

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

BLUETOOTH MODULE

MODEL NUMBER: GN-2020

FCC ID: BJI-GN2020 IC: 1004C-GN2020

REPORT NUMBER: 31LE0192-SH-A

ISSUE DATE: August 3, 2011

Prepared for TOSHIBA TEC CORPORATION 6-78, MINAMI-CHO MISHIMA-SHI SHIZUOKA-PREF, 411-8520, JAPAN

Prepared by UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number : +81 463 50 6400 Facsimile number : +81 463 50 6401 JAB Accreditation No. : RTL02610

Revision History

Rev.	lssue Date	Revisions	Revised By
	08/03/11	Initial Issue	A.Hayashi

Page 2 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS4	
2.	TE	ST METHODOLOGY5	;
3.	FAG	CILITIES AND ACCREDITATION5	;
4.	CA	LIBRATION AND UNCERTAINTY5	;
4.	.1.	MEASURING INSTRUMENT CALIBRATION	5
4.	.2.	SAMPLE CALCULATION	5
4.	.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST6	;
5.	.1.	DESCRIPTION OF EUT	;
5.	.2.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	;
5.	.3.	MAXIMUM OUTPUT POWER6	;
5.	.4.	DESCRIPTION OF AVAILABLE ANTENNAS	;
5.	.5.	SOFTWARE AND FIRMWARE	5
5.	.6.	WORST-CASE CONFIGURATION AND MODE	;
5.	.7.	DESCRIPTION OF TEST SETUP	7
6.	TES	ST AND MEASUREMENT EQUIPMENT10)
7.	AN	TENNA PORT TEST RESULTS *11	
8.	RA	DIATED TEST RESULTS12	
8.	.1.	LIMITS AND PROCEDURE	•
8.	.2 <i>.</i> 8.2	TRANSMITTER ABOVE 1 GHz	}
8.	.3.	RECEIVER ABOVE 1 GHz22)
8.	.4.	WORST-CASE BELOW 1 GHz23	}
9.	AC	POWER LINE CONDUCTED EMISSIONS	;
10.	Μ	IAXIMUM PERMISSIBLE EXPOSURE)
11.	Μ	IAXIMUM PERMISSIBLE EXPOSURE (CO-LOCATED)	;
SET	UP	PHOTOS	

Page 3 of 36

UL Japan, Inc. Shonan EMC Lab.

¹⁻²²⁻³ Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

1. ATTESTATION OF TEST RESULTS

MODEL:	GN-2020	
SERIAL NUMBER:	002258C52904	
DATE TESTED:	July 19 and 20, 2011	
	APPLICABLE STANDARDS	
	STANDARD	TEST RESULTS
		_

STANDAND	
CFR 47 Part 15 Subpart C	Pass
INDUSTRY CANADA RSS-210 Issue 8 Annex 8	Pass
INDUSTRY CANADA RSS-GEN Issue 3	Pass

UL Japan, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Japan, Inc based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Japan, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Japan, Inc. will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by any government agency.

Approved & Released For UL Japan, Inc. By:

Tested By:

shinto

Go Ishiwata Manager of WiSE Japan, UL Verification Service

A. Mayach

Akio Hayashi Engineer of WiSE Japan, UL Verification Service

Page 4 of 36

UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN.

UL Japan is accredited by JAB, Laboratory Code RTL02610. The full scope of accreditation can be viewed at http://www.jab.or.jp/cgi-bin/jab_exam_proof_j.cgi?page=2&authorization_number=RTL02610

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY	
Power Line Conducted Emission	150kHz-30MHz	+/- 3.1 dB
	30MHz-300MHz	+/- 4.7 dB
	300MHz-1000MHz	+/- 4.6 dB
Radiated Emission	1000MHz-13GHz	+/- 4.0 dB
	13GHz-18GHz	+/- 4.8 dB
	18GHz-26.5GHz	+/- 4.2 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 36

UL Japan, Inc. Shonan EMC Lab.

¹⁻²²⁻³ Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth Module (Power Class 2). The radio module is manufactured by Taiyo Yuden.

5.2. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The major change filed under this application is adding a ferrite core on the antenna to install into the specific host, Toshiba TEC Multifunctional Digital System; DP-2095, DP-2530, DP-3020, DP-3590, DP-4590, DP-5560, DP-6560, DP-7560, and DP-8560. The test was conducted by DP-3020, a representative model of Toshiba TEC Multifunctional Digital System.

5.3. MAXIMUM OUTPUT POWER

The test measurement passed within ± 0.5 dBm of the original output power.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna, a maximum gain, 0.5dBi including the cable loss.

5.5. SOFTWARE AND FIRMWARE

The EUT driver software installed in the Laptop during testing was Bluetest, rev. 3

5.6. WORST-CASE CONFIGURATION AND MODE

The EUT was tested in the direction normally used.

The worst-case channel is determined as the channel with the highest output power, radiated emissions below 1 GHz was performed with the EUT set to the channel with highest output power, and BDR mode was the worst mode.

The power line conducted emissions was performed with the EUT set to the normal operation mode (Bluetooth Hopping ON).

Page 6 of 36

UL Japan, Inc. Shonan EMC Lab.

¹⁻²²⁻³ Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

5.7. **DESCRIPTION OF TEST SETUP**

SUPPORT EQUIPMENT

	PERIPHERAL SUPPORT EQUIPMENT LIST										
Description	Manufacturer	Model	Serial Number								
Multifunction Digital System	Toshiba	DP-3020	CLD135318								
Test Jig	Taiyo Yuden	-	-								

I/O CABLES

	I/O CABLE LIST												
Cable	Port	Port # of Connector Cable Cable											
No.		Identical	Identical Type		Length								
		Ports											
1	AC Input	1	AC	Un-Shielded	1.9m	N/A							
2	DC and Signal	1	USB	Un-Shielded	0.1m	N/A							
3	DC Input	1	DC	Un-Shielded	2.3m	N/A							

Page 7 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

SETUP DIAGRAM FOR RADIATED TESTS

Page 8 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

SETUP DIAGRAM FOR CONDUCTED TESTS

Page 9 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration
						Interval(month
	O a suist O able 9 DE	Outra an/Euclideana (Outra		(0004.074/DE	05	
C6/C7/C8/C1	Selector	Sunner/Fujikura/Sun ner/Suhner/TOYO	141PE/12DSFA/1 41PE/141PE/NS4	-/0901-271(RF	CE	2011/04/28 ^ 12
0/SRSE-03			906	Selector)		
SLS-05	LISN	Rohde & Schwarz	ENV216	100516	CE	2011/02/23 * 12
SOS-06	Humidity Indicator	A&D	AD-5681	4062118	CE	2011/03/02 * 12
STR-03	Test Receiver	Rohde & Schwarz	ESI40	100054/040	CE/RE	2010/07/21 * 12
SJM-10	Measure	PROMART	SEN1935	-	CE/RE	-
COTS-SEMI-	EMI Software	TSJ	TEPTO-	-	CE/RE	-
1			DV(RE,CE,RFI,M F)			
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	1440491	RE	2011/07/19 * 12
SCC-G03	Coaxial Cable	Suhner	SUCOFLEX 104A	46499/4A	RE	2011/04/28 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2011/05/27 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2010/08/17 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2011/02/23 * 12
SAT10-04	Attenuator(above1GH z)	Agilent	8493C-010	74863	RE	2010/12/15 * 12
SFL-02	Highpass Filter	MICRO-TRONICS	HPM50111	051	RE	2010/12/15 * 12
SHA-04	Horn Antenna	ETS LINDGREN	3160-09	LM3640	RE	2011/03/15 * 12
SAF-08	Pre Amplifier	TOYO Corporation	HAP18-26W	00000019	RE	2011/03/16 * 12
SCC-G17	Coaxial Cable	Suhner	SUCOFLEX 104A	46291/4A	RE	2011/03/16 * 12
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2011/02/17 * 12
SAT6-03	Attenuator	JFW	50HF-006N	-	RE	2011/02/17 * 12
SBA-03	Biconical Antenna	Schwarzbeck	BBA9106	91032666	RE	2010/10/15 * 12
SCC-	Coaxial Cable&RF	Fujikura/Fujikura/Su	8D2W/12DSFA/14	-/0901-271(RF	RE	2011/04/28 * 12
C1/C2/C3/C4/	Selector	hner/Suhner/Suhner/	1PE/141PE/141P F/141PF/NS4906	Selector)		
E-03						
SLA-03	Logperiodic Antenna	Schwarzbeck	UHALP9108A	UHALP 9108-A	RE	2010/10/15 * 12
				0901		
SAEC-	Semi-Anechoic	TDK	SAEC-03(NSA)	3	RE	2010/09/13 * 12
03(NSA)	Chamber	1				

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

Test Item:

CE: Conducted emission,

RE: Radiated emission

Page 10 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

7. ANTENNA PORT TEST RESULTS *

* Refer to the original report 05U3286-1 REV B issued by COMPLIANCE CERTIFICATION SERVICES.

Page 11 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.5 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT was installed in a host device (Multifunction Digital System) that was placed on a reference ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 12 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

TRANSMITTER ABOVE 1 GHz 8.2.

8.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 13 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

Page 14 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 15 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

Page 16 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 17 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

Page 18 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 19 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

Page 20 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

HARMONICS AND SPURIOUS EMISSIONS

				1	Natiat	eu El	1155101	1						
Test plac	e		UL Japan, I	nc. Shonan l	EMC Lab.		No.3 Semi Anechoic Chamber							
Date			2011/7/20											
Temperat	ture / Humidity		26deg.C.	, 53%RH										
Engineer			Akio Hayas	hi										
Mode			Tx, Bluetoo	th, BDR, PR	BS9									
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark		
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]			
Tx 2402	MHz]													
Hori.	3204.000	PK	47.4	29.2	5.5	41.5	40.6	73.9	33.3	164	204			
Hori	3204.000	AV DV	86 54.6	29.2	3.3	41.5	51.2	23.9	22.7	104	204			
Hori	4804.000	AV	34.0	21.5	0	41.1	41.2	52.0	10.7	121	133			
Hori	7206.000	DK	49.8	31.3	7.4	41.1	91.2	72.0	12.7	121	133			
Hori	7200.000	AV	10.2	36.4	7.4	41.3	30.7	52.0	45.4 14.6	100	0			
Vert	3204 000	PK	51.0	20.4	5.5	41.5	45.1	73.0	28.8	113	107			
Vert	3204.000	AV	43.6	29.2	5.5	41.5	36.8	53.0	17.1	113	197			
Vert.	4804.000	PK	55.9	31.5	6	41.1	52.3	73.9	21.6	100	135			
Vert.	4804.000	AV	46.1	31.5	6	41.1	42.5	53.9	11.4	100	135			
Vert.	7206.000	PK	49.3	36.4	7.4	41.3	51.8	73.9	22.1	100	0			
Vert.	7206.000	AV	37	36.4	7.4	41.3	39.5	53.9	14.4	100	0			
Tx 2441 Hori.	MHz] 3256.776	PK	48.2	29.3	5.4	41.6	41.3	73.9	32.6	100	204			
Hori.	3256.776	AV	37.1	29.3	5.4	41.6	30.2	53.9	23.7	100	204			
Hori.	4882.000	PK	55.1	31.7	6	40.9	51.9	73.9	22.0	100	183			
Hori.	4882.000	AV	45.6	31.7	6	40.9	42.4	53.9	11.5	100	183			
Hori.	7323.000	PK	44.9	36.7	7.4	41.4	47.6	73.9	26.3	100	0			
Hori.	7323.000	AV	34.5	36.7	7.4	41.4	37.2	53.9	16.7	100	0			
Vert.	3254.180	PK	50.8	29.3	5.4	41.0	43.9	73.9	30.0	100	208			
Vert.	3254.180	AV	41.2	29.5	5.4	41.0	54.5	23.9	19.0	100	208			
Vert.	4882.000	AV	25.4	31.7	0	40.9	42.0	/5.9 53.0	21./	100	133			
Vert	7323.000	PK	45.6	367	7.4	41.4	48.3	73.0	25.6	100				
Vert.	7323.000	AV	34.7	36.7	7.4	41.4	37.4	53.9	16.5	100	ŏ			
[Tx 2480	MHz]													
Hori.	3308.000	PK	47.9	29.3	5.4	41.6	41.0	73.9	32.9	130	248			
Hori.	4960.000	PK	52.3	31.9	6.0	40.8	49.4	73.9	24.5	126	162			
Hori.	7440.000	PK	47.0	36.9	7.3	41.5	49.7	73.9	24.2	100	0			
Hori.	3308.000	AV	36.7	29.3	5.4	41.6	29.8	53.9	24.1	130	248			
Hori.	4960.000	AV	41.6	31.9	6	40.8	38.7	53.9	15.2	126	162			
Hori.	7440.000	AV	35.8	36.9	7.3	41.5	38.5	53.9	15.4	100	0			
Vert.	3308.000	PK	51.4	29.3	5.4	41.6	44.5	73.9	29.4	133	143			
Vert.	4960.000	PK	52.6	31.9	6	40.8	49.7	73.9	24.2	130	166			
Vert.	7440.000	PK	47.3	36.9	7.3	41.5	50	73.9	23.9	100	0			
Vert.	3308.000	AV	41.4	29.3	5.4	41.6	34.5	53.9	19.4	133	143			
Vert.	4960.000	AV	42	31.9	6	40.8	39.1	53.9	14.8	130	166			
vert.	7440.000	AV	36	30.9	7.3	41.5	38.7	53.9	15.2	100	0			

Page 21 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

8.3. **RECEIVER ABOVE 1 GHz**

Test place	e		UL Japan I	nc Shonan	EMC Lab		No.3 Semi	Anechoic C	hamber				
Date	Ĩ		2011/7/20	inc. ononian	Line Day.		rie.s benn						
Temperat	ure / Humidity	e i	26deg.C.	.53%RH									
Engineer			Akio Havas	io Havashi									
			(above 1GH	[z)									
Mode			Rx. Bluetooth. 2441MHz										
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark	
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]		
Hori.	1170.000	PK	49.5	24.1	2.7	40.7	35.6	73.9	38.3	122	164		
Hori.	1170.000	AV	44.4	24.1	2.7	40.7	30.5	53.9	23.4	122	164		
Hori.	1200.000	PK.	53.1	24.2	2.7	40.7	39.3	73.9	34.6	100	165		
Hori.	1200.000	AV	46.9	24.2	2.7	40.7	33.1	53.9	20.8	100	165		
Hori.	1626.332	PK.	50.5	25.6	3.1	40.9	38.3	73.9	35.6	100	132		
Hori.	1626.332	AV	45.5	25.6	3.1	40.9	33.3	53.9	20.6	100	132		
Hori.	2439.497	PK	49.6	27.6	3.8	41.1	39.9	73.9	34.0	100	121		
Hori.	2439.497	AV	43.1	27.6	3.8	41.1	33.4	53.9	20.5	100	121		
Vert.	1170.000	PK	50.1	24.1	2.7	40.7	36.2	73.9	37.7	131	167		
Vert.	1170.000	AV	45.7	24.1	2.7	40.7	31.8	53.9	22.1	131	167		
Vert.	1200.000	PK	52	24.2	2.7	40.7	38.2	73.9	35.7	113	167		
Vert.	1200.000	AV	45.8	24.2	2.7	40.7	32	53.9	21.9	113	167		
Vert.	1230.032	PK	52.8	24.3	2.7	40.7	39.1	73.9	34.8	120	167		
Vert.	1230.032	AV	50	24.3	2.7	40.7	36.3	53.9	17.6	120	167		
Vert.	1239.800	PK	48.1	24.3	2.7	40.7	34.4	73.9	39.5	146	168		
Vert.	1239.800	AV	41.1	24.3	2.7	40.7	27.4	53.9	26.5	146	168		

Page 22 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

WORST-CASE BELOW 1 GHz 8.4.

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 23 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 24 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

HORIZ	NC	TAL	ANI	D VI	ER	TIC	CAL	DAT	A						
					D	AT	<u>A 0</u>	FR	ADI	<u>AT</u>	<u>ED</u>	EN	<u>AIS</u>	SION TEST	
	UL Japan, Inc. Shona												Shonan EMC Lab. No.3 Semi-Anechoic Chamber Date : 2011/07/21		
	Company : TOSHIBA TEC CORPORATION Kind of EUT : Bluetooth Module Model No. : GN-2020 Serial No. : 002258C52904											e ort No er ip./Hi	o. umi.	: Tx 2441MHz : 31LEO192-SH-A : DC5.0V : 26deg.C. / 53%RH	
	Remarks : -														
	Limi	it1 : FCC	C15.20)9 3m,	belo	w 1G	Hz:QP,	above 1	GHz:A	V	Engi	neer		: Makoto Hosaka	
	<< 	QP DATA	Reading			0.1	Result	Limit	Marg in						
l	No.	Freq. [MHz]	<qp> [d Bu V]</qp>	Ant Fac	Loss [dB]	Gain [dB]	<qp> [dBuV/m]</qp>	<qp> [dBuV/m]</qp>	<qp> [dB]</qp>	Pola. [H/V]	feight	Angle [deg]	Ant. Type	Comment	
1	1 2 3	143.993 159.877	43.8 50.8 47.6	13.6 13.9 15.2	7.5 7.6 7.7	32.1 32.1 32.1	32.8 40.2 38.4	43.5 43.5 43.5	3.3 5.1	Hori. Hori.	124 122 114	246 245 265	BC BC BC		
	4	191.996 207.988	42.0 40.1	16.1 16.4	7.9 8.0	32.0 32.0	34.0 32.5	43.5 43.5	9.5 11.0	Hori. Hori.	158 157	50 49	BC BC		
	6 7 8	287.983 139.961 143.993	38.0 32.4 39.4	18.7 13.6 13.9	8.6 7.5 7.6	32.0 32.1 32.1	33.3 21.4 28.8	46.0 43.5 43.5	12.7 22.1 14.7	Hori. Vert. Vert.	320 288 215	15 224 253	BC BC BC		
	9 10	159.990 191.996	46.6 40.5	15.2 16.1	7.7 7.9	32.1 32.0	37.4 32.5	43.5 43.5	6.1 11.0	Vert. Vert.	195 100	138 345	BC BC		
	11 12	207.988 287.983	32.8 37.6	16.4 18.7	8.0 8.6	32.0 32.0	25.2 32.9	43.5 46.0	18.3 13.1	Vert. Vert.	100 176	223 336	BC BC		
	_		_	_		_									
	Calc Ant.	culation:F Type=BC	Result [C:Bicon	dBuV/ lical Al	m] = ntenn	Readi a, LP	ng [dBu Logper	V] +Ant odic An	Fac [d tenna,	B/m] Sha	+Los -03:H	s (Ca Iorn A	ble+A Intenr	ATT) [dB] -Gain (AMP) [dB] na	

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

Page 26 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

RESULTS

company :: TOSHIBA TEC CORPORATION Mode :: Normal Operation (Bluetoth ON) ind of EUT :: Bluetoth Module Report No. :: 31E0192-SH-A power :: AC 120V 60Hz Temp./Humi. :: 27deg.C. / 50%RH emarks : - : :: Steport No. :: 31E0192-SH-A imit1 :: FCC 15C (15.207) OP :: FCC 15C (15.207) AV Engineer : Akio Hayashi < QP/AV DATA >> :: OP> CF/ac OP> CA/> CP> C
Imiti 1: FCC 15C (15.207) OP Imiti 2: FCC 15C (15.207) OP Engineer : Akio Hayashi Imiti 2: FCC 15C (15.207) OP Engineer : Akio Hayashi COP/AV DATA >> Imiti 2: FCC 15C (15.207) OP Imiti 2: FCC 15C (15.207) OP </td
Frea CPa
1 0.1000 403 23.5 12.0 013 203 000 300 500<

Page 27 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

LINE 1 RESULTS

Page 28 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

LINE 2 RESULTS

Page 29 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

MAXIMUM PERMISSIBLE EXPOSURE 10.

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)				
(A) Limits for Occupational/Controlled Exposures								
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6				
(B) Limits	for General Populati	on/Uncontrolled Ex	posure					
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f ²)	30 30				

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided the or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure is even that eventual over their exposure.

exposure or can not exercise control over their exposure.

Page 30 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

TEL: +81 463 50 6400 FAX: +81 463 50 6401

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042 <i>f</i> ^{0.5}	<i>f</i> /150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000-300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm².
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 31 of 36

¹⁻²²⁻³ Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m^2 EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m^2

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

<u>LIMITS</u>

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

<u>RESULTS</u>

The below power is from the original report 05U3286-1 REV B issued by COMPLIANCE CERTIFICATION SERVICES.

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	Bluetooth	0.20	1.46	0.50	0.0031	0.0003

Page 32 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

11. MAXIMUM PERMISSIBLE EXPOSURE (CO-LOCATED)

Host Device of EUT (DP-2095, DP-2530, DP-3020, DP-3590, DP-4590, DP-5560, DP-6560, DP-7560 and DP-8560) has Wireless LAN module GN-1060, FCC ID; BJI-GN1060 *.

* FCC ID: BJI-GN1060 was changed in Identification from FCC ID: PPD-AR5B95. The below power is from the original report 81029055 issued by Compliance Certification Services Inc.

RESULTS (Wireless LAN module)

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	WLAN	0.20	25.28	0.50	0.7533	0.0753

RESULTS (CO-LOCATED)

IC Power Density = 0.0031 + 0.7533 = 0.7564 (W/m^2)

FCC Power Density = 0.0003 + 0.0753 = 0.0756 (mW/cm^2)

As shown in the calculations above, when GN-2020 & GN-1060 are operational, the worst case combination is within the limit at a distance of 20cm from the device.

Page 33 of 36

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

SETUP PHOTOS

RADIATED RF MEASUREMENT SETUP

Page 34 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

AC POWER LINE CONDUCTED EMISSIONS SETUP

Page 35 of 36

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401

BLUETOOTH MODULE and ANTENNA CONNECTION

END OF REPORT

Page 36 of 36

UL Japan, Inc. Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN TEL: +81 463 50 6400 FAX: +81 463 50 6401 This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.