

Product Name	2.4GHz wireless transmitter
Model No	AWD210T
FCC ID.	BJM-AWD210T

Applicant	TATUNG CO.
Address	22, Chungshan N. Rd., 3rd Sec. Taipei, Taiwan, 104, R.O.C.

Date of Receipt	Mar. 22, 2010
Issue Date	May. 05, 2010
Report No.	103339R-RFUSP44V01-A
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: May. 05, 2010

Report No.: 103339R-RFUSP44V01-A

Accredited by NIST (NVLAP) NVLAP Lab Code: 200533-0

Product Name	2.4GHz wireless transmitter			
Applicant	TATUNG CO.	TATUNG CO.		
Address	22, Chungshan N. Rd., 3rd Sec. Taipei, Taiwan,	104, R.O.C.		
Manufacturer	TATUNG CO.			
Model No.	AWD210T	AWD210T		
EUT Rated Voltage	DC 5V (Power by USB)			
EUT Test Voltage	AC 120V/60Hz			
Trade Name	Acoustic Research			
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2009	NVLAD		
	ANSI C63.4: 2003	NVLAP Lab Code: 200533-0		
Test Result	Complied			

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By: Jinn Chen

(Adm. Specialist / Jinn Chen)

Tested By :

Approved By

(Assistant Engineer / Joe Guo)

(Manager / Vincent Lin)

FC

0914

TABLE OF CONTENTS

Descri	ption	Page
1.	GENERAL INFORMATION	
1.1.	EUT Description	
1.2.	Operational Description	
1.3.	Tested System Details	
1.4.	Configuration of Tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	10
2.	Conducted Emission	11
2.1.	Test Equipment	
2.2.	Test Setup	11
2.3.	Limits	12
2.4.	Test Procedure	12
2.5.	Uncertainty	12
2.6.	Test Result of Conducted Emission	13
3.	Peak Power Output	15
3.1.	Test Equipment	15
3.2.	Test Setup	15
3.3.	Limits	15
3.4.	Test Procedure	15
3.5.	Uncertainty	15
3.6.	Test Result of Peak Power Output	16
4.	Radiated Emission	17
4.1.	Test Equipment	13
4.2.	Test Setup	18
4.3.	Limits	19
4.4.	Test Procedure	19
4.5.	Uncertainty	19
4.6.	Test Result of Radiated Emission	20
5.	RF antenna conducted test	24
5.1.	Test Equipment	24
5.2.	Test Setup	24
5.3.	Limits	24
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of RF antenna conducted test	26
6.	Band Edge	28
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	31

7.	Occupied Bandwidth	35
7.1.	Test Equipment	35
7.2.	Test Setup	35
7.3.	Limits	35
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	39
8.1.	Test Equipment	39
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	39
8.6.	Test Result of Power Density	
9.	EMI Reduction Method During Compliance Testing	43

Attachment 1: EUT Test Photographs
Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	2.4GHz wireless transmitter	
Trade Name	Acoustic Research	
Model No.	AWD210T	
FCC ID.	BJM-AWD210T	
Frequency Range	2405-2477MHz	
Number of Channels	37CH	
Channel Separation	2MHz	
Type of Modulation	π /4 DQPSK (Differential Quadrature Phase Shift Keying)	
Antenna Type	Printed on PCB	
Antenna Gain	Refer to the table "Antenna List"	
Channel Control	Auto	
Power Adapter	MFR: KINGS, M/N: KSS05-050-1000U	
	Input: AC 100-240V, 50-60Hz, 150mA	
	Output: DC 5V, 1000mA	
	Cable Out: Non-Shielded, 1.8m	

Antenna List

N	No.	Manufacturer	Part No.	Peak Gain
1		TATUNG	N/A	2.0 dBi for 2.4 GHz

Note: The antenna of EUT is conform to FCC 15.203

Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 2:	2405 MHz	Channel 3:	2407 MHz	Channel 4:	2409 MHz
Channel 5:	2411 MHz	Channel 6:	2413 MHz	Channel 7:	2415 MHz
Channel 8:	2417 MHz	Channel 9:	2419 MHz	Channel 10:	2421 MHz
Channel 11:	2423 MHz	Channel 12:	2425 MHz	Channel 13:	2427 MHz
Channel 14:	2429 MHz	Channel 15:	2431 MHz	Channel 16:	2433 MHz
Channel 17:	2435 MHz	Channel 18:	2437 MHz	Channel 19:	2439 MHz
Channel 20:	2441 MHz	Channel 21:	2443 MHz	Channel 22:	2445 MHz
Channel 23:	2447 MHz	Channel 24:	2449 MHz	Channel 25:	2451 MHz
Channel 26:	2453 MHz	Channel 27:	2455 MHz	Channel 28:	2457 MHz
Channel 29:	2459 MHz	Channel 30:	2461 MHz	Channel 31:	2463 MHz
Channel 32:	2465 MHz	Channel 33:	2467 MHz	Channel 34:	2469 MHz
Channel 35:	2471 MHz	Channel 36:	2473 MHz	Channel 37:	2475 MHz
Channel 38:	2477 MHz				

- 1. The EUT is a 2.4GHz wireless transmitter with a built-in 2.4GHz transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. These tests are conducted on a sample for the purpose of demonstrating compliance of 2.4GHz transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices
- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode:	Mode 1: Transmit

1.2. Operational Description

The EUT is a 2.4GHz wireless transmitter with a built-in 2.4GHz transceiver, The EUT operation frequency is 2405~2477MHz, The signals modulated by $\,\pi$ /4 DQPSK (Differential Quadrature Phase Shift Keying), The Antenna is Printed on PCB.

1.3. Tested System Details


The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	DELL	PPT	N/A	Non-shielded, 0.8m
2	Monitor	Dell	2407WFPb	CN-0YY528-46633-796-12RS	Non-shielded, 1.8m
3	Modem	ACEEX	DM-1414	0102027550	Non-shielded, 1.8m
4	CD-ROM	Dell	N/A	N/A	N/A
5	Microphone & Earphone	PCHOME	N/A	N/A	N/A
6	Test Fixture	N/A	N/A	N/A	N/A

	Signal Cable Type	Signal cable Description
A	USB Cable	Non-shielded, 1.5m
В	Signal Cable	Non-shielded, 0.1m
C	VGA Cable	Shielded, 1.8m, with one ferrite core bonded.
D	RS-232 Cable	Non-shielded, 1.5m
Е	CD-ROM USB Cable	Non-shielded, 0.5m
F	Microphone & Earphone Cable	Non-shielded, 1.6m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in section 1.4
- (2) Execute the "AMD2 Debug Ver 1.37.001" program (the continuous transmission program) on the EUT.
- (3) Setup the test mode, the test channel, and the data rate.
- (4) Press OK to start the transmission.
- (5) Verify that the EUT works correctly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: http://tw.quietek.com/tw/emc/accreditations/accreditations.htm
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/

Site Description: File on

Federal Communications Commission

FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046

Registration Number: 92195

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation

Site Address: No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen,

Lin-Kou Shiang, Taipei,

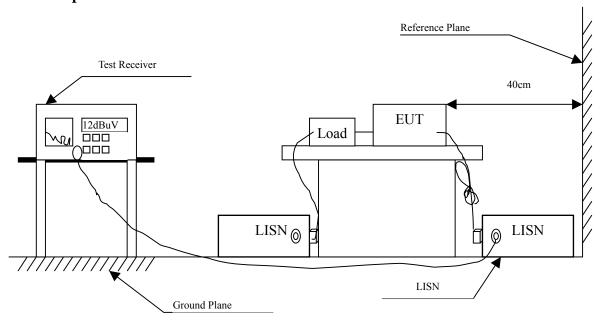
Taiwan, R.O.C.

TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789

E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2010	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2010	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2010	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2010	
5	No.1 Shielded Room	n		N/A	

Note: All instruments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit					
Frequency	ncy Limits				
MHz	QP	AVG			
0.15 - 0.50	66-56	56-46			
0.50-5.0	56	46			
5.0 - 30	60	50			

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product : 2.4GHz wireless transmitter
Test Item : Conducted Emission Test

Power Line : Line 1

Test Mode : Mode 1: Transmit

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.177	9.730	36.290	46.019	-19.210	65.229
0.209	9.701	33.830	43.531	-20.783	64.314
0.306	9.650	30.660	40.310	-21.233	61.543
0.525	9.640	30.930	40.570	-15.430	56.000
0.627	9.630	31.550	41.180	-14.820	56.000
6.408	9.740	34.620	44.360	-15.640	60.000
Average					
0.177	9.730	28.480	38.209	-17.020	55.229
0.209	9.701	24.700	34.401	-19.913	54.314
0.306	9.650	18.380	28.030	-23.513	51.543
0.525	9.640	19.920	29.560	-16.440	46.000
0.627	9.630	20.050	29.680	-16.320	46.000
6.408	9.740	25.990	35.730	-14.270	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product : 2.4GHz wireless transmitter
Test Item : Conducted Emission Test

Power Line : Line 2

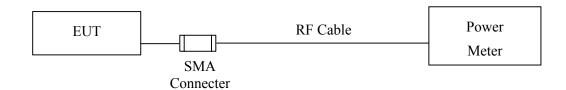
Test Mode : Mode 1: Transmit

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 2					
Quasi-Peak					
0.181	9.732	34.090	43.822	-21.292	65.114
0.298	9.660	30.720	40.380	-21.391	61.771
0.588	9.643	29.830	39.473	-16.527	56.000
3.498	9.693	28.440	38.133	-17.867	56.000
4.826	9.700	31.370	41.070	-14.930	56.000
6.435	9.730	32.280	42.010	-17.990	60.000
Average					
0.181	9.732	27.190	36.922	-18.192	55.114
0.298	9.660	22.980	32.640	-19.131	51.771
0.588	9.643	20.190	29.833	-16.167	46.000
3.498	9.693	20.800	30.493	-15.507	46.000
4.826	9.700	23.170	32.870	-13.130	46.000
6.435	9.730	23.780	33.510	-16.490	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. **Test Equipment**


The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.		
X	Power Meter	Anritsu	ML2495A/6K00003357	May, 2010		
X	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2009		
Note:	1. All instruments are calibrated every one year.					

2. The test instruments marked by "X" are used to measure the final test results.

3.2. Test Setup

Conducted Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Output

Product : 2.4GHz wireless transmitter
Test Item : Peak Power Output Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
02	2405.00	2.96	<30dBm	Pass
20	2441.00	2.98	<30dBm	Pass
38	2477.00	2.43	<30dBm	Pass

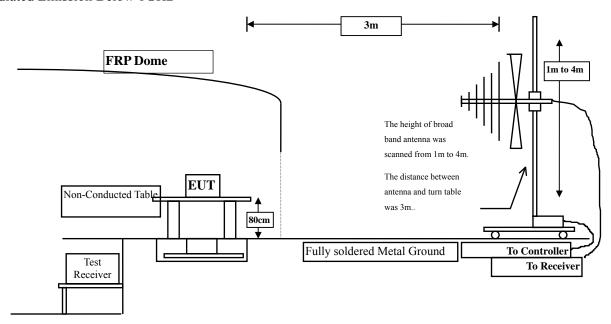
Note: Peak Power Output Value =Reading value on peak power meter + cable loss

4. Radiated Emission

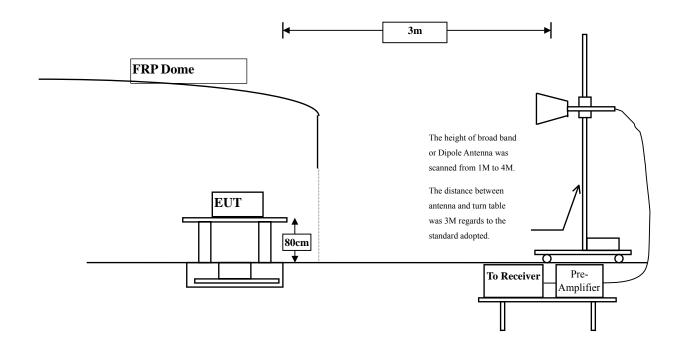
4.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
⊠Site # 3	X	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	X	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	X	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
	X	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2010
	X	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.



4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits					
Frequency MHz	uV/m @3m	dBuV/m@3m			
30-88	100	40			
88-216	150	43.5			
216-960	200	46			
Above 960	500	54			

Remarks: E field strength (dBuV/m) = 20 log E field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product : 2.4GHz wireless transmitter

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (2405MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4810.000	3.323	51.551	54.874	-19.126	74.000
7215.000	10.289	42.084	52.374	-21.626	74.000
9620.000	13.595	36.376	49.972	-24.028	74.000
Average Detector:					
4810.000	3.323	44.711	48.034	-5.966	54.000
Vertical					
Peak Detector:					
4810.000	6.591	51.343	57.934	-16.066	74.000
7215.000	11.151	41.362	52.514	-21.486	74.000
9620.000	14.014	35.327	49.342	-24.658	74.000
Average Detector:					
4810.000	6.591	43.333	49.924	-4.076	54.000

- 1. Correct factor = Antenna Factor + Cable Loss Pre-amplifier Gain
- 2. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product : 2.4GHz wireless transmitter

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (2441MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					_
Peak Detector:					
4882.000	3.001	52.920	55.921	-18.079	74.000
7323.000	11.846	41.150	52.997	-21.003	74.000
9764.000	12.563	36.440	49.003	-24.997	74.000
Average Detector:					
4882.000	3.001	46.600	49.601	-4.399	54.000
Vertical					
Peak Detector:					
4882.000	5.713	52.520	58.234	-15.766	74.000
7323.000	12.727	39.650	52.378	-21.622	74.000
9764.000	13.028	36.540	49.568	-24.432	74.000
Average Detector:					
4882.000	5.713	46.230	51.944	-2.056	54.000

- 1. Correct factor = Antenna Factor + Cable Loss Pre-amplifier Gain
- 2. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product : 2.4GHz wireless transmitter

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (2477MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4954.000	2.777	50.290	53.067	-20.933	74.000
7431.000	12.481	44.380	56.861	-17.139	74.000
9908.000	13.389	36.060	49.449	-24.551	74.000
Average Detector:					
7431.000	12.481	32.899	45.380	-8.620	54.000
Vertical					
Peak Detector:					
4954.000	5.552	45.860	51.412	-22.588	74.000
7431.000	13.412	45.490	58.903	-15.097	74.000
9908.000	13.968	36.270	50.238	-23.762	74.000
Average Detector:					
7431.000	13.412	33.977	47.390	-6.610	54.000

- 1. Correct factor = Antenna Factor + Cable Loss Pre-amplifier Gain
- 2. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product : 2.4GHz wireless transmitter
Test Item : General Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (2441MHz)

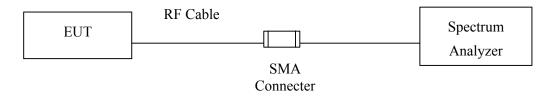
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
47.460	-9.151	34.353	25.203	-14.797	40.000
615.880	3.215	27.405	30.620	-15.380	46.000
627.520	1.660	29.332	30.992	-15.008	46.000
759.440	4.372	26.572	30.944	-15.056	46.000
922.400	6.334	27.447	33.781	-12.219	46.000
984.480	7.679	29.375	37.054	-16.946	54.000
Vertical					
101.780	-0.021	25.945	25.923	-17.577	43.500
627.520	-3.120	30.053	26.933	-19.067	46.000
800.180	2.801	26.971	29.772	-16.228	46.000
947.620	6.609	27.515	34.124	-11.876	46.000
959.260	6.964	29.749	36.713	-9.287	46.000
970.900	7.302	29.307	36.609	-17.391	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

5. RF antenna conducted test

5.1. Test Equipment

The following test equipments are used during the radiated emission tests:


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
X	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2010

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

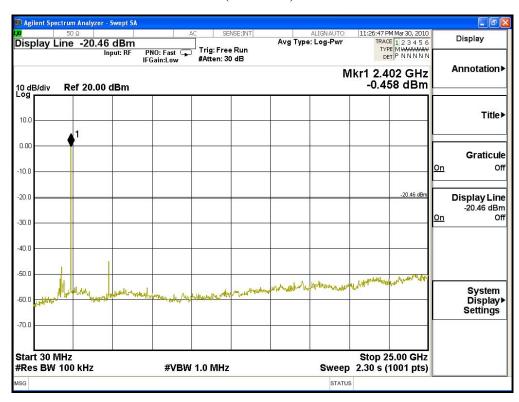
The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

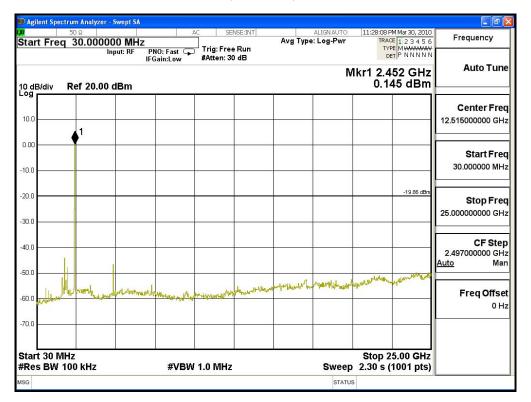
The measurement uncertainty

Conducted is defined as \pm 1.27dB

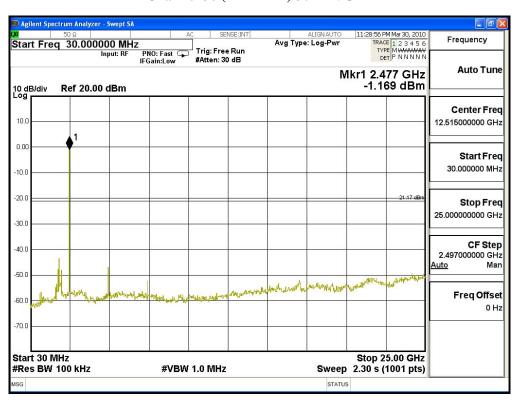

5.6. Test Result of RF antenna conducted test

Product : 2.4GHz wireless transmitter
Test Item : RF antenna conducted test

Test Site : No.3 OATS


Test Mode : Mode 1: Transmit

Channel 02 (2405MHz) 30M-25GHz



Channel 20 (2441MHz) 30M-25GHz

Channel 38 (2477MHz) 30M-25GHz

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

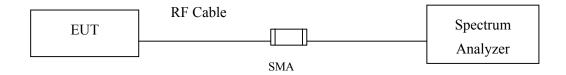
	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
X	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2010

Note:

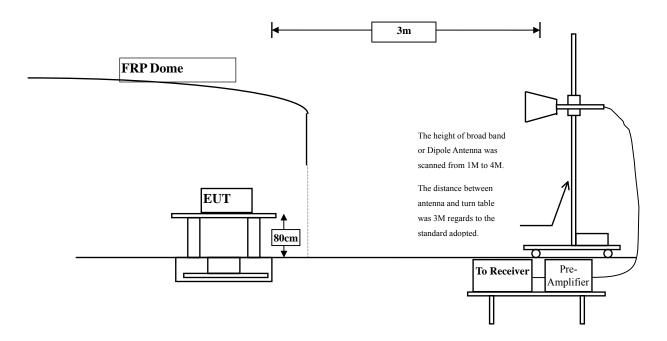
- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:


Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
⊠Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	X	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
	X	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2010
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

- 1. All instruments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.



6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product : 2.4GHz wireless transmitter

Test Item : Band Edge Data
Test Site : No.3 OATS
Test Mode : Mode 1: Transmit

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2405	31.593	61.87	93.463	Peak
Vertical	2405	30.926	62.81	93.736	Peak

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2389.5	93.463	52.057	41.406	Peak
Vertical	2389.5	93.736	52.057	41.679	Peak

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Frequency Center Freq 2.390000000 GHz Input: RF PNO: Fast FGain:Low Avg Type: Log-Pwr Avg|Hold>100/100 Trig: Free Run #Atten: 20 dB **Auto Tune** Mkr4 2.373 05 GHz -52.343 dBm Ref 10.00 dBm 0.00 Center Freq 2.390000000 GHz -20.0 -30.0 Start Freq -40.0 2.365000000 GHz -50.0 -60.0 Stop Freq -70.C 2.415000000 GHz Center 2.39000 GHz #Res BW 1.0 MHz Span 50.00 MHz CF Step 5.000000 MHz Man #VBW 1.0 MHz #Sweep 500 ms (1001 pts) MKR MODE TRC SCL 2.050 dBm -53.078 dBm -50.007 dBm -52.343 dBm 1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 2.405 05 GHz 2.390 00 GHz 2.389 50 GHz 2.373 05 GHz Freq Offset 0 Hz 8 9 10 11 12

STATUS

Peak Detector of conducted Band Edge Delta

Product : 2.4GHz wireless transmitter

Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 1: Transmit

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2477	30.926	62.81	93.736	Peak
Vertical	2477	31.392	60.94	92.332	Peak

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2483.5	93.736	48.101	45.635	Peak
Vertical	2483.5	92.332	48.101	44.231	Peak

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

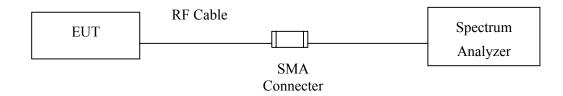
 Δ = Conducted Band Edge Delta (Peak or Average)

Frequency Center Freq 2.483500000 GHz Input: RF PNO: Fast IFGain:Low Avg Type: Log-Pwr Avg|Hold>100/100 Trig: Free Run #Atten: 20 dB **Auto Tune** Mkr2 2.483 50 GHz -46.477 dBm Ref 10.00 dBm 0.00 Center Freq 2.483500000 GHz -20.0 -30.0 Start Freq -40.0 2.458500000 GHz -50.0 -60.0 Stop Freq -70.C 2.508500000 GHz Center 2.48350 GHz #Res BW 1.0 MHz Span 50.00 MHz CF Step 5.000000 MHz Man **#VBW 1.0 MHz** #Sweep 500 ms (1001 pts) MKR MODE TRC SCL <u>Auto</u> 1.624 dBm -46.477 dBm 1 N 1 f 2 N 1 f 2.476 80 GHz 2.483 50 GHz Freq Offset 0 Hz STATUS

Peak Detector of conducted Band Edge Delta

7. Occupied Bandwidth

7.1. Test Equipment


The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
X	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2010

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

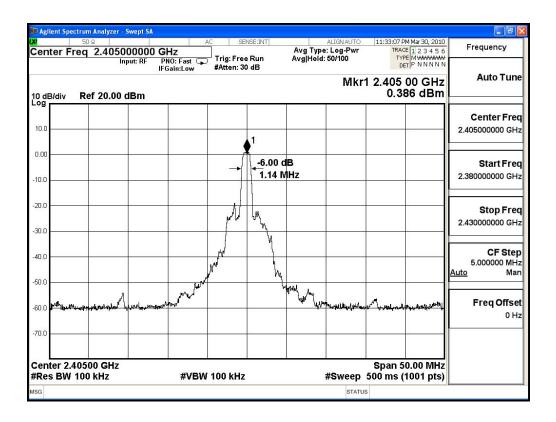
The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Span greater than RBW.

7.5. Uncertainty

± 150Hz

7.6. Test Result of Occupied Bandwidth

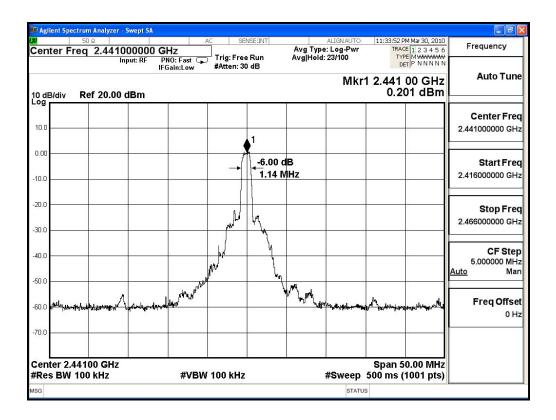

Product : 2.4GHz wireless transmitter
Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (2402MHz)

Channel No	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
02	2405.00	11400	>500	Pass

Figure Channel 02:

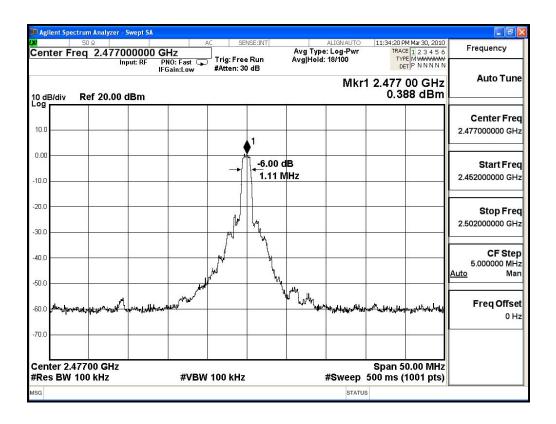

Product : 2.4GHz wireless transmitter
Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (2441MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
20	2441.00	11400	>500	Pass

Figure Channel 20:


Product : 2.4GHz wireless transmitter
Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

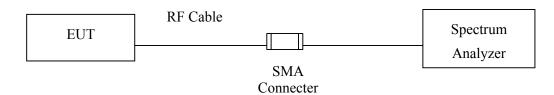
Test Mode : Mode 1: Transmit (2480MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
38	2477.00	11100	>500	Pass

Figure Channel 38:

8. Power Density

8.1. Test Equipment


The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
X	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2010

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

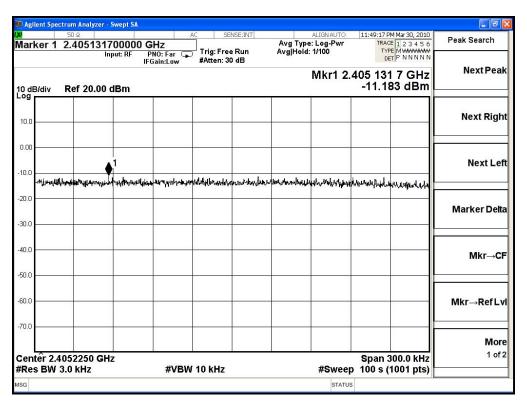
Set RBW= 3 kHz, VBW=10KHz, Sweep time=(SPAN/3KHz), detector=Peak detector

8.5. Uncertainty

± 1.27 dB

8.6. Test Result of Power Density

Product : 2.4GHz wireless transmitter


Test Item : Power Density Data

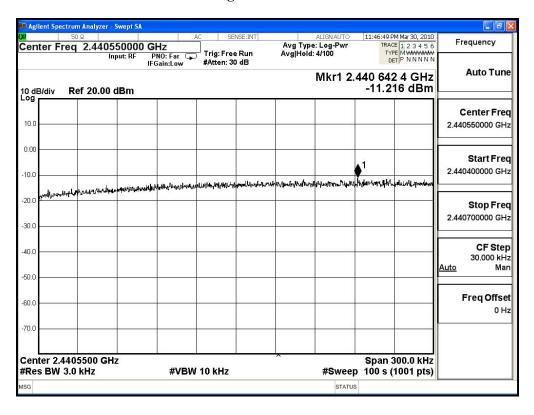
Test Site : No.3 OATS

Test Mode : Mode 1: Transmit(2402MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
02	2405.00	-11.183	< 8dBm	Pass

Figure Channel 02:

Product : 2.4GHz wireless transmitter


Test Item : Power Density Data

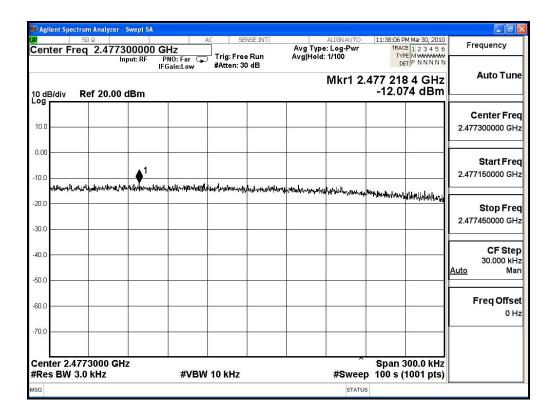
Test Site : No.3OATS

Test Mode : Mode 1: Transmit (2441MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
20	2441	-11.216	< 8dBm	Pass

Figure Channel 20:

Product : 2.4GHz wireless transmitter


Test Item : Power Density Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (2480MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
38	2477.00	-12.074	< 8dBm	Pass

Figure Channel 38:

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.