Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA Tel: 888-847-8027

LGN2A-WR2101TX Issued: January 16, 2021

EMC Test Report

regarding

USA: CFR Title 47, Part 15.209 (Emissions) Canada: ISED RSS-216v2 (Emissions)

for

WCFDM00N2A Series

Category: FCC 15.209 / RSS-216 Type 3, Cat 1

Judgments: 15.209/RSS-216v2 Compliant Transmitter Testing Completed: January 8, 2021

Prepared for:

LG Electronics

111 Sylvan Avenue North Building, Englewood Cliffs New Jersey 07632 USA Phone: +1 (201) 266-2215, Fax: Contact: Dae Woong Kim, yungsu.han@lge.com

Data Recorded by: Joseph Brunett, EMC-002790-NE Prepared by: bh Brunett, EMC-002790-NE Dr

Reviewed by:

Gordon Helm, EMC-002401-NE

Date of Issue: January 16, 2021

Revision History

Rev. No.	Date	Details	Revised By
	_		
rO	January 16, 2021	Initial Release.	J. Brunett
r1	January 27, 2021	ICES-001 Limits added $+$ typo corr.	J. Brunett
r2	January 28, 2021	ICES-001 Limits corr.	J. Brunett

Contents

Re	evision History	2
Ta	able of Contents	2
1	Test Report Scope and Limitations1.1 Laboratory Authorization1.2 Report Retention1.3 Subcontracted Testing1.4 Test Data1.5 Limitation of Results1.6 Copyright1.7 Endorsements1.8 Test Location1.9 Traceability and Equipment Used	4 4 4 4 4 4 4 5 5
2	Test Specifications and Procedures 2.1 Test Specification and General Procedures	6 6
3	Configuration and Identification of the Equipment Under Test 3.1 Description and Declarations	7 7 8 8 8 8 8 8 8 8 9
4	Emissions 4.1 General Test Procedures 4.1.1 Radiated Test Setup and Procedures 4.1.2 Conducted Emissions Test Setup and Procedures 4.1.3 Power Supply Variation 4.2 Intentional Emissions 4.2.1 Fundamental Emission Pulsed Operation 4.2.2 Fundamental Emission Bandwidth 4.2.3 Fundamental Emission 4.3 Unintentional Emissions 4.3.1 Transmit Chain Spurious Emissions	 10 10 12 12 13 13 14 15 16 16

5 Measurement Uncertainty and Accreditation Documents

List of Tables

1	Test Site List.
2	Equipment List.
3	EUT Declarations.
4	Pulsed Emission Characteristics (Duty Cycle)
5	Intentional Emission Bandwidth.
6	Fundamental Radiated Emissions.
7	Transmit Chain Spurious Emissions
8	Measurement Uncertainty

List of Figures

1	Photos of EUT.	7
2	EUT Test Configuration Diagram.	8
3	Radiated Emissions Diagram of the EUT	10
4	Radiated Emissions Test Setup Photograph(s).	11
5	Pulsed Emission Characteristics (Duty Cycle).	13
6	Intentional Emission Bandwidth.	14
7	Accreditation Documents	17

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until February 2031.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratories scope of accreditation.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1: Test Site List.				
Description	Location	Quality Num.		
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC		

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

Description	Manufacturer/Model	\mathbf{SN}	Quality Num.	Cal/Ver By / Date Due
Shielded Loop Antenna	EMCO / 6502	9502-2926	EMCOLOOP1	Kovsight / Aug-2022
BNC-BNC Coax	WRTL / RG58/U	001	CAB001-BLACK	AHD / Apr-2021
Spectrum Analyzer	R & S / FSV30	101660	RSFSV30001	RS / Apr-2021

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The goal of LG Electronics is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the LG Electronics WCFDM00N2A Series for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)
United States	Code of Federal Regulations	CFR Title 47, Part 15.209
Canada	ISED Canada	ISED RSS-216v2

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
ANSI C63.10:2013	"American National Standard of Procedures for Compliance Testing of Unli- censed Wireless Devices"
IEEE Trans. EMC, Vol. 47, No. 3 August 2005	"Extrapolating Near-Field Emissions of Low-Frequency Loop Transmitters," J.D.Brunett, V.V.Liepa, D.L.Sengupta
TP0102RA	"AHD Internal Document TP0102 - Radiated Emissions Test Procedure"
ISED Canada	"The Measurement of Occupied Bandwidth"

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The equipment under test is a wireless power transfer charger used in a motor vehicle. The EUT is approximately 16 x 8 x 2.5 cm in dimension, and is depicted in Figure 1. It is powered by 13.4 VDC vehicular power system. In use, this device is permanently affixed inside the body of a motor vehicle. Table 3 outlines provider declared EUT specifications.

Figure 1: Photos of EUT.

Table 3: EUT	Declarations.
--------------	---------------

General Declarations	
Equipment Type:	FCC 15.209 / RSS-216 Type 3, Cat 1
Country of Origin:	Malaysia
Nominal Supply:	13.4 VDC
Oper. Temp Range:	$-40^{\circ} \text{ to } +85^{\circ} \text{ C}$
Frequency Range:	123.7 to 131.7 kHz
Antenna Dimension:	Not Declared
Antenna Type:	Integral LF Coils
Antenna Gain:	Integral
Number of Channels:	1
Channel Spacing:	None
Alignment Range:	Not Declared
Type of Modulation:	AM+FSK
United States	
FCC ID Number:	BEJWCFDM00N2A
Classification:	8CC
Canada	
IC Number:	2703H-WCFDM00N2A
Classification:	WPT Device, Vehicular Device

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

Figure 2: EUT Test Configuration Diagram.

3.1.2 Modes of Operation

The EUT employs four charging coils (only one of which may be used at any given time) to transfer energy from itself to a compatible, portable receiving device placed in contact with the EUT surface. Emissions from each of the coils employed are evaluated herein in the charging, authentication, and un-loaded modes. Only worst case emissions observed in these modes are reported.

3.1.3 Variants

There are three hardware variants of the EUT: WCFDM00N2A1 with cooling fan, WCFDM00N2A5 without cooling fan, and WCFDM00N2A3 without cooling fan or top rubber pad. All employ identical WPT circuitry and antennas, but the unit with the cooling fan includes a fan control IC populated on the PCB. The unit with the cooling fan populated is fully tested herein and was confirmed to be the worst case variant.

3.1.4 Test Samples

Four normal operating samples (two of each variant) were provided for testing. A smart client load (paired Qi client board with 15W resistive load) was provided to activate the device for testing over each coil. This load consists of a normal Qi client circuit with the battery load replaced by an equivalent resistive value. All rectification and regulation circuitry representative of client side loading are implemented in the load provided. Emissions with this smart load were observed to be worse than those with a cellular phone load.

3.1.5 Functional Exerciser

Normal operating EUT functionality was verified by observation of transmitted signal and current draw.

3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

The EUT uses Qi QPC 1.3 HSM encrypted key authentication (AM+FSK) on the power transfer frequency as part of its power management and control features. No other communication is employed by the EUT. No data other than encrypted load authentication data is transferred to the client via the modulation employed. Only a single frequency is employed by the device, though that frequency may range over those specified by the manufacturer (123.7 to 131.7 kHz). In Canada, Qi protocol chargers are generally considered Type 2 devices, however as the EUT doesn't meet associated field strength limits by more than 40 dB, this product is treated as a Type 3, Category 1 WPT device, subject to certification under RSS-216. The EUT is permanently installed in a transportation vehicle and as such digital emissions (emissions from digital circuitry not used in generating the charging frequency) are exempt from US and Canadian digital emissions regulations (per FCC 15.103(a) and ISED correspondence).

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulations. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, the broadband probes employed are 10cm diameter single-axis shielded transducers and measurements are repeated and summed over three axes.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

4.2 Intentional Emissions

4.2.1 Fundamental Emission Pulsed Operation

The details and results of testing the EUT for pulsed operation are summarized in Table 4.

Table 4: Pulsed Emission Characteristics (Duty Cycle).

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	10-Jan-21
$9 \; kHz \leq f \leq 150 \; kHz$	Pk/QPk	200 Hz	300 Hz	Test Engineer:	Joseph Brunett
$150 \ kHz \leq f \leq 30 \ MHz$	Pk/QPk	9 kHz/10 kHz	30 kHz	EUT Mode:	Normal Operating
				Meas. Distance:	3 meters
				EUT Tested:	LG WCFDM00YNA

_		Ov	erall Transn	nission		Internal Frame Characteristics							
				T (1				Compute	d Duty Cycle*				
#	EUT Mode	Min. Repetition Rate (sec)	Max. No. of Frames	Total Transmission Length (sec)	Max. Frame Length (ms)	Min. Frame Period (s)	Frame Encoding	(%)	Duty (dB)				
1	Load Auth + Charging	N/A	-	-	>100ms	-	Once authenticated, EUT charging occurs in CW mode with an on-time far greater than 100 ms.	N/A	N/A				

* No Duty Cycle is employed when demonstrating compliance.

Spectrum	CELL PHON	IE LOAD A	UTHENT	CATION		Spectru	n	CW CI	HARGIN	١G				
Ref Level 97.0	0 dBµV/m €	RBW 200 Hz				RefLeve	al 97.00 dBp	JV/m		RBW (CIS	PR) 9 kHz			
🖷 Att	20 dB 👄 SWT 15 s 🖷	▶ VBW 3 kHz				🖷 Att		o de 👄 sv	VT 300 ms	VBW	100 kHz			
SGL TRG: VID TD	FDC					SGL TDF I)C							
⊜1Pk Clrw						●1Pk Cirw								
110 dBuV/m			D3[1]		-5.20	dB ms					MI	L[1]	91.7	2 dBµV/m 32.600 ms
100 dBµV/m			M1[1]		59.61 dBµ\ 132.6	/m ms	n]	
97.00	0 dBµV/m					100 dBµV/i	n		_					
90 dBµV/m							97.000 dBL	V/m		M1				
an dally/m	0.0					90 dBµV/m							 	~~~~~~
70 dBi V/m						80 dBµV/m								
TSC dSLIVYm	RG 64.000 dBµ∨/m													
						70 dBµV/m								
and the states of the	1 Malakeda					60 dBµV/m							L	
An a Bholu w	and the													
30 dBµV/m						50 dBuV/m								
20 dBµV/m						_								
CF 127.872 kHz		1001 pt	s		1.5	s/ 40 dBµV/m								
Marker														
Type Ref Tre	c X-value	Y-value	Function	Func	tion Result	30 dBµV/m			-				-	
M1	1 132.6 ms	59.61 dBµV/m												
D2 M1	1 167.4 ms	-5.28 dB				20 dBut//m								
D3 M1	1 167.4 ms	-5.28 dB								100				00.0
	1 107.4 ms	15.20 UB				CF 128.3	SZ KHŹ			100:	t pts			30.0 ms/

Figure 5: Pulsed Emission Characteristics (Duty Cycle).

(MHz)

0.1279

4.2.2 Fundamental Emission Bandwidth

Temp (C)

2

(VDC)

13.4

(kHz)

3.196

Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available frame length and minimum frame spacing. Radiated emissions are recorded following the test procedures listed in Section 2.1. The 20 dB EBW is measured as the max-held peak-detected signal when the IF bandwidth is greater than or equal to 1% of the receiver span. For complex modulations other than ASK and FSK, the 99% emission bandwidth per IC test procedures has a different result, and is also separately reported. The results of EBW testing are summarized in Table 5. Plots showing measurements employed to obtain the emission bandwidth reported are provided in Figure 6.

Table 5: Intentional Emission Bandwidth.

(kHz)

0.849

Frequency	v Range		Det	IF Bandwidth	Video Bandwidth	Test Date:	14-Jan-21
9 kHz \leq f \leq	150 kHz		Pk	> 1% Span	>= 3 * IFBW	Test Engineer:	Joseph Brunett
$150 \text{ kHz} \le f$	≤ 30 MHz		Pk	> 1% Span	>= 3 * IFBW	EUT Mode:	Load Auth + Charging
				-		Meas. Distance:	3 m
						EUT Tested:	LG WCFDM00YNA
Frequency Range		Supply	99% PWR BW	23 dB EBW	110 kHz Restricted Band		

(dBc)

40.6

Spectrum										Spectrur	n									
Ref Level	97.00	dBµV/m		RBW 200 Hz						Ref Leve	1 9	0.00 de	BµV/m		RBW 1 kHz					
🖷 Att		20 dB SWT 9	.5 ms 👄	VBW 3 kHz	Mode Aut	DIFFT				🗕 Att			50 dB SWT	2.8 ms	VBW 500 Hz	Mode A	uto FFT			
TDF DC										TDF DC										
⊖1Pk Max										●1Pk View										
110 dBµV/m-					D3[1]		0.400	-0.15 dB 849.0 Hz	100 dBµV/r	 n—				MI	D2	[1]		-3	-40.59 dB 7.8700 kHz
100 dBi/V/m-					Ucc	BM		3.196	303197 KHz		1				Λ Ι	UC	CBM		2.297.	02298 KHZ
9	7.000 c	IBμV/m			N1[1	J			52 dBµV/m	90 dbuV/m	90.	.000 dB	suv/m			MI	[1]		98.	30 dBµV/m
90 dBµV/m-				M1			1	12	7.8720 KHZ						ти	2 7 I		1	12	7.8720 KHZ
				1 1						80 dBµV/m			_		*					
80 dBµV/m				1 1											- 1 - 11'					
				1 //						70 dBµV/m			_							
70 dBµV/m																				
60 dBuilden				D7 1	Q 3					60 dBuV/m	0.0	2								
					T2					mar	{ ∼`≥	m	mon	mm	mmm	Low		man	hand	
50 dBuillion					Y					50 dBuV/m						-		·		
	0-0-0-	durant.	~~~		~~	m	where and													
40 dBuV/m	V									40 dBuV/m					_					
				1 1																
30 dBµV/m-										30 dBuV/m										
				1 1																
20 dBµV/m-										20 dBut//m										
CF 127.872	kHz			1001	pts			Spa	n 20.0 kHz	20 0000,000										
Marker																				
Type Ref	Trc	X-value		Y-value	Functio	n I	Fun	ction Resul	t	CF 127.87	'2 k	Hz			1001 p	its			Span	100.0 kHz
M1	1	127.872	kHz	84.52 dBµV/m	1					Marker										
T1	1	125.874	+ kHz	52.35 dBµV/m	1 Occ	Bw		3.196	303197 kHz	Type Re	ef	Trc	X-value	· 1	Y-value	Functi	ion	Fun	tion Resulf	: 1
T2	1	129.0708	kHz	52.74 dBµV/m	1					M1		1	127.8	72 kHz	98.30 dBµV/m					
D2 M1	1	-469.	0 Hz	-23.16 dB	3					T1	T	1	126.67	32 kHz	79.97 dBµV/m	Oc	c Bw		2.2977	02298 kHz
D3 D2	1	849.	0 Hz	-0.15 dB	3					T2		1	128.97	09 kHz	83.29 d8µV/m					
D4 M1	1	-10.0) kHz	-38.74 dB	3					D2 M	11	1	-37.	87 kHz	-40.59 dB					

Figure 6: Intentional Emission Bandwidth.

4.2.3**Fundamental Emission**

Following the test procedures listed in Section 2.1, field emissions measurements are made on the EUT for both Horizontal and Vertically polarized coupling fields. The EUT's loop antenna(s) are measured along all three axes, including when the EUT loop axes are aligned in the same axis as the test loop and aligned coplanar (in the same plane) with the test loop antenna. Table 6 details the results of these measurements.

Table 6: Fundamental Radiated Emissions.

	Frequency Range $9 \text{ kHz} \le f \le 150 \text{ kHz}$		Det Pk/QPk	et IF Bandwidth QPk 200 Hz			andwie 0 Hz	dth	Meas. Distance: EUT Tested:	3 meters LG WCFDM00YNA			Test Date Test Engineer	8-Jan-21 Joseph Brunett	
								Fun	damental Emissio	ons Measure	ments				
		Test Antenna	Freq.	Ant.	Ant	Table	Ka	Kg	Cf**	E3m (Pk)	H3m (Pk)	E300m (Pk)**	E300m Limit	ICES-001 Table 2, 3m	
#	Mode	Polarization	MHz	Used	Ht.	Angle	dB/m	dB	3m / 300m (dB)	dBuV/m	dBuA/m	dBuV/m	dBuV/m	dBuA/m	Pass By***
1	1.533	Coaxial - Horz	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	86.4	34.9	6.4	25.7	45.3	10.5
2	15 W, Coil 1	Coplanar - Vert	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	78.2	26.7	-1.8	25.7	45.3	18.7
3	con i	Coplanar - Horz	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	75.3	23.8	-4.7	25.7	45.3	21.6
4	1.511	Coaxial - Horz	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	87.1	35.6	7.1	25.7	45.3	9.8
5	15 W, Coil 2	Coplanar - Vert	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	78.9	27.4	-1.1	25.7	45.3	18.0
6	00112	Coplanar - Horz	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	76.0	24.5	-4.0	25.7	45.3	20.9
7		Coaxial - Horz	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	89.3	37.8	9.3	25.7	45.3	7.6
8	T5W, Coil 3	Coplanar - Vert	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	81.1	29.6	1.1	25.7	45.3	15.8
9	cons	Coplanar - Horz	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	78.2	26.7	-1.8	25.7	45.3	18.7
10	1.511	Coaxial - Horz	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	87.6	36.1	7.6	25.7	45.3	9.3
11	15 W, Coil 4	Coplanar - Vert	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	79.4	27.9	6	25.7	45.3	17.5
12		Coplanar - Horz	0.128	EMCOLOOP1	1.0	300.0	10.1	0.0	80.0	76.5	25.0	-3.5	25.7	45.3	20.4
		Test Antenna	Freq.	Supply	·	E3m (Pk)									
#	Mode	Polarization	MHz	Voltage	•	dBuV/m									
13	1530		0.128	15.4		87.6									
14	Coil 4	Coaxial	0.128	13.4		87.6									
				11.4											

 Is
 Con #
 0.128
 11.4
 87.6

 * EUT was tested in 15W full power charging mode, which is CW. No averaging applies. Worst case emissions came with manufacturer supplied smart load.
 ** 40 dB/dec conversion factor employed

4.3 Unintentional Emissions

4.3.1 Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 7. Following the test procedures listed in Section 2.1, field emissions measurements are made on the EUT for both Horizontal and Vertically polarized coupling fields. The EUT's loop antenna(s) are measured when the EUT loop axes placed in all three axes, including when they are aligned along the same axis as the test loop antenna and are aligned coplanar with the test loop antenna. For all arrangements, test loop is rotated for maximum field. The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 7. Measurements are performed to 10 times the highest fundamental operating frequency.

Frequency Range		icy Range	Det		IF Ba	ndwidth				Video	Bandwidth			Test Date:		8-Jan-21		
9 kHz \leq t \leq 150 kHz			Pk/QPk		200 HZ 300 HZ											oseph Brunett		
	$150 \text{ kHz} \le$	$f \le 30 \text{ MHz}$	Pk/QPk		9	kHz					30 kHz			Meas. Distance:		3 meters		
												EUT Tested:	LG	WCFDM00YNA				
						Transm	it Cha	in Snu	rious Emissions									
	Test Antenna Freq. Ant. Ant. Table Ka Ko C(** [F-field (3m)] F-field (300m / 30m)] H-field (3m)] FCC Elim											ICES-001T2 Hlim						
					Ht.	Angle		0	(3 to 300/30m)	(Pk)	(Pk)	(Pk)	(300m / 30m)	(3m)	Pass By	r		
#	Mode	Polarization	kHz	Used	m	deg	dB/m	dB	dB	dBuV/m	dBuV/m	dBuA/m	dBuV/m	dBuA/m		Comments		
1		Coaxial - Horz	103.8	EMCOLOOP1	1.0	300.0	10.0	0.0	80.0	73.6	-6.4	22.1	27.3	53.5	31.4			
2	Load	Coaxial - Horz	108.1	EMCOLOOP1	1.0	300.0	10.0	0.0	80.0	73.9	-6.1	22.4	26.9	51.9	29.5			
3	Removed	Coaxial - Horz	127.9	EMCOLOOP1	1.0	300.0	10.0	0.0	80.0	63.4	-16.6	11.9	25.5	45.3	33.4			
4		Coaxial - Horz	255.8	EMCOLOOP1	1.0	120.0	10.0	0.0	80.0	54.8	-25.2	3.3	19.4	36.0	32.7			
5		Coplanar - Vert	255.8	EMCOLOOP1	1.0	120.0	10.0	0.0	80.0	51.9	-28.1	.4	19.4	36.0	35.6			
6		Coplanar - Horz	255.8	EMCOLOOP1	1.0	120.0	10.0	0.0	80.0	52.8	-27.2	1.3	19.4	36.0	34.7			
7		H/V (worst case)	383.7	EMCOLOOP1	1.0	all	10.0	0.0	80.0	46.1	-33.9	-5.4	15.9	33.7	39.1			
8	15W, Max	H/V (worst case)	511.6	EMCOLOOP1	1.0	all	10.2	0.0	40.0	34.7	-5.3	-16.8	33.4	32.1	38.7	noise		
9	All 4 Individual	H/V (worst case)	639.5	EMCOLOOP1	1.0	all	10.2	0.0	40.0	35.1	-4.9	-16.4	31.5	30.8	36.4	noise		
10	Coils	H/V (worst case)	767.4	EMCOLOOP1	1.0	all	10.1	0.0	40.0	31.9	-8.1	-19.6	29.9	29.8	38.0	noise		
11		H/V (worst case)	895.3	EMCOLOOP1	1.0	all	10.2	0.0	40.0	57.6	17.6	6.1	28.6	28.9	11.0	background		
12		H/V (worst case)	1023.2	EMCOLOOP1	1.0	all	10.4	0.0	40.0	33.4	-6.6	-18.1	27.4	28.1	34.0	noise		
13		H/V (worst case)	1151.1	EMCOLOOP1	1.0	all	10.4	0.0	40.0	31.2	-8.8	-20.3	26.4	27.5	35.2	noise		
14		H/V (worst case)	1279.0	EMCOLOOP1	1.0	all	10.4	0.0	40.0	24.9	-15.1	-26.6	25.5	26.9	40.6	noise		
* EU	If It was tested in CW charging mode. No averaging applies and Quasi-Peak data was not needed to demonstrate compliance. Worst case emissions came with manufacturer supplied smart load.																	

** 40 dB/dec Near-field conversion factor employed.

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k = 2.

Table 8: Measurement Uncertainty.

Measured Parameter	${\bf Measurement} ~ {\bf Uncertainty}^\dagger$
Radio Frequency	$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$
Conducted Emm. Amplitude	$\pm 1.9\mathrm{dB}$
Radiated Emm. Amplitude $(f < 30 \text{ MHz})$	$\pm 3.1\mathrm{dB}$
Radiated Emm. Amplitude $(30 - 200 \text{ MHz})$	$\pm 4.0\mathrm{dB}$
Radiated Emm. Amplitude $(200 - 1000 \text{ MHz})$	$\pm 5.2\mathrm{dB}$
Radiated Emm. Amplitude $(f > 1000 \text{ MHz})$	$\pm 3.7\mathrm{dB}$

[†]Ref: CISPR 16-4-2:2011+A1:2014

United States Department of Commerce National Institute of Standards and Technology	Gordon Helm EMC-002401-NE
NVLAP LAB CODE: 200129-0	Change and the second sec
AHD (Amber Helm Development, L.C.) Sister Lakes, MI	Contractory of the second
is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:	Joseph Brunett EMC-002790-NE
Electromagnetic Compatibility & Telecommunications	AMPLE
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).	
2020-06-23 through 2021-06-30 Effective Dates For the National Voluntary, Laboratory Accreditation Program	HATTATED ENGINER

Figure 7: Accreditation Documents