u>	~~~~ 	Center Freq 5.25000000 GHz
-® Center 5.: #Res BW Chanr			VBW 1 MH	iz er Spectr	al Dens	Sweep	n 10 MHz 2.933 ms	CF Step 1.000000 MHz <u>Auto</u> Mar
MSG	-32.71	dBm/ 1 MHz			71 dB	m/MHz		

Channel 52:

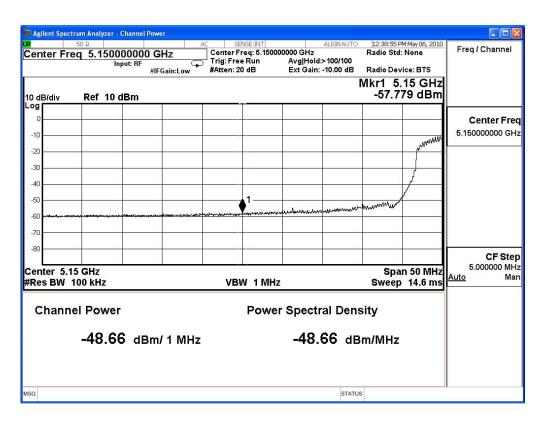
Channel 64:



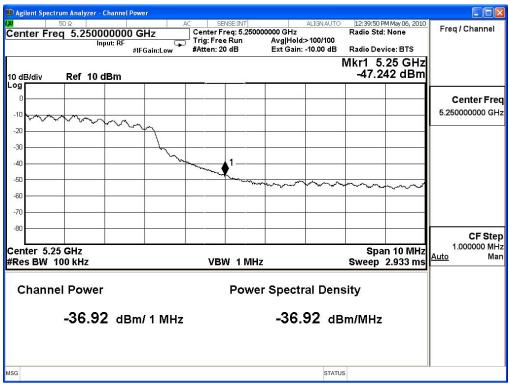
💷 Agilent Spec	trum Analyzer -	Channel Power		- 05						
Center Fr 10 dB/div	eq 5.4700 In Ref 10 c	put: RF #IFGai	P		Run	000000 GHz Avg Hold: Ext Gain:	-10.00 dB	Radio Std: Radio Dev Mkr1 5.		Freq / Channel
-10 -20									mannoutra	Center Freq 5.470000000 GHz
-30									}	
-50 -60 	****			and the construction	1	an a	WWWWWWWWWWW	philipping		
- ⁸⁰ Center 5.4 #Res BW				VBV	V 1 MH	z			n 50 MHz 14.6 ms	CF Step 5.000000 MHz <u>Auto</u> Man
Chann	Channel Power Power Spectral Density									
	-51.00	6 dBm/ 1	MHz			-51.	06 dB	m/MHz		
MSG							STATUS			

Channel 100:

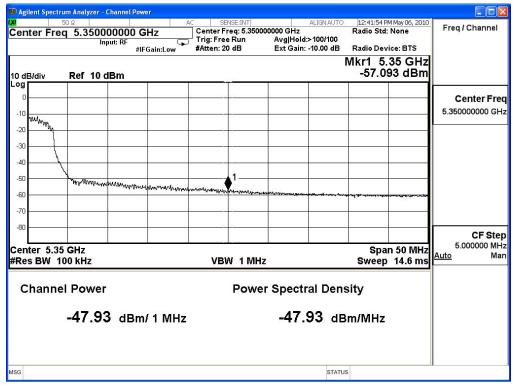
Channel 140:


Product	:	ROS Video DMA
Test Item	:	Undesirable Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmitter (802.11n-40BW 27Mbps)

CONDCUT	CONDCUTED BAND EDGE EMISSIONS TEST RESULTS												
Test Freq.	TX	Power Spec Den.	Antenna	Antenna Corrected		Margin(dB)	Test						
(MHz)	Chain	Reading	Gain(dBi)	Measurement	(dBm/MHz)	+=FAIL	Channel						
		(dBm/MHz)		(dBm/MHz)									
802.11n (40M	802.11n (40MHz Wide)												
5150	A+B	-57.779	4.87	-52.909	-27	-25.91	5190						
5250	A+B	-47.242	4.87	-42.372	-27	-15.37	5230						
5250	A+B	-49.276	4.87	-44.406	-27	-17.41	5270						
5350	A+B	-57.093	4.87	-52.223	-27	-25.22	5310						
5470	A+B	-54.388	4.87	-49.518	-27	-22.52	5510						
5725	A+B	-61.08	4.87	-56.21	-27	-29.21	5670						


Note: Corrected Measurement = Power Spec Den. Reading + Antenna Gain

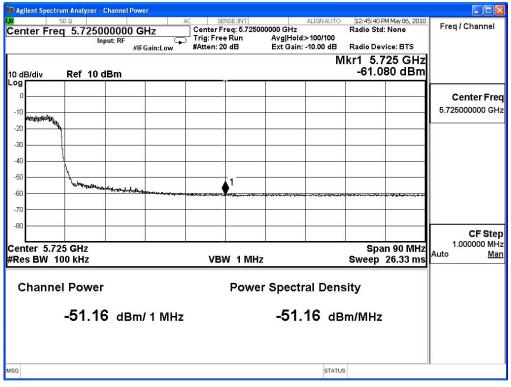
Channel 46:



Input: RF Input: RF Input: RF #IFGain:Low #Atten: 20 dB AvglHold>100/100 Radio Device: BTS Mkr1 5.25 GHz -49.276 dBm -0 -10 -0 <th>Channel enter Freq 1000000 GH2</th>	Channel enter Freq 1000000 GH2
Beldiv Ref 10 dBm -49.276 dBm 0	
	000000 GH
-70	
	5 at 1
	CF Step 00000 MH
enter 5.25 GHz Span 10 MHz Res BW 100 kHz VBW 1 MHz Sweep 2.933 ms	Auto Man
Channel Power Power Spectral Density	
-39.27 dBm/ 1 MHz -39.27 dBm/MHz	
g status	

Channel 54:

Channel 62:



Magilent Spe	ctrum Analyzer - Chan	nel Power	C SENSE:INT	ALIGN AUTO	12:42:24 0	4 May 06, 2010	
Center Freq 5.47000000 GHz Input: RF #IFGain:Low			Center Freq: 5.470000 Trig: Free Run #Atten: 20 dB	000 GHz Avg Hold:>100/100 Ext Gain: -10.00 dB	Radio Std: Radio Devi VIKr1 5.4	None ce: BTS	Freq / Channel
10 dB/div Log -10 -20 -30 -30 -50 -50	Ref 10 dBn		1	un and and a second			Center Freq 5.47000000 GHz
-70 -80 Center 5. #Res BW			VBW 1 MHz			n 50 MHz 14.6 ms	CF Step 5.000000 MHz <u>Auto</u> Man
Chanr	-45.76	dBm/ 1 MHz	Power	Spectral Dens -45.76 dB	m/MHz		

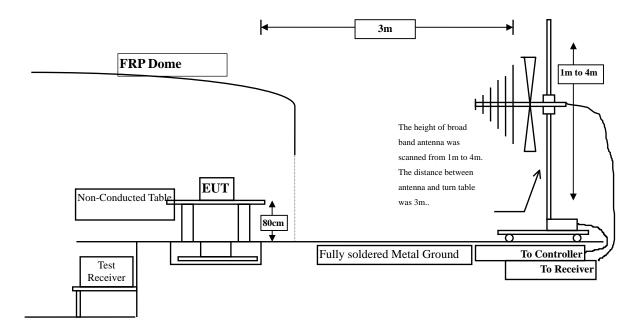
Channel 102:

Channel 134:

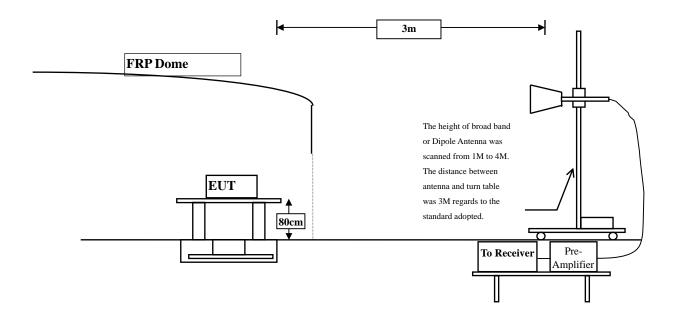
7. Radiated Emission

7.1. Test Equipment

The following test equipments are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2010
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

7.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits						
Frequency MHz	uV/m @3m	dBuV/m@3m				
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

7.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to FCC Public Notice DA 02-2138 test procedure for compliance to FCC 47CFR 15. 407 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

7.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

7.6. Test Result of Radiated Emission

Product	:	ROS Video DMA
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter (802.11a-6Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10360.000	12.930	45.050	57.980	-16.020	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
Detector:					
10360.000	12.930	27.690	40.620	-13.380	54.000
15540.000	*	*	*	*	54.000
20720.000	*	*	*	*	54.000
25900.000	*	*	*	*	54.000
31080.000	*	*	*	*	54.000
36260.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1: Transmitter (802.11a-6Mbps) (5180MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10360.000	13.724	47.220	60.944	-13.056	74.000		
15540.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
10360.000	13.724	29.750	43.474	-10.526	54.000		
15540.000	*	*	*	*	54.000		
20720.000	*	*	*	*	54.000		
25900.000	*	*	*	*	54.000		
31080.000	*	*	*	*	54.000		
36260.000	*	*	*	*	54.000		

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS 						
Test Mode	: Mode 1: Transmitter (802.11a-6Mbps) (5220MHz)						
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10440.000	13.322	52.420	65.742	-8.258	74.000		
15600.000	*	*	*	*	74.000		
20800.000	*	*	*	*	74.000		
26000.000	*	*	*	*	74.000		
31200.000	*	*	*	*	74.000		
36400.000	*	*	*	*	74.000		
Average							
Detector:							
10440.000	13.322	32.590	45.912	-8.088	54.000		
15600.000	*	*	*	*	54.000		
20800.000	*	*	*	*	54.000		
26000.000	*	*	*	*	54.000		
31200.000	*	*	*	*	54.000		
36400.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	Transmitter (802	.11a-6Mbps) (5220M	Hz)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10440.000	14.245	51.960	66.205	-7.795	74.000			
15600.000	*	*	*	*	74.000			
20800.000	*	*	*	*	74.000			
26000.000	*	*	*	*	74.000			
31200.000	*	*	*	*	74.000			
36400.000	*	*	*	*	74.000			
Average								
Detector:								
10440.000	14.245	31.310	45.555	-8.445	54.000			
15600.000	*	*	*	*	54.000			
20800.000	*	*	*	*	54.000			
26000.000	*	*	*	*	54.000			
31200.000	*	*	*	*	54.000			
36400.000	*	*	*	*	54.000			

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmitter (802.11a-6Mbps) (5240MHz) 					
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
10480.000	13.693	52.010	65.704	-8.296	74.000	
15720.000	*	*	*	*	74.000	
20960.000	*	*	*	*	74.000	
26200.000	*	*	*	*	74.000	
31440000	*	*	*	*	74.000	
36680.000	*	*	*	*	74.000	
Average						
Detector:						
10480.000	13.693	33.100	46.794	-7.206	54.000	
15720.000	*	*	*	*	54.000	
20960.000	*	*	*	*	54.000	
26200.000	*	*	*	*	54.000	
31440000	*	*	*	*	54.000	
36680.000	*	*	*	*	54.000	
Noto:						

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmitter (802	.11a-6Mbps) (5240M	Hz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10480.000	14.620	51.970	66.591	-7.409	74.000		
15720.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
31440000	*	*	*	*	74.000		
36680.000	*	*	*	*	74.000		
Average							
Detector:							
10480.000	14.620	32.500	47.121	-6.879	54.000		
15720.000	*	*	*	*	54.000		
20960.000	*	*	*	*	54.000		
26200.000	*	*	*	*	54.000		
31440000	*	*	*	*	54.000		
36680.000	*	*	*	*	54.000		

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmitter (802.11a-6Mbps) (5260MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
10520.000	14.015	52.760	66.775	-7.225	74.000	
15780.000	*	*	*	*	74.000	
21040.000	*	*	*	*	74.000	
26300.000	*	*	*	*	74.000	
31560.000	*	*	*	*	74.000	
36820.000	*	*	*	*	74.000	
Average						
Detector:						
10520.000	14.015	31.850	45.865	-8.135	54.000	
15780.000	*	*	*	*	54.000	
21040.000	*	*	*	*	54.000	
26300.000	*	*	*	*	54.000	
31560.000	*	*	*	*	54.000	
36820.000	*	*	*	*	54.000	
Note						

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmitter (802	.11a-6Mbps) (5260M	Hz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10520.000	14.818	52.730	67.548	-6.452	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							
10520.000	14.818	52.730	67.548	-6.452	54.000		
15780.000	*	*	*	*	54.000		
21040.000	*	*	*	*	54.000		
26300.000	*	*	*	*	54.000		
31560.000	*	*	*	*	54.000		
36820.000	*	*	*	*	54.000		

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS 						
Test Mode	: Mode 1: Transmitter (802.11a-6Mbps) (5300MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10600.000	14.550	51.570	66.119	-7.881	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500.000	*	*	*	*	74.000		
31800.000	*	*	*	*	74.000		
37100.000	*	*	*	*	74.000		
Average							
Detector:							
10600.000	14.550	32.470	47.019	-6.981	54.000		
15900.000	*	*	*	*	54.000		
21200.000	*	*	*	*	54.000		
26500.000	*	*	*	*	54.000		
31800.000	*	*	*	*	54.000		
37100.000	*	*	*	*	54.000		
Note							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Vie	deo DMA					
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmitter (802	.11a-6Mbps) (5300M	Hz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10600.000	14.881	52.680	67.561	-6.439	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500.000	*	*	*	*	74.000		
31800.000	*	*	*	*	74.000		
37100.000	*	*	*	*	74.000		
Average							
Detector:							
10600.000	14.881	31.340	46.221	-7.779	54.000		
15900.000	*	*	*	*	54.000		
21200.000	*	*	*	*	54.000		
26500.000	*	*	*	*	54.000		
31800.000	*	*	*	*	54.000		
37100.000	*	*	*	*	54.000		

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmitter (802.11a-6Mbps) (5320MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10640.000	14.690	53.060	67.750	-6.250	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							
10640.000	14.690	31.180	45.870	-8.130	54.000		
15960.000	*	*	*	*	54.000		
21280.000	*	*	*	*	54.000		
26600.000	*	*	*	*	54.000		
31920.000	*	*	*	*	54.000		
37240.000	*	*	*	*	54.000		
Note							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:7	Fransmitter (802	.11a-6Mbps) (5320M	Hz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10640.000	15.083	50.550	65.633	-8.367	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							
10640.000	15.083	32.310	47.393	-6.607	54.000		
15960.000	*	*	*	*	54.000		
21280.000	*	*	*	*	54.000		
26600.000	*	*	*	*	54.000		
31920.000	*	*	*	*	54.000		
37240.000	*	*	*	*	54.000		

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1	: Mode 1: Transmitter (802.11a-6Mbps) (5500MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11000.000	16.399	49.540	65.939	-8.061	74.000			
16500.000	*	*	*	*	74.000			
22000.000	*	*	*	*	74.000			
27500.000	*	*	*	*	74.000			
33000.000	*	*	*	*	74.000			
38500.000	*	*	*	*	74.000			
Average								
Detector:								
11000.000	16.399	28.93	45.329	-8.671	54.000			
16500.000	*	*	*	*	54.000			
22000.000	*	*	*	*	54.000			
27500.000	*	*	*	*	54.000			
33000.000	*	*	*	*	54.000			
38500.000	*	*	*	*	54.000			

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

4. "*", means this data is the too weak instrument of signal is unable to test.

5. Measurement Level = Reading Level + Correct Factor.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Vide	eo DMA					
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1: 7	Fransmitter (802	.11a-6Mbps) (5500M	Hz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
11000.000	17.132	49.130	66.262	-7.738	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
33000.000	*	*	*	*	74.000		
38500.000	*	*	*	*	74.000		
Average							
Detector:							
11000.000	17.132	28.150	45.282	-8.718	54.000		
16500.000	*	*	*	*	54.000		
22000.000	*	*	*	*	54.000		
27500.000	*	*	*	*	54.000		
33000.000	*	*	*	*	54.000		
38500.000	*	*	*	*	54.000		

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	 No.3 OATS Mode 1: Transmitter (802.11a-6Mbps) (5600MHz) 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11200.000	16.656	49.270	65.926	-8.074	74.000		
16800.000	*	*	*	*	74.000		
22400.000	*	*	*	*	74.000		
28000.000	*	*	*	*	74.000		
33600.000	*	*	*	*	74.000		
39200.000	*	*	*	*	74.000		
Average							
Detector:							
11200.000	16.656	30.960	47.616	-6.384	54.000		
16800.000	*	*	*	*	54.000		
22400.000	*	*	*	*	54.000		
28000.000	*	*	*	*	54.000		
33600.000	*	*	*	*	54.000		
39200.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OA	ATS				
Test Mode	: Mode 1:	: Transmitter (802	.11a-6Mbps) (5600M	Hz)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Vertical						
Peak Detector:						
11200.000	17.726	47.880	65.606	-8.394	74.000	
16800.000	*	*	*	*	74.000	
22400.000	*	*	*	*	74.000	
28000.000	*	*	*	*	74.000	
33600.000	*	*	*	*	74.000	
39200.000	*	*	*	*	74.000	
Average						
Detector:						
11200.000	17.726	29.670	47.396	-6.604	54.000	
16800.000	*	*	*	*	54.000	
22400.000	*	*	*	*	54.000	
28000.000	*	*	*	*	54.000	
33600.000	*	*	*	*	54.000	
39200.000	*	*	*	*	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1: Transmitter (802.11a-6Mbps) (5700MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11400.000	16.530	50.740	67.271	-6.729	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
34200.000	*	*	*	*	74.000		
39900.000	*	*	*	*	74.000		
Average							
Detector:							
11400.000	16.530	30.200	46.731	-7.269	54.000		
17100.000	*	*	*	*	54.000		
22800.000	*	*	*	*	54.000		
28500.000	*	*	*	*	54.000		
34200.000	*	*	*	*	54.000		
39900.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

: ROS Video DMA						
: Harmonic Radiated Emission Data						
: No.3 OATS						
: Mode 1: 7	Fransmitter (802	.11a-6Mbps) (5700M	Hz)			
Correct	Reading	Measurement	Margin	Limit		
Factor	Level	Level				
dB	dBuV	dBuV/m	dB	dBuV/m		
17.138	48.990	66.128	-7.872	74.000		
*	*	*	*	74.000		
*	*	*	*	74.000		
*	*	*	*	74.000		
*	*	*	*	74.000		
*	*	*	*	74.000		
17.138	30.300	47.438	-6.562	54.000		
*	*	*	*	54.000		
*	*	*	*	54.000		
*	*	*	*	54.000		
*	*	*	*	54.000		
*	*	*	*	54.000		
	 Harmonic No.3 OAT Mode 1: 7 Correct Factor dB 17.138 * <li< td=""><td> Harmonic Radiated Emission No.3 OATS Mode 1: Transmitter (802) Correct Reading Factor Level dB dBuV 17.138 48.990 * </td><td> Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmitter (802.11a-6Mbps) (5700M Correct Reading Measurement Level dB dBuV dBuV/m 17.138 48.990 66.128 * *</td><td>: Harmonic Radiated Emission Data : No.3 OATS : Mode 1: Transmitter (802.11a-6Mbps) (5700MHz) Correct Reading Measurement Margin Factor Level Level Margin dB dBuV dBuV/m dB 17.138 48.990 66.128 -7.872 * * * * * * * * 17.138 48.990 66.128 -7.872 * * * * * * * * 17.138 48.990 66.128 -7.872 * * * * * * * * * * * * * * * * * * * * 17.138 30.300 47.438 -6.562 * * * * * * * * * * * * * *</td></li<>	 Harmonic Radiated Emission No.3 OATS Mode 1: Transmitter (802) Correct Reading Factor Level dB dBuV 17.138 48.990 * 	 Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmitter (802.11a-6Mbps) (5700M Correct Reading Measurement Level dB dBuV dBuV/m 17.138 48.990 66.128 * *	: Harmonic Radiated Emission Data : No.3 OATS : Mode 1: Transmitter (802.11a-6Mbps) (5700MHz) Correct Reading Measurement Margin Factor Level Level Margin dB dBuV dBuV/m dB 17.138 48.990 66.128 -7.872 * * * * * * * * 17.138 48.990 66.128 -7.872 * * * * * * * * 17.138 48.990 66.128 -7.872 * * * * * * * * * * * * * * * * * * * * 17.138 30.300 47.438 -6.562 * * * * * * * * * * * * * *		

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmitter (802.11n-20BW 13Mbps) (5180MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10360.000	12.930	45.140	58.070	-15.930	74.000		
16580.000	*	*	*	*	74.000		
21760.000	*	*	*	*	74.000		
26940.000	*	*	*	*	74.000		
32120.000	*	*	*	*	74.000		
37300.000	*	*	*	*	74.000		
Average							
Detector:							
10360.000	12.930	26.280	39.210	-14.790	54.000		
16580.000	*	*	*	*	54.000		
21760.000	*	*	*	*	54.000		
26940.000	*	*	*	*	54.000		
32120.000	*	*	*	*	54.000		
37300.000	*	*	*	*	54.000		
Note							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA							
Test Item	: Harmonic Radiated Emission Data							
Test Site								
Test Mode	: Mode 2	: Mode 2: Transmitter (802.11n-20BW 13Mbps) (5180MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10360.000	13.724	48.610	62.334	-11.666	74.000			
16580.000	*	*	*	*	74.000			
21760.000	*	*	*	*	74.000			
26940.000	*	*	*	*	74.000			
32120.000	*	*	*	*	74.000			
37300.000	*	*	*	*	74.000			
Average								
Detector:								
10360.000	13.724	29.350	43.074	-10.926	54.000			
16580.000	*	*	*	*	54.000			
21760.000	*	*	*	*	54.000			
26940.000	*	*	*	*	54.000			
32120.000	*	*	*	*	54.000			
37300.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmitter (802.11n-20BW 13Mbps) (5220MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10440.000	13.322	46.980	60.302	-13.698	74.000		
15660.000	*	*	*	*	74.000		
20880.000	*	*	*	*	74.000		
26100.000	*	*	*	*	74.000		
31320.000	*	*	*	*	74.000		
36540.000	*	*	*	*	74.000		
Average							
Detector:							
10440.000	13.322	29.380	42.702	-11.298	54.000		
15660.000	*	*	*	*	54.000		
20880.000	*	*	*	*	54.000		
26100.000	*	*	*	*	54.000		
31320.000	*	*	*	*	54.000		
36540.000 Note:	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2:	Transmitter (802	.11n-20BW 13Mbps)	(5220MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10440.000	14.245	50.730	64.975	-9.025	74.000			
15660.000	*	*	*	*	74.000			
20880.000	*	*	*	*	74.000			
26100.000	*	*	*	*	74.000			
31320.000	*	*	*	*	74.000			
36540.000	*	*	*	*	74.000			
Average								
Detector:								
10440.000	14.245	32.330	46.575	-7.425	54.000			
15660.000	*	*	*	*	54.000			
20880.000	*	*	*	*	54.000			
26100.000	*	*	*	*	54.000			
31320.000	*	*	*	*	54.000			
36540.000	*	*	*	*	54.000			

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmitter (802.11n-20BW 13Mbps) (5240MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10480.000	13.693	45.130	58.824	-15.176	74.000		
15720.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
31440.000	*	*	*	*	74.000		
36680.000	*	*	*	*	74.000		
Average							
Detector:							
10480.000	13.693	28.670	42.364	-11.636	54.000		
15720.000	*	*	*	*	54.000		
20960.000	*	*	*	*	54.000		
26200.000	*	*	*	*	54.000		
31440.000	*	*	*	*	54.000		
36680.000 Note:	*	*	*	*	54.000		

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2	: Transmitter (802	.11n-20BW 13Mbps)	(5240MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10480.000	14.620	48.550	63.171	-10.829	74.000			
15720.000	*	*	*	*	74.000			
20960.000	*	*	*	*	74.000			
26200.000	*	*	*	*	74.000			
31440.000	*	*	*	*	74.000			
36680.000	*	*	*	*	74.000			
Average								
Detector:								
10480.000	14.620	31.360	45.981	-8.019	54.000			
15720.000	*	*	*	*	54.000			
20960.000	*	*	*	*	54.000			
26200.000	*	*	*	*	54.000			
31440.000	*	*	*	*	54.000			
36680.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmitter (802.11n-20BW 13Mbps) (5260MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10520.000	14.015	45.730	59.745	-14.255	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							
10520.000	14.015	29.660	43.675	-10.325	54.000		
15780.000	*	*	*	*	54.000		
21040.000	*	*	*	*	54.000		
26300.000	*	*	*	*	54.000		
31560.000	*	*	*	*	54.000		
36820.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OA	: No.3 OATS						
Test Mode	: Mode 2	: Transmitter (802	2.11n-20BW 13Mbps)	(5260MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10520.000	14.818	49.110	63.928	-10.072	74.000			
15780.000	*	*	*	*	74.000			
21040.000	*	*	*	*	74.000			
26300.000	*	*	*	*	74.000			
31560.000	*	*	*	*	74.000			
36820.000	*	*	*	*	74.000			
Average								
Detector:								
10520.000	14.818	32.560	47.378	-6.622	54.000			
15780.000	*	*	*	*	54.000			
21040.000	*	*	*	*	54.000			
26300.000	*	*	*	*	54.000			
31560.000	*	*	*	*	54.000			
36820.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmitter (802.11n-20BW 13Mbps) (5300MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10600.000	14.550	47.450	61.999	-12.001	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500000	*	*	*	*	74.000		
31800.000	*	*	*	*	74.000		
37100.000	*	*	*	*	74.000		
Average							
Detector:							
10600.000	14.550	32.600	47.149	-6.851	54.000		
15900.000	*	*	*	*	54.000		
21200.000	*	*	*	*	54.000		
26500000	*	*	*	*	54.000		
31800.000	*	*	*	*	54.000		
37100.000	*	*	*	*	54.000		

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	Test Site : No.3 OATS						
Test Mode	: Mode 2:	Transmitter (802	.11n-20BW 13Mbps)	(5300MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10600.000	14.881	52.250	67.131	-6.869	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500000	*	*	*	*	74.000		
31800.000	*	*	*	*	74.000		
37100.000	*	*	*	*	74.000		
Average							
Detector:							
10600.000	14.881	32.180	47.061	-6.939	54.000		
15900.000	*	*	*	*	54.000		
21200.000	*	*	*	*	54.000		
26500000	*	*	*	*	54.000		
31800.000	*	*	*	*	54.000		
37100.000	*	*	*	*	54.000		

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmitter (802.11n-20BW 13Mbps) (5320MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10640.000	14.690	48.430	63.120	-10.880	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							
10640.000	14.690	31.580	46.270	-7.730	54.000		
15960.000	*	*	*	*	54.000		
21280.000	*	*	*	*	54.000		
26600.000	*	*	*	*	54.000		
31920.000	*	*	*	*	54.000		
37240.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	st Site : No.3 OATS						
Test Mode	: Mode 2:	Transmitter (802	.11n-20BW 13Mbps)	(5320MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10640.000	15.083	51.570	66.653	-7.347	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
31920.000	*	*	*	*	74.000		
37240.000	*	*	*	*	74.000		
Average							
Detector:							
10640.000	15.083	31.700	46.783	-7.217	54.000		
15960.000	*	*	*	*	54.000		
21280.000	*	*	*	*	54.000		
26600.000	*	*	*	*	54.000		
31920.000	*	*	*	*	54.000		
37240.000	*	*	*	*	54.000		

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	 ROS Video DMA Harmonic Radiated Emission Data 						
Test Site	 No.3 OATS Mode 2: Transmitter (802.11n-20BW 13Mbps) (5500MHz) 						
Test Mode							
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
	uБ	UDUV		UD			
Horizontal							
Peak Detector:							
11000.000	16.399	42.270	58.669	-15.331	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
33000.000	*	*	*	*	74.000		
38500.000	*	*	*	*	74.000		
Average							
Detector:							
11000.000	16.399	27.470	43.869	-10.131	54.000		
16500.000	*	*	*	*	54.000		
22000.000	*	*	*	*	54.000		
27500.000	*	*	*	*	54.000		
33000.000	*	*	*	*	54.000		
38500.000	*	*	*	*	54.000		
NT /							

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

4. "*", means this data is the too weak instrument of signal is unable to test.

5. Measurement Level = Reading Level + Correct Factor.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	 No.3 OATS Mode 2: Transmitter (802.11n-20BW 13Mbps) (5500MHz) 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
11000.000	17.132	43.400	60.532	-13.468	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
33000.000	*	*	*	*	74.000		
38500.000	*	*	*	*	74.000		
Average							
Detector:							
11000.000	17.132	30.120	47.252	-6.748	54.000		
16500.000	*	*	*	*	54.000		
22000.000	*	*	*	*	54.000		
27500.000	*	*	*	*	54.000		
33000.000	*	*	*	*	54.000		
38500.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	 ROS Video DMA Harmonic Radiated Emission Data 						
Test Site Test Mode	 No.3 OATS Mode 2: Transmitter (802.11n-20BW 13Mbps) (5600MHz) 						
Test Wode	. Whole 2.	. Transmitter (602.	.1111-20 D w 151w10ps)	(300011112)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11200.000	16.656	45.980	62.636	-11.364	74.000		
16800.000	*	*	*	*	74.000		
22400.000	*	*	*	*	74.000		
28000.000	*	*	*	*	74.000		
33600.000	*	*	*	*	74.000		
39200.000	*	*	*	*	74.000		
Average							
Detector:							
11200.000	16.656	29.980	46.636	-7.364	54.000		
16800.000	*	*	*	*	54.000		
22400.000	*	*	*	*	54.000		
28000.000	*	*	*	*	54.000		
33600.000	*	*	*	*	54.000		
39200.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site							
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
11200.000	17.726	46.450	64.176	-9.824	74.000		
16800.000	*	*	*	*	74.000		
22400.000	*	*	*	*	74.000		
28000.000	*	*	*	*	74.000		
33600.000	*	*	*	*	74.000		
39200.000	*	*	*	*	74.000		
Average							
Detector:							
11200.000	17.726	28.080	45.806	-8.194	54.000		
16800.000	*	*	*	*	54.000		
22400.000	*	*	*	*	54.000		
28000.000	*	*	*	*	54.000		
33600.000	*	*	*	*	54.000		
39200.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmitter (802.11n-20BW 13Mbps) (5700MHz) 							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11400.000	16.530	46.520	63.051	-10.949	74.000			
17100.000	*	*	*	*	74.000			
22800.000	*	*	*	*	74.000			
28500.000	*	*	*	*	74.000			
34200.000	*	*	*	*	74.000			
39900.000	*	*	*	*	74.000			
Average Detector:								
11400.000	16.530	30.080	46.611	-7.389	54.000			
	*	30.080 *	40.011 *	-7.389	54.000			
17100.000								
22800.000	*	*	*	*	54.000			
28500.000	*	*	*	*	54.000			
34200.000	*	*	*	*	54.000			
39900.000	*	*	*	*	54.000			

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	 No.3 OATS Mode 2: Transmitter (802.11n-20BW 13Mbps) (5700MHz) 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
11400.000	17.138	47.200	64.338	-9.662	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
34200.000	*	*	*	*	74.000		
39900.000	*	*	*	*	74.000		
Average							
Detector:							
11400.000	17.138	29.640	46.778	-7.222	54.000		
17100.000	*	*	*	*	54.000		
22800.000	*	*	*	*	54.000		
28500.000	*	*	*	*	54.000		
34200.000	*	*	*	*	54.000		
39900.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	 No.3 OATS Mode 3: Transmitter (802.11n-40BW 27Mbps) (5190MHz) 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10380.000	12.939	41.000	53.939	-20.061	74.000		
15570.000	*	*	*	*	74.000		
20760.000	*	*	*	*	74.000		
25950.000	*	*	*	*	74.000		
31140.000	*	*	*	*	74.000		
36330.000	*	*	*	*	74.000		
Average							
Detector:							
10380.000	*	*	*	*	54.000		
15570.000	*	*	*	*	54.000		
20760.000	*	*	*	*	54.000		
25950.000	*	*	*	*	54.000		
31140.000	*	*	*	*	54.000		
36330.000	*	*	*	*	54.000		

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	 No.3 OATS Mode 3: Transmitter (802.11n-40BW 27Mbps) (5190MHz) 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10380.000	13.796	43.390	57.186	-16.814	74.000		
15570.000	*	*	*	*	74.000		
20760.000	*	*	*	*	74.000		
25950.000	*	*	*	*	74.000		
31140.000	*	*	*	*	74.000		
36330.000	*	*	*	*	74.000		
Average							
Detector:							
10380.000	13.796	25.780	39.576	-14.424	54.000		
15570.000	*	*	*	*	54.000		
20760.000	*	*	*	*	54.000		
25950.000	*	*	*	*	54.000		
31140.000	*	*	*	*	54.000		
36330.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmitter (802.11n-40BW 27Mbps) (5230MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10460.000	13.508	46.770	60.278	-13.722	74.000		
15690.000	*	*	*	*	74.000		
20920.000	*	*	*	*	74.000		
26150.000	*	*	*	*	74.000		
31380.000	*	*	*	*	74.000		
36610.000	*	*	*	*	74.000		
Average							
Detector:							
10460.000	13.508	29.630	43.138	-10.862	54.000		
15690.000	*	*	*	*	54.000		
20920.000	*	*	*	*	54.000		
26150.000	*	*	*	*	54.000		
31380.000	*	*	*	*	54.000		
36610.000	*	*	*	*	54.000		
Noto:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site							
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10460.000	14.433	43.520	57.953	-16.047	74.000		
15690.000	*	*	*	*	74.000		
20920.000	*	*	*	*	74.000		
26150.000	*	*	*	*	74.000		
31380.000	*	*	*	*	74.000		
36610.000	*	*	*	*	74.000		
Average							
Detector:							
10460.000	14.433	28.240	42.673	-11.327	54.000		
15690.000	*	*	*	*	54.000		
20920.000	*	*	*	*	54.000		
26150.000	*	*	*	*	54.000		
31380.000	*	*	*	*	54.000		
36610.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmitter (802.11n-40BW 27Mbps) (5270MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10540.000	14.151	41.470	55.620	-18.380	74.000		
15810.000	*	*	*	*	74.000		
21080.000	*	*	*	*	74.000		
26350.000	*	*	*	*	74.000		
31620.000	*	*	*	*	74.000		
36890.000	*	*	*	*	74.000		
Average							
Detector:							
10540.000	14.151	27.150	41.300	-12.700	54.000		
15810.000	*	*	*	*	54.000		
21080.000	*	*	*	*	54.000		
26350.000	*	*	*	*	54.000		
31620.000	*	*	*	*	54.000		
36890.000	*	*	*	*	54.000		
Motor							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5270MHz)						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10540.000	14.829	42.662	57.490	-16.510	74.000		
15810.000	*	*	*	*	74.000		
21080.000	*	*	*	*	74.000		
26350.000	*	*	*	*	74.000		
31620.000	*	*	*	*	74.000		
36890.000	*	*	*	*	74.000		
Average							
Detector:							
10540.000	14.829	30.490	45.318	-8.682	54.000		
15810.000	*	*	*	*	54.000		
21080.000	*	*	*	*	54.000		
26350.000	*	*	*	*	54.000		
31620.000	*	*	*	*	54.000		
36890.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmitter (802.11n-40BW 27Mbps) (5310MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10620.000	14.623	44.930	59.553	-14.447	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							
10620.000	14.623	29.080	43.703	-10.297	54.000		
15930.000	*	*	*	*	54.000		
21240.000	*	*	*	*	54.000		
26550.000	*	*	*	*	54.000		
31860.000	*	*	*	*	54.000		
37170.000 Note:	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 O	ATS					
Test Mode	e : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5310MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10620.000	14.970	49.520	64.490	-9.510	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
31860.000	*	*	*	*	74.000		
37170.000	*	*	*	*	74.000		
Average							
Detector:							
10620.000	14.970	32.130	47.100	-6.900	54.000		
15930.000	*	*	*	*	54.000		
21240.000	*	*	*	*	54.000		
26550.000	*	*	*	*	54.000		
31860.000	*	*	*	*	54.000		
37170.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 3	: Transmitter (802	.11n-40BW 27Mbps)	(5510MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11020.000	12.772	42.180	54.953	-19.047	74.000		
16530.000	*	*	*	*	74.000		
22040.000	*	*	*	*	74.000		
27550.000	*	*	*	*	74.000		
33060.000	*	*	*	*	74.000		
38570.000	*	*	*	*	74.000		
Average							
Detector:							
11020.000	12.772	26.640	39.413	-14.587	54.000		
16530.000	*	*	*	*	54.000		
22040.000	*	*	*	*	54.000		
27550.000	*	*	*	*	54.000		
33060.000	*	*	*	*	54.000		
38570.000	*	*	*	*	54.000		

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

4. "*", means this data is the too weak instrument of signal is unable to test.

5. Measurement Level = Reading Level + Correct Factor.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	 No.3 OATS Mode 3: Transmitter (802.11n-40BW 27Mbps) (5510MHz) 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
11020.000	13.138	42.390	55.528	-18.472	74.000		
16530.000	*	*	*	*	74.000		
22040.000	*	*	*	*	74.000		
27550.000	*	*	*	*	74.000		
33060.000	*	*	*	*	74.000		
38570.000	*	*	*	*	74.000		
Average							
Detector:							
11020.000	13.138	27.880	41.018	-12.982	54.000		
16530.000	*	*	*	*	54.000		
22040.000	*	*	*	*	54.000		
27550.000	*	*	*	*	54.000		
33060.000	*	*	*	*	54.000		
38570.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmitter (802.11n-40BW 27Mbps) (5590MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11180.000	16.657	40.730	57.386	-16.614	74.000	
16770.000	*	*	*	*	74.000	
22360.000	*	*	*	*	74.000	
27950.000	*	*	*	*	74.000	
33540.000	*	*	*	*	74.000	
39130.000	*	*	*	*	74.000	
Average						
Detector:						
11180.000	16.657	26.980	43.636	-10.364	54.000	
16770.000	*	*	*	*	54.000	
22360.000	*	*	*	*	54.000	
27950.000	*	*	*	*	54.000	
33540.000	*	*	*	*	54.000	
39130.000	*	*	*	*	54.000	

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OA	ATS					
Test Mode	e : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5590MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
11180.000	17.680	42.990	60.670	-13.330	74.000		
16770.000	*	*	*	*	74.000		
22360.000	*	*	*	*	74.000		
27950.000	*	*	*	*	74.000		
33540.000	*	*	*	*	74.000		
39130.000	*	*	*	*	74.000		
Average							
Detector:							
11180.000	17.680	27.950	45.630	-8.370	54.000		
16770.000	*	*	*	*	54.000		
22360.000	*	*	*	*	54.000		
27950.000	*	*	*	*	54.000		
33540.000	*	*	*	*	54.000		
39130.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmitter (802.11n-40BW 27Mbps) (5670MHz) 					
Frequency MHz	Correct Factor dB	Reading Level dBuV	Measurement Level dBuV/m	Margin dB	Limit dBuV/m	
Horizontal	uD	dDu v	abuvin	uD	dDu V/III	
Peak Detector:						
11340.000	16.408	42.220	58.627	-15.373	74.000	
17010.000	*	*	*	*	74.000	
22680.000	*	*	*	*	74.000	
28350.000	*	*	*	*	74.000	
34020.000	*	*	*	*	74.000	
39690.000	*	*	*	*	74.000	
Average Detector:						
11340.000	16.408	26.650	43.057	-10.943	54.000	
17010.000	*	*	*	*	54.000	
22680.000	*	*	*	*	54.000	
28350.000	*	*	*	*	54.000	
34020.000	*	*	*	*	54.000	
39690.000	*	*	*	*	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ROS Video DMA						
Test Item	: Harmonic Radiated Emission Data						
Test Site							
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
11340.000	17.167	44.310	61.477	-12.523	74.000		
17010.000	*	*	*	*	74.000		
22680.000	*	*	*	*	74.000		
28350.000	*	*	*	*	74.000		
34020.000	*	*	*	*	74.000		
39690.000	*	*	*	*	74.000		
Average							
Detector:							
11340.000	17.167	28.850	46.017	-7.983	54.000		
17010.000	*	*	*	*	54.000		
22680.000	*	*	*	*	54.000		
28350.000	*	*	*	*	54.000		
34020.000	*	*	*	*	54.000		
39690.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ROS Video DMA General Radiated Emission No.3 OATS Mode 1: Transmitter (802.11a-6Mbps) (5220MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector						
31.940	-0.387	26.453	26.067	-13.933	40.000	
99.840	-7.471	43.407	35.936	-7.564	43.500	
243.400	-6.441	40.735	34.294	-11.706	46.000	
433.520	-1.972	39.140	37.168	-8.832	46.000	
650.800	2.175	37.135	39.310	-6.690	46.000	
899.120	5.433	30.668	36.101	-9.899	46.000	
Vertical						
Peak Detector						
64.920	-5.683	39.708	34.025	-5.975	40.000	
295.780	-7.455	44.101	36.646	-9.354	46.000	
499.480	-0.852	38.807	37.955	-8.045	46.000	
701.240	0.198	37.347	37.545	-8.455	46.000	
798.240	2.808	35.462	38.270	-7.730	46.000	
932.100	6.152	30.773	36.925	-9.075	46.000	

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Product Test Item Test Site Test Mode	: General : No.3 OA		n 11a-6Mbps) (5300M	Hz)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
35.820	-4.149	34.658	30.509	-9.491	40.000
99.840	-7.471	43.073	35.602	-7.898	43.500
322.940	-4.442	39.998	35.556	-10.444	46.000
456.800	-0.067	37.621	37.554	-8.446	46.000
650.800	2.175	36.688	38.863	-7.137	46.000
864.200	5.671	32.536	38.207	-7.793	46.000
Vertical					
Peak Detector					
55.220	-4.699	35.069	30.370	-9.630	40.000
165.800	-7.719	42.468	34.749	-8.751	43.500
321.000	-6.899	37.583	30.684	-15.316	46.000
499.480	-0.852	39.414	38.562	-7.438	46.000
699.300	0.695	36.622	37.317	-8.683	46.000
990.300	3.530	34.501	38.031	-15.969	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Product Test Item	 ROS Video DMA General Radiated Emission 						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmitter (802.	11a-6Mbps) (5500M	Hz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
97.900	-7.650	41.920	34.269	-9.231	43.500		
433.520	-1.972	40.151	38.179	-7.821	46.000		
549.920	2.943	35.776	38.719	-7.281	46.000		
650.800	2.175	36.741	38.916	-7.084	46.000		
846.740	5.741	32.685	38.426	-7.574	46.000		
998.060	8.386	27.773	36.159	-17.841	54.000		
Vertical							
Peak Detector							
64.920	-5.683	39.455	33.772	-6.228	40.000		
216.240	-8.317	45.242	36.925	-9.075	46.000		
365.620	-2.179	39.695	37.516	-8.484	46.000		
499.480	-0.852	39.277	38.425	-7.575	46.000		
600.360	-2.833	41.165	38.332	-7.668	46.000		
701.240	0.198	38.012	38.210	-7.790	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.