

Designated by Ministry of International Trade and Industry

KANSAI ELECTRONIC INDUSTRY DEVELOPMENT CENTER

HEAD OFFICE
6-8-7, NISHITEMMA
KITA-KU, OSAKA, 530-0047 JAPAN

IKOMA
TESTING LABORATORY
1212B, TAKAYAMA-CHO
IKOMA-CITY, NARA, 630-0101 JAPAN

Corporate Juridical Person

ENGINEERING TEST REPORT

Report No. A-008-99-C

Date : April 26, 1999

This test report is to certify that the tested device properly complies with the requirements of:

FCC Rules and Regulations Part 15 Subpart B Unintentional Radiators.

All the tests necessary to show compliance to the requirements were performed and these results met the specifications of requirement. The results of this report should not be construed to imply compliance of equipment other than that which was tested. Unless the laboratory permission, this report should not be copied in part.

1. Applicant

Company Name : Shintom Co., Ltd.
Mailing Address : 1-19-20, Shin-Yokohama, Kohoku-ku, Yokohama, 222-0033 Japan

2. Identification of Tested Device

FCC ID : BFYVDE431ANA
Device Name : Video Cassette Recorder
Trade Name : GO-VIDEO
Model Number : GV-6025
Serial Number : WS-0001 prototype pre-production production
Date of Manufacture : March, 1999

3. Test Items Procedure, Reference Rule and Specification

- (1) AC Power Line Conducted Emission Measurement : Section 15.107(a)
- (2) Radiated Emission Measurement : Section 15.109 (a), (c) and Section 15.115(a)
- (3) Output Signal Level Measurement : Section 15.115 (b) (1) (ii)
- (4) Output Terminal Conducted Spurious Emission Measurement : Section 15.115 (b) (2) (ii)
- (5) Transfer Switch Measurement : Section 15.115 (c) (1) (ii)

Above all tests were performed under : ANSI C63.4 - 1992

4. Date of Test

Receipt of Test Sample : March 18, 1999
Test Completed on : March 30, 1999

Fumitoshi Nagaoka
Associate Director of Ikoma Testing Laboratory

ENGINEERING TEST REPORTTable of Contents

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION.....	3
1.2 DESCRIPTION FOR EQUIPMENT AUTHORIZATION.....	4
1.3 TEST FACILITY	4
2. TESTED SYSTEM	5
2.1 TEST MODE.....	5
2.2 OPERATION OF EUT SYSTEM.....	6
2.3 BLOCK DIAGRAM OF EUT SYSTEM FOR CONDUCTED AND RADIATED EMISSION MEASUREMENTS	7
3. AC POWER LINE CONDUCTED EMISSION MEASUREMENT.....	10
3.1 TEST PROCEDURE.....	10
3.2 PHOTOGRAPHS OF EUT SYSTEM CONFIGURATION	11
3.3 TEST RESULTS.....	14
4. RADIATED EMISSION MEASUREMENT.....	16
4.1 TEST PROCEDURE.....	16
4.2 PHOTOGRAPHS OF EUT SYSTEM CONFIGURATION	17
4.3 TEST RESULTS.....	20
5. OUTPUT SIGNAL LEVEL MEASUREMENT.....	21
5.1 TEST PROCEDURE.....	21
5.2 PHOTOGRAPHS OF EUT SYSTEM CONFIGURATION	22
5.3 TEST RESULTS.....	24
6. OUTPUT TERMINAL CONDUCTED SPURIOUS EMISSION MEASUREMENT.....	25
6.1 TEST PROCEDURE.....	25
6.2 PHOTOGRAPHS OF EUT SYSTEM CONFIGURATION	25
6.3 TEST RESULTS.....	26
7. TRANSFER SWITCH MEASUREMENT	27
7.1 TEST PROCEDURE.....	27
7.2 PHOTOGRAPHS OF EUT SYSTEM CONFIGURATION	28
7.3 TEST RESULTS.....	29
8. LIST OF TEST EQUIPMENTS	30

ENGINEERING TEST REPORT**1. GENERAL INFORMATION****1.1 Product Description**

The GO-VIDEO Model No.GV-6025 (referred to as the EUT in this report) is a Double Video Cassette Recorder containing RF modulator and Tuner.

(1) Specification

- RF Modulator Frequency : US CH. #3 Visual Carrier 61.25 MHz,
Aural Carrier 65.75 MHz
- : US CH. #4 Visual Carrier 67.25 MHz,
Aural Carrier 71.75 MHz
- Type of RF Output Connector : Type "F" Connector 75Ω (Unbalanced)

(2) Provided terminal

- ANT Input Terminal
- ANT Output Terminal
- A/V Input Terminal (front side)
- A/V Output Terminal

(3) Used Oscillating Frequencies

- 16 MHz : CPU System clock
- 14 MHz : OSD clock
- 32 kHz : Timer clock

(4) Rated Power Supply : AC 120 V, 60 Hz

ENGINEERING TEST REPORT

1.2 Description for Equipment Authorization

(1) Rules Part(s) under which Equipment operated

FCC Rule Part 15, Subpart B; TV Interface Device in Unintentional Radiator

(2) Highest Frequency used in the Device : 71.75 MHz

Upper Frequency of Radiated measurement Range is 1000 MHz

1.3 Test Facility

All tests described in this report were performed by:

Name : KANSAI ELECTRONIC INDUSTRY DEVELOPMENT CENTER (KEC)
IKOMA TESTING LABORATORY
Open Area Test Site No.4
Shielded Room No.4

Address : 12128, Takayama-cho Ikoma-city, Nara, 630-0101 Japan

These test facilities have been filed with the FCC under the criteria of ANSI C63.4-1992. The laboratory has been accredited by the NVLAP (Lab. Code : 200207-0) based on ISO/IEC Guide 25. Also the laboratory has been authorized by ITI (Interference Technology International, UK), TUV Product Service (GER) and TUV Rheinland (GER) based on their criteria for testing laboratory (EN45001).

ENGINEERING TEST REPORT**2. TESTED SYSTEM****2.1 Test Mode**

In each measurement (excluding antenna transfer switch measurement), the compliance tests were performed under following five EUT operation modes.

In transfer switch measurement, it was done under three modes (a ~ c).

If EUT is the Double Video Cassette Recorder, two pieces of video tape are inserted in both Deck 1 and Deck 2, and played/recorded at the same time.

a. Playback mode

Playback the video tape that is recorded 1V peak-to-peak VITS signal.

b. Record mode (1V VITS Signal Input)

1V peak-to-peak VITS signal is supplied through the VIDEO IN 1(front side) terminal.

c. Record mode (5V VITS Signal Input)

5V peak-to-peak VITS signal is supplied through the VIDEO IN 1(front side) terminal.

d. Record mode (0 dBmV NTSC TV Signal Input)

NTSC TV U.S. channel 13 (consist of visual carrier and aural carrier) is supplied through the ANTENNA IN terminal.

[Note]

1) Visual Carrier (0 dBmV at 211.25 MHz) is modulated by 1V peak-to-peak VITS signal.

2) Aural Carrier (-10 dBmV at 215.75 MHz) is not modulated.

e. Record mode (25 dBmV NTSC TV Signal Input)

NTSC TV U.S. channel 13 (consist of visual carrier and aural carrier) is supplied through the ANTENNA IN terminal.

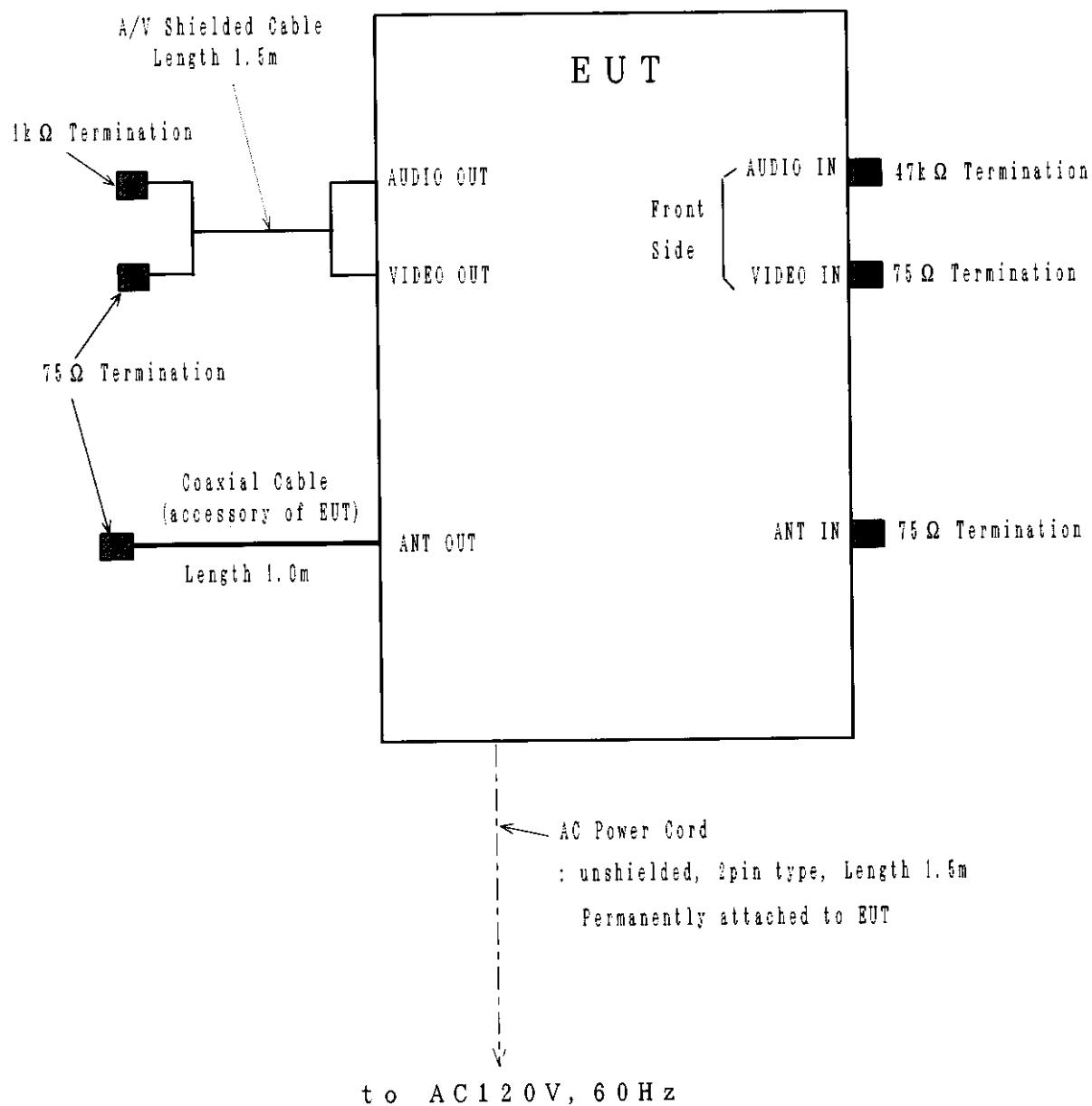
[Note]

1) Visual Carrier (25 dBmV at 211.25 MHz) is modulated by 1V peak-to-peak VITS signal.

2) Aural Carrier (15 dBmV at 215.75 MHz) is not modulated.

In each mode, the spectrum was checked and the data of the maximum EUT operation was reported.

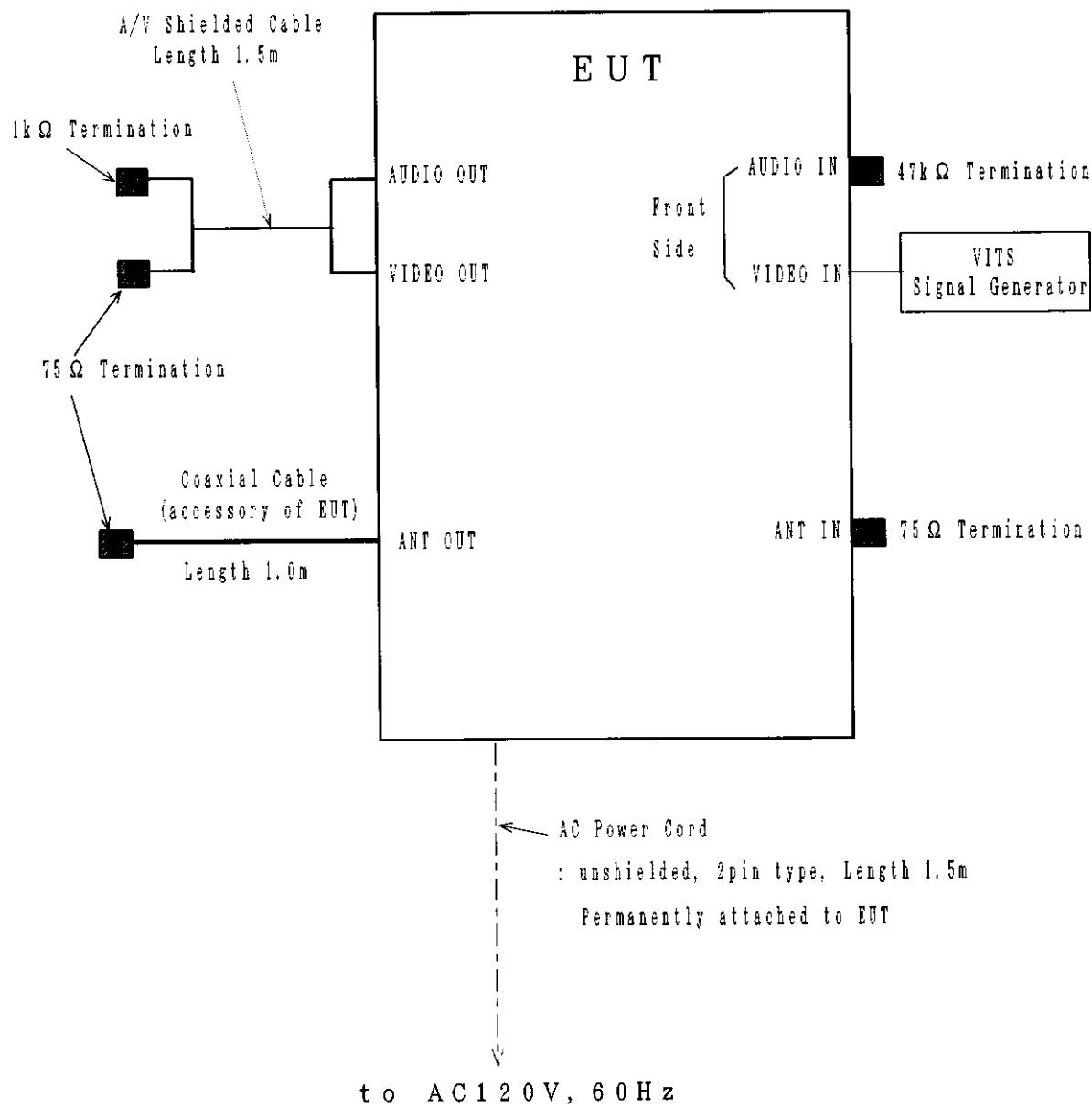
ENGINEERING TEST REPORT**2.2 Operation of EUT System****(1) Playback mode**


Playback the video tape that is recorded 1V peak-to-peak VITS signal.

(2) Record mode (1V / 5V VITS Signal Input)

1V/5V peak-to-peak VITS signal is supplied through the VIDEO IN terminal, if applicable.

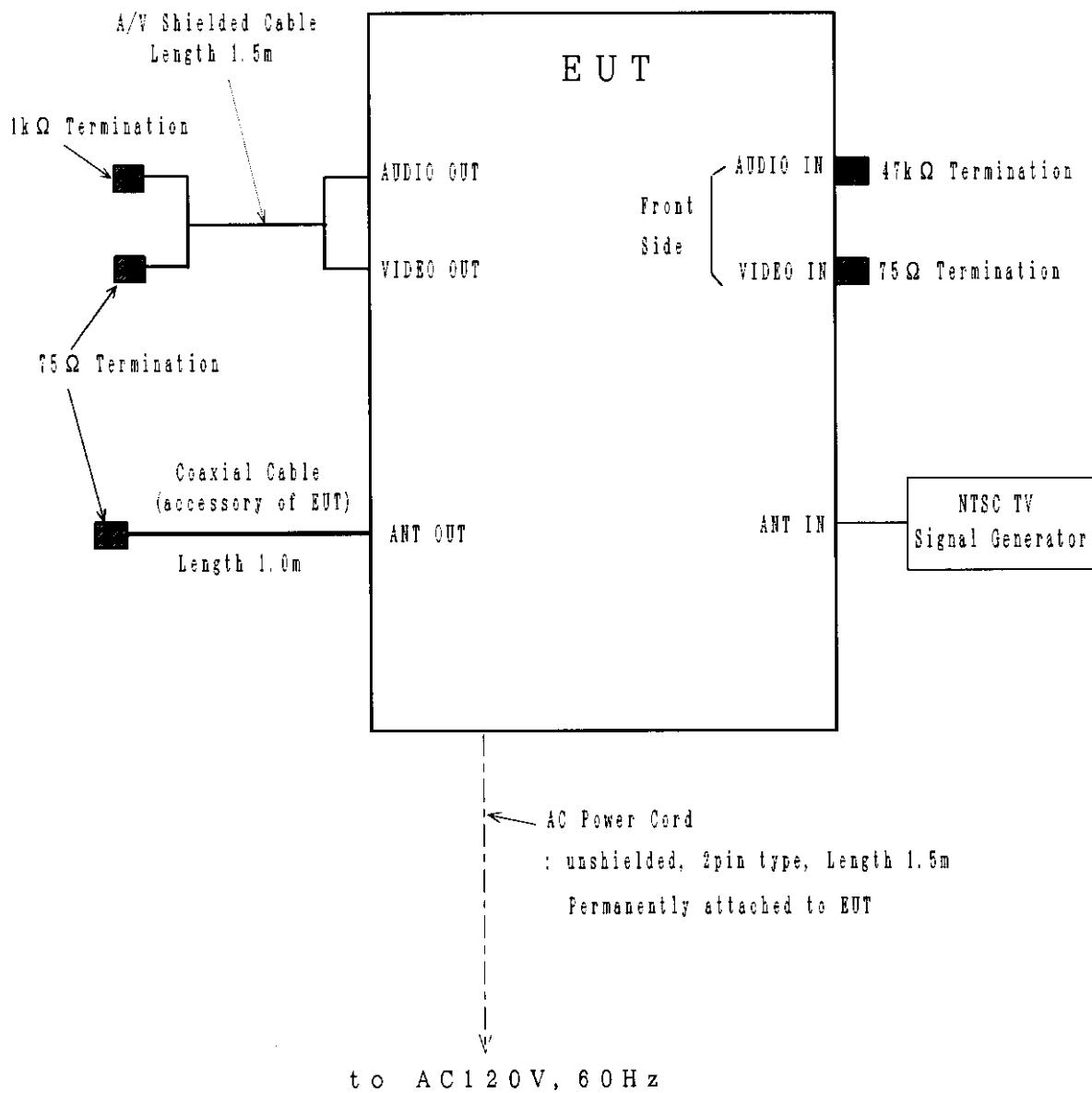
(3) Record mode (0 dBmV / 25 dBmV NTSC TV Signal Input)


NTSC TV U.S. channel 13 (consist of visual carrier and aural carrier) is supplied through the ANTENNA IN terminal, if applicable.

ENGINEERING TEST REPORT**2.3 Block Diagram of EUT System for Conducted and Radiated Emission Measurements****a. Playback mode**

ENGINEERING TEST REPORT

- Continued -


- b. Record mode (1V VITS Signal Input)
- c. Record mode (5V VITS Signal Input)

ENGINEERING TEST REPORT

- Continued -

- d. Record mode (0 dBmV NTSC TV Signal Input)
- e. Record mode (25 dBmV NTSC TV Signal Input)

ENGINEERING TEST REPORT**3. AC POWER LINE CONDUCTED EMISSION MEASUREMENT****3.1 Test Procedure**

(1) Configure the EUT System in accordance with ANSI C63.4-1992 section 7.

without deviation, with deviation(details are found below)

See also the block diagram and the photographs of EUT System configuration in this report.

(2) Connect the EUT's AC power cord to one Line Impedance Stabilization Network(LISN).

(3) Any other equipment power cord are connected to a LISN different from the LISN used for the EUT.

(4) Warm up the EUT System.

(5) Activate the EUT System and run the software prepared for the test, if require.

(6) Using a calibrated coaxial cable, connect the spectrum analyzer(*1) to the measuring port of the LISN for the EUT.

(7) To find out an EUT System condition produces the maximum emission, the configuration of EUT System, the position of the cables, and the operation mode was changed under normal usage of the EUT.

(8) The spectrum are scanned from 450 kHz to 30 MHz and collect the minimum six highest emissions on the spectrum analyzer relative to the total limits.

(9) The test receiver(*2) is connected to the LISN for the EUT, and the minimum six highest emissions recorded above are measured.

[Note]

(*1) : Spectrum Analyzer Set Up Conditions

Frequency range	: 450 kHz - 30 MHz
Resolution bandwidth	: 10 kHz
Video bandwidth	: 1 MHz
Detector function	: Peak mode

(*2) : Test Receiver Set Up Conditions

Detector function	: Quasi-Peak / Average (if necessary)
IF bandwidth	: 10 kHz

ENGINEERING TEST REPORT**3.3 Test Results****(1) Measurement with the quasi-peak detector and the average detector.**

Emission Frequency [MHz]	LISN Corr. Factor [dB]	Meter Reading [dB μ V]		Maximum RF Voltage [dB μ V]	Limits [dB μ V]
		One-end to Ground	Other-end to Ground		
* 2.300	0.1	48.1	48.5	48.6	48.0
* 3.400	0.2	42.0	42.5	42.7	48.0
8.000	0.3	38.4	38.4	38.7	48.0
18.36	0.8	32.0	30.7	32.8	48.0
24.00	1.1	33.6	32.9	34.7	48.0
28.63	1.3	31.3	30.5	32.6	48.0
Additional measurement with the average detector at * marked frequencies					
2.300	0.1	29.2	29.7	29.8	-
3.400	0.2	24.4	24.7	24.9	-

[Attention]

The measurement data(*) with quasi-peak detector is higher(more than 6dB) than the measured data with the average detector.

Therefore, in accordance with ANSI C63.4-1992 section 11.5.2, the 13 dB reduced quasi-peak mode level is shown.

(2) The 13dB reduced quasi-peak mode level

Emission Frequency [MHz]	LISN Corr. Factor [dB]	Meter Reading (13 dB reduced quasi-peak mode level) [dB μ V]		Maximum RF Voltage [dB μ V]	Limit [dB μ V]
		One-end to Ground	Other-end to Ground		
2.300	0.1	35.1	35.5	35.6	48.0
3.400	0.2	29.0	29.5	29.7	48.0

ENGINEERING TEST REPORT**[Note]**

LISN Correction Factor includes the cable loss.

[Environment]

Temperature : 23°C Humidity : 30%

[Sample Calculation]**(1) Measurement with the quasi-peak detector**

Frequency : 2.300 [MHz]

Meter Reading : 48.5 [dB μ V] (at Other-end to Ground)

LISN Corr. Factor : 0.1 [dB]

Then, RF voltage is calculated as follows.

$$\text{RF Voltage} = 48.5 + 0.1 = 48.6 \text{ [dB}\mu\text{V]}$$

(2) Quasi-peak RF voltage is compared with average detector at 2.300 MHz

Quasi-peak RF voltage - Average RF voltage = $48.6 - 29.8 = 18.8$ [dB μ V] > 6 [dB]

Therefore, 13 dB reduced Quasi-peak mode level is shown as follows,

Frequency : 2.300 [MHz]

Meter Reading : 35.5 [dB μ V] (at Other-end to Ground)

LISN Corr. Factor : 0.1 [dB]

Then, RF voltage is calculated as follows.

$$\text{RF Voltage} = 35.5 + 0.1 = 35.6 \text{ [dB}\mu\text{V]}$$

[Summary of Test Results]

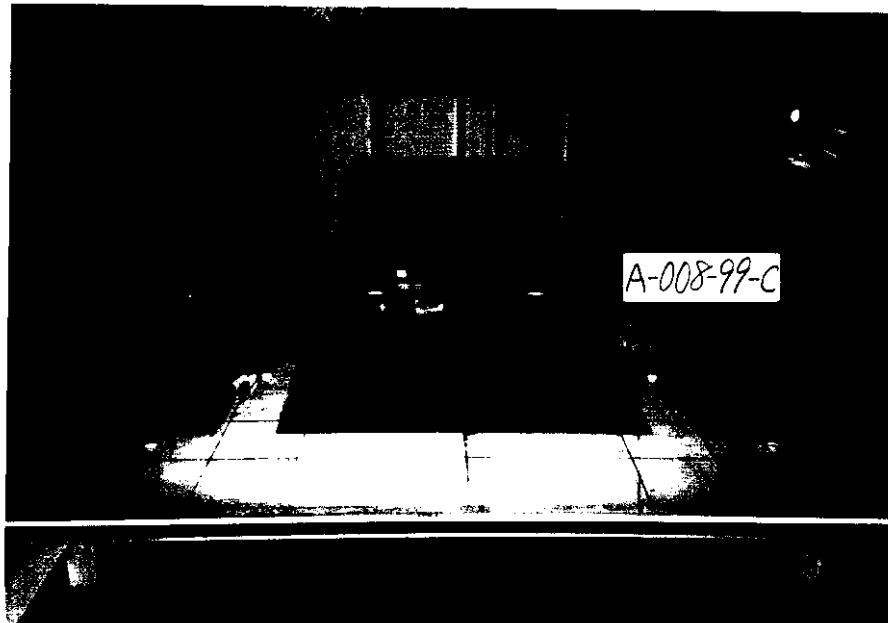
Minimum margin was 9.3 dB at 8.000 MHz.

Tested Date : March 30, 1999

Signature

Yoshiko Kotani

ENGINEERING TEST REPORT**4. RADIATED EMISSION MEASUREMENT****4.1 Test Procedure**


- (1) Configure the EUT System in accordance with ANSI C63.4-1992 section 8.
 :without deviation, :with deviation(details are found below)
 See also the block diagram and the photographs of EUT System configuration in this report.
- (2) If the EUT system is connected to a public power network, all power cords for the EUT System are connected the receptacle on the turn floor.
- (3) Warm up the EUT System.
- (4) Activate the EUT System and run the prepared software for the test, if require.
- (5) To find out the emissions of the EUT System, preliminary radiated measurement are performed at a closer distance than that specified for final radiated measurement using the spectrum analyzer(*1) and the broad band antenna.
- (6) To find out an EUT System condition produces the maximum emission, the configuration of EUT System, the position of the cables, and the operation mode was changed under normal usage of the EUT.
- (7) The spectrum are scanned from 30 MHz to 1 GHz and collect the minimum six highest emissions on the spectrum analyzer relative to the total limits.
- (8) In final compliance test, the minimum six highest emissions recorded above are measured at the specified distance using the broad band antenna or the tuned dipole antenna and the test receiver(*2).

[Note]**(*1) : Spectrum Analyzer Set Up Conditions**

Frequency range : 30 - 1000 MHz
 Resolution bandwidth : 100 kHz
 Detector function : Peak mode

(*2) : Test Receiver Set Up Conditions

Detector function : Quasi-Peak
 IF bandwidth : 120 kHz

ENGINEERING TEST REPORT**4.2 Photographs of EUT System Configuration****a. Playback Mode**

FRONT VIEW

REAR VIEW

ENGINEERING TEST REPORT**5. Output Signal Level Measurement****5.1 Test Procedure**

(1) Configure the EUT System in accordance with ANSI C63.4-1992 section 12.2.

without deviation, with deviation(details are found below)

See also the block diagram and the photographs of EUT System configuration in this report.

(2) Unused RF input/output terminals are terminated in the proper impedance.

(3) Activate the EUT system.

(4) Set the spectrum analyzer as follows.

Frequency Span	: 1 MHz
Resolution bandwidth	: 100 kHz
Video bandwidth	: 3 MHz
Detector function	: Peak mode

(5) The RF output terminal is connected to the spectrum analyzer through the matching transformer with a calibrated 50Ω coaxial cable.

(6) Then, the RF output signal level is measured under the EUT condition produced the maximum signal level.

ENGINEERING TEST REPORT**5.3 Test Results**

Emission Frequency [MHz]	Correction Factor [dB]	Meter Reading [dB μ V/50 Ω]	Maximum Signal Level [dB μ V/75 Ω]	Limits [dB μ V/75 Ω]
Test Channel #3				
61.25	2.0	64.1	66.1	69.5
65.75	2.1	49.1	51.2	56.5
Test Channel #4				
67.25	2.1	64.5	66.6	69.5
71.75	2.1	49.4	51.5	56.5

[Note]

- (1) The correction factor consist of the voltage loss of the impedance matching transformer and the coaxial cable used for the test.
- (2) The spectrum was checked in each test mode and operation mode, and the data of the maximum EUT operation was reported.

[Environment]

Temperature : 23 °C

Humidity : 30 %

[Sample Calculation]

Frequency	:	61.25 MHz (Test Channel #3)
Meter Reading	:	64.1 dB μ V/50 Ω
Correction Factor	:	2.0 dB

Then, the output signal level is calculated as follows.


$$\text{Signal Level} = 64.1 + 2.0 = 66.1 \text{ dB}\mu\text{V}/75\Omega$$

[Summary of Test Results]

Minimum margin was 2.9 dB at 67.25 MHz test channel #4.

Tested Date : March 30, 1999

Signature

Yoshiko Kotani

ENGINEERING TEST REPORT**6. Output Terminal Conducted Spurious Emission Measurement****6.1 Test Procedure**

(1) Configure the EUT System in accordance with ANSI C63.4-1992 section 12.2.

: without deviation, : with deviation (details are found below)

See also the block diagram and the photographs of EUT System configuration in this report.

(2) Unused RF input/output terminals are terminated in the proper impedance.

(3) Activate the EUT system.

(4) Set the spectrum analyzer as follows.

Frequency Span	: 1 MHz
Resolution bandwidth	: 100 kHz
Video bandwidth	: 3 MHz
Detector function	: Peak mode

(5) The RF output terminal is connected to the spectrum analyzer through the matching transformer with a calibrated 50Ω coaxial cable.

(6) The spectrum was scanned from 30 MHz to more than 4.6 MHz below the visual carrier frequency, and from more than 7.4 MHz above the visual carrier frequency to 1000 MHz, and the three highest emissions are selected under the EUT condition produced the maximum signal level at each frequency range.

(7) Then, the RF output terminal conducted spurious emission level is measured under the EUT condition produced the maximum signal level.

6.2 Photographs of EUT System Configuration

the tested device configuration is the same as the output signal level measurement.

(See 5.2 Photographs of EUT System Configuration.)

ENGINEERING TEST REPORT**6.3 Test Results**

Emission Frequency [MHz]	Correction Factor [dB]	Meter Reading [dB μ V/50 Ω]	Maximum Signal Level [dB μ V/75 Ω]	Limits [dB μ V/75 Ω]
Test Channel #3				
54.15	2.0	13.0	15.0	39.5
56.31	2.0	18.0	20.0	39.5
56.65	2.0	38.0	40.0	39.5
70.27	2.1	15.7	17.8	39.5
122.53	2.2	13.6	15.8	39.5
183.79	2.4	16.6	19.0	39.5
** 56.65	2.0	14.0	16.0	39.5
Test Channel #4				
60.15	2.0	12.9	14.9	39.5
62.28	2.0	17.6	19.6	39.5
62.65	2.0	38.5	40.5	39.5
76.26	2.1	15.7	17.8	39.5
134.53	2.3	14.5	16.8	39.5
201.78	2.4	14.7	17.1	39.5
** 62.65	2.0	14.2	16.2	39.5

[Note]

- (1) **: To except the effect of lower sideband of sound sub-carrier frequency component, if set the resolution bandwidth of spectrum analyzer to 30 kHz, these interference become to this value.
- (2) The correction factor consist of the voltage loss of the impedance matching transformer and the coaxial cable used for the test. And the meter readings described above are corrected by the gain of pre-amplifier.
- (3) The spectrum was checked in each test mode and operation mode, and the data of the maximum EUT operation was reported.

[Environment]

Temperature : 23 °C

Humidity : 30 %

[Sample Calculation]

Frequency : 54.15 MHz (Test Channel #3)
 Meter Reading : 13.0 dB μ V/50 Ω
 Correction Factor : 2.0 dB

Then, the output signal level is calculated as follows.

$$\text{Signal Level} = 13.0 + 2.0 = 15.0 \text{ dB}\mu\text{V}/75\Omega$$

[Summary of Test Results]

Minimum margin was 19.5 dB at 56.31 MHz, test channel #3.

Tested Date : March 30, 1999

Signature

Yoshiko Kotani

ENGINEERING TEST REPORT**7. Transfer Switch Measurement****7.1 Test Procedure**

(1) Configure the EUT System in accordance with ANSI C63.4-1992 section 12.2.

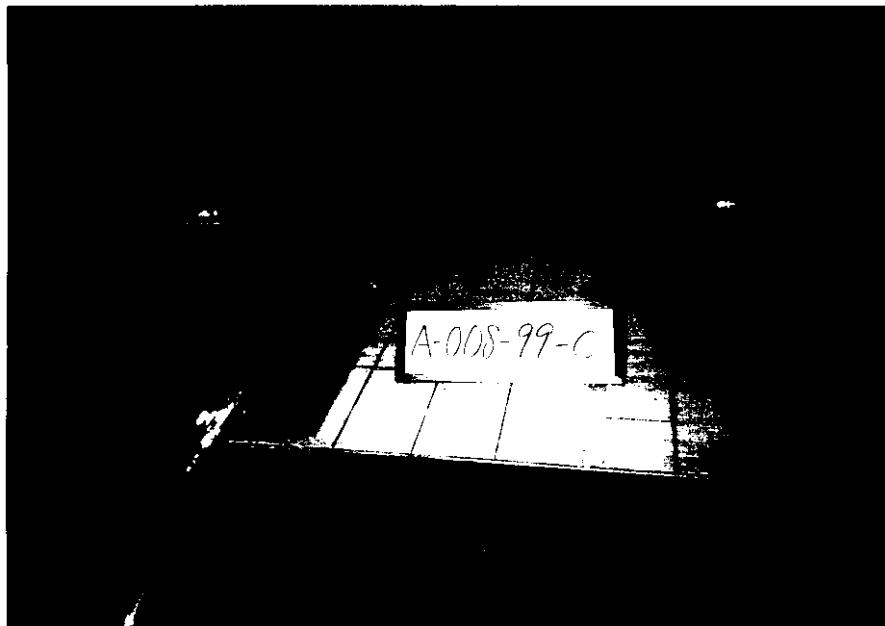
: without deviation, : with deviation(details are found below)

See also the block diagram and the photographs of EUT System configuration in this report.

(2) Unused RF input/output terminals are terminated in the proper impedance.

(3) Activate the EUT system.

(4) Set the spectrum analyzer as follows.


Frequency Span	: 1 MHz
Resolution bandwidth	: 100 kHz
Video bandwidth	: 3 MHz
Detector function	: Peak mode

(5) The antenna input terminal is connected to the input of pre-amplifier through the matching transformer with a calibrated 50Ω coaxial cable. And the output of pre-amplifier is connected to the spectrum analyzer.

(6) Then, the signal level on the antenna input terminal is measured under the EUT condition produced the maximum signal level.

ENGINEERING TEST REPORT**7.2 Photographs of EUT System Configuration****a. Playback Mode**

- b. Record mode (1V VITS Signal Input)**
- c. Record mode (5V VITS Signal Input)**

ENGINEERING TEST REPORT**7.3 Test Results**

Emission Frequency [MHz]	Correction Factor [dB]	Meter Reading [dB μ V/50 Ω]	Maximum Signal Level [dB μ V/75 Ω]	Limits [dB μ V/75 Ω]
Test Channel #3 61.25	2.0	2.8	4.8	9.5
Test Channel #4 67.25	2.1	3.6	5.7	9.5

[Note]

- 1) The correction factor consist of the voltage loss of the impedance matching transformer and the coaxial cable used for the test. And the meter readings described above are corrected by the gain of pre-amplifier.
- 2) The spectrum was checked in each test mode and operation mode, and the data of the maximum EUT operation was reported.

[Environment]

Temperature : 23 °C

Humidity : 30 %

[Sample Calculation]

Frequency : 61.25 MHz (Test Channel #3)
 Meter Reading : 2.8 dB μ V/50 Ω
 Correction Factor : 2.0 dB

Then, the output signal level is calculated as follows.

$$\text{Signal Level} = 2.8 + 2.0 = 4.8 \text{ dB}\mu\text{V}/75\Omega$$

[Summary of Test Results]

Minimum margin was 3.8 dB, at 67.25 MHz, test channel #4.

Tested Date : March 30, 1999

Signature

Yoshiko Kotani

ENGINEERING TEST REPORT**8. List of Test Equipments**

Instrument	Manufacturer	Model No.	Specifications	KEC Control No.	Test Item (*)	Last Cal.	Next Cal.
Test Receiver	Rohde & Schwarz	ESHS10	Frequency Range 9 kHz – 30 MHz	FS-67	1	1998/10	1999/10
		ESVS10	Frequency Range 20 MHz – 1 GHz	FS-82	2	1999/2	2000/2
Spectrum Analyzer	Hewlett Packard	8568B	Frequency Range 100 Hz – 1.5 GHz	FS-46-3	1,3,4,5	1998/6	1999/6
	Advantest	R3261C	Frequency Range 9 kHz – 2.6 GHz	SA-41	2	1998/8	1999/8
Pre-amplifier	Anritsu	MH648A	Frequency Range 100 kHz – 1.2 GHz	AM-28	4,5	1998/6	1999/6
Line Impedance Stabilization Network	Kyoritsu	KNW-407	Frequency Range: 150 kHz - 30 MHz Impedance: 50 Ω / 50 μH Capacity: AC250V, 15A	FL-107	1	1998/4	1999/4
Biconical Antenna	Schwarzbeck	BBA9106	Frequency Range 30 MHz – 300 MHz	AN-94	2	1999/2	2000/2
Log-Periodic Antenna	Schwarzbeck	UHALP9108A	Frequency Range 300 MHz – 1 GHz	AN-217	2	1999/2	2000/2

ENGINEERING TEST REPORT**- Continued -**

Instrument	Manufacturer	Model No.	Specifications	KEC Control No.	Test Item (*)	Last Cal.	Next Cal.
Video Part Signal Generator	Anritsu	MG3601A	Frequency Range 100 kHz – 1.04 GHz	SG-41	1,2,3,4	1998/9	1999/9
Audio Part Signal Generator	Anritsu	MG3601A	Frequency Range 100 kHz – 1.04 GHz	SG-48	1,2,3,4	1998/9	1999/9
Multiburst Signal Generator	Anritsu	MG318A	According to ANSI C63.4(1992) Section 12 Fig.15	MG-35	1,2,3,4,5	1998/12	1999/12
Matching Trans-former	Anritsu	MG614A	Frequency Range 10 MHz - 1.2 GHz	AX-28-4	3,4,5	1998/12	1999/12
				AX-28-2	1,2,3,4	1998/11	1999/11
Four-Port Junction Pad	Anritsu	MP659A	Frequency Range 40 MHz – 1 GHz	AX-16	1,2,3,4	1998/11	1999/11

[Note] Test Item(*) : 1. AC Power Line Conducted Emission Measurement
 2. Radiated Emission Measurement
 3. Output Signal Level Measurement
 4. Output Terminal Conducted Spurious Emission Measurement
 5. Transfer Switch Measurement

Designated by Ministry of International Trade and Industry

KANSAI ELECTRONIC INDUSTRY DEVELOPMENT CENTER

HEAD OFFICE
6-8-7, NISHITEMMA
KITA-KU, OSAKA, 530-0047 JAPAN

IKOMA
TESTING LABORATORY
12128, TAKAYAMA-CHO
IKOMA-CITY, NARA, 630-0101 JAPAN

Corporate Juridical Person

ENGINEERING TEST REPORT

REPORT NO. A-008-99-C1

Issued Date : April 26, 1999

This test report is to certify that the tested device properly complies with the requirements of:

FCC Rules and Regulations Part 15 Subpart B Unintentional Radiators.

The tests necessary to show compliance to the requirements were performed and these results met the specifications of requirement. The results of this report should not be construed to imply compliance of equipment other than that which was tested. Unless the laboratory permission, this report should not be copied in part.

1. Applicant

Company Name : Shintom Co., Ltd.

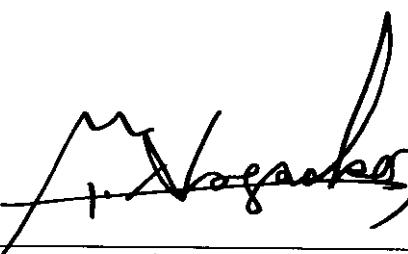
Mailing Address : 1-19-20, Shin-Yokohama, Kohoku-ku, Yokohama, 222-0033 Japan

2. Identification of Tested Device

Device Name : Video Cassette Recorder
 Trade Name : GO-VIDEO
 Model Number : GV-6025
 Serial Number : WS-0001 Prototype Pre-production Production
 Date of Manufacture : March, 1999

3. Test Items and Procedure, Reference Rule and Specification

- (1) AC Power Line Conducted Emission Measurement : Section 15.107(a)
- (2) Radiated Emission Measurement : Section 15.109(a)(c)(f)
- (3) Antenna Power Conduction Measurement : Section 15.111(a)
- (4) Picture Sensitivity Measurement : Section 15.117(f)
- (5) Noise Figure Measurement : Section 15.117(g)


Above all tests were performed under :

ANSI C63.4-1992, FCC/OET MP-2

IEEE Std 187-1990, IEEE Std 190 and IEEE Std 213-1987

4. Date

Receipt of Test Sample : March 18, 1999
 Test Completed on : April 8, 1999

CERTIFIED BY :

Fumitoshi Nagaoka

Associate Director of Ikoma Testing Laboratory

ENGINEERING TEST REPORTTable of Contents

1. GENERAL INFORMATION	
1.1 Product Description	3
1.2 Description for Equipment Authorization	3
1.3 Test Facility	3
2. TESTED SYSTEM	
2.1 Test Planning and Test Mode	4
2.2 Connection of EUT System	4
2.3 List of Cables	4
3. AC POWER LINE CONDUCTED EMISSION MEASUREMENT	
3.1 Test Procedure	5
3.2 Photographs of EUT System Configuration	6
3.3 Test Results	7
4. RADIATED EMISSION MEASUREMENT	
4.1 Test Procedure	8
4.2 Photographs of EUT System Configuration	9
4.3 Test Results	10
5. ANTENNA POWER CONDUCTION MEASUREMENT	
5.1 Test Procedure	14
5.2 Test Results	15
6. PICTURE SENSITIVITY MEASUREMENT	
6.1 Test Procedure	18
6.2 Test Configuration	18
6.3 Test Results	19
7. NOISE FIGURE MEASUREMENT	
7.1 Test Procedure	20
7.2 Test Configuration	21
7.3 Test Results	22
8. LIST OF TEST INSTRUMENTS	23

ENGINEERING TEST REPORT**1. GENERAL INFORMATION****1.1 Product Description**

The GO-VIDEO Model No.GV-6025 (referred to as the EUT in this report) is a Double Video Cassette Recorder containing RF modulator and Tuner.

1) Provided Terminals

- (1) ANT Input Terminal
- (2) ANT Output Terminal
- (3) A/V Input Terminal(front side)
- (4) A/V Output Terminal

2) Tuning Range and Local Oscillating Frequencies

TV : VHF/2~13ch(101-257 MHz), UHF/14~69ch(517-847 MHz).

CATV : VHF/5A(119 MHz), LOW/A-5~A-1(137-161 MHz), MID/A~I(167-215 MHz),
SUPER/J~W(263-341 MHz), HYPER/W+1~W+58(347-689 MHz), W+59~W+84(695-845 MHz).

3) Type of Circuit

Superheterodyne, IF : 45.75 MHz/Picture and 41.25 MHz/Sound

4) Type of Antenna Input Connector : Type "F" Connector 75Ω (Unbalanced)**5) Rated Power Supply : AC 120 V, 60 Hz****1.2 Description for Equipment Authorization****1) Rules Part(s) under which Equipment operated**

FCC Rule Part 15, Subpart B : TV Broadcast Receiver in Unintentional Radiators.

2) Kind of Equipment Authorization

Certification Verification

3) Procedure of Application

Original Equipment Modification

1.3 Test Facility

Name : KANSAI ELECTRONIC INDUSTRY DEVELOPMENT CENTER (KEC)
IKOMA TESTING LABORATORY
Open Area Test Site No.1 and EMC Measurement Center Anechoic Chamber No.1
Shielded Room No.4

Address : 12128, Takayama-cho Ikoma-city, Nara, 630-0101 Japan

These test facilities have been filed with the FCC under the criteria of ANSI C63.4-1992.
Also the laboratory has been authorized by ITI(Interference Technology Internaitonal, UK),

ENGINEERING TEST REPORT**2. TESTED SYSTEM****2.1 Test Planning and Test Mode**

Tests were performed with the accessories normally marketed with the device.

2.2 Connection of EUT System**(1) Common Test Condition for the Test Item below.**

ANT OUT : The cable 1, see List of cables
 Audio IN : 47 kΩ termination
 Audio OUT : The cable 2, see List of cables
 Video IN : 75 kΩ termination
 Video OUT : The cable 2, see List of cables

(2) AC Power Line Conducted Emission Measurement

ANT IN : TV signal generator (US #13ch 64 dBμV)

(3) Radiated Emission Measurement

ANT IN : 75 Ω termination

(4) Antenna Power Conduction Measurement

ANT IN : Test Receiver or Spectrum Analyzer

2.3 List of Cables

No	Cable Name	Model Number (Trade Name)	Shielded (Y/N)	Length (m)	Note	Remark
1	RF Cable		Y	1.0	One-end 75 Ω Termination	1)
2	A/V Cable		Y	1.5	One-end 1kΩ Termination	
3	AC Cord		N	1.5	2-wires type	2)

[Remark]

1) : Accessory cable of EUT
 2) : Permanently attached to EUT

ENGINEERING TEST REPORT**3. AC POWER LINE CONDUCTED EMISSION MEASUREMENT****3.1 Test Procedure**

- 1) Configure the EUT System in accordance with ANSI C63.4-1992 section 7 and 12.1, IEEE Std 213-1987. See also the block diagram and the photographs of EUT System configuration in this report.
- 2) Connect the EUT's AC power cord to Line Impedance Stabilization Network(LISN).
- 3) Warm up the EUT System.
- 4) Activate the EUT System and run the software prepared for the test, if required.
- 5) The standard TV signal is supplied to the EUT through a 20dB, 75Ω antenna coupling pad. The tested TV channel is US 13ch.
- 6) Using a calibrated coaxial cable, connect the spectrum analyzer(*1) to the measuring port of the LISN for the EUT.
- 7) To find out an EUT System condition produces the maximum emission, change the EUT System configuration, the position of the cables, and the EUT operation mode under normal usage of the EUT.
- 8) The spectrum are scanned from 450 kHz to 30 MHz and collect the minimum six highest emissions on the spectrum analyzer relative to the total limits.
- 9) The test receiver(*2) is connected to the LISN for the EUT, and the minimum six highest emissions recorded above are measured.

[Note]

(*1) : Spectrum Analyzer Set Up Conditions
Frequency range : 450 kHz - 30 MHz
Resolution bandwidth : 10 kHz
Video bandwidth : 1 MHz

(*2) : Test Receiver Set Up Conditions
Detector function : Quasi-Peak / Average (if necessary)
IF bandwidth : 9 kHz

ENGINEERING TEST REPORT

3.3 Test Results

Emission Frequency [MHz]	LISN Correction Factor [dB]	Meter Reading [dB μ V]		Maximum RF Voltage [dB μ V]	Limit [dB μ V]
		One-end to Ground	Other-end to Ground		
(Measurement with the Quasi-Peak detector)					
0.4500	0.1	19.1	18.8	19.2	48.0
0.7150	0.1	19.5	20.1	20.2	48.0
3.217	0.1	23.5	23.4	23.6	48.0
16.00	0.7	26.9	26.8	27.6	48.0
18.66	0.8	32.8	32.7	33.6	48.0
24.00	1.1	38.1	38.5	39.6	48.0

[Note]

LISN Correction Factor includes the cable loss.

[Environment]

Temperature : 19 °C Humidity : 63 %

[Sample Calculation]

Frequency : 0.4500 [MHz]
 Meter Reading : 19.1 [dB μ V] (at One-end to Ground)
 LISN Corr. Factor : 0.1 [dB]

Then, RF voltage is calculated as follows.

$$\text{RF Voltage} = 19.1 + 0.1 = 19.2 \text{ [dB μ V]}$$

[Summary of Test Results]

Minimum margin was 8.4 dB at 24.00 MHz, other-end to ground.

Tested Date : March 31, 1999

Signature

Yoshiko Kotani

ENGINEERING TEST REPORT**4. RADIATED EMISSION MEASUREMENT****4.1 Test Procedure**

- 1) Configure the EUT System in accordance with ANSI C63.4-1992 section 12.1, IEEE Std 187-1990, the block diagram and the photographs of EUT System configuration in this report.
- 2) If the EUT system is connected to a public power network, all power cord for the EUT System is connected the receptacle on the metallic turn floor.
- 3) Warm up the EUT System.
- 4) Activate the EUT System and run the prepared software for the test, if require.
- 5) To find out the emissions of the EUT System, preliminary radiated measurement are performed at a closer distance than that specified for final radiated measurement using the spectrum analyzer(*1) and the broad band antenna. In the frequency above 1 GHz, it is performed using the spectrum analyzer(*2) and the horn antenna.
- 6) To find out an EUT System condition produces the maximum emission, change the position of the cables, and the EUT operation mode under normal usage of the EUT.
- 7) The spectrum are scanned from 30 MHz to 1.7 GHz and collect the minimum six highest emissions on the spectrum analyzer relative to the total limits.
- 8) In final compliance test, the local oscillator emissions and the minimum six highest emissions recorded above are measured at the specified distance using the broad band antenna or the tuned dipole antenna and the test receiver(*3). In the frequency above 1 GHz, the measurements are performed by the horn antenna and the test receiver(*4) or the spectrum analyzer(*2).

[Note]

(*1) : Spectrum Analyzer Set Up Conditions (below 1 GHz)
 Resolution bandwidth : 100 kHz
 Video bandwidth : 1 MHz

(*2) : Spectrum Analyzer Set Up Conditions (above 1 GHz)
 Resolution bandwidth : 1 MHz
 Video bandwidth : 1 MHz

(*3) : Test Receiver Set Up Conditions (below 1 GHz)
 Detector function : Quasi-Peak
 IF bandwidth : 120 kHz

(*4) : Test Receiver Set Up Conditions (above 1 GHz)
 Detector function : Average
 IF bandwidth : 1 MHz

ENGINEERING TEST REPORT

4.3 Test Results

[ON AIR CHANNEL --- below 1GHz]

[Distance : 3m]

Measurement Frequency		Antenna Factor	Meter Reading		Maximum Field Strength [dB μ V/m]	Limits
			Horiz. [dB μ V]	Vert. [dB μ V]		
Ch.	[MHz]	[dB/m]				
TV VHF Fundamental						
2	101	11.2	<0.0	<0.0	<11.2	43.5
3	107	12.0	4.7	4.6	16.7	43.5
4	113	12.9	8.0	7.0	20.9	43.5
5	123	14.0	5.2	2.4	19.2	43.5
6	129	14.5	3.4	2.2	17.9	43.5
7	221	18.3	6.1	5.2	24.4	46.0
8	227	18.4	5.6	4.7	24.0	46.0
9	233	18.5	4.7	6.0	24.5	46.0
10	239	18.6	4.0	7.4	26.0	46.0
11	245	18.7	5.7	8.1	26.8	46.0
12	251	18.9	4.8	7.2	26.1	46.0
13	257	19.2	5.8	7.3	26.5	46.0
TV VHF 2nd Harmonic						
2	202	17.9	<0.0	<0.0	<17.9	43.5
3	214	18.2	<0.0	<0.0	<18.2	43.5
4	226	18.4	<0.0	<0.0	<18.4	46.0
5	246	18.7	<0.0	<0.0	<18.7	46.0
6	258	19.2	<0.0	<0.0	<19.2	46.0
7	442	20.2	3.9	3.8	24.1	46.0
8	454	20.5	3.9	3.2	24.4	46.0
9	466	20.8	2.9	2.3	23.7	46.0
10	478	21.2	1.9	2.8	24.0	46.0
11	490	21.5	2.2	2.6	24.1	46.0
12	502	21.8	2.7	2.2	24.5	46.0
13	514	22.0	2.5	2.2	24.5	46.0

ENGINEERING TEST REPORT

- Continued -

[ON AIR CHANNEL --- below 1GHz]

[Distance : 3m]

Measurement Frequency		Antenna Factor [dB/m]	Meter Reading		Maximum Field Strength [dB μ V/m]	Limits [dB μ V/m]
Ch.	[MHz]		Horiz. [dB μ V]	Vert. [dB μ V]		
TV UHF Fundamental						
14	517	22.0	12.7	13.8	35.8	46.0
19	547	22.5	10.7	12.4	34.9	46.0
28	601	23.2	10.3	14.0	37.2	46.0
36	649	23.6	12.1	17.7	41.3	46.0
44	697	24.1	16.7	13.6	40.8	46.0
53	751	25.0	14.3	11.7	39.3	46.0
61	799	25.8	12.2	12.2	38.0	46.0
69	847	26.4	15.7	12.8	42.1	46.0

[ON AIR CHANNEL --- above 1GHz]

[Distance : 3m]

Measurement Frequency		Antenna Factor [dB/m]	Pre-AMP Gain [dB]	Meter Reading		Maximum Field Strength [dB μ V/m]	Limits [dB μ V/m]
Ch.	[MHz]			Horiz. [dB μ V]	Vert. [dB μ V]		
TV UHF 2nd Harmonic							
14	1034	25.0	37.2	37.9	43.0	30.8	54.0
19	1094	23.6	37.1	36.2	43.3	29.8	54.0
28	1202	24.5	37.0	34.8	35.5	23.0	54.0
36	1298	23.3	36.8	41.9	47.9	34.4	54.0
44	1394	22.5	36.7	39.4	46.2	32.0	54.0
54	1514	23.1	36.5	52.9	57.8	44.4	54.0
61	1598	22.2	36.3	46.3	51.0	36.9	54.0
69	1694	22.6	36.2	44.4	47.8	34.2	54.0

ENGINEERING TEST REPORT

- Continued -

[CATV CHANNEL --- below 1GHz]

[Distance : 3m]

Measurement Frequency		Antenna Factor	Meter Reading		Maximum Field Strength [dB μ V/m]	Limits
			Horiz. [dB μ V]	Vert. [dB μ V]		
Ch.	[MHz]	[dB/m]				
CATV Fundamental						
1	119	13.7	7.0	3.9	20.7	43.5
95	137	15.2	3.2	1.2	18.4	43.5
97	149	15.9	4.3	2.2	20.2	43.5
99	161	16.2	6.0	3.0	22.2	43.5
14	167	16.5	6.4	4.0	22.9	43.5
18	191	17.5	3.0	<0.0	20.5	43.5
22	215	18.2	7.2	3.2	25.4	43.5
23	263	19.5	4.2	6.2	25.7	46.0
29	299	21.5	2.5	5.2	26.7	46.0
36	341	18.4	10.4	7.5	28.8	46.0
37	347	18.5	11.6	8.0	30.1	46.0
65	515	22.0	12.2	12.0	34.2	46.0
94	689	24.0	15.5	12.6	39.5	46.0
100	695	24.1	16.4	12.0	40.5	46.0
113	773	25.3	12.2	13.1	38.4	46.0
124	839	26.4	14.8	14.0	41.2	46.0
CATV 2nd Harmonic						
1	238	18.6	<0.0	<0.0	<18.6	46.0
95	274	20.1	<0.0	<0.0	<20.1	46.0
97	298	21.5	1.8	1.0	23.3	46.0
99	322	18.2	8.0	2.2	26.2	46.0
14	334	18.3	7.0	1.3	25.3	46.0
18	382	18.8	3.6	2.4	22.4	46.0
22	430	19.8	4.0	3.8	23.8	46.0
23	526	22.2	<5.0	<5.0	<27.2	46.0
29	598	23.2	<0.0	<0.0	<23.2	46.0
36	682	23.9	0.1	0.5	24.4	46.0
37	694	24.0	0.3	0.8	24.8	46.0

ENGINEERING TEST REPORT

- Continued -

[CATV CHANNEL --- above 1GHz]

[Distance : 3m]

Measurement Frequency		Antenna Factor	Pre.AMP Gain	Meter Reading		Maximum Field Strength	Limits
				Horiz. [dB μ V]	Vert. [dB μ V]		
Ch.	[MHz]	[dB/m]	[dB]				
CATV 2nd Harmonic							
65	1030	25.1	37.2	37.7	43.0	30.9	54.0
94	1378	22.7	36.7	38.9	45.4	31.4	54.0
100	1390	22.6	36.7	39.4	45.0	30.9	54.0
113	1546	22.7	36.4	51.2	54.5	40.8	54.0
125	1690	22.6	36.2	44.2	47.5	33.9	54.0

[Note]

Antenna factor includes the loss of coaxial cable used for the test.

[Environment]

Temperature : 19 °C Humidity : 72 %

[Sample calculation]

Frequency : 1030 [MHz] (CATV 65ch. 2nd Harmonic)
 Meter Reading : 43.0 [dB μ V] (at Vart. Polarization)
 Antenna Factor : 25.1 [dB/m]
 Pre-AMP Gain : 37.2 [dB]

Then, Field Strength is calculated as follows.

$$\text{Field Strength} = 43.0 + 25.1 - 37.2 = 30.9 \text{ [dB μ V/m]}$$

[Summary of Test Results]

Minimum margin was 3.9 dB at 847 MHz, UHF 69ch (Fundamental) Vert. polarization.

Tested Date : April 2, 1999

Signature

 Yoshiko Kotani

ENGINEERING TEST REPORT**5. ANTENNA POWER CONDUCTION MEASUREMENT****5.1 Test Procedure**

- 1) Configure the EUT System in accordance with ANSI C63.4-1992 section 12.1, the block diagram and the photographs of EUT System configuration in this report.
- 2) Power cord for the EUT System is connected the receptacle of LISN.
- 3) Connect the antenna terminal of EUT to the test receiver or the spectrum analyzer by using the matching transformer and the coaxial cable.
- 4) Warm up the EUT System.
- 5) Activate the EUT System and run the prepared software for the test, if require.
- 6) To find out the emissions of the EUT System, preliminary measurement is performed by using the spectrum analyzer(*1).
In the frequency above 1 GHz, it is performed by using the spectrum analyzer(*2).
- 7) To find out an EUT System condition produces the maximum emission, change the position of the cables, and the EUT operation mode under normal usage of the EUT.
- 8) The spectrum are scanned from 30 MHz to 1.7 GHz and collect the highest emissions on the spectrum analyzer relative to the limit.
- 9) In final compliance test, the local oscillator emissions and the highest emissions recorded above are measured by using the test receiver(*3).
In the frequency above 1 GHz, the measurements are performed by the test receiver(*4) or the spectrum analyzer(*2).

[Note]

(*1) : Spectrum Analyzer Set Up Conditions (below 1 GHz)
Resolution bandwidth : 100 kHz
Video bandwidth : 1 MHz

(*2) : Spectrum Analyzer Set Up Conditions (above 1 GHz)
Resolution bandwidth : 1 MHz
Video bandwidth : 1 MHz

(*3) : Test Receiver Set Up Conditions (below 1 GHz)
Detector function : Quasi-Peak
IF bandwidth : 120 kHz

(*4) : Test Receiver Set Up Conditions (above 1 GHz)
Detector function : Average
IF bandwidth : 1 MHz

ENGINEERING TEST REPORT

5.2 Test Results

[ON AIR CHANNEL]

Measurement Frequency		Correction Factor [dB]	Meter Reading [dB μ V]	Conversion Factor [dB μ V] to [dBnW] [dB]	Antenna Power Conduction [dBnW]	Limit* [dBnW]
ch.	[MHz]					
TV VHF Fundamental						
2	101	6.5	17.7	-48.8	-24.6	3.0
3	107	6.5	17.9	-48.8	-24.4	3.0
4	113	6.5	18.2	-48.8	-24.1	3.0
5	123	6.5	18.1	-48.8	-24.2	3.0
6	129	6.5	17.9	-48.8	-24.4	3.0
7	221	6.5	14.0	-48.8	-28.3	3.0
8	227	6.5	14.3	-48.8	-28.0	3.0
9	233	6.5	14.5	-48.8	-27.8	3.0
10	239	6.5	14.8	-48.8	-27.5	3.0
11	245	6.5	15.1	-48.8	-27.2	3.0
12	251	6.5	15.3	-48.8	-27.0	3.0
13	257	6.5	15.1	-48.8	-27.2	3.0
TV VHF 2nd Harmonic						
2	202	6.5	<0.0	-48.8	<-42.3	3.0
3	214	6.5	<0.0	-48.8	<-42.3	3.0
4	226	6.5	0.1	-48.8	-42.2	3.0
5	246	6.5	0.6	-48.8	-41.7	3.0
6	258	6.5	1.0	-48.8	-41.3	3.0
7	442	6.5	7.2	-48.8	-35.1	3.0
8	454	6.5	7.7	-48.8	-34.6	3.0
9	466	6.5	8.1	-48.8	-34.2	3.0
10	478	6.5	11.2	-48.8	-31.1	3.0
11	490	6.5	12.4	-48.8	-29.9	3.0
12	502	6.5	13.5	-48.8	-28.8	3.0
13	514	6.5	14.8	-48.8	-27.5	3.0
TV UHF Fundamental						
14	517	6.5	12.5	-48.8	-29.8	3.0
19	547	6.5	13.6	-48.8	-28.7	3.0
28	601	6.5	20.0	-48.8	-22.3	3.0
36	649	6.5	20.5	-48.8	-21.8	3.0
44	697	6.5	22.0	-48.8	-20.3	3.0
53	751	6.5	24.0	-48.8	-18.3	3.0
61	799	6.5	24.8	-48.8	-17.5	3.0
69	847	6.5	24.2	-48.8	-18.1	3.0
TV UHF 2nd Harmonic						
14	1034	6.6	29.8	-48.8	-12.4	3.0
19	1094	6.6	31.7	-48.8	-10.5	3.0
28	1202	6.6	32.5	-48.8	-9.7	3.0
36	1298	6.6	31.7	-48.8	-10.5	3.0
44	1394	6.6	29.7	-48.8	-12.5	3.0
53	1502	6.6	24.4	-48.8	-17.8	3.0
61	1598	6.6	21.4	-48.8	-20.8	3.0
69	1694	6.6	18.3	-48.8	-23.9	3.0

[Note] *) 3.0[dBnW] in Limit is equal to 2[nW].

ENGINEERING TEST REPORT

- Continued -

[CATV CHANNEL]

Measurement Frequency		Correction Factor [dB]	Meter Reading [dB μ V]	Conversion Factor [dB μ V] to [dBnW] [dB]	Antenna Power Conduction [dBnW]	Limit* [dBnW]
ch.	[MHz]					
CATV Fundamental						
1	119	6.5	19.3	-48.8	-23.0	3.0
95	137	6.5	18.8	-48.8	-23.5	3.0
97	149	6.5	18.6	-48.8	-23.7	3.0
99	161	6.5	18.1	-48.8	-24.2	3.0
14	167	6.5	17.8	-48.8	-24.5	3.0
18	191	6.5	14.6	-48.8	-27.7	3.0
22	215	6.5	15.8	-48.8	-26.5	3.0
23	263	6.5	15.6	-48.8	-26.7	3.0
29	299	6.5	16.5	-48.8	-25.8	3.0
36	341	6.5	14.0	-48.8	-28.3	3.0
37	347	6.5	13.3	-48.8	-29.0	3.0
65	515	6.5	12.1	-48.8	-30.2	3.0
94	689	6.5	21.6	-48.8	-20.7	3.0
100	695	6.5	21.8	-48.8	-20.5	3.0
113	773	6.5	24.8	-48.8	-17.5	3.0
125	845	6.5	24.3	-48.8	-18.0	3.0
CATV 2nd Harmonic						
1	238	6.5	0.7	-48.8	-41.6	3.0
95	274	6.5	2.4	-48.8	-39.9	3.0
97	298	6.5	1.4	-48.8	-40.9	3.0
99	322	6.5	1.2	-48.8	-41.1	3.0
14	334	6.5	2.1	-48.8	-40.2	3.0
18	382	6.5	14.3	-48.8	-28.0	3.0
22	430	6.5	6.8	-48.8	-35.5	3.0
23	526	6.5	16.2	-48.8	-26.1	3.0
29	598	6.5	17.0	-48.8	-25.3	3.0
36	682	6.5	18.1	-48.8	-24.2	3.0
37	694	6.5	18.5	-48.8	-23.8	3.0
65	1030	6.6	29.7	-48.8	-12.5	3.0
94	1378	6.6	29.4	-48.8	-12.8	3.0
100	1390	6.6	29.6	-48.8	-12.6	3.0
113	1546	6.6	26.6	-48.8	-15.6	3.0
125	1690	6.6	18.0	-48.8	-24.2	3.0

[Note] *) 3.0[dBnW] in Limit is equal to 2[nW].

ENGINEERING TEST REPORT

- Continued -

[Environment]

Temperature : 22 °C Humidity : 36 %

[Note]

- 1) The spectrum was scaned from 30 MHz to 1.7 GHz, and all emission not reported were less than 10 dB μ V at meter reading.
- 2) The correction factor consist of the voltage loss of the impedance matching transformer (50Ω : 75Ω) and the coaxial cable used for the test.

[Sample calculation]

Frequency	:	101 [MHz] (VHF 2ch Fundamental)
Meter Reading	:	17.7 [dB μ V]
Correction Factor	:	6.5 [dB]
Conversion Factor	:	-48.8 [dB] (dB μ V to dBnW)

Then, the antenna Power Conduction is calculated as follows.

$$\text{Antenna Power Conduction} = 17.7 + 6.5 - 48.8 = -24.6 \text{ [dBnW]}$$

[Summary of Test Results]

Minimum margin was 12.7 dB at 1202 MHz(UHF 28ch) at 2nd harmonic.

Tested Date : March 30, 1999

Signature

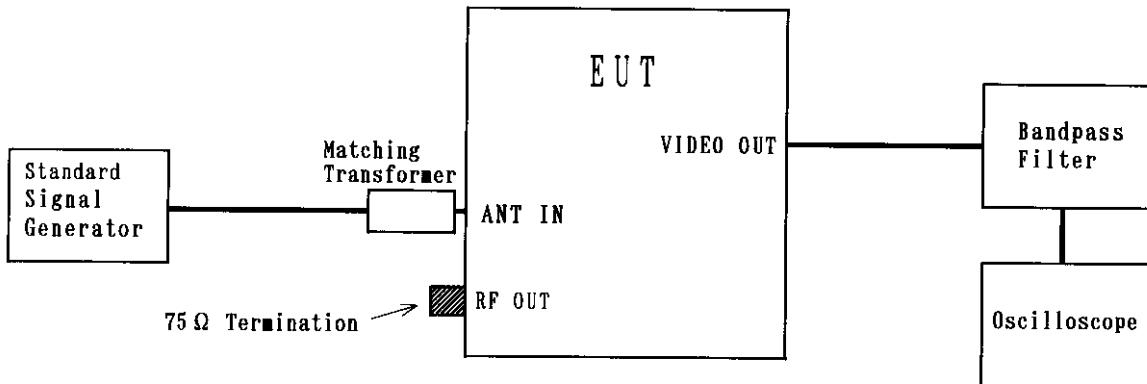
Yoshiko Kotani

ENGINEERING TEST REPORT**6. PICTURE SENSITVITY MEASUREMENT****6.1 Test Procedure**

- 1) Configure the EUT system in accordance with IEEE Std 190, and 6.2 Test Configuration in this report.
- 2) Active and warm up the EUT system.
- 3) Connect the antenna terminal of EUT to the standard signal generator by using the matching transformer and coaxial cable, and connect the video out terminal of EUT to the band pass filter(*1) and oscilloscope(*2) by using the coaxial cables.
- 4) The frequency of the standard signal generator(*3) is adjusted the tuned frequency of EUT.
- 5) The frequency and output level of standard signal generator are adjusted, until the specified video output level of EUT system is appeared on the oscilloscope.
- 6) The measurement are performed at US VHF channel 2,6,7 and 13, and US UHF channel 14, 44 and 69.

[Note]

(*1) Band pass filter set up conditions


Start Frequency : 600 Hz
 Stop Frequency : 2000 Hz

(*2) Oscilloscope set up conditions

Sweep Time : 0.1 msec.
 Volt/Div. : 0.5 V

(*3) Standard signal generator set up conditions

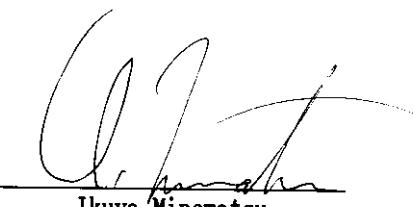
Modulation : Amplitude modulation
 Modulating Frequency : 1000 Hz
 Percent modulation : 30%

6.2 Test Configuration

ENGINEERING TEST REPORT**6.3 Test Results**

V H F Measurement Frequency		Antenna Input Level		U H F Measurement Frequency		Antenna Input Level			
ch.	[MHz]	[dBm]	[pW]	ch.	[MHz]	[dBm]	[pW]		
2	55.25	-83.0	5.012	14	471.25	-85.4	2.884		
6	83.25	-86.0	2.512	44	651.25	-85.0	3.162		
7	175.25	-85.5	2.818	69	801.25	-85.5	2.818		
13	211.25	-85.5	2.818						
AVERAGE "VHF"			3.290	AVERAGE "UHF"			2.955		
AVERAGE UHF/VHF : $10 \log \frac{\text{"UHF" pW}}{\text{"VHF" pW}} = -0.5 \text{ dB}$									
[Limit 8.0 dB]									

[Environment]


Temperature : 18 °C Humidity : 53 %

[Summary of Test Results]

Margin was 7.5 dB.

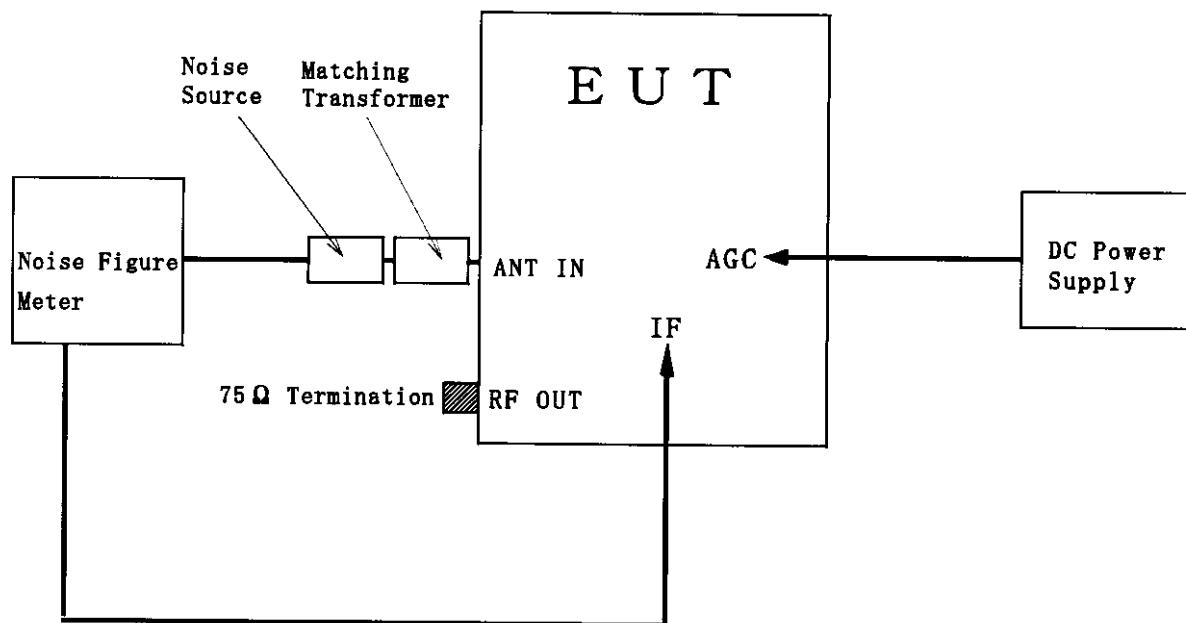
Tested Date : April 8, 1999

Signature

Ikuya Minematsu

ENGINEERING TEST REPORT**7. NOISE FIGURE MEASUREMENT****7.1 Test Procedure**

- 1) Configure the EUT system in accordance with FCC/OET MP-2, and 7.3 Test Configuration in this report.
- 2) Active and warm up the EUT system.
- 3) Connect the antenna input terminal of EUT to the correct terminating impedance.
- 4) Measurement of AGC voltage of EUT are made at the measurement channels.
- 5) Connect the antenna input terminal of EUT to the Noise Source of the Noise Figure Indicator(*1) by using the matching transformer, the noise source and coaxial cable. Connect the intermediate frequency terminal on the tuner pack of EUT to the IF INPUT terminal of the Noise Figure Indicator by using the coaxial cable.
- 6) In final compliance test, the measurement are performed at all US UHF channel by using the noise figure indicator.
- 7) If ΔF (Noise Figure contribution of the amplifier following the measurement point in dB) exceed 0.3 dB, the measured noise figure is corrected by ΔF . ΔF is calculated the tuner gain (gain of circuit from receiver antenna input terminal to measurement point as a power), the noise figure from receiver antenna input terminal to measurement point as power ratio and the noise figure of that IF amplifier as power ratio, therefore the tuner gain shall be measured.
- 8) For the measurement of the tuner gain, Connect the intermediate frequency terminal on the tuner pack of EUT to the spectrum analyzer(*2) by using the high impedance probe and connect the antenna input terminal of EUT to the standard signal generator by using the matching transformer and the coaxial cable.
- 9) The frequency of the standard signal generator is adjusted the tuned frequency of EUT.
- 10) Then, tuner gain is calculated as that the ratio of the output level of intermediate frequency amplifier on the tuner pack of EUT appeared on the spectrum analyzer minus the output level of the standard signal generator and ΔF is calculated.


[Note]

(*1) Noise Figure Indicator set up conditions
Frequency Select : 43.5 MHz

(*2) Spectrum analyzer set up conditions
RBW : 30 kHz
VBW : 30 kHz
ATT : 10 dB
Span : 10 MHz

ENGINEERING TEST REPORT

7.2 Test Configuration

ENGINEERING TEST REPORT

7.3 Test Results

Measurement Frequency		Correction Factor	Meter Reading	Tuner Gain	ΔF	Noise Figure	Limit
ch.	[MHz]	[dB]	[dB μ V]	[dB]	[dB]	[dB]	[dB]
TV UHF							
14	471.25	0.8	6.4	40.5	0.068	5.6	14
20	507.25	0.8	6.5	40.2	0.069	5.7	14
26	543.25	0.8	6.7	39.9	0.068	5.9	14
32	579.25	0.9	7.0	39.6	0.067	6.1	14
38	615.25	0.9	7.0	39.5	0.068	6.1	14
44	651.25	0.9	7.1	39.3	0.068	6.2	14
50	687.25	1.0	7.2	39.5	0.067	6.2	14
56	723.25	1.0	6.9	39.0	0.075	5.9	14
62	759.25	1.1	6.6	39.4	0.079	5.5	14
69	801.25	1.1	6.4	42.1	0.061	5.3	14
Maximum "NF" Channel(44)		0.9	7.1	39.3	0.068	6.2	14

[Note]

(\times) The second stage(IF Amp) noise figure contribution did not exceed 0.3dB.
 (\times) 4dB is subtracted from the measured noise figure, because a power splitter is equiped in VCR.

The noise figure contribution of IF amplifier following the measurement point:

$$\Delta F = 10 \log_{10} \left\{ 1 + \frac{F_2 - 1}{F_1 \times G_1} \right\}$$

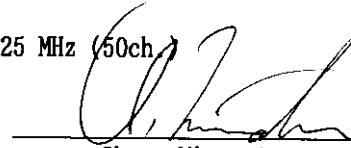
where, ΔF : Noise figure contribution of the amplifier following the measurement point in dB.

F_1 : Noise figure from receiver antenna input terminal to measurement point as power ratio.

F_2 : Noise figure of that IF amplifier as power ratio.

G_1 : Gain of circuit from receiver antenna input terminals to measurement point as a power gain.

[Environment]


Temperature : 18 °C Humidity : 53 %

[Summary of Test Results]

Minimum margin was 7.8 dB at 651.25 MHz (44ch.) and 687.25 MHz (50ch.)

Tested Date : April 8, 1999

Signature

Ikuya Minematsu

ENGINEERING TEST REPORT

8. LIST OF TEST INSTRUMENTS

Instrument	Manufacturer	Model No	Specifications	KEC Control No.	Test Item (*)	Last Cal.	Next Cal.
Test Receiver	Kyoritsu	KNM-2403	Frequency Range 9 kHz - 30 MHz	FS-70	1	1998/4	1999/4
	Rohde & Schwarz	ESVS10	Frequency Range 20 MHz - 1 GHz	FS-81	2,3	1998/10	1999/10
Spectrum Analyzer	Advantest	TR4172	Frequency Range 50 Hz - 1.8 GHz	SA-23	1,4,5	1999/1	2000/1
		R3261B	Frequency Range 9 kHz - 3.6 GHz	SA-33	2	1998/8	1999/8
Pre-Amplifier	Hewlett Packard	8449B	Frequency Range 1 GHz - 26.5 GHz	AM-52	2	1998/4	1999/4
Line Impedance Stabilization Network	Kyoritsu	KNW-407	Frequency Range 150 kHz - 30 MHz Impedance 50 Ω / 50 μH	FL-72	1	1998/4	1999/4
Biconical Antenna	Schwarzbeck	BBA9106	Frequency Range 30 MHz - 300 MHz	AN-99	2	1999/2	2000/2
Log-Periodic Antenna	Schwarzbeck	UHALP 9107	Frequency Range 300 MHz - 1 GHz	AN-199	2	1999/2	2000/2
Horn Antenna	RAVEN	91888-2	Frequency Range 1 GHz - 2 GHz	AN-167	2	1997/11	1999/11

ENGINEERING TEST REPORT

- Continued -

Instrument	Manufacturer	Model No	Specifications	KEC Control No.	Test Item (*)	Last Cal.	Next Cal.
IRE TV Signal Generator	Sibasoku	VG40A	NTSC US 4ch, 13ch	MG-43	1	1998/12	1999/12
20dB PAD	Made by KEC		Attenuation 20 dB	MM-39-4	1	—	—
Impedance Trans-former	NMC	MB-009	Frequency Range 10 MHz - 2 GHz 50 Ω : 75 Ω	AX-27	3	1998/11	1999/11
Oscillo-scope	Matsushita	VP-5530B	Frequency Range DC - 300 MHz	OS-18	4	1998/5	1999/5
Filter	Krohn-Hite	3550	Frequency Range 2 Hz - 200 kHz	FL-32	4	1999/3	2000/3
Matching Trans-former	Anritsu	MP614A	Frequency Range 10 MHz - 1.2 GHz 50 Ω : 75 Ω	AX-28-3	4,5	1998/11	1999/11
Standard Signal Generator	Anritsu	MG3601A	Frequency Range 100 kHz - 1.04 GHz	SG-41	4,5	1998/9	1999/9
Noise Figure Meter	Elena	ENF-2005	Frequency Range 10.7MHz - 56.5MHz Noise Source 28 Vp-p	MM-30	5	1998/6	1999/6
Noise Source	Microwave Semiconductor	MC1100	Frequency Range 5 MHz - 1 GHz Noise Ratio 15 dB - 16 dB	MM-30-2	5	1998/6	1999/6

[Note] Test Item(*) : 1. AC Power Line Conducted Emission Measurement
 2. Radiated Emission Measurement
 3. Antenna Power Conduction Measurement
 4. Picture Sensitivity Measurement
 5. Noise Figure Measurement