Note: This report is issued subject to the Testing and Certification Regulations of the TÜV SÜD Group and the General Terms and Conditions of Business of TÜV SÜD PSB Pte Ltd. In addition, this report is governed by the terms set out within this report.

Choose certainty. Add value.

FORMAL REPORT ON TESTING IN ACCORDANCE WITH 47 CFR FCC Parts 2, 15, and 25: 2011 OF AN

> **INMARSAT FLEETBROADBAND SYSTEM** [Model : FX 250] [FCC ID: BJF-STFX250BDE]

TEST FACILITY TÜV SÜD PSB Pte Ltd.

Electrical & Electronics Centre (EEC), Product Services,

No. 1 Science Park Drive, Singapore 118221

TÜV SÜD PSB Pte Ltd.

Electrical & Electronics Centre (EEC), Product Services, 13 International Business Park #01-01, Singapore 609932

FCC REG. NO. 99142 (3m and 10m Semi-Anechoic Chamber, Science Park)

160581 (3m and 10m Semi-Anechoic Chamber, International Business Park)

IND. CANADA REG. NO. 2932I-1 (3m and 10m Semi-Anechoic Chamber, Science Park)

2932N-1 (10m Semi-Anechoic Chamber, International Business Park)

PREPARED FOR Sea Tel Inc.

4030 Nelson Ave, Concord, California, 94520, USA

Tel: +1 925 798 7979 Fax::+1 925 288 1420

QUOTATION NUMBER 219146087 & 219150213

JOB NUMBER 7191027290 & 7191032490

TEST PERIOD 24 Feb 2012 - 25 May 2012

PREPARED BY

APPROVED BY

Lim Cher Hwee Assistant Vice President

Quek Keng Huat Higher Associate Engineer

Laboratory: TÜV SÜD PSB Pte. Ltd. No.1 Science Park Drive Singapore 118221

Phone: +65-6885 1333

Fax: +65-6776 8670

www.tuv-sud-psb.sg

Co. Reg: 199002667R

E-mail: testing@tuv-sud-psb.sg

LA-2007-0380-A LA-2007-0381-F LA-2007-0382-B LA-2007-0383-G LA-2007-0384-G LA-2007-0385-E LA-2007-0386-C

LA-2010-0464-D

The results reported herein have been performed in accordance with the laboratory's terms of accreditation under the Singapore Accreditation Council - Singapore Laboratory Accreditation Scheme. Tests/Calibrations marked *Not SAC-SINGLAS Accredited* in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our laboratory.

Regional Head Office: TÜV SÜD Asia Pacific Pte. Ltd.

3 Science Park Drive, #04-01/05 The Franklin, Singapore 118223

TABLE OF CONTENTS

TEST SUMMARY	3
PRODUCT DESCRIPTION	5
SUPPORTING EQUIPMENT DESCRIPTION	6
EUT OPERATING CONDITIONS	7
RADIATED EMISSION TEST	8
RF OUTPUT POWER TEST	12
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST	19
RADIATED SPURIOUS EMISSION TEST	72
PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST	78
FREQUENCY STABILITY (TEMPERATURE VARIATION) TEST	97
FREQUENCY STABILITY (VOLTAGE VARIATION) TEST	102
MAXIMUM PERMISSIBLE EXPOSURE (MPE) TEST	106
ANNEX A EUT PHOTOGRAPHS / DIAGRAMS	108
ANNEX B USER MANUALTECHNICAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS	133
ANNEX C FCC LABEL & POSITION	134

TEST SUMMARY

The product was tested in accordance with the customer's specifications.

Test Results Summary

Test Standard	Description	Pass / Fail			
47 CFR FCC Parts 2, 15 and 25: 2011					
15.107(a), 15.207	Conducted Emissions	Not Applicable *See Note 5			
15.109	Radiated Emissions (Class B)	Pass			
2.1046(a), 25.204	RF Output Power	Pass			
2.1051, 25.202(f)	Unwanted Emissions at Antenna Terminal	Pass			
2.1053, 25.202(f)	Radiated Spurious Emissions	Pass			
25.216(h)(i)(j)	Protection of Aeronautical Radio Navigation Satellite Service	Pass			
2.1055, 25.202(d)	Frequency Stability (Temperature Variation)	Pass			
2.1055, 25.202(d)	Frequency Stability (Voltage Variation)	Pass			
1.1310	Maximum Permissible Exposure	Refer to page 106 for details			

TEST SUMMARY

Notes

1. Three channels as listed below, which respectively represents the lower, middle and upper channels (transmit and receive) of the Equipment Under Test (EUT). Each channel was configured to operate under the test mode condition.

Transmit Channel	Frequency (GHz)	Receive Channel	Frequency (GHz)
Lower Channel	1.6266	Lower Channel	1.5251
Middle Channel	1.6435	Middle Channel	1.5420
Upper Channel	1.6604	Upper Channel	1.5589

- 2. The following tests were based on conducted measurement method:
 - a. RF Output Power
 - b. Unwanted Emissions at Antenna Terminal
 - c. Frequency Stability (Temperature Variation)
 - d. Frequency Stability (Voltage Variation)
- 3. All test measurement procedures are according to ANSI/TIA-603-B-2002.
- 4. The EUT is a Class B device when in non-transmitting state and meets the FCC Part15B Class B requirements.
- 5. The Equipment Under Test (EUT) is a DC operated device and contains no provision for public utility connections.

Modifications

No modifications were made.

Sea Tel Inc.
Inmarsat FleetBroadband System [Model : FX 250]
[FCC ID : BJF-STFX250BDE]

PRODUCT DESCRIPTION

Description : The Equipment Under Test (EUT) is an INMARSAT FLEETBROADBAND

SYSTEM.

Applicant : Addvalue Communications Pte Ltd

28 Tai Seng Street, #06-02

Singapore 534106

Manufacturer : Sea Tel Inc.

4030 Nelson Ave, Concord, California, 94520, USA Telephone: +1 925 798 7979 Fax:+1 925 288 1420

Factor(ies) : Beyonics Technology (Senai) Sdn Bhd

Lot 3627, Jalan Harmoni 1, Batu 22 81000 Kulai, Johor, Malaysia

Model Number : FX 250

Brand : Sea Tel

FCC ID : BJF-STFX250BDE

Serial Number : MB2501A120800007

Microprocessor : OMAP5912

Operating Frequency : TX. 1626.6 MHz ~ 1660.4 MHz

RX. 1525.1 MHz ~ 1558.9 MHz

Clock / Oscillator Frequency : 4.912 MHz , 12 MHz , 25 MHz , 16.384 MHz , 24.192 MHz , 32.768MHz

Port / Connectors : 4 RJ 45 (2 PoE, 2 LAN)

2 RJ11 (1 FAX, 1 Phone) 1 Offset latch RJ11

Rated Input Power : 12V,15A / 24V,7.5A(180W)

Accessories : Primary Handset, 3m DC Power Cable.

SUPPORTING EQUIPMENT DESCRIPTION

Equipment Description (Including Brand Name)	Model, Serial & FCC ID Number	Cable Description (List Length, Type & Purpose)
Acer Laptop PC	M/N: Travelmate 2420	2.00m unshielded power cable
	S/N: XTB205106613077CFKS00	2.00m communication cable
	FCC ID: DoC	
Delta Electronics Power Adapter	M/N: SADP-65KB D	2.00m unshielded power cable
(Laptop)	S/N: 94W0610190186	
	FCC ID: Verification	
SeaTel Primary Handset	M/N: SAFARI-PH	1x 1m shielded telephone cord
/4	S/N: AVHSS1P113800071	
	FCC ID: Nil	S
Above Deck Unit Antenna	M/N: BGAN-FB500	1x 25m shielded RF cable
16	S/N: 41104	1x 15m shielded RF cable
	FCC ID: Nil	
Wideye Wired Telephone	M/N: SB/AH-100	1x 1.5m telephone cable
	S/N: Nil	
	FCC ID: Nil	
2x12Vdc Battery	M/N: MF160G51	2.00m unshielded battery cable
	S/N: Nil	
	FCC ID: Nil	

EUT OPERATING CONDITIONS

47 CFR FCC Parts 2, 15 and 25

- 1. RF Output Power
- 2. Unwanted Emissions at Antenna Terminal
- 3. Radiated Spurious Emissions
- 4. Protection of Aeronautical Radio Navigation Satellite Service
- 5. Frequency Stability (Temperature Variation)
- 6. Frequency Stability (Voltage Variation)
- 7. Maximum Permissible Exposure

The EUT was exercised by operating in following modes with the EUT simulating the transmission and reception using the client's provided test programs, "3CDaemon" and "UT Console_Serial".

Satellite Transmission Mode

- Continuous maximum RF transmission at lower channel at maximum RF power
- Continuous maximum RF transmission at middle channel at maximum RF power
- Continuous maximum RF transmission at upper channel at maximum RF power

Satellite Reception (Receive) Mode

- Continuous RF reception at lower channel
- Continuous RF reception at middle channel
- Continuous RF reception at upper channel

SUD

RADIATED EMISSION TEST

47 CFR FCC Part 15.109 Radiated Emission Limits (Class B)

Frequency Range (MHz)	Quasi-Peak Limit Values (dBµV/m) @ 3m			
30 - 88	40.0			
88 - 216	43.5			
216 - 960	46.0			
Above 960	54.0*			
* Above 1GHz, average detector was used. A peak limit of 20dB above the average limit does apply.				

47 CFR FCC Part 15.109 Radiated Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Rohde & Schwarz EMI Test Receiver	ESMI	849182/003	16 Aug 2012
(20Hz – 26.5GHz)		848926/007	
TDK RF Solutions Hybrid Log Periodic Antenna	HLP-3003C	130238	19 Mar 2013
(30MHz-3GHz)	7/	10.7	
Sonoma Preamplifier (9kHz – 1GHz)	310N	270640	03 Jan 2013
Toyo MicroWave Preamplifier (1GHz - 18GHz)	TPA0188-36	1005	24 Jun 2012
EMCO Horn Antenna – H15	3115	0003-6088	20 May 2013

RADIATED EMISSION TEST

47 CFR FCC Part 15.109 Radiated Emission Test Setup

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard as shown in the setup photos.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- The relevant broadband antenna was set at the required test distance away from the EUT and 3. supporting equipment boundary.

47 CFR FCC Part 15.109 Radiated Emission Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition.
- A prescan was carried out to pick the worst emission frequencies from the EUT. For EUT which is a 2. portable device, the prescan was carried out by rotating the EUT through three orthogonal axes to determine which altitude and equipment arrangement produces such emissions.
- The test was carried out at the selected frequency points obtained from the prescan in step 2. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: 3.
 - Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b.
 - The EUT was then rotated to the direction that gave the maximum emission. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz. For frequency point that above 1GHz, both Peak and Average measurements were carried out. 4.
- Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points were 5.
- The frequency range covered was from 30MHz to 10th harmonic of the highest frequency used or 6. generated by the EUT, using the Bi-log antenna for frequencies from 30MHz up to 1GHz, and the Horn antenna above 1GHz.

Sample Calculation Example

At 300 MHz

Q-P limit (Class B) = $70.8 \mu V/m = 37.0 dB\mu V/m$

Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB

Q-P reading obtained directly from EMI Receiver = 31.0 dB_µV/m (Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 31.0 - 37.0 = -6.0

i.e. 6 dB below Q-P limit

RADIATED EMISSION TEST

Radiated Emissions Test Setup (Front View)

Radiated Emissions Test Setup (Rear View)

RADIATED EMISSION TEST

47 CFR FCC Part 15.109 Radiated Emission Results

Operating Mode	Continuous Satellite transmission	Temperature	18°C
Test Input Power	24Vdc (Worst Voltage)	Relative Humidity	58%
Test Distance	3m	Atmospheric Pressure	1030mbar
		Tested By	Kelvin Cheng, Jason Lai

Spurious Emissions ranging from 30MHz - 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Limit (dBµV/m)	Q-P Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)
66.0844	30.9	40.0	9.1	212	266	V
93.1740	25.4	40.0	14.6	101	245	V
227.5980	35.7	46.0	10.3	312	248	Н
877.1270	31.2	46.0	14.8	212	251	Н
881.5009	24.1	46.0	21.9	212	232	V
960.6729	18.2	54.0	35.8	101	239	Н

Spurious Emissions above 1GHz-18GHz

Freq (GHz)	Peak Value (dBμV/m)	Peak Limit (dBμV/m)	Peak Margin (dB)	AV Value (dBμV/m)	AV Limit (dBμV/m)	AV Margin (dB)	Height (cm)	Azimuth (Degrees)	Pol (H/V)
8.6360	56.9	74.0	17.1	43.0	54.0	11.0	212	51	V
10.0190	55.3	74.0	18.7	42.8	54.0	11.2	212	241	V
13.2920	62.5	74.0	11.5	49.5	54.0	4.5	212	76	V
14.7570	62.8	74.0	11.2	49.7	54.0	4.3	312	227	Н
16.5650	59.7	74.0	14.3	47.0	54.0	7.0	312	242	Н
17.8280	67.3	74.0	6.7	52.2	54.0	1.8	312	230	V

Notes

- 1. All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "positive" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency. Conversely, a "negative" margin indicates a FAIL.
- 3. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

30MHz - 1GHz

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

4. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz - 25.0GHz is $\pm 4.0dB$.

Page 12 of 135

RF OUTPUT POWER TEST

47 CFR FCC Parts 2.1046 and 25.204 RF Output Power Test Limits

1. 25.204 Power Limits

- (a) In bands shared coequally with terrestrial radio communication services, the equivalent isotropically radiated power transmitted in any direction towards the horizon by an earth station, other than an ESV, operating in frequency bands between 1GHz and 5GHz, shall not exceed the following limits except as provided for in paragraph (c) of this section:
 - +40dBW in any 4kHz band for θ : 0°
 - +40dBW + 3.0dBW in any 4kHz band for 0° < $\theta \le 5^{\circ}$

where θ is the angle of elevation of the horizon viewed from the center of radiation of the antenna of the earth station and measured in degrees as positive above the horizontal plane and negative below it.

- (c) For angles of evaluation of the horizon greater than 5^o there shall be no restriction as to the equivalent isotropically radiated power transmitted by an earth station towards the horizon.
- (d) Notwithstanding the e.i.r.p and e.i.r.p density limits specified in the station authorization, each earth station transmission shall be conducted at the lowest power level that will provide the required signal quality as indicated in the application and further amended by coordination agreements.

2. 2.1046 Measurements Required: RF Power Output

- (a) For transmission other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in 2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.
- (c) For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations.

47 CFR FCC Parts 2.1046 and 25.204 RF Output Power Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Agilent Spectrum Analyzer	E4440A	MY45304764	25 May 2013
Mini-Circuits Precision Fixed Attentuator	BW-S20W5+	Nil	Output Monitor
Instock Wireless Components Combiner	PD7120	Nil	Output Monitor
GW Instek Programmable Power Supply	PSH-3630A	RK200168	30 Jan 2013

Page 13 of 135

RF OUTPUT POWER TEST

47 CFR FCC Parts 2.1046 and 25.204 RF Output Power Test Setup

- The EUT and supporting equipment were set up as shown in the setup photo.
- 2. The power supply for the EUT was connected to a filtered mains.
- 3. The RF antenna connector was connected to the Universal Radio Communication Tester, which set into power analyser mode via a RF attenuator and a low-loss coaxial cable.
- 4. The spectrum analyser was then calibrated to the power meter level as shown by the Universal Radio Communicator Tester with a calibrated RF signal source.
- 5. All other supporting equipment were powered separately from another filtered mains.

47 CFR FCC Parts 2.1046 and 25.204 RF Output Power Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, transmitting frequency at lower channel.
- 2. The maximum peak power of the transmitting frequency was measured and recorded.
- 3. The RF carrier peak and average pots were plotted.
- 4. The steps 2 to 4 were repeated with the transmitting frequency was set to middle and upper channels respectively.

RF OUTPUT POWER TEST

RF Output Power Test Setup

RF OUTPUT POWER TEST

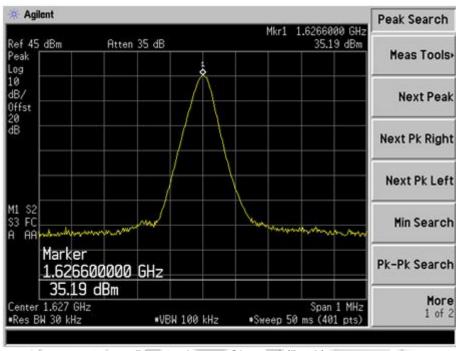
47 CFR FCC Parts 2.1046 and 25.204 RF Output Power Results

Operating Mode	Continuous Satellite transmission	Temperature	24°C
Test Input Power	24Vdc (Worst Voltage)	Relative Humidity	60%
Antenna Gain	10.0dBi	Atmospheric Pressure	1030mbar
Attached Plots	1 – 6	Tested By	Kyaw Soe Hein, Liau Lee Yin

Frequency (GHz)	Channel	Peak Output Power (dBm) EIRP ERP		Average Οι (dE	•
	1			EIRP	ERP
1.6266	Lower	45.19	43.04	45.19	43.04
1.6435	Middle	45.17	43.02	45.17	43.02
1.6604	Upper	45.21	43.06	45.21	43.06

Notes

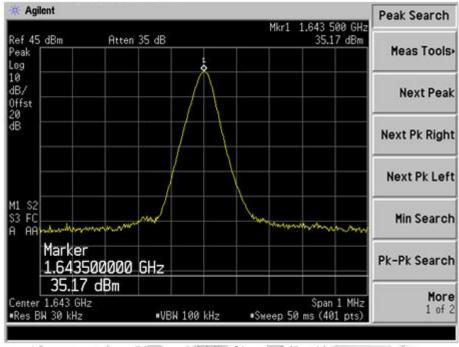
1. RF Output Power Measurement Uncertainty

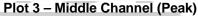

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of 95%, with a coverage factor of 2 is ± 1.0 dB.

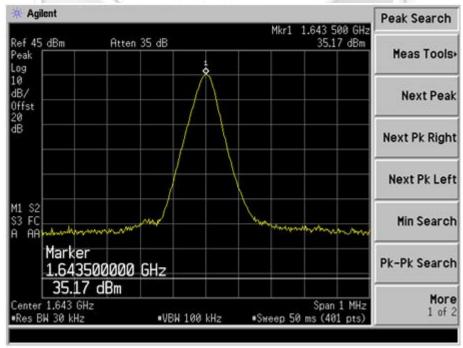
RF OUTPUT POWER TEST

Output Power Plots

Plot 1 - Lower Channel (Peak)

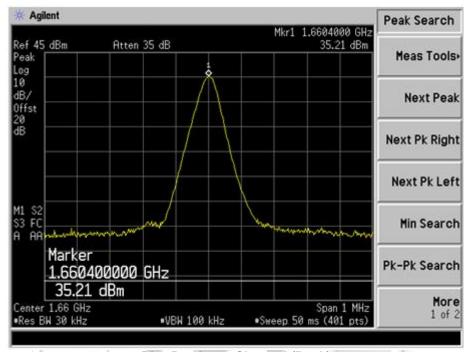



Plot 2 – Lower Channel (Average)

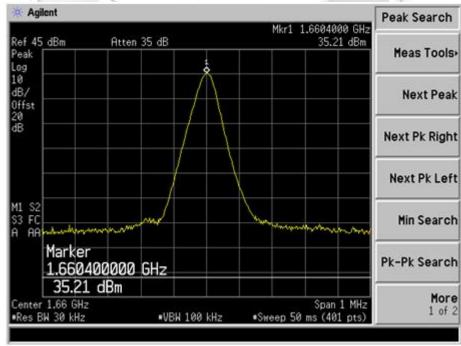


RF OUTPUT POWER TEST

Output Power Plots



Plot 4 – Middle Channel (Average)



RF OUTPUT POWER TEST

Output Power Plots

Plot 5 - Upper Channel (Peak)

Plot 6 – Upper Channel (Average)

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

FCC Parts 2.1051 and 25.202(f) Unwanted Emissions at Antenna Terminal Test Limits

- 1. 25.202 Emissions Limitations
 - (f) The mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:
 - (1) In any 4kHz band, the center frequency of which is removed from the assigned frequency by more than 50% up to and including 100% of the authorized bandwidth: 25 decibels;
 - (2) In any 4kHz band, the center frequency of which is removed from the assigned frequency by more than 100% up to and including 250% of the authorized bandwidth: 35 decibels;
 - (3) In any 4kHz band, the center frequency of which is removed from the assigned frequency by more than 250% of the authorized bandwidth: an amount equal to 43 decibels plus 10 times logarithm (to the base 10) of the transmitter power in watts.
- 2. 2.1051 Measurements Required: Spurious Emissions at Antenna Terminals
 The radio frequency voltage or powers generated within the equipment and appearing on a spurious
 frequency shall be checked at the equipment output terminals when properly loaded with a suitable
 artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other
 spurious emission that can be detected when the equipment is operated under the conditions specified
 in 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20dB
 below the permissible value needed not be specified.

FCC Parts 2.1051 and 25.202(f) Unwanted Emissions at Antenna Terminal Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Agilent Spectrum Analyzer	E4440A	MY45304764	25 May 2013
Mini-Circuits Precision Fixed Attentuator	BW-S20W5+	Nil	Output Monitor
Instock Wireless Components Combiner	PD7120	Nil	Output Monitor
GW Instek Programmable Power Supply	PSH-3630A	RK200168	30 Jan 2013

Page 20 of 135

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

47 CFR FCC Parts 2.1051 and 25.202(f) Unwanted Emissions at Antenna Terminal Test Setup

- 1. The EUT and supporting equipment were set up as shown in the setup photo.
- 2. The power supply for the EUT was connected to a filtered mains.
- 3. The RF antenna connector was connected to the spectrum analyser via a RF attenuator and a low-loss coaxial cable.
- 4. All other supporting equipment were powered separately from another filtered mains.

47 CFR FCC Parts 2.1051 and 25.202(f) Unwanted Emissions at Antenna Terminal Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, transmitting frequency at lower channel.
- 2. The 26dB bandwidth of the transmitting channel was measured.
- 3. The emission mask was drawn based on the authorized bandwidth and the measured average output power.
- 4. The transmitting channel emissions were plotted.
- 5. The steps 2 to 5 were repeated with the transmitting frequency was set to middle and upper channels respectively.

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Unwanted Emissions at Antenna Terminal Test Setup

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

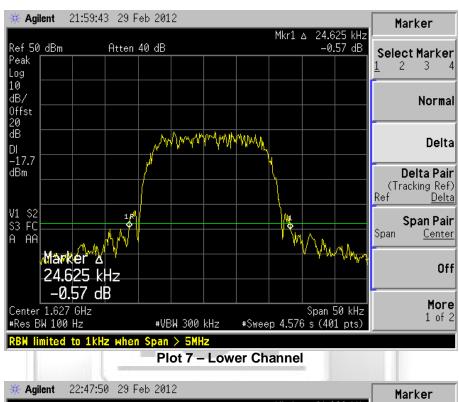
47 CFR FCC Parts 25.254(d)(6) and 2.1049 Occupied Bandwidth Results

Operating Mode	Continuous Satellite transmission	Temperature	23°C
Test Input Power	24Vdc (Worst Voltage)	Relative Humidity	55%
Antenna Gain	18.2dBi	Atmospheric Pressure	1030mbar
Attached Plots	7 – 27 (26dB Bandwidth) 28 – 48 (In Band Emissions) 49 – 90 (Out of Band Spurious)	Tested By	Kyaw Soe Hein, Liau Lee Yin

All emissions are within the emission mask. Please refer to the attached plots.

Notes

- 1. The Resolution Bandwidth (RBW) was corrected from 4kHz by 10log₁₀ [(used RBW) / 4kHz].
- 2. Emission limits are computed based on following:
 - a. Emissions Limits (dBm) (50% = P 25 + CF 100% authorised bandwidth)
 - b. Emissions Limits (dBm) (100% = P 35 + CF 250% authorised bandwidth)
 - c. Emissions Limits (dBm) (> 250% = $P [43 + 10 \log_{10} P_W] + 30 + CF$ authorised bandwidth)


where P = Measured mean power in dBm $<math>P_W = Measured mean power in W$

CF = RBW correction factor (see Note 1)

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

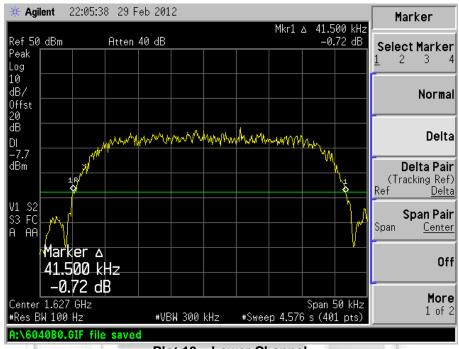
26dB Bandwidth Plots (Bearer Type: 0)



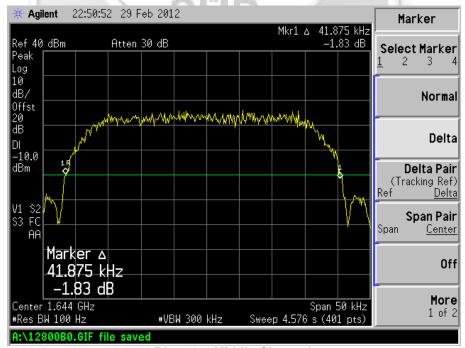
Plot 8 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

26dB Bandwidth Plots (Bearer Type: 0)



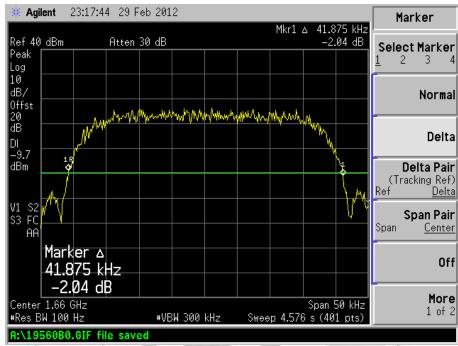
Plot 9 - Upper Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

26dB Bandwidth Plots (Bearer Type: 3)

Plot 10 - Lower Channel



Plot 11 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

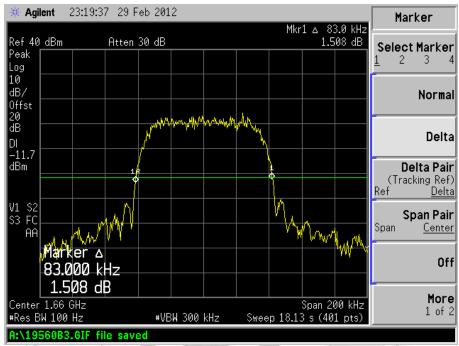
26dB Bandwidth Plots (Bearer Type: 3)

Plot 12 - Upper Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

26dB Bandwidth Plots (Bearer Type: 5)

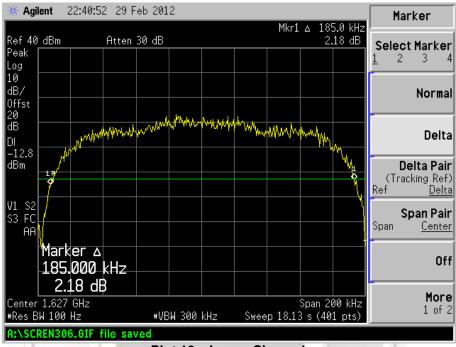
Plot 13 - Lower Channel



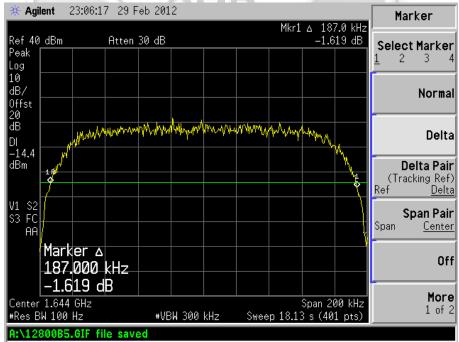
Plot 14 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

26dB Bandwidth Plots (Bearer Type: 5)


Plot 15 - Upper Channel

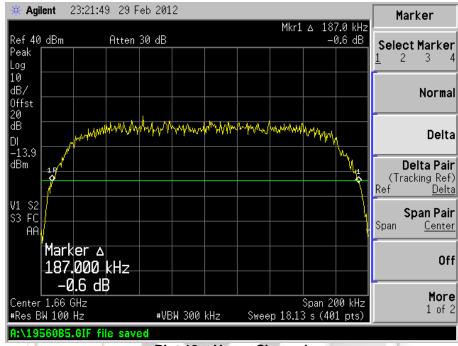
Sea Tel Inc.
Inmarsat FleetBroadband System [Model : FX 250]
[FCC ID : BJF-STFX250BDE]



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

26dB Bandwidth Plots (Bearer Type: 7)

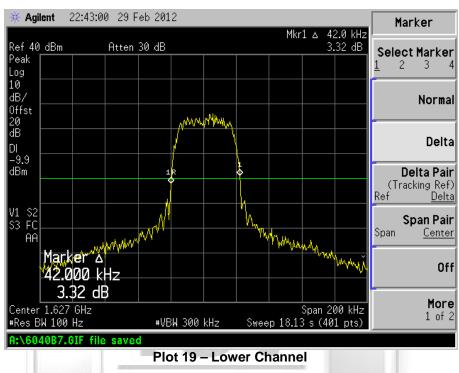
Plot 16 - Lower Channel

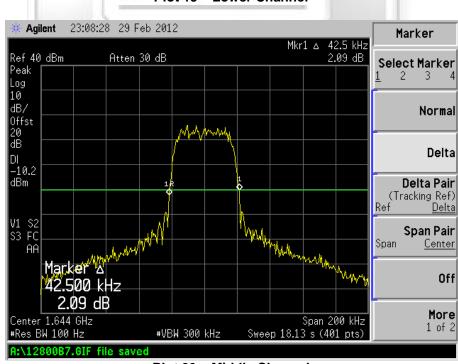


Plot 17 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

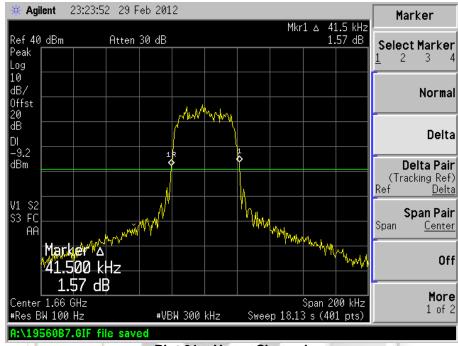
26dB Bandwidth Plots (Bearer Type: 7)


Plot 18 - Upper Channel


Sea Tel Inc.
Inmarsat FleetBroadband System [Model : FX 250]
[FCC ID : BJF-STFX250BDE]

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

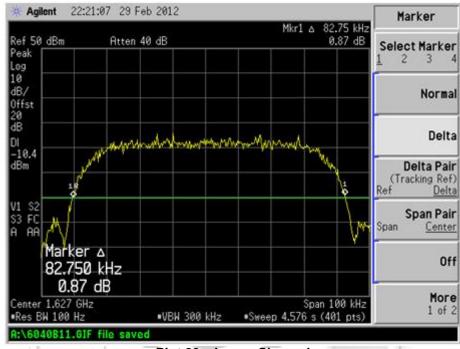
26dB Bandwidth Plots (Bearer Type: 11)



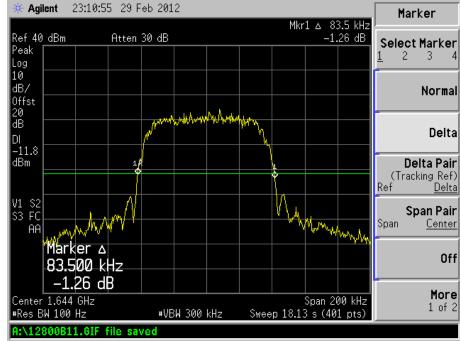
Plot 20 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

26dB Bandwidth Plots (Bearer Type: 11)

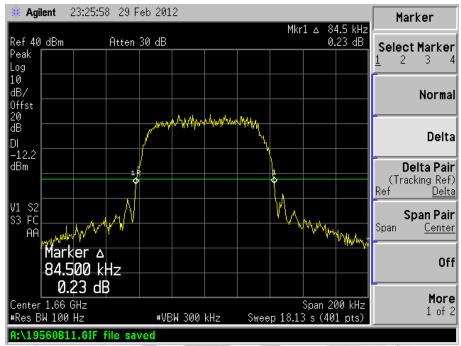


Plot 21 - Upper Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

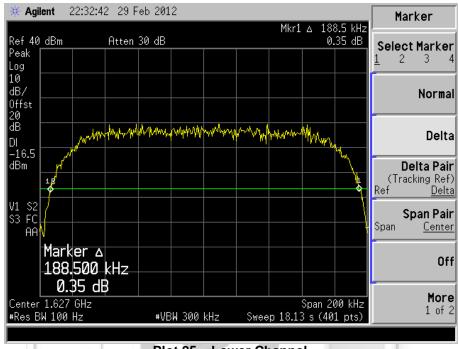
26dB Bandwidth Plots (Bearer Type: 13)



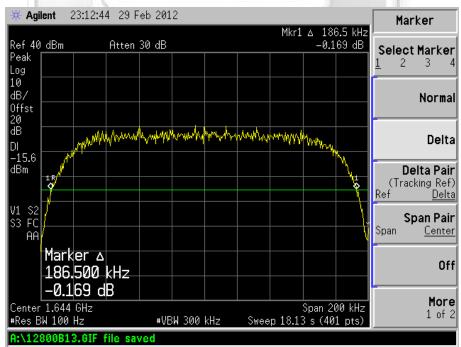
Plot 23 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

26dB Bandwidth Plots (Bearer Type: 13)



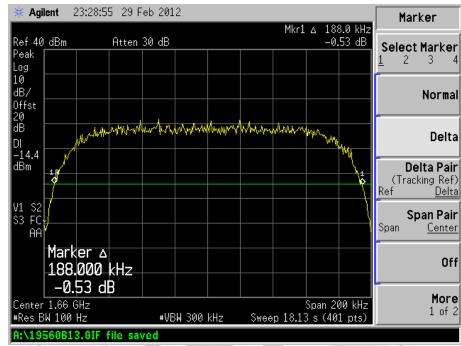
Plot 24 - Upper Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

26dB Bandwidth Plots (Bearer Type: 15)

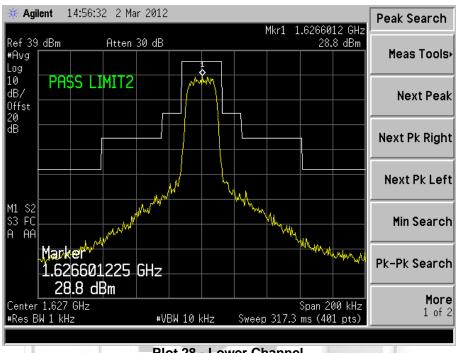
Plot 25 - Lower Channel



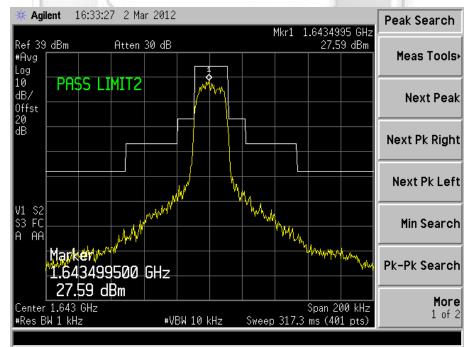
Plot 26 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

26dB Bandwidth Plots (Bearer Type: 15)



Plot 27 - Upper Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 0)

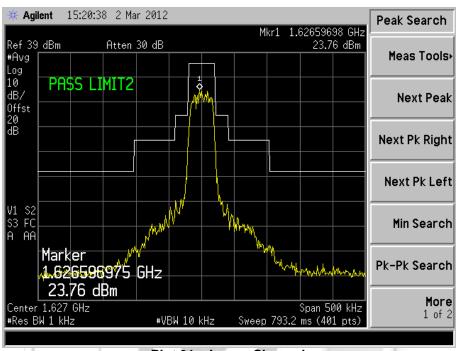
Plot 28 - Lower Channel



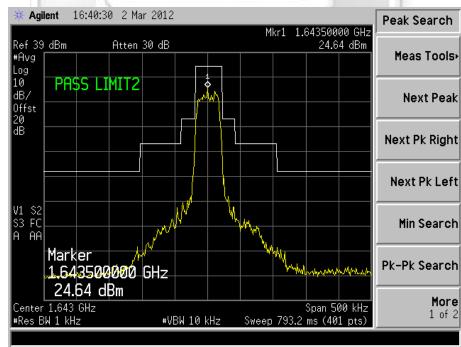
Plot 29 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 0)



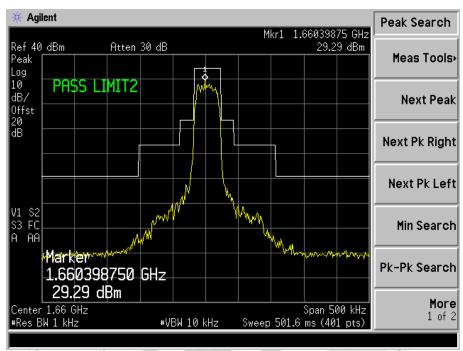
Plot 30 - Upper Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 3)

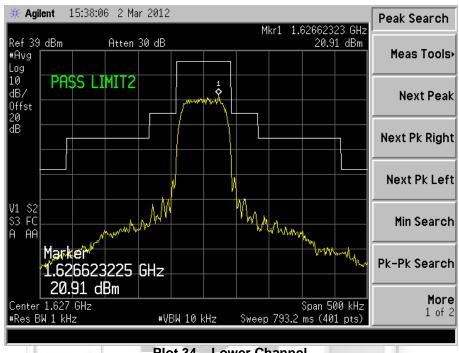
Plot 31 - Lower Channel



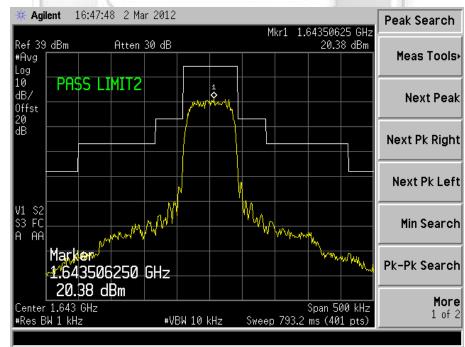
Plot 32 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 3)



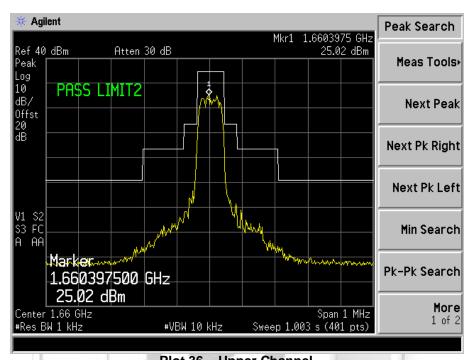
Plot 33 - Upper Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 5)

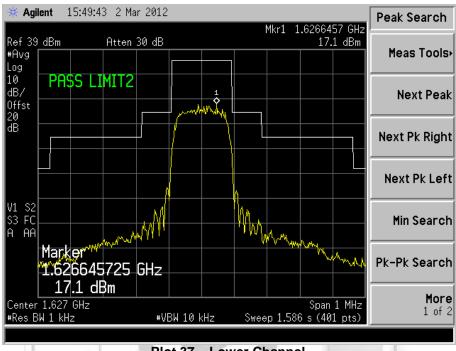
Plot 34 - Lower Channel



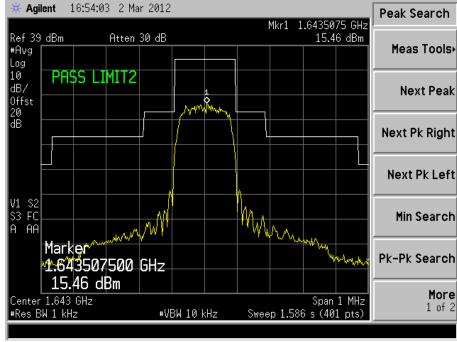
Plot 35 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 5)



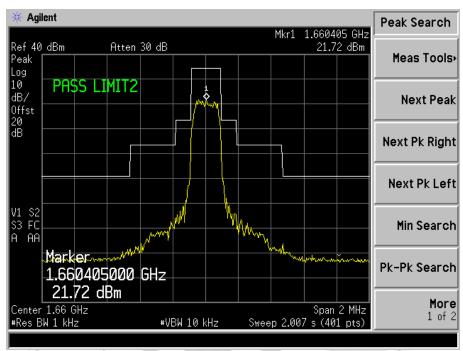
Plot 36 – Upper Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 7)

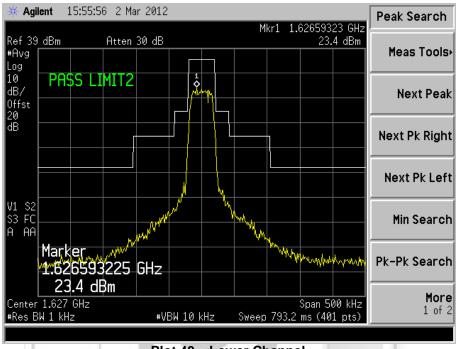
Plot 37 - Lower Channel



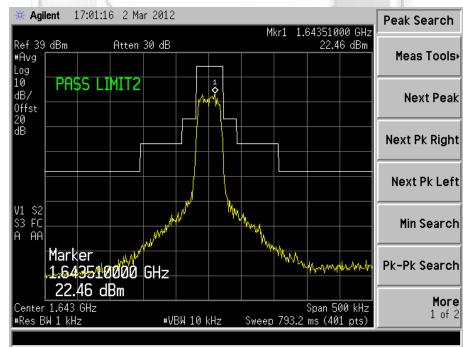
Plot 38 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 7)


Plot 39 - Upper Channel

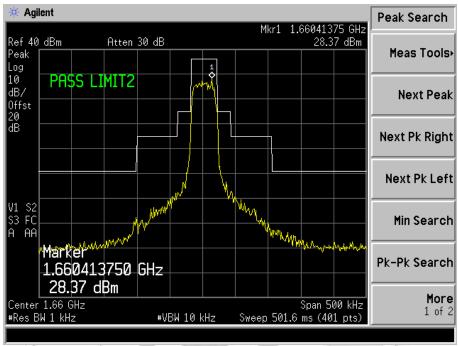
Sea Tel Inc.
Inmarsat FleetBroadband System [Model : FX 250]
[FCC ID : BJF-STFX250BDE]



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 11)

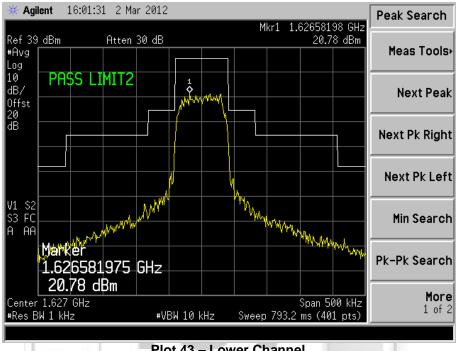
Plot 40 - Lower Channel



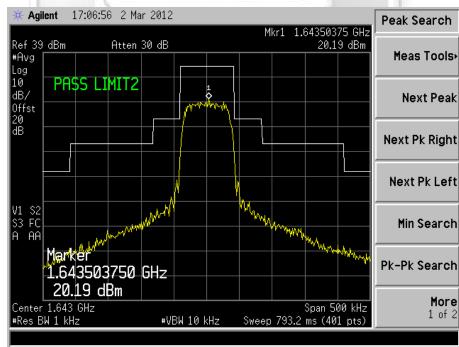
Plot 41 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 11)



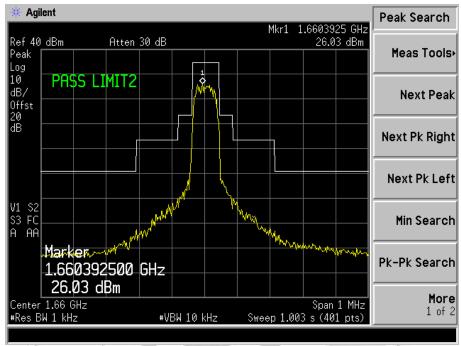
Plot 42 - High Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 13)

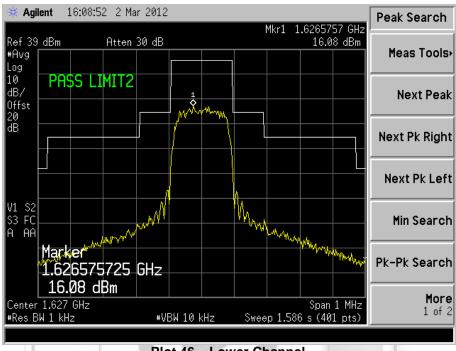
Plot 43 - Lower Channel



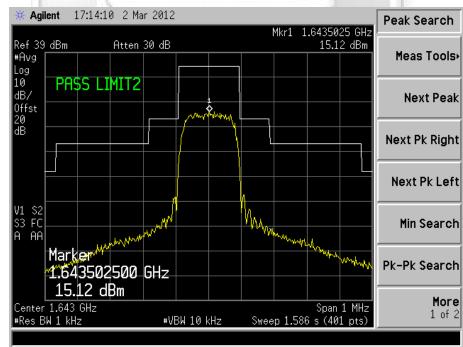
Plot 44 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 13)



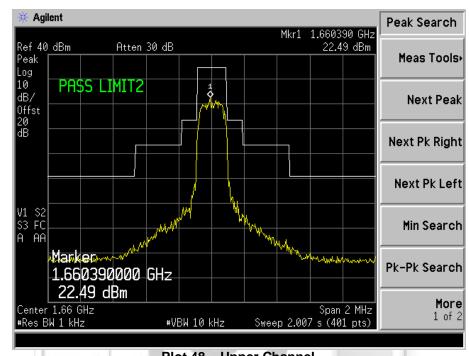
Plot 45 - Upper Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 15)

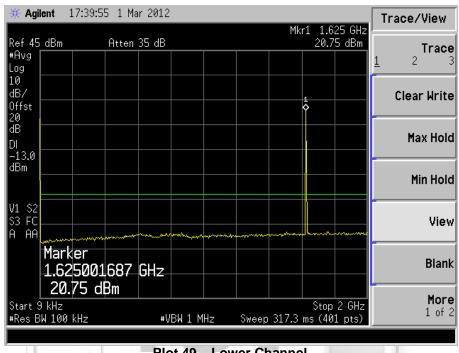
Plot 46 - Lower Channel



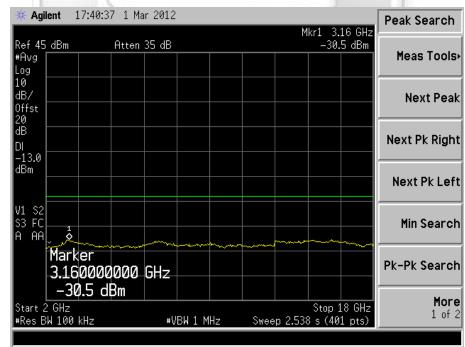
Plot 47 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

In Band Emissions Plots (Bearer Type: 15)



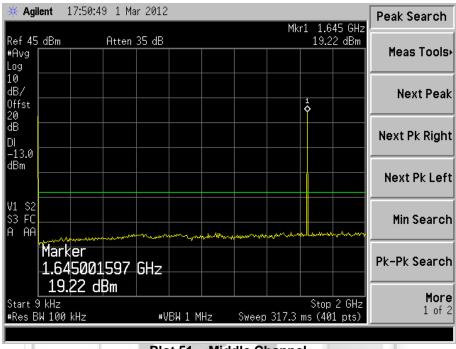
Plot 48 – Upper Channel



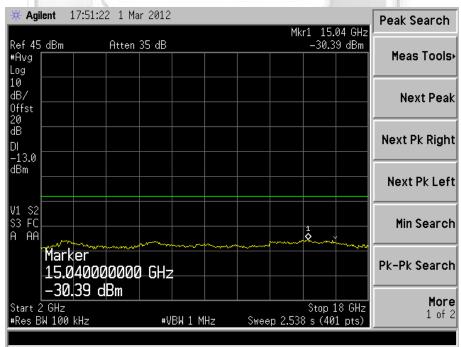
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 0)

Plot 49 - Lower Channel



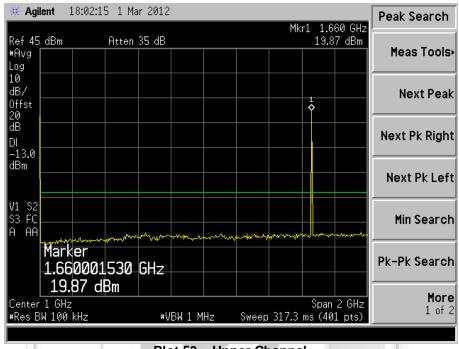
Plot 50 - Lower Channel



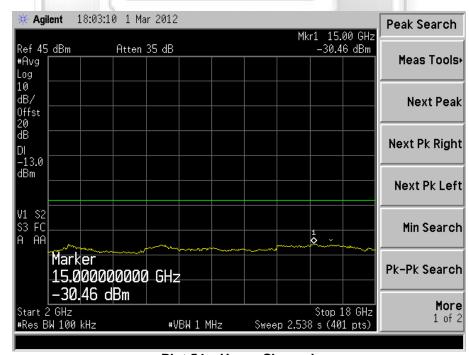
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 0)

Plot 51 - Middle Channel



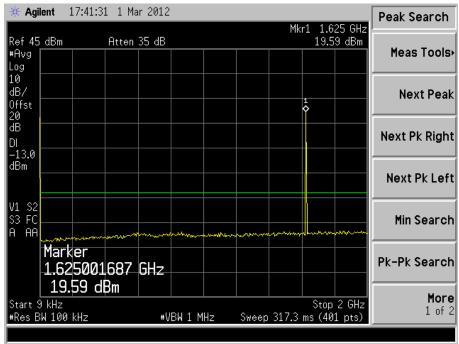
Plot 52 - Middle Channel



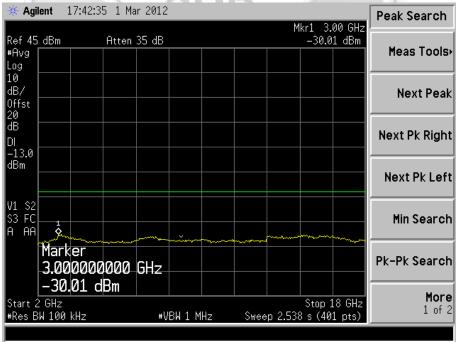
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 0)

Plot 53 – Upper Channel



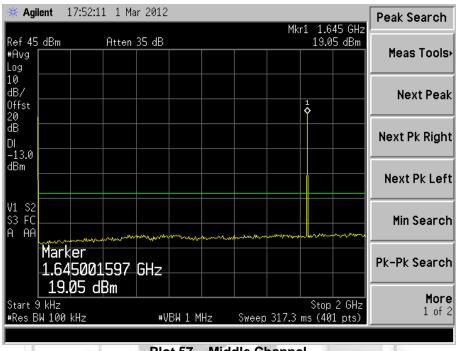
Plot 54 - Upper Channel



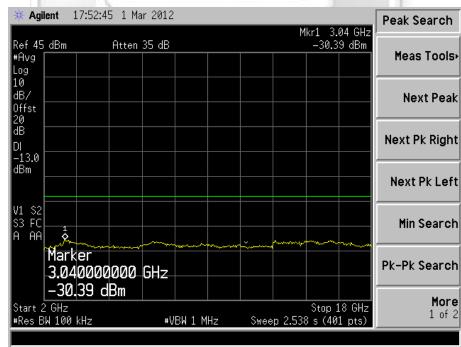
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 3)

Plot 55 - Lower Channel



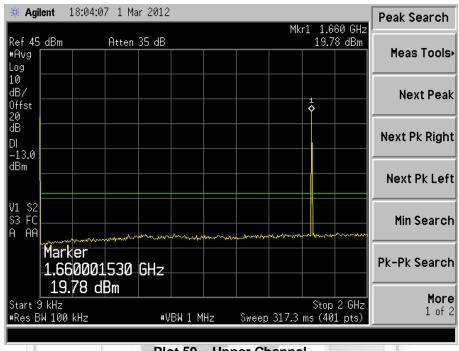
Plot 56 - Lower Channel



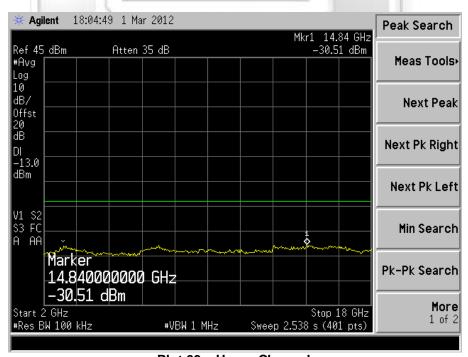
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 3)

Plot 57 - Middle Channel



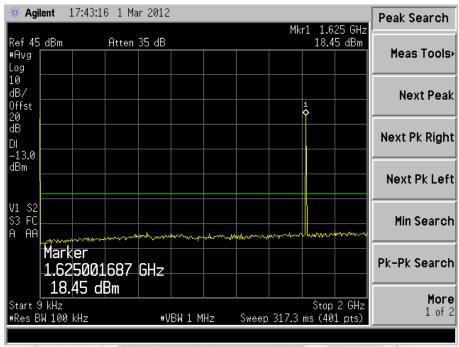
Plot 58 - Middle Channel



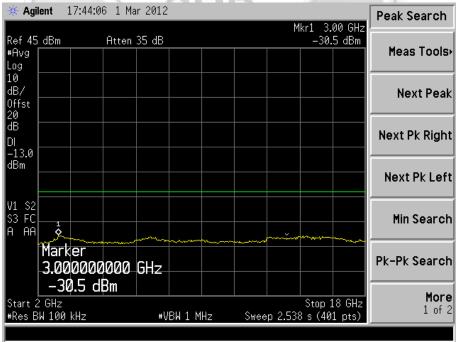
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 3)

Plot 59 – Upper Channel



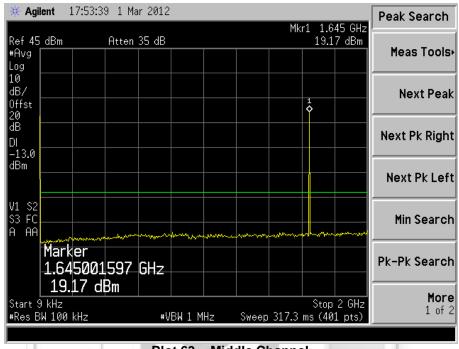
Plot 60 - Upper Channel



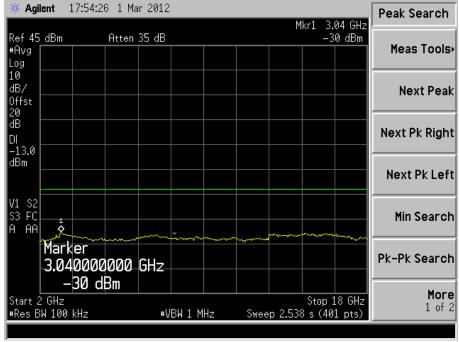
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 5)

Plot 61 - Lower Channel



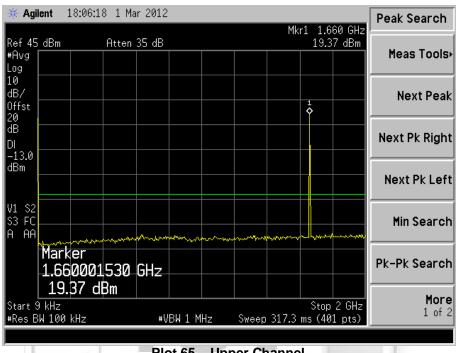
Plot 62 - Lower Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 5)

Plot 63 - Middle Channel



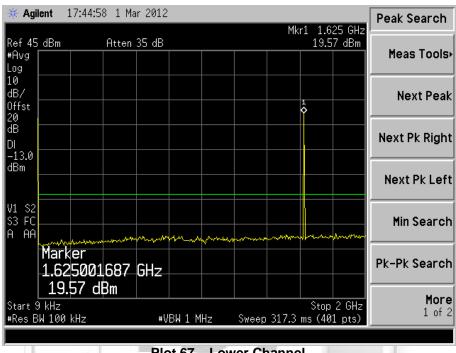
Plot 64 - Middle Channel



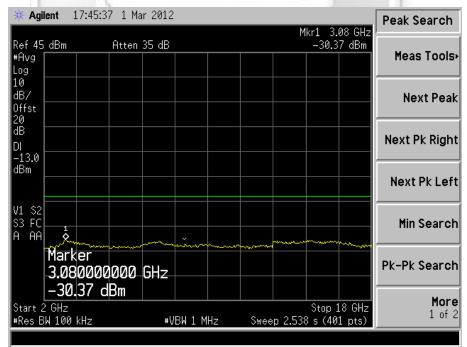
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 5)

Plot 65 – Upper Channel



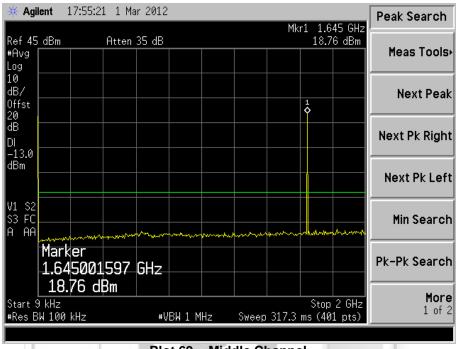
Plot 66 - Upper Channel



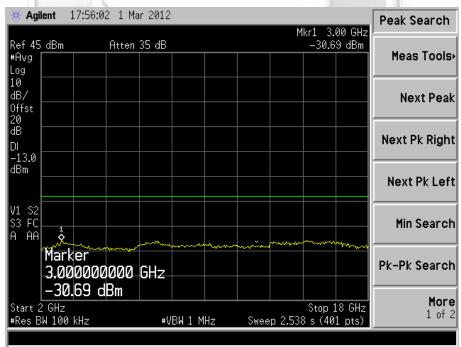
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 7)

Plot 67 - Lower Channel



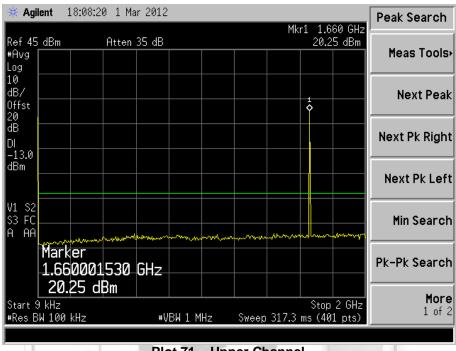
Plot 68 - Lower Channel



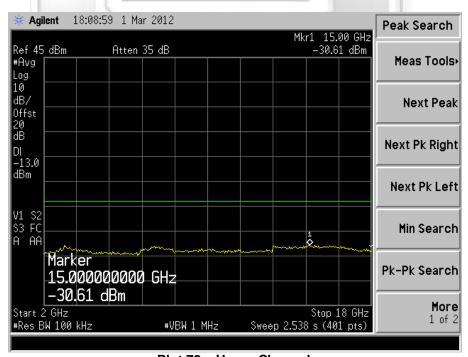
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 7)

Plot 69 - Middle Channel



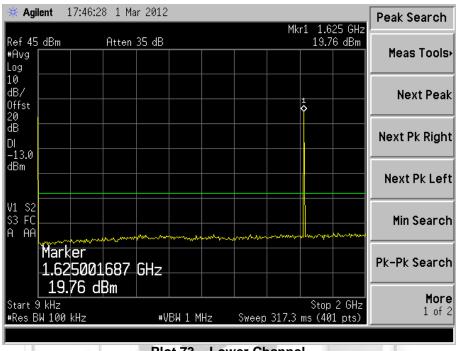
Plot 70 - Middle Channel



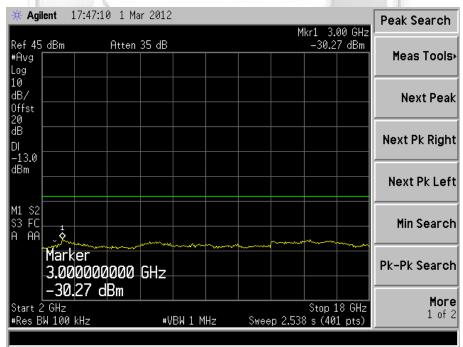
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 7)

Plot 71 – Upper Channel



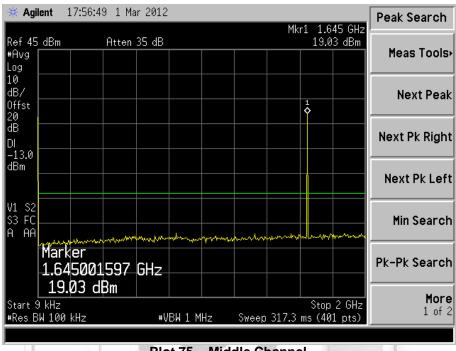
Plot 72 - Upper Channel



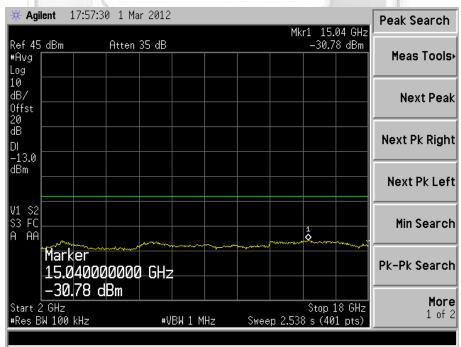
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 11)

Plot 73 - Lower Channel



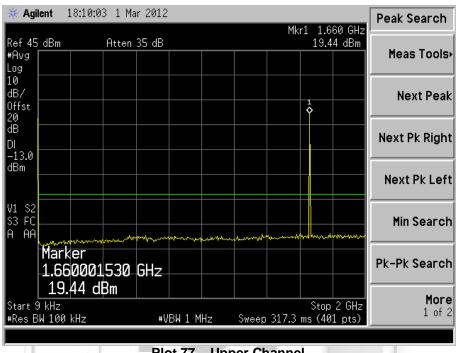
Plot 74 - Lower Channel



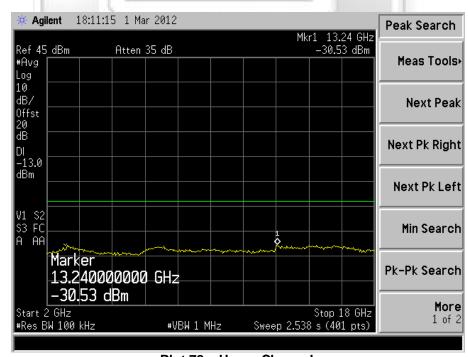
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 11)

Plot 75 - Middle Channel



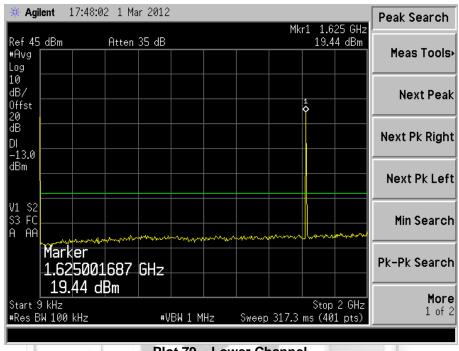
Plot 76 - Middle Channel



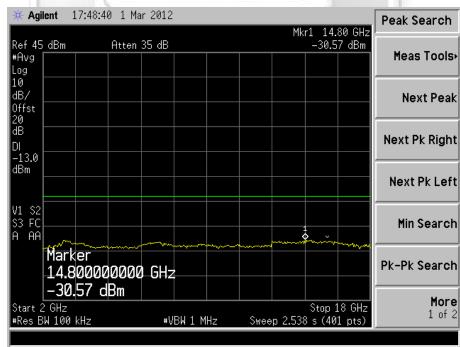
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 11)

Plot 77 – Upper Channel



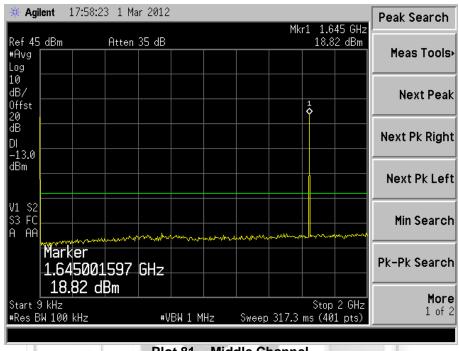
Plot 78 - Upper Channel



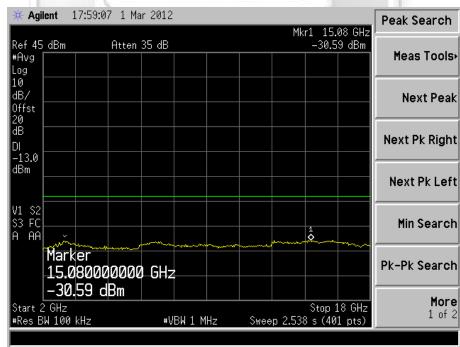
UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 13)

Plot 79 - Lower Channel



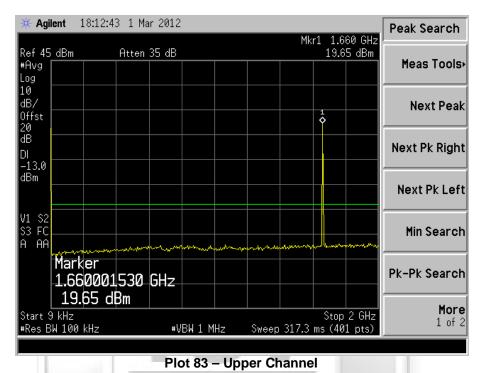
Plot 80 - Lower Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 13)

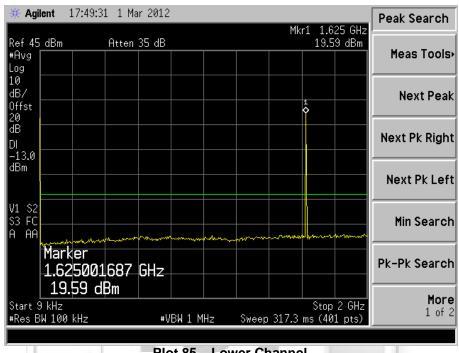
Plot 81 - Middle Channel



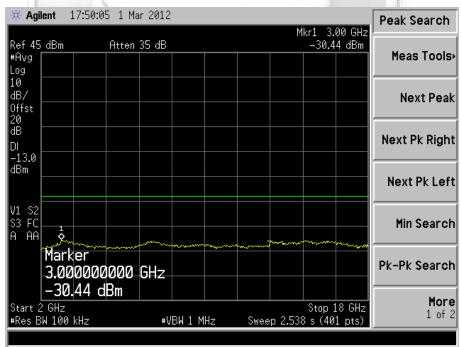
Plot 82 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 13)


* Agilent 18:13:20 1 Mar 2012 Peak Search Mkr1 3.00 GHz –30.71 dBm Ref 45 dBm Atten 35 dB #Avg Meas Tools> Log 10 dB/ **Next Peak** Offst 20 dB Next Pk Right −13.0 dBm Next Pk Left V1 S2 S3 FC Min Search **\$** AΑ Marker Pk-Pk Search 3.0000000000 GHz -30.71 dBm More Stop 18 GHz Sweep 2.538 s (401 pts) Start 2 GHz #Res BW 100 kHz 1 of 2 #VBW 1 MHz

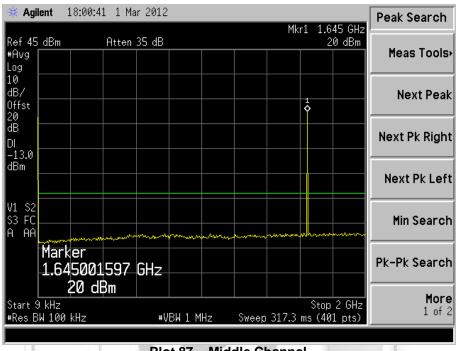
Plot 84 - Upper Channel



UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 15)

Plot 85 – Lower Channel

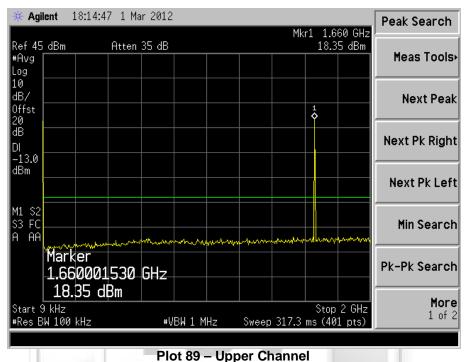


Plot 86 - Lower Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 15)

Plot 87 - Middle Channel



Plot 88 - Middle Channel

UNWANTED EMISSIONS AT ANTENNA TERMINAL TEST

Out of Band Spurious Plots (Bearer Type: 15)

* Agilent 18:15:35 1 Mar 2012 Peak Search Mkr1 15.00 GHz -30.31 dBm Ref 45 dBm Atten 35 dB #Avg Meas Tools> Log 10 dB/ **Next Peak** Offst 20 dB Next Pk Right -13.0 dBm Next Pk Left V1 S2 S3 FC Min Search AΑ Marker Pk-Pk Search 15.0000000000 GHz -30.31 dBm More Stop 18 GHz Sweep 2.538 s (401 pts) Start 2 GHz #Res BW 100 kHz 1 of 2 #VBW 1 MHz

Plot 90 - Upper Channel

Page 72 of 135

RADIATED SPURIOUS EMISSION TEST

47 CFR FCC Parts 2.1053 and 25.202(f) Radiated Spurious Emission Limits

- 1. 25.202 Emissions Limitations
 - (f) The mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:
 - (1) In any 4kHz band, the center frequency of which is removed from the assigned frequency by more than 50% up to and including 100% of the authorized bandwidth: 25 decibels;
 - (2) In any 4kHz band, the center frequency of which is removed from the assigned frequency by more than 100% up to and including 250% of the authorized bandwidth: 35 decibels;
 - (3) In any 4kHz band, the center frequency of which is removed from the assigned frequency by more than 250% of the authorized bandwidth: an amount equal to 43 decibels plus 10 times logarithm (to the base 10) of the transmitter power in watts.
- 2. 2.1053 Measurements Required: Field Strength of Spurious Emissions
 - (a) Measurement shall be made to detect spurious emissions that may be radiated directly form the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of 2.1049, as appropriate. For equipment operating on frequencies below 890MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from half-wave dipole antennas.
 - (b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:
 - (1) Those in which the spurious emission are required to be 60dB or more below the mean power of the transmitter.
 - (2) All equipment operating on frequencies higher than 25MHz.
 - (3) All equipment where the antenna is an integral part of, and attached directly to the transmitter.
 - (4) Other types of equipment as required, when deemed necessary by the Commission.

47 CFR FCC Parts 2.1053 and 25.202(f) Radiated Spurious Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Rohde & Schwarz EMI Test Receiver	ESMI	849182/003	16 Aug 2012
(20Hz – 26.5GHz)		848926/007	
TDK RF Solutions Hybrid Log Periodic Antenna	HLP-3003C	130238	19 Mar 2013
(30MHz-3GHz)			
Sonoma Preamplifier (9kHz – 1GHz)	310N	270640	03 Jan 2013
Toyo MicroWave Preamplifier (1GHz - 18GHz)	TPA0188-36	1005	24 Jun 2012
GW Instek Programmable Power Supply	PSH-3630A	RK200168	30 Jan 2013
Schaffner Bilog Antenna –(30MHz-2GHz) BL3	CBL6112B	2549	19 Jan 2013
(Ref)			
EMCO Horn Antenna(1GHz-18GHz) – H15 (Ref)	3115	0003-6008	20 May 2013
HP Synthesized Signal Generator – SG4	8665B	3744A01346	07 Nov 2012
Schaffner Bilog Antenna –(30MHz-2GHz) BL4	CBL6112B	2593	19 Jan 2013
EMCO Horn Antenna – H2	3115	9403-4250	20 May 2013

RADIATED SPURIOUS EMISSION TEST

47 CFR FCC Parts 2.1053 and 25.202(f) Radiated Spurious Emission Test Setup

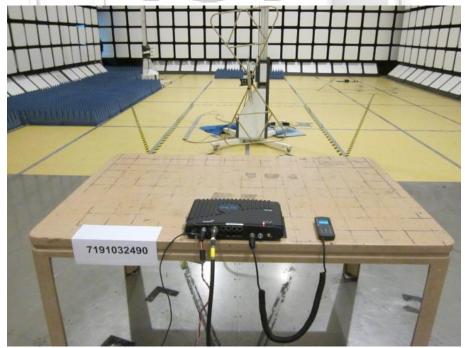
- The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m \times 1.0m \times 0.8m high, non-metallic table. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate 1.
- 2. power sockets located on the turntable.
- 3. The relevant antenna was set at the required test distance away from the EUT and supporting equipment boundary

47 CFR FCC Parts 2.1053 and 25.202(f) Radiated Spurious Emission Test Method

- 1. The EUT was set to transmit at the maximum power at the lower channel with the modulation on at normal test condition.
- The receiving antenna (test antenna) was set at vertical polarization with the height of 1m. 2.
- With the spectrum analyser was set to max hold enabled (peak detector mode), the spurious 3. emissions were searched and recorded. For EUT which is a portable device, the spurious emission search was carried out by rotating the EUT through three orthogonal axes to determine which attitude and equipment arrangement produces worst emissions.
- 4. For each spurious emission found, the test antenna was raised or lowered through the specified range of heights (1m - 4m) until a maximum signal level was detected on the test receiver.
- The EUT was then rotated through 360° in the horizontal plane until the maximum signal was 5. received. The maximum received signal level was recorded as A (in dBm).
- 6. The EUT was replaced with the substitution antenna with the antenna input was connected to the signal generator via a 10dB attenuator (if required).
- 7. The signal generator was set to the found spurious frequency. The output level of the signal generator was adjusted until the test receiver was at least 20dB above the level when the signal generator was switched off.
- The test antenna was raised and lowered through the specified range of heights (1m 4m) until the 8. maximum signal level was received on the test receiver.
- The substitution antenna was rotated until the maximum level was detected on the test receiver. 9.
- 10. The output level of the signal generator was adjusted until the received signal level at the test receiver was equal to the level recorded in step 5 (A dBm). The signal generator output level was recorded as B (in dBm).
- 11. The spurious emission level, P (e.i.r.p) was computed as followed:

P (e.i.r.p)		= B-C-D+E
where	С	= cable loss between the signal generator and the substitution
	D	 attenuation level if attenuator is used
	Е	substitution antenna gain

- 12. The steps 2 to 11 were repeated with the receiving antenna was set to horizontal polarization.
- Comparison was made on both measured results with vertical and horizontal polarizations. The 13. highest value out of vertical and horizontal polarizations was recorded.
- The steps 2 to 13 were repeated until all the spurious emissions (up to 10th harmonics of the carrier 14. frequency) were measured.
- 15. The steps 1 to 14 were repeated with the EUT was set to operate at the middle and upper channels respectivley.


Page 73 of 135

RADIATED SPURIOUS EMISSION TEST

Radiated Spurious Emissions Test Setup (Front View)

Radiated Spurious Emissions Test Setup (Rear View)

RADIATED SPURIOUS EMISSIONS TEST

47 CFR FCC Parts 2.1053 and 25.202(f) Radiated Spurious Emission Results

Operating Mode	Continuous Satellite transmission.	Temperature	24°C
Test Input Power	24Vdc (Worst Voltage)	Relative Humidity	60%
Test Distance	3m	Atmospheric Pressure	1030mbar
Type Bearer	15 (Worst Bearer)	Tested By	Jason Lai, Kelvin Cheng

<u>30MHz – 1GHz</u>

Lower Channel

Frequency Amplitude Limit						
(MHz)	(dBm)	(dBm)				
58.3020	-42.4	-13.0				
84.4280	-43.6	-13.0				
161.7150	-46.7	-13.0				
329.3530	-55.8	-13.0				
736.4730	-64.1	-13.0				
829.0000	-66.6	-13.0				

Middle Channe

Middle Orialine	100	
Frequency (MHz)	Amplitude (dBm)	Limit (dBm)
59.3910	-44.7	-13.0
83.3390	-43.5	-13.0
161.7150	-48.0	-13.0
277.1020	-50.3	-13.0
328.2640	-55.9	-13.0
830.0880	-68.1	-13.0

Upper Channel

Frequency (MHz)	Amplitude (dBm)	Limit (dBm)
59.3910	-44.4	-13.0
84.4280	-44.0	-13.0
160.6270	-47.6	-13.0
277.1020	-52.3	-13.0
329.3530	-56.2	-13.0
921.5270	-66.3	-13.0

RADIATED SPURIOUS EMISSIONS TEST

1GHz - 17GHz

Lower Channel

Frequency (MHz)	Amplitude (dBm)	Limit (dBm)
1016.8330	-68.3	-13.0
1056.1110	-66.9	-13.0
1875.3330	-72.7	-13.0
2301.7780	-61.6	-13.0
2492.5560	-61.6	-13.0
4832.3890	-69.1	-13.0

Middle Channel

Frequency (MHz)	Amplitude (dBm)	Limit (dBm)
1016.8330	-64.0	-13.0
1819.2220	-62.0	-13.0
1869.7220	-61.9	-13.0
2492.5560	-63.7	-13.0
2576.7220	-63.9	-13.0
4220.7780	-70.2	-13.0

Upper Channel

Frequency (MHz)	Amplitude (dBm)	Limit (dBm)
1016.8330	-68.5	-13.0
1819.2220	-75.5	-13.0
1852.8890	-72.1	-13.0
1880.9450	-73.4	-13.0
1931.4450	-74.8	-13.0
2486.9450	-65.4	-13.0

Page 77 of 135

RADIATED SPURIOUS EMISSIONS TEST

Notes

6.

- 1. All possible modes of operation were investigated. Only the worst case emissions measured. All other emissions were relatively insignificant.
- 2. A "positive" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency. Conversely, a "negative" margin indicates a FAIL.
- 3. The Resolution Bandwidth (RBW) was corrected from 4kHz by 10log10 [(used RBW) / 4kHz].
- 4. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings: 30MHz 20GHz

RBW: 100kHz VBW: 300kHz

- 5. Emission limits are computed based on following:
 - a. Emissions Limits (dBm) (50% = P 25 + CF 100% authorised bandwidth)
 - b. Emissions Limits (dBm) (100% = P 35 + CF 250% authorised bandwidth)
 - c. Emissions Limits (dBm) (> 250% = P [43 + $10 \log_{10} P_W$] + 30 + CF authorised bandwidth)

where P = Measured mean power in dBm
P_W = Meausred mean power in W

CF = RBW correction factor (see Note 3)
Radiated Spurious Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz – 25GHz is ±4.0dB.

PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

47 CFR FCC Part 25.216(h)(i)(j) Protection of Aeronautical Radio Navigation Satellite Service Limits

25.216(h)(i)(j) Limits on Emissions from Mobile Earth Stations for Protection of Aeronautical Radionavigation-Satellite Service

- (h) Mobile earth stations manufactured more than six months after Federal Register publication of the rule changes adopted in FC 03-283 (from November 6, 2003) with assigned uplink frequencies in the 1626.5MHz - 1660.5MHz band shall suppress the power density of emissions in the 1605MHz -1610MHz band-segment to an extent determined by linear interoperation from -70dBW/MHz at 1605MHz to -46dBW/MHz at 1610MHz, averaged over any 2ms active transmission interval. The e.i.r.p of discrete emissions of less than 700Hz bandwidth from such stations shall not exceed a level determined by linear interoperation from -80dBW at 1605MHz to -56dBW at 1610MHz, averaged over any 2ms active transmission interval.
- (i) The e.i.r.p density of carrier-off state emissions from mobile earth stations manufactured more than six months after Federal Register publication of the rule changes adopted in FCC 03-283 with assigned uplink frequencies between 1GHz and 3GHz shall not exceed -80dBW/MHz in the 1559MHz 1610MHz band averaged over any 2ms interval.
- (j) A Root-Mean-Square detector shall be used for all power density measurements.

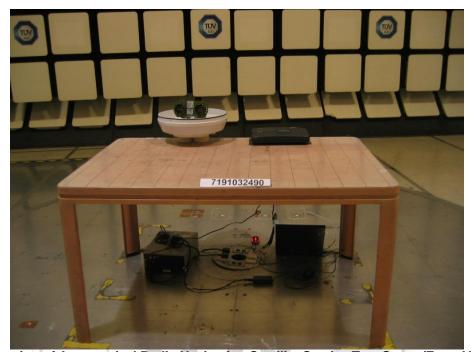
47 CFR FCC Part 25.216(h)(i)(j) Protection of Aeronautical Radio Navigation Satellite Service Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Agilent EMC Analyzer	E7405A	US40240195	16 Mar 2013
EMCO Horn Antenna(1GHz-18GHz) – H15 (Ref)	3115	0003-6008	20 May 2013
Bird 20dB Attenuator	25-A-MFN-20	0209	25 May 2013
GW Instek Programmable Power Supply	PSH-3630A	RK200168	30 Jan 2013

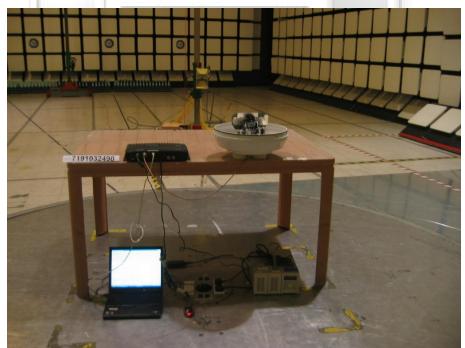
PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

47 CFR FCC Part 25.216(h)(i)(j) Protection of Aeronautical Radio Navigation Satellite Service Test Setup

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- The relevant antenna was set at the required test distance away from the EUT and supporting equipment boundary


47 CFR FCC Part 25.216(h)(i)(j) Protection of Aeronautical Radio Navigation Satellite Service Test Method

- 1. The EUT was set to transmit at the maximum power at the lower channel with the modulation on at normal test condition.
- 2. The receiving antenna (test antenna) was set at vertical polarization with the height of 1m.
- 3. A prescan was carried out in the frequency range under investigations with the EMI receiver set to max hold mode. For EUT which is a portable device, the prescan was carried out by rotating the EUT through three orthogonal axes to determine which attitude and equipment arrangement produces such emissions.
- 4. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
 - Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b. The EUT was then rotated to the direction that gave the maximum emission.
 - c. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- 5. The maximized emissions were plotted with inclusion of corrector factor of measured radiated emissions to EIRP.
- 6. The steps 1 to 5 were repeated with the EUT was set to operate at the middle and upper channels respectively.
- 7. The measurements were repeated with the EUT in carrier off state (standby).


Page 79 of 135

PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Protection of Aeronautical Radio Navigation Satellite Service Test Setup (Front View)

Protection of Aeronautical Radio Navigation Satellite Service Test Setup (Rear View)

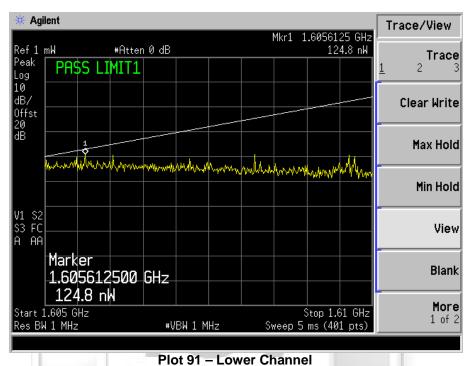
PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

47 CFR FCC Part 25.216(h)(i)(j) Protection of Aeronautical Radio Navigation Satellite Service Results

Operating Mode	Continuous Satellite	Temperature	24°C
	transmission		
Test Input Power	24Vdc (Worst Voltage)	Relative Humidity	60%
Test Distance	3m	Atmospheric Pressure	1030mbar
Attached Plots	91 – 111	Tested By	Dylan Lin, Zechs Ng

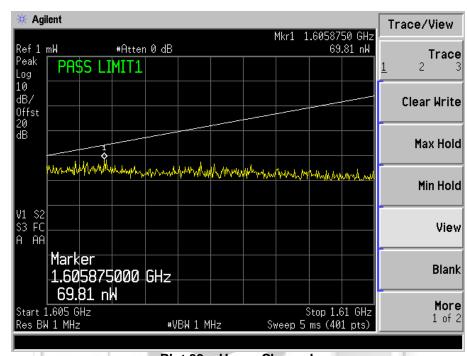
All spurious signals found were below the specified limit. Please refer to the attached plots.

Operating Mode	Satellite off (Standby)	Temperature	24°C
Test Input Power	24Vdc (Worst Voltage)	Relative Humidity	60%
Test Distance	3m	Atmospheric Pressure	1030mbar
Attached Plots	112	Tested By	Dylan Lin, Zechs Ng


All spurious signals found were below the specified limit. Please refer to the attached plots.

PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

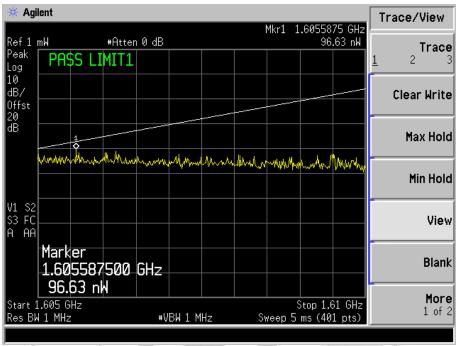
Type Bearer: 0 - Transmitter On


Agilent Trace/View Mkr1 1.6053375 GHz 22.71 nW Ref 1 mW #Atten 0 dB Trace Peak PA\$S LIMIT1 2 Log 10 dB/ Clear Write Offst 20 dB Max Hold Min Hold V1 S2 S3 FC A AA View Marker Blank 1.605337500 GHz 22.71 nW More Start 1.605 GHz Res BW 1 MHz Stop 1.61 GHz Sweep 5 ms (401 pts) 1 of 2 #VBW 1 MHz

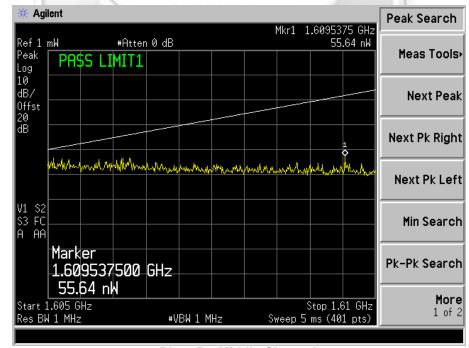
Plot 92 - Middle Channel

PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 0 - Transmitter On



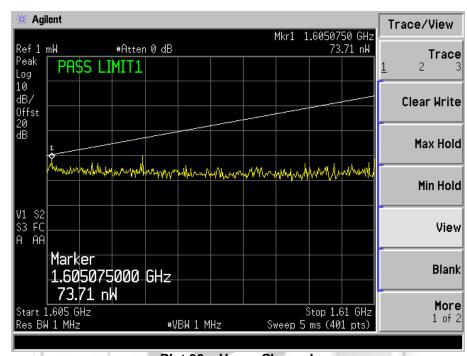
Plot 93 - Upper Channel



PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 3 - Transmitter On

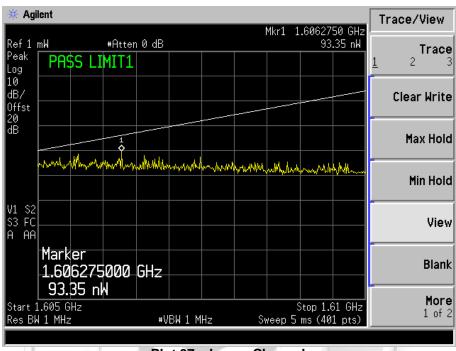
Plot 94 - Lower Channel



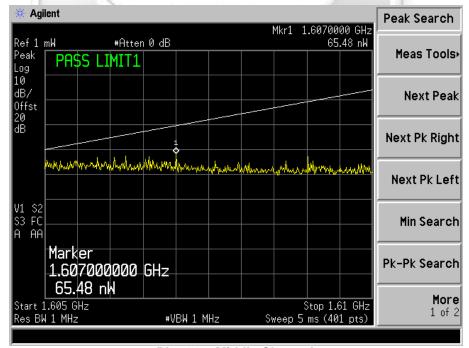
Plot 95 - Middle Channel

PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 3 - Transmitter On



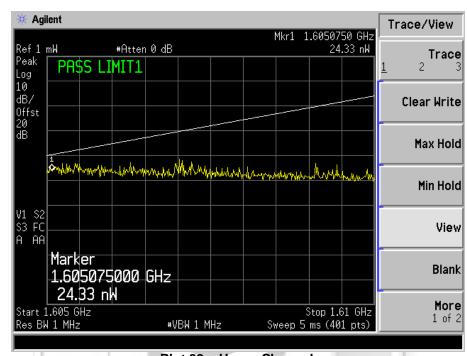
Plot 96 - Upper Channel



PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 5 - Transmitter On

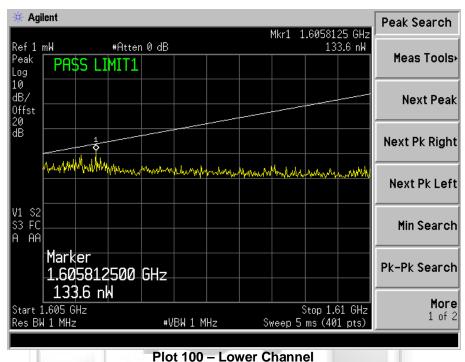
Plot 97 - Lower Channel



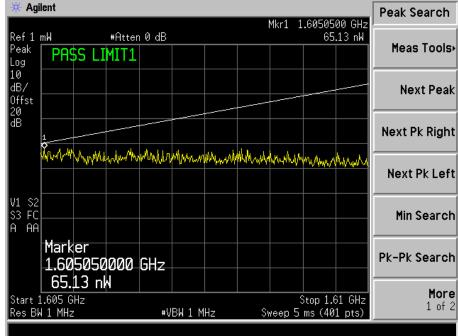
Plot 98 - Middle Channel

PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 5 - Transmitter On



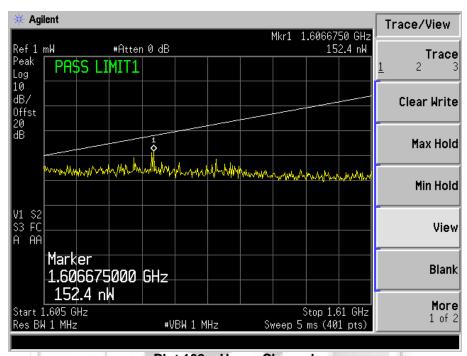
Plot 99 - Upper Channel



PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 7 - Transmitter On

Plot 100 – Lower Channel

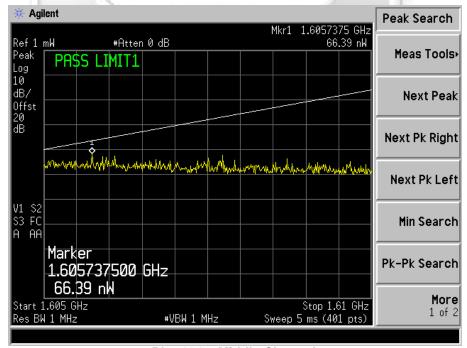


Plot 101 - Middle Channel

PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 7 - Transmitter On

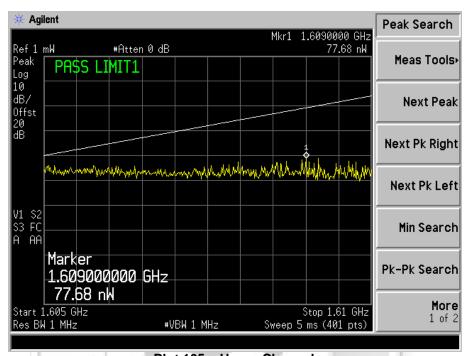
Plot 102 – Upper Channel



PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 11 - Transmitter On

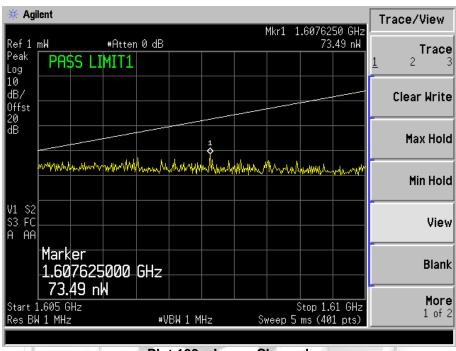
Plot 103 - Lower Channel



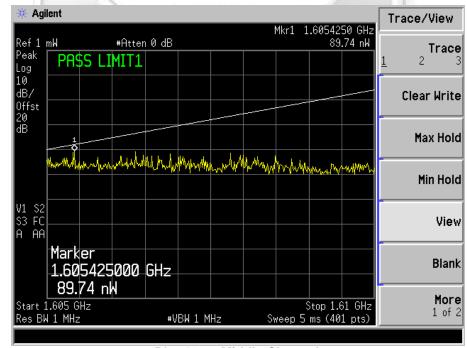
Plot 104 - Middle Channel

PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 11 - Transmitter On



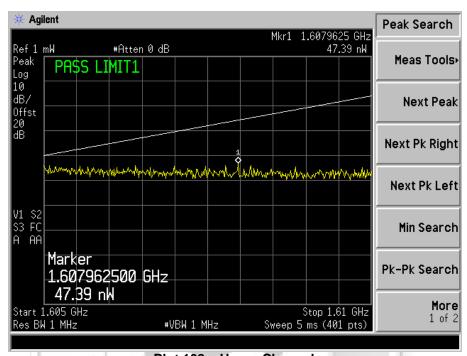
Plot 105 - Upper Channel



PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 13 - Transmitter On

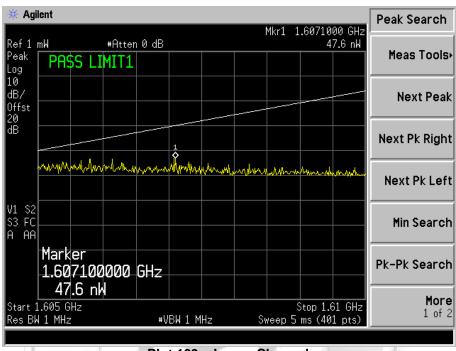
Plot 106 - Lower Channel

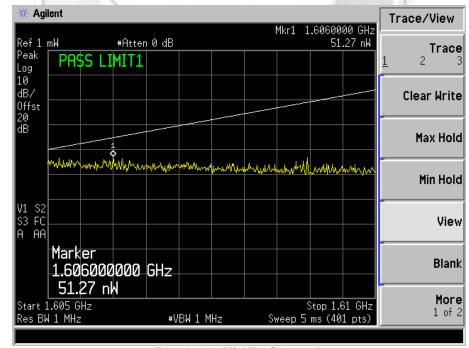


Plot 107 - Middle Channel

PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 13 - Transmitter On

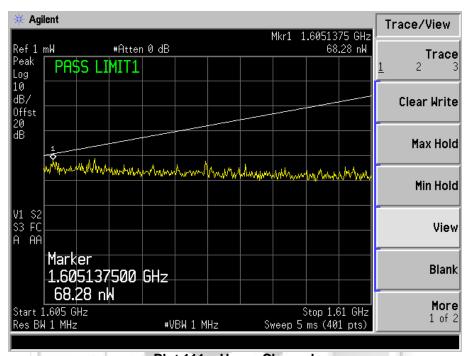

Plot 108 – Upper Channel



PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 15 - Transmitter On

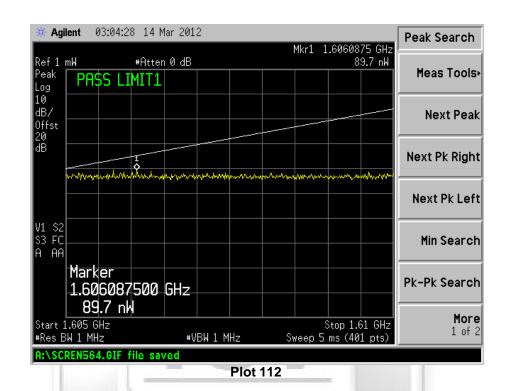
Plot 109 - Lower Channel



Plot 110 - Middle Channel

PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Type Bearer: 15 - Transmitter On



Plot 111 – Upper Channel

PROTECTION OF AERONAUTICAL RADIO NAVIGATION SATELLITE SERVICE TEST

Carrier Off

FREQUENCY STABILITY (TEMPERATURE VARIATION) TEST

47 CFR FCC Parts 2.1055 and 25.202(d) Frequency Stability (Temperature Variation) Test Limits

- 25.202(d) Frequency Tolerance, Earth Stations
 The carrier frequency of each earth station transmitter authorised in these services shall be maintained within 0.001% (10ppm) of the reference frequency.
- 2. 2.1055 Measurements Required: Frequency Stability
 - (a) The frequency stability shall be measured with variation of ambient temperature as follows:
 - (1) From -30°C to +50°C for all equipment except that specified in paragraphs (a)(2) and (3) of this section.
 - (b) Frequency measurements shall be made at the extremes of the specified temperature range and at interval of not more than 10°C throughout the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion of portions of the transmitter containing the frequency determining and stabilizing circuitry need to be subjected to the temperature variation test.
 - (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
 - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
 - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

47 CFR FCC Parts 2.1055 and 25.202(d) Frequency Stability (Temperature Variation) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Agilent Universal Counter	53132A	3736A0628	25 May 2013
Mini-Circuits Precision Fixed Attentuator	BW-S20W5+	Nil	Output Monitor
Instock Wireless Components Combiner	PD7120	Nil	Output Monitor
GW Instek Programmable Power Supply	PSH-3630A	RK200168	30 Jan 2013

FREQUENCY STABILITY (TEMPERATURE VARIATION) TEST

47 CFR FCC Parts 2.1055 and 25.202(d) Frequency Stability (Temperature Variation) Test Setup

- The EUT and supporting equipment were set up as shown in the test setup photo. A temperaturecontrolled chamber was used.
- 2. The EUT was connected to an appropriate power source while all other supporting equipment were powered separately from another power source.
- 3. The RF antenna connector of the EUT was connected to the spectrum analyser via a RF attenuator and a low-loss coaxial cable.

47 CFR FCC Parts 2.1055 and 25.202(d) Frequency Stability (Temperature Variation) Test Method

- 1. The temperature chamber was set at 20°C and permitted to stabilize. The EUT was set to transmit at lower channel without modulation. The carrier frequency was measured as the reference frequency.
- With the EUT power removed, the temperature of the temperature chamber was set to -30°C and permitted to stabilize.
- 3. The EUT was turned on and set to operate at lower channel without modulation. The maximum change in the carrier frequency was recorded within a minute.
- 4. The EUT was powered off and the temperature was raised to -20°C.
- 5. The EUT was left stabilized for at least an hour before next measurement was taken as described in step 3.
- 6. The steps 4 and 5 were repeated with increment of temperature in 10°C step until the temperature reached 50°C.
- 7. The steps 1 to 6 were repeated with the EUT was set to operate at the middle and upper channels respectively.

FREQUENCY STABILITY (TEMPERATURE VARIATION) TEST

Frequency Stability (Temperature Variation) Test Setup

FREQUENCY STABILITY (TEMPERATURE VARIATION) TEST

47 CFR FCC Parts 2.1055 and 25.202(d) Frequency Stability (Temperature Variation) Results

Operating Mode	Continuous Satellite Transmission.	Temperature	See table below
Test Input Power	24Vdc (Worst Voltage)	Relative Humidity	70%
		Atmospheric Pressure	1030mbar
		Tested By	Chelmin Li

Lower Channel

Temperature (°C)	Measured Frequency (GHz)	Reference Channel Frequency (GHz)	Deviation (Hz)	Limit (Hz)
-30	1.626600491	1.626600000	491.000000	+/-16266
-20	1.626600418	1.626600000	418.000000	+/-16266
-10	1.626600542	1.626600000	542.000000	+/-16266
0	1.626600774	1.626600000	774.000000	+/-16266
10	1.626600856	1.626600000	856.000000	+/-16266
20	1.626600857	1.626600000	857.000000	+/-16266
30	1.626600938	1.626600000	938.000000	+/-16266
40	1.626600952	1.626600000	952.000000	+/-16266
50	1.626600108	1.626600000	108.000000	+/-16266

Middle Channel

Temperature (°C)	Measured Frequency (GHz)	Reference Channel Frequency (GHz)	Deviation (Hz)	Limit (Hz)
-30	1.643500518	1.643500000	518.000000	+/-16435
-20	1.643500457	1.643500000	457.000000	+/-16435
-10	1.643500477	1.643500000	477.000000	+/-16435
0	1.643500718	1.643500000	718.000000	+/-16435
10	1.643500834	1.643500000	834.000000	+/-16435
20	1.643500845	1.643500000	845.000000	+/-16435
30	1.643500907	1.643500000	907.000000	+/-16435
40	1.643500936	1.643500000	936.000000	+/-16435
50	1.643500988	1.643500000	988.000000	+/-16435

OFFI

FREQUENCY STABILITY (TEMPERATURE VARIATION) TEST

Upper Channel

Temperature (°C)	Measured Frequency (GHz)	Reference Channel Frequency (GHz)	Deviation (Hz)	Limit (Hz)
-30	1.660400582	1.660400000	582.000000	+/-16604
-20	1.660400449	1.660400000	449.000000	+/-16604
-10	1.660400546	1.660400000	546.000000	+/-16604
0	1.660400782	1.660400000	782.000000	+/-16604
10	1.660400883	1.660400000	883.000000	+/-16604
20	1.660400887	1.660400000	887.000000	+/-16604
30	1.660400959	1.660400000	959.000000	+/-16604
40	1.660400983	1.660400000	983.000000	+/-16604
50	1.660401032	1.660400000	1032.000000	+/-16604

Page 102 of 135

FREQUENCY STABILITY (VOLTAGE VARIATION) TEST

47 CFR FCC Parts 2.1055 and 25.202(d) Frequency Stability (Voltage Variation) Test Limits

- 25.202(d) Frequency Tolerance, Earth Stations
 The carrier frequency of each earth station transmitter authorised in these services shall be maintained within 0.001% (10ppm) of the reference frequency.
- 2. 2.1055 Measurements Required: Frequency Stability
 - (a) The frequency stability shall be measured with variation of ambient temperature as follows:
 - (1) From -30°C to +50°C for all equipment except that specified in paragraphs (a)(2) and (3) of this section.
 - (b) Frequency measurements shall be made at the extremes of the specified temperature range and at interval of not more than 10°C throughout the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion of portions of the transmitter containing the frequency determining and stabilizing circuitry need to be subjected to the temperature variation test.
 - (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
 - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
 - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

47 CFR FCC Parts 2.1055 and 25.202(d) Frequency Stability (Voltage Variation) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Agilent Universal Counter	53132A	3736A0628	25 May 2013
Mini-Circuits Precision Fixed Attentuator	BW-S20W5+	Nil	Output Monitor
Instock Wireless Components Combiner	PD7120	Nil	Output Monitor
GW Instek Programmable Power Supply	PSH-3630A	RK200168	30 Jan 2013

FREQUENCY STABILITY (VOLTAGE VARIATION) TEST

47 CFR FCC Parts 2.1055 and 25.202(d) Frequency Stability (Voltage Variation) Test Setup

- The EUT and supporting equipment were set up as shown in the test setup photo. A temperaturecontrolled chamber was used.
- 2. The EUT was connected to an appropriate power source while all other supporting equipment were powered separately from another power source.
- 3. The RF antenna connector of the EUT was connected to the spectrum analyser via a RF attenuator and a low-loss coaxial cable.

47 CFR FCC Parts 2.1055 and 25.202(d) Frequency Stability (Voltage Variation) Test Method

- 1. The temperature chamber was set at 20°C and permitted to stabilize. The EUT was set to transmit at lower channel without modulation. The carrier frequency was measured as the reference frequency.
- 2. The EUT was powered from 85% of the nominal supplied voltage and set to operate at lower channel without modulation.
- 3. The EUT power was varied from 85% to 115% of the nominal supplied voltage. The carrier frequency variation was recorded.
- 4. The steps 1 to 3 were repeated with the EUT was set to operate at the middle and upper channels respectively.

FREQUENCY STABILITY (VOLTAGE VARIATION) TEST

Frequency Stability (Voltage Variation) Test Setup

Page 105 of 135

FREQUENCY STABILITY (VOLTAGE VARIATION) TEST

47 CFR FCC Parts 2.1055 and 25.202(d) Frequency Stability (Voltage Variation) Results

Operating Mode	Continuous Satellite Transmission	Temperature	20°C
Test Input Power	See table below	Relative Humidity	70%
		Atmospheric Pressure	1030mbar
		Tested By	Chelmin Li

Lower Channel

Voltage (V)	Measured Frequency (GHz)	Nominal Channel Frequency (GHz)	Deviation (Hz)	Limit (Hz)
10.8	1.626600878	1.626600000	878.000000	+/-16266
24.0	1.626600863	1.626600000	863.000000	+/-16266
31.2	1.626600897	1.626600000	897.000000	+/-16266

Middle Channel

Miladic Orialiici				
Voltage (V)	Measured Frequency (GHz)	Nominal Channel Frequency (GHz)	Deviation (Hz)	Limit (Hz)
10.8	1.643500930	1.643500000	930.000000	+/-16435
24.0	1.643500887	1.643500000	887.000000	+/-16435
31.2	1.643500942	1.643500000	942.000000	+/-16435

Upper Channel

Voltage (V)	Measured Frequency (GHz)	Nominal Channel Frequency (GHz)	Deviation (Hz)	Limit (Hz)
10.8	1.660400900	1.660400000	900.000000	+/-16604
24.0	1.660400857	1.660400000	857.000000	+/-16604
31.2	1.660400913	1.660400000	913.000000	+/-16604

Page 106 of 135

MAXIMUM PERMISSIBLE EXPOSURE (MPE) TEST

47 CFR FCC Part 1.1310 Maximum Permissible Exposure (MPE) Limits

The EUT shows compliance to the requirements of this section, which states the MPE limits for general population / uncontrolled exposure are as shown below:

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time (min)
0.3 - 1.34	614	1.63	100 Note 2	30
1.34 - 30	824 / f	2.19 / f	180 / f ^{2 Note 2}	30
30 - 300	27.5	0.073	0.2	30
300 - 1500	- 2	-	f / 1500	30
1500 - 100000	-//	-	1.0	30
Notes				
 f = frequency 	/ in MHz			
Plane wave equivalent power density				

47 CFR FCC Part 1.1310 Maximum Permissible Exposure Computation

S P 3.3189W = d Test distance

Numerical isotropic gain, 10 (10.0dBi)

Substituting the relevant parameters into the formula:

√[(30GP) / 377S] d

0.52m

.. The EUT shall maintain at least at 0.52m from operators to comply to MPE criteria.

Please note that this Report is issued under the following terms :

- 1. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that TÜV SÜD PSB approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that TÜV SÜD PSB in any way "guarantees" the later performance of the product/equipment. Unless otherwise stated in this report, no tests were conducted to determine long term effects of using the specific product/equipment.
- 2. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. TÜV SÜD PSB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
- 3. Nothing in this report shall be interpreted to mean that TÜV SÜD PSB has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.
- 4. This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to TÜV SÜD PSB or to the report or results furnished by TÜV SÜD PSB in any advertisements or sales promotion.
- 5. Unless otherwise stated, the tests were carried out in TÜV SÜD PSB Pte Ltd, No.1 Science Park Drive Singapore 118221.

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

Page 108 of 135

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

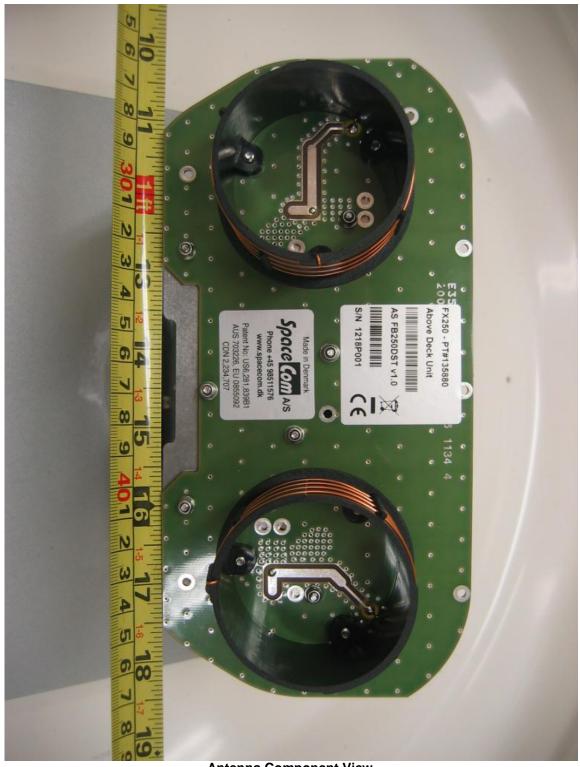
ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

EUT PHOTOGRAPHS - HANDSET

Front View

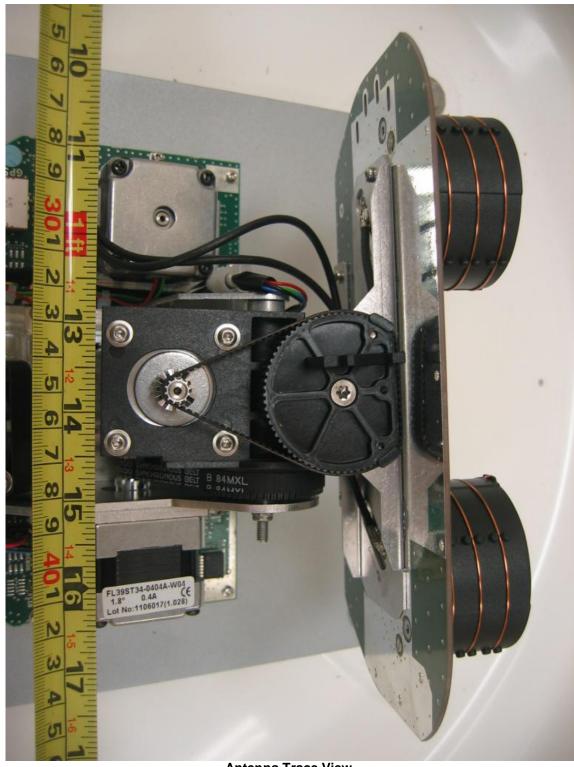
Rear View

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS


EUT PHOTOGRAPHS – ANTENNA UNIT

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

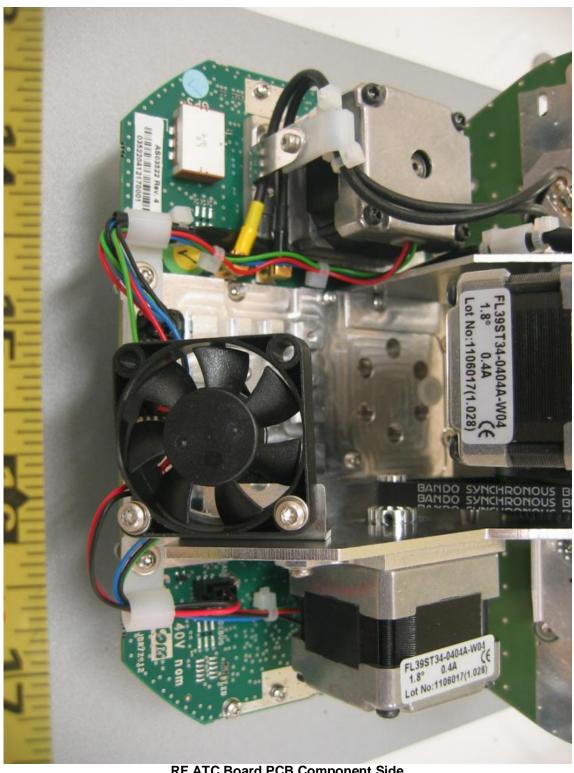
EUT PHOTOGRAPHS – ANTENNA UNIT



Antenna Component View

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

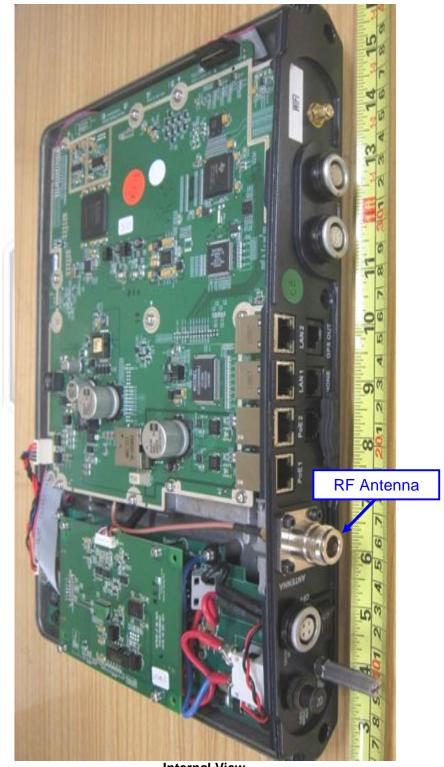
EUT PHOTOGRAPHS – ANTENNA UNIT


Antenna Trace View

Page 113 of 135

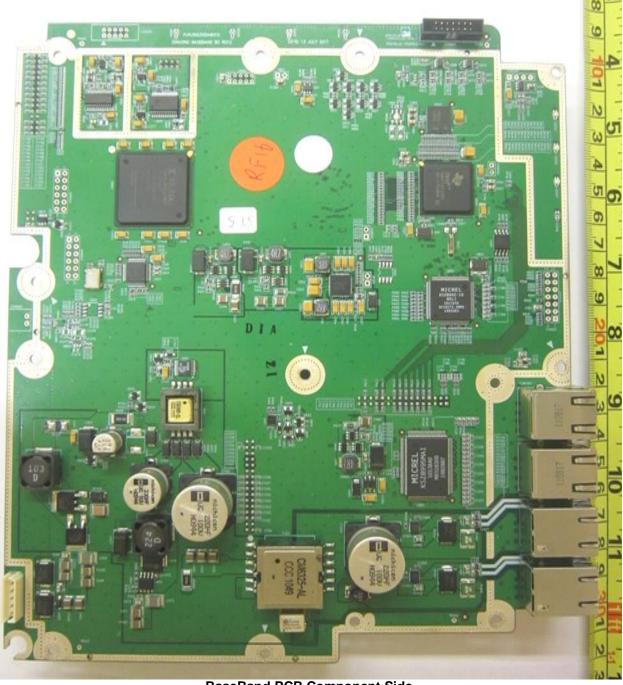
ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

EUT PHOTOGRAPHS – ANTENNA UNIT



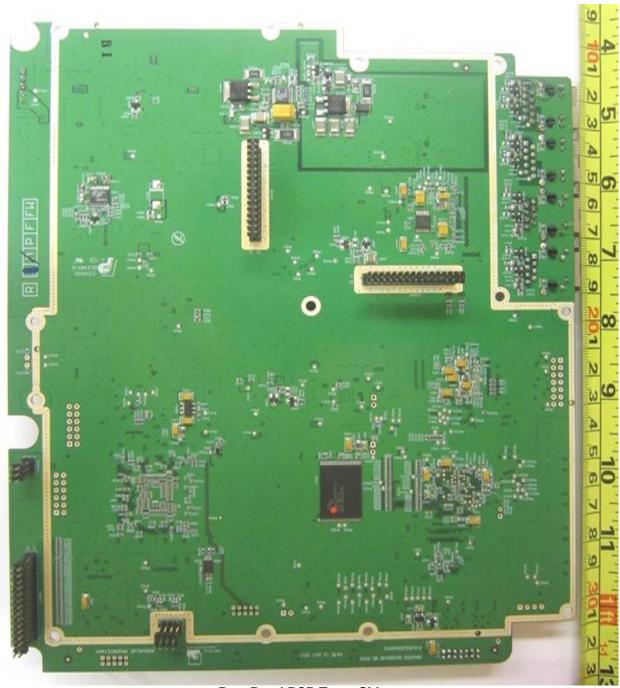
RF ATC Board PCB Component Side

Page 114 of 135


ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

Internal View

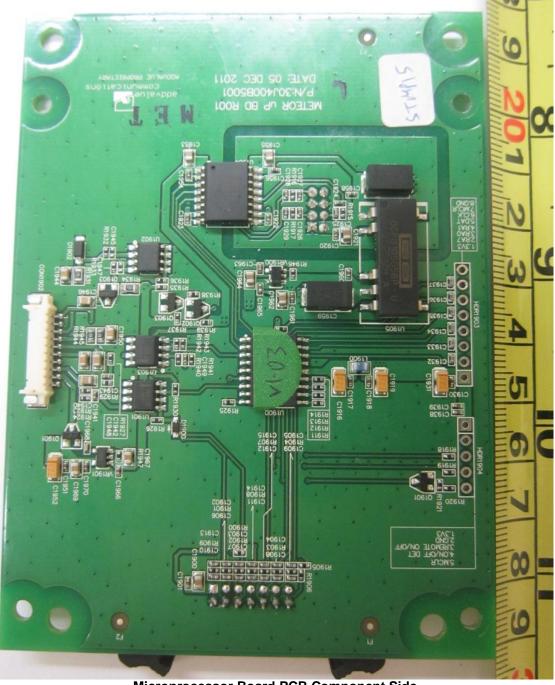
ANNEX A EUT PHOTOGRAPHS / DIAGRAMS



BaseBand PCB Component Side

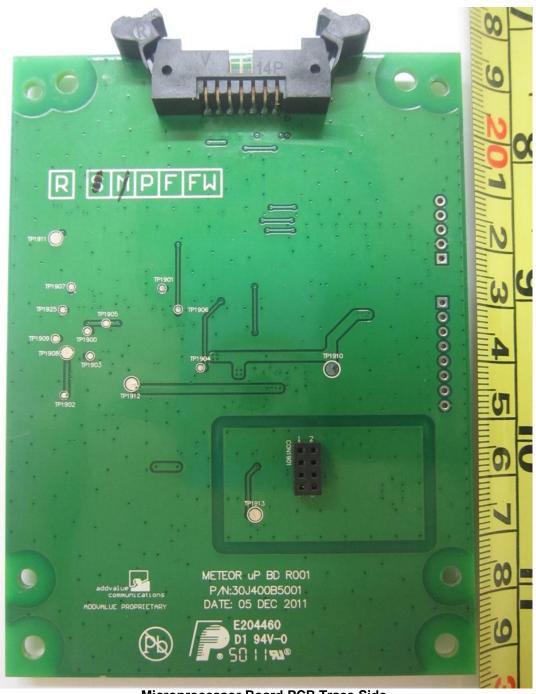
ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

EUT PHOTOGRAPHS - MAIN UNIT

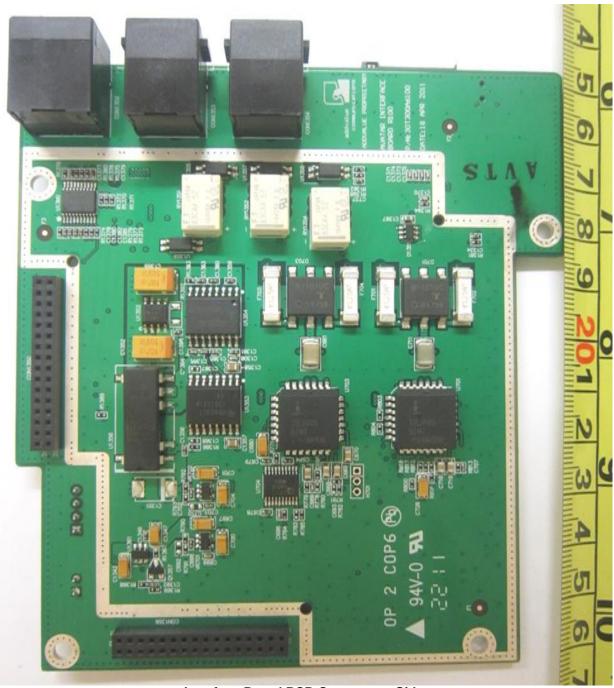


BaseBand PCB Trace Side

Page 117 of 135


ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

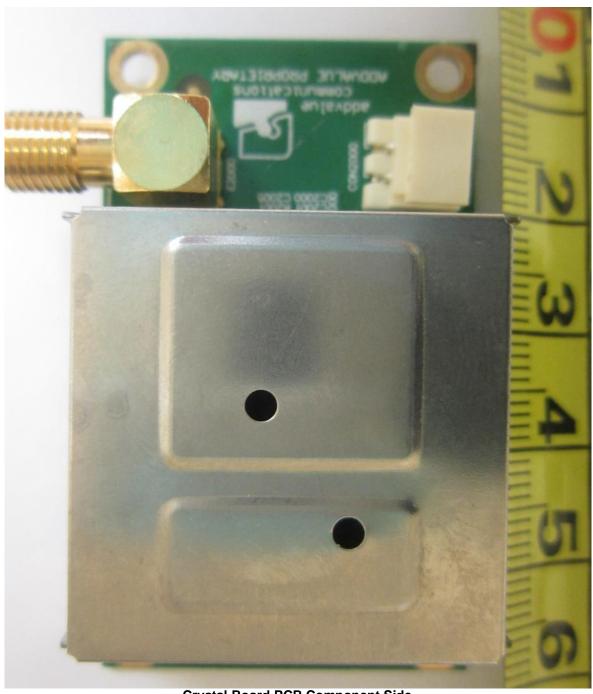
Microprocessor Board PCB Component Side


ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

Microprocessor Board PCB Trace Side

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

Interface Board PCB Component Side


ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

Interface Board PCB Trace Side

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

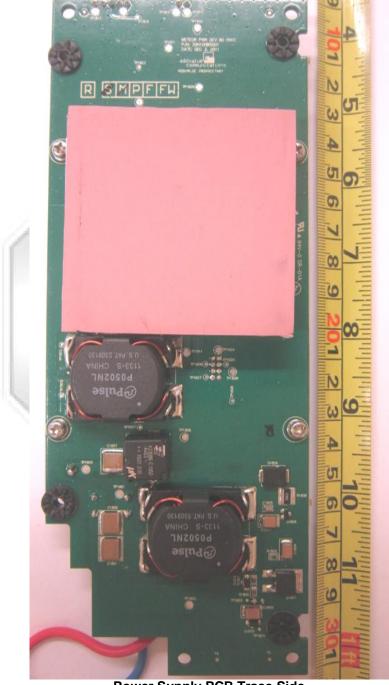
Crystal Board PCB Component Side

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

Crystal Board PCB Trace Side

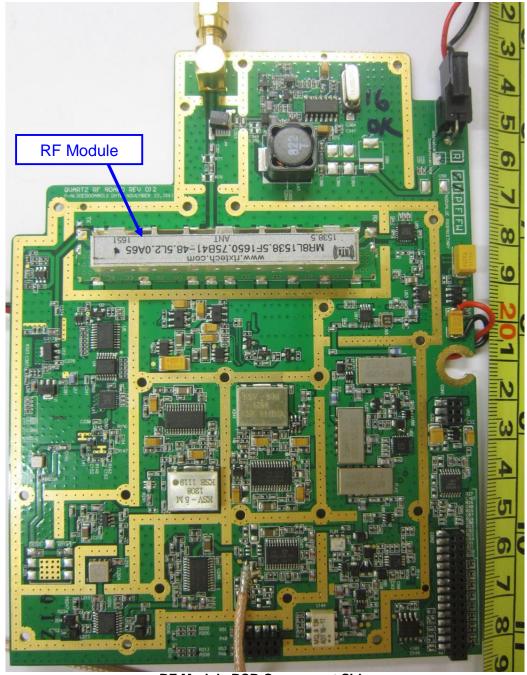
ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

EUT PHOTOGRAPHS - MAIN UNIT

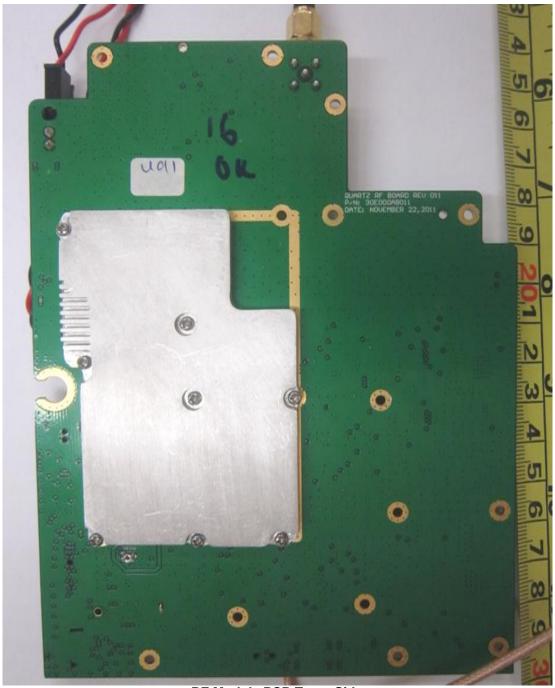


Power Supply PCB Component Side

Page 124 of 135

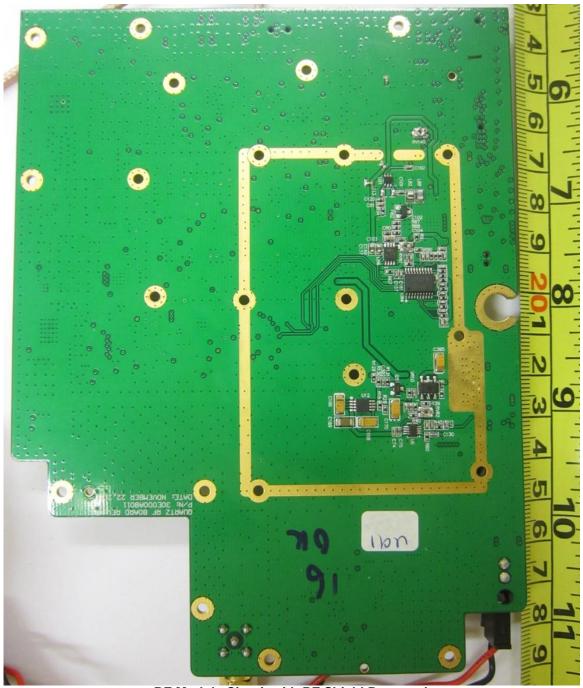

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

Power Supply PCB Trace Side


ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

RF Module PCB Component Side

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS



RF Module PCB Trace Side

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

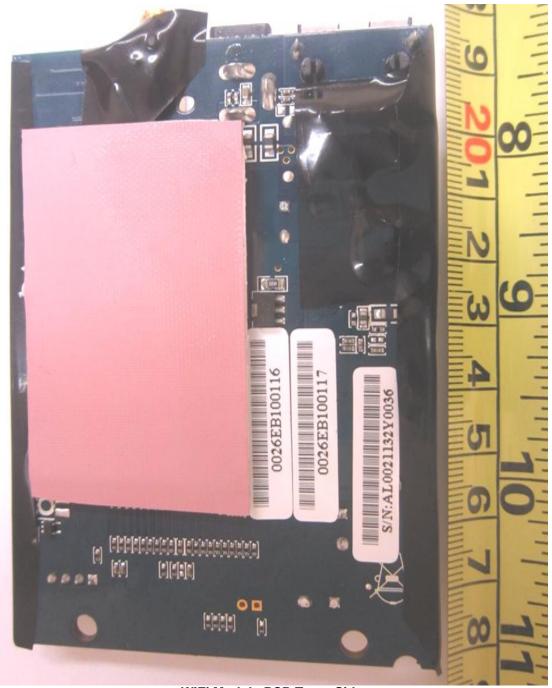
EUT PHOTOGRAPHS


RF Module Circuit with RF Shield Removed

Page 128 of 135

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

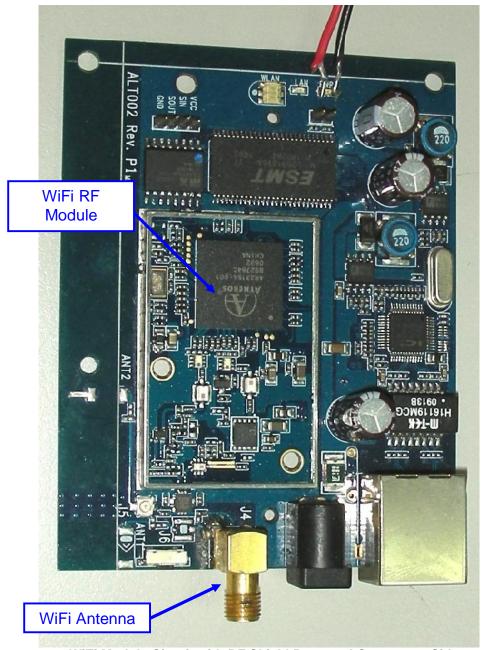
EUT PHOTOGRAPHS - MAIN UNIT



WiFi Module PCB Component Side

Page 129 of 135

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS



WiFi Module PCB Trace Side

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

EUT PHOTOGRAPHS

WiFi Module Circuit with RF Shield Removed Conponent Side

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

EUT PHOTOGRAPHS

WiFi Module Circuit with RF Shield Removed Trace Side

ANNEX B USER MANUALTECHNICAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

ANNEX B

USER MANUAL TECHNICAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

(Please refer to manufacturer for details)

ANNEX C FCC LABEL & POSITION

ANNEX C FCC LABEL & POSITION

Labelling requirements per Section 2.925 & 15.19

The label shown will be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

MODEL: FX 250

PART NUMBER: 136550

POWER: DC 12V, 15A / 24V, 7.5A (180W MAX)

Sea Tel

€CE1177

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not IC:10236A-FX250BDE cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC ID:BJF-STFX250BDE

addvalue enabled

Made in Malaysia

Designed in Singapore

Physical Location of FCC Label on EUT

Page 135 of 135