TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

- 1. Report No : DRTFCC1902-0058(1)
- 2. Customer
 - Name (FCC) : LG Electronics USA / Name (IC) : LG ELECTRONICS INC.
 - Address (FCC) : 1000 Sylvan Avenue, Englewood Cliffs, New Jersey, United States, 07632
 - Address (IC) : 222, LG-ro, Jinwi-myeon Pyeongtaek-si, Gyeonggi-do 451-713 Korea (Republic Of)
- 3. Use of Report : FCC & IC Original Grant
- 4. Product Name / Model Name : Telematics / TLVLM3IU-N

FCC ID : BEJTLVLM3IU-N / IC : 2703H-TLVLM3IUN

- Test Method Used : KDB971168 D01v03r01, ANSI/TIA-603-E-2016, ANSI C63.26-2015 Test Specification : §2, §22(H), §24(E), §27 RSS-132 Issue 3 , RSS-133 Issue 6, RSS-139 Issue3
- 6. Date of Test : 2018.11.23 ~ 2019.02.22
- 7. Testing Environment : Refer to appended test report.
- 8. Test Result : Refer to attached test result.

Affirmation	Tested by		Reviewed by	
12 12 12 12 12 12 12 12 12 12 12 12 12 1	Name : JaeHyeok Bang	Zh	Name : GeunKi Son	(Signature)

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.

2019.03.04.

DT&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1902-0058	Feb. 27, 2019	Initial issue
DRTFCC1902-0058(1)	Mar. 04, 2019	Update KDB971168 specification

Table of Contents

1. GENERAL INFORMATION	
2.1. EUT DESCRIPTION	5
2.2. EUT CAPABILITIES	5
2.3. TESTING ENVIRONMENT	5
2.4. MEASURING INSTRUMENT CALIBRATION5	5
2.5. MEASUREMENT UNCERTAINTY5	5
2.6. TEST FACILITY	
3. DESCRIPTION OF TESTS	j
3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power) 6	;
3.2 PEAK TO AVERAGE RATIO	
3.3 OCCUPIED BANDWIDTH (99 % Bandwidth)10)
3.4 SPURIOUS EMISSIONS AT ANTENNA TERMINAL11	
3.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL12	2
3.6 RADIATED SPURIOUS EMISSIONS13	}
3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	
4. LIST OF TEST EQUIPMENT	
5. SUMMARY OF TEST RESULTS	
 EMISSION DESIGNATOR AND SAMPLE CALCULATION 17 TEST DATA	
7.1 Conducted OUTPUT POWER 19)
7.1 Conducted OUTPUT POWER19 7.2 PEAK TO AVERAGE RATIO	
	I
7.2 PEAK TO AVERAGE RATIO	
7.2 PEAK TO AVERAGE RATIO	 2
7.2 PEAK TO AVERAGE RATIO	 2
7.2 PEAK TO AVERAGE RATIO	 2
7.2 PEAK TO AVERAGE RATIO217.3 OCCUPIED BANDWIDTH (99 % Bandwidth)217.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL227.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL227.6 EFFECTIVE RADIATED POWER23	
7.2 PEAK TO AVERAGE RATIO217.3 OCCUPIED BANDWIDTH (99 % Bandwidth)217.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL227.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL227.6 EFFECTIVE RADIATED POWER237.7 EQUIVALENT ISOTROPIC RADIATED POWER24	 2 3 4
7.2 PEAK TO AVERAGE RATIO217.3 OCCUPIED BANDWIDTH (99 % Bandwidth)217.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL227.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL227.6 EFFECTIVE RADIATED POWER237.7 EQUIVALENT ISOTROPIC RADIATED POWER247.8 RADIATED SPURIOUS EMISSIONS26	 2 2 3 4 5 4
7.2 PEAK TO AVERAGE RATIO217.3 OCCUPIED BANDWIDTH (99 % Bandwidth)217.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL227.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL227.6 EFFECTIVE RADIATED POWER237.7 EQUIVALENT ISOTROPIC RADIATED POWER247.8 RADIATED SPURIOUS EMISSIONS267.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE34	 2 2 2 2 3 4 4 4
7.2 PEAK TO AVERAGE RATIO217.3 OCCUPIED BANDWIDTH (99 % Bandwidth)217.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL227.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL227.6 EFFECTIVE RADIATED POWER237.7 EQUIVALENT ISOTROPIC RADIATED POWER247.8 RADIATED SPURIOUS EMISSIONS267.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE347.9.1 FREQUENCY STABILITY (GPRS850)34	1 2 2 3 4 5 4 5
7.2 PEAK TO AVERAGE RATIO217.3 OCCUPIED BANDWIDTH (99 % Bandwidth)217.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL227.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL227.6 EFFECTIVE RADIATED POWER237.7 EQUIVALENT ISOTROPIC RADIATED POWER247.8 RADIATED SPURIOUS EMISSIONS267.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE347.9.1 FREQUENCY STABILITY (WCDMA850)35	2 2 3 4 5 4 4 5 5
7.2 PEAK TO AVERAGE RATIO217.3 OCCUPIED BANDWIDTH (99 % Bandwidth)217.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL227.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL227.6 EFFECTIVE RADIATED POWER237.7 EQUIVALENT ISOTROPIC RADIATED POWER247.8 RADIATED SPURIOUS EMISSIONS267.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE347.9.1 FREQUENCY STABILITY (GPRS850)347.9.3 FREQUENCY STABILITY (WCDMA850)357.9.4 FREQUENCY STABILITY (WCDMA1700)377.9.5 FREQUENCY STABILITY (WCDMA1900)38	1 2 2 3 4 5 4 5 5 7 3
7.2 PEAK TO AVERAGE RATIO217.3 OCCUPIED BANDWIDTH (99 % Bandwidth)217.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL227.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL227.6 EFFECTIVE RADIATED POWER237.7 EQUIVALENT ISOTROPIC RADIATED POWER247.8 RADIATED SPURIOUS EMISSIONS267.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE347.9.1 FREQUENCY STABILITY (GPRS850)357.9.3 FREQUENCY STABILITY (WCDMA850)357.9.4 FREQUENCY STABILITY (WCDMA1700)377.9.5 FREQUENCY STABILITY (WCDMA1900)388. TEST PLOTS39	
7.2 PEAK TO AVERAGE RATIO217.3 OCCUPIED BANDWIDTH (99 % Bandwidth)217.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL227.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL227.6 EFFECTIVE RADIATED POWER237.7 EQUIVALENT ISOTROPIC RADIATED POWER247.8 RADIATED SPURIOUS EMISSIONS267.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE347.9.1 FREQUENCY STABILITY (GPRS850)347.9.2 FREQUENCY STABILITY (WCDMA850)357.9.3 FREQUENCY STABILITY (WCDMA1700)377.9.5 FREQUENCY STABILITY (WCDMA1900)388. TEST PLOTS398.1 PEAK TO AVERAGE RATIO39	
7.2 PEAK TO AVERAGE RATIO217.3 OCCUPIED BANDWIDTH (99 % Bandwidth)217.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL227.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL227.6 EFFECTIVE RADIATED POWER237.7 EQUIVALENT ISOTROPIC RADIATED POWER247.8 RADIATED SPURIOUS EMISSIONS267.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE347.9.1 FREQUENCY STABILITY (GPRS850)357.9.3 FREQUENCY STABILITY (WCDMA850)357.9.4 FREQUENCY STABILITY (WCDMA1700)377.9.5 FREQUENCY STABILITY (WCDMA1900)388. TEST PLOTS39	
7.2 PEAK TO AVERAGE RATIO217.3 OCCUPIED BANDWIDTH (99 % Bandwidth)217.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL227.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL227.6 EFFECTIVE RADIATED POWER237.7 EQUIVALENT ISOTROPIC RADIATED POWER247.8 RADIATED SPURIOUS EMISSIONS267.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE347.9.1 FREQUENCY STABILITY (GPRS850)347.9.2 FREQUENCY STABILITY (WCDMA850)357.9.3 FREQUENCY STABILITY (WCDMA1700)377.9.5 FREQUENCY STABILITY (WCDMA1900)388. TEST PLOTS398.1 PEAK TO AVERAGE RATIO39	

1. GENERAL INFORMATION

Applicant Name (FCC)	:	LG Electronics USA, Inc.
Applicant Name (IC)	:	LG ELECTRONICS INC.
Address (FCC)	:	1000 Sylvan Ave. Englewood Cliffs, New Jersey, United States 07632
Address (IC)	:	222, LG-ro, Jinwi-myeon Pyeongtaek-si, Gyeonggi-do 451-713 Korea (Republic Of)
FCC ID	:	BEJTLVLM3IU-N
IC	:	2703H-TLVLM3IUN
FCC Classification	:	PCS Licensed Transmitter (PCB)
EUT	:	Telematics
Model Name	:	TLVLM3IU-N
Add Model Name	:	TLVLP3IU-N
Supplying power	:	DC 12 V
Antenna Type	:	External Antenna

Mode	Tx Frequency	Emission	ERP (Max	. Power)	EIRP (Max. Power)	
Wode	(MHz)	Designator	ignator dBm		dBm	w
GPRS850	824.2 ~ 848.8	245KGXW	28.71	0.743	30.86	1.218
EDGE850	824.2 ~ 848.8	247KG7W	25.01	0.317	27.16	0.519
WCDMA850	826.4 ~ 846.6	4M16F9W	19.66	0.092	21.81	0.152
HSUPA850	826.4 ~ 846.6	4M16F9W	18.48	0.070	20.63	0.116
WCDMA1700	1712.4 ~ 1752.6	4M13F9W	-	-	19.87	0.097
HSUPA1700	1712.4 ~ 1752.6	4M15F9W	-	-	19.48	0.089
GPRS1900	1850.2 ~ 1909.8	249KGXW	-	-	24.34	0.272
EDGE1900	1850.2 ~ 1909.8	248KG7W	-	-	20.98	0.125
WCDMA1900	1852.4 ~ 1907.6	4M15F9W	-	-	20.76	0.119
HSUPA1900	1852.4 ~ 1907.6	4M14F9W	-	-	19.68	0.093

2. INTRODUCTION

2.1. EUT DESCRIPTION

The Equipment Under Test (EUT) supports GPRS/WCDMA/LTE with WLAN.

2.2. EUT CAPABILITIES

This EUT contains the following capabilities: 850/1900 GPRS/EDGE, 850/1700/1900 WCDMA/HSUPA, Multi-band LTE, 802.11b/g/n WLAN(2.4GHz).

2.3. TESTING ENVIRONMENT

Ambient Condition		
Temperature	+20 °C ~ +24 °C	
 Relative Humidity 	43 % ~ 46 %	

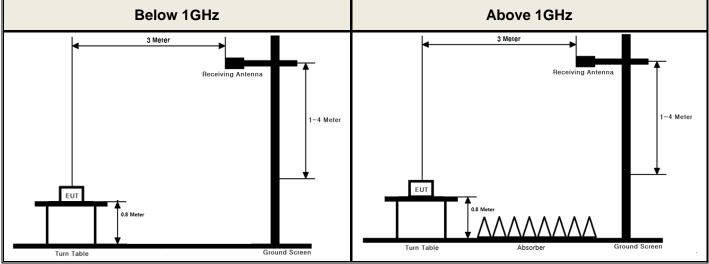
2.4. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty	
Radiated Disturbance (Below 1 GHz)	5.1 dB (The confidence level is about 95 %, $k = 2$)	
Radiated Disturbance (1 GHz ~ 18 GHz)	5.4 dB (The confidence level is about 95 %, $k = 2$)	
Radiated Disturbance (Above 18 GHz)	5.3 dB (The confidence level is about 95 %, $k = 2$)	


2.6. TEST FACILITY

DT&C Co., Lt	d.					
42, Yurim-ro, 1	54beor	conducted measurement facility used to collect the radiated data are located at the n-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. with the requirements of § 2.948 according to ANSI C63.4-2014.				
- FCC MRA - IC Test sit		dited Test Firm No. : KR0034 5740A-4				
www.dtnc.net						
Telephone : + 82-31-321-2664						
FAX		+ 82-31-321-1664				

3. DESCRIPTION OF TESTS

3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 0.8 meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Test Procedure

- ANSI/TIA-603-E-2016 Section 2.2.17
- KDB971168 D01v03r01 Section 5.2.2
- ANSI 63.26-2015 Section 5.2.4.4.1

Test setting

- 1. Set span to 2 x to 3 x the OBW.
- 2. Set RBW = 1% to 5% of the OBW.
- 3. Set VBW \geq 3 x RBW.
- 4. Set number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$.
- 5. Sweep time:
 - 1) Set = auto-couple, or

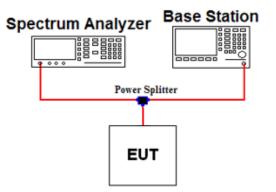
2) Set \geq [10 \times (number of points in sweep) \times (transmission period)] for single sweep (automation-compatible) measurement. Transmission period is the on and off time of the transmitter.

- 6. Detector = power averaging (rms).
- 7. If the EUT can be configured to transmit continuously, then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full-power transmissions).
- 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.

10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

The receiver antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminal of the substitute antenna is measured.


The ERP/EIRP is calculated using the following formula:

ERP/EIRP = The conducted power at the substitute antenna's terminal [dBm] + Substitute Antenna gain [dBd for ERP, dBi for EIRP]

For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn antenna and an isotropic antenna are taken into consideration.

3.2 PEAK TO AVERAGE RATIO

Test set-up

Test Procedure

- KDB971168 D01v03r01 - Section 5.7.2

- ANSI C63.26-2015 – Section 5.2.3.4

A peak to average ratio measurement is performed at the conducted port of the EUT.

The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The present of time the signal spends at or above the level defines the probability for that particular power level.

Test setting

The spectrum Analyzer's CCDF measurement function is enabled.

- 1. Set resolution/measurement bandwidth \geq OBW or specified reference bandwidth.
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve.
- 3. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to the greater of [10 × (number of points in sweep) ×

(transmission symbol period)] or 1 ms.

- 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize. Set the measurement interval to a time that is less than or equal to the burst duration.
- 3) If there are several carriers in a single antenna port, the peak power shall be determined for each individual carrier (by disabling the other carriers while measuring the required carrier) and the total peak power calculated from the sum of the individual carrier peak powers.
- 4. Record the maximum PAPR level associated with a probability of 0.1%.
- 5. The peak power level is calculated form the sum of the PAPR value from step d) to the measured average power.

Alternate Procedure

- KDB971168 D01v03r01 - Section 5.7.3

- ANSI C63.26-2015 – Section 5.2.6

Use one of the measurement procedures of the peak power and record as $\mathsf{P}_{\mathsf{Pk}}.$

Use one of the measurement procedures of the average power and record as $\mathsf{P}_{\mathsf{Avg}}.$

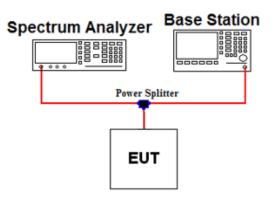
Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = P_{Pk} (dBm or dBW) - P_{Avg} (dBm or dBW).

Where,

PAPR peak-to-average power ratio, in dB PPk measured peak power or peak PSD level, in dBm or dBW PAvg measured average power or average PSD level, in dBm or dBW

- Peak Power Measurement


- 1. Set the RBW ≥ OBW
- 2. Set VBW ≥ 3 x RBW
- 3. Set span ≥ 2 x RBW
- 4. Sweep time \ge 10 x (number of points in sweep) x (transmission symbol period).
- 5. Detector = peak
- 6. Trace mode = max hold
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the peak amplitude level.

- Average Power Measurement

- 1. Set span to 2 x to 3 x the OBW.
- 2. Set RBW = 1% to 5% of the OBW.
- 3. Set VBW \geq 3 × RBW.
- 4. Set number of measurement points in sweep \geq 2 \times span / RBW..
- 5. Sweep time = 1) auto-couple, or
 - 2) set ≥ [10 x (number of points in sweep) x (transmission period)] for single sweep (automationcompatible (measurement. Transmission period is the on and off time of the transmitter.
- 6. Detector = power averaging (RMS).
- 7. If the EUT can be configured to transmit continuously, then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable Triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each Sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full-Power transmissions)
- 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.
- 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

3.3 OCCUPIED BANDWIDTH (99 % Bandwidth)

Test set-up

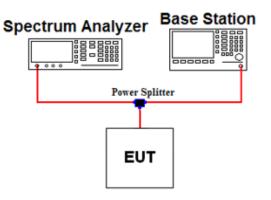
Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
824.2	7.69	1850.2	8.66
826.4	7.72	1852.4	8.65
836.6	7.72	1880	8.65
846.6	7.73	1907.6	8.67
848.8	7.73	1909.8	8.67
1712.4	8.52	-	-
1732.4	8.53	-	-
1752.6	8.54	-	-

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

Test Procedure

- KDB971168 D01v03r01 Section 4.3
- ANSI C63.26-2015 Section 5.4.4


The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

Test setting

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 ~ 5 % of the expected OBW & VBW ≥ 3 X RBW
- 3. Detector = Peak
- 4. Trance mode = Max hold
- 5. Sweep = Auto couple
- 6. The trace was allowed to stabilize
- 7. If necessary, step 2 ~ 6 were repeated after changing the RBW such that it would be within 1 ~ 5 % of the 99 % occupied bandwidth observed in step 6.

3.4 SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
10000	12.08	20000	15.32
-	-	-	-

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

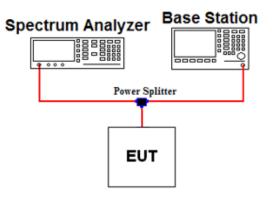
Test Procedure

- KDB971168 D01v03r01 - Section 6

- ANSI C63.26-2015 - Section 5.7

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its low, middle, high channel with all bandwidths. The spectrum is scanned from 9 kHz up to a frequency including its 10th harmonic.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$, where P is the transmitter power in Watts.


Test setting

- 1. RBW = 100 kHz(Below 1 GHz) or 1 MHz(Above 1 GHz) & VBW ≥ 3 X RBW (Refer to Note 1)
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize

Note 1: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24, 27

3.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
819-824	7.72	1755-1764	8.55
849-854	7.73	1845-1850	8.66
1701-1709	8.52	1905-1915	8.69
1710	8.52	-	-

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

Test Procedure

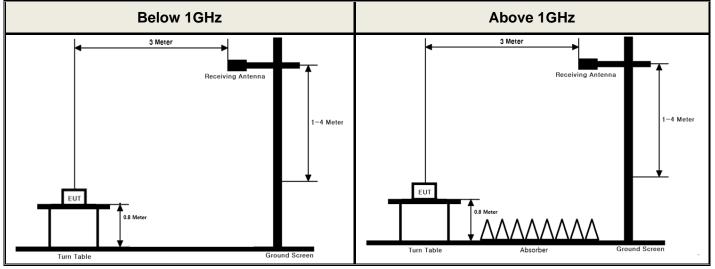
- KDB971168 D01v03r01 - Section 6

- ANSI C63.26-2015 - Section 5.7

All out of band emissions are measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its lowest and highest channel with all modulations.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$, where P is the transmitter power in Watts.

Test setting


- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1 % of the emission
- 4. VBW \geq 3 X RBW
- 5. Detector = RMS & Trace mode = Max hold
- 6. Sweep time = Auto couple or 1 s for band edge
- 7. Number of sweep point ≥ 2 X span / RBW
- 8. The trace was allowed to stabilize

Note 1: In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of **at least one percent** of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit.

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

3.6 RADIATED SPURIOUS EMISSIONS

Test Set-up

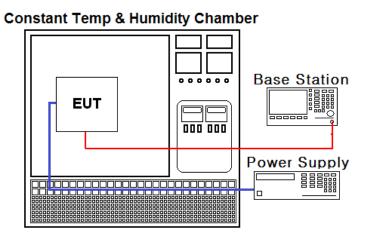
These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 0.8-meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Test Procedure

- ANSI/TIA-603-E-2016 Section 2.2.12
- KDB971168 D01v03r01 Section 5.8
- ANSI C63.26-2015 Section 5.5

Test setting

- 1. RBW = 100 kHz for below 1 GHz and 1 MHz for above 1 GHz / VBW \ge 3 X RBW
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize


The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

For radiated spurious emission measurements below 1 GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated spurious emission measurements above 1 GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

- ANSI/TIA-603-E-2016

- KDB971168 D01v03r01 - Section 9

The frequency stability of the transmitter is measured by:

a.) Temperature:

The temperature is varied from - 30 °C to + 50 °C in 10 °C increments using an environmental chamber.

b.) Primary Supply Voltage:

The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification:

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block for Part 24, 27. The frequency stability of the transmitter shall be maintained within \pm 0.000 25 % (\pm 2.5 ppm) of the center frequency for Part 22.

Time Period and Procedure:

- The carrier frequency of the transmitter is measured at room temperature. (20 °C to provide a reference)
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

4. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	18/07/09	19/07/09	MY46471251
Spectrum Analyzer	Agilent Technologies	N9020A	17/12/26 18/12/20	18/12/26 19/12/20	MY50200828
Spectrum Analyzer	Agilent Technologies	N9020A	18/07/09	19/07/09	MY50200834
DC power supply	Agilent Technologies	66332A	18/07/02	19/07/02	MY43001172
Multimeter	FLUKE	17B+	17/12/26 18/12/18	18/12/26 19/12/18	36390701WS
Power Splitter	Anritsu	K241B	18/12/19	19/12/19	016681
Temp & Humi	SJ Science	SJ-TH-S50	18/07/06	19/07/06	U5542113
Radio Communication Analyzer	Agilent Technologies	E5515C	18/07/04	19/07/04	GB41321164
Thermohygrometer	BODYCOM	BJ5478	18/01/03 18/12/27	19/01/03 19/12/27	120612-2
Thermohygrometer	BODYCOM	BJ5478	18/01/03 18/12/27	19/01/03 19/12/27	120612-1
Signal Generator	Rohde Schwarz	SMBV100A	17/12/27 18/12/19	18/12/27 19/12/19	255571
Signal Generator	ANRITSU	SMF100A	18/06/07	19/06/07	102341
Loop Antenna	Schwarzbeck	FMZB1513	18/01/30	20/01/30	1513-128
Bilog Antenna	Schwarzbeck	VULB 9160	18/07/13	20/07/13	3359
Dipole Antenna	Schwarzbeck	VHA9103	17/03/14	19/03/14	2116
Dipole Antenna	Schwarzbeck	VHA9103	18/04/13	20/04/13	2117
Dipole Antenna	Schwarzbeck	UHA9105	17/03/14	19/03/14	2261
Dipole Antenna	Schwarzbeck	UHA9105	18/04/13	20/04/13	2262
HORN ANT	ETS	3117	18/05/10	20/05/10	00140394
HORN ANT	ETS	3117	18/03/26	20/03/26	00152145
HORN ANT	A.H.Systems	SAS-574	17/04/25	19/04/25	154
HORN ANT	A.H.Systems	SAS-574	17/07/31	19/07/31	155
Amplifier	EMPOWER	BBS3Q7ELU	18/07/10	19/07/10	1020
PreAmplifier	H.P	8447D	17/12/26 18/12/18	18/12/26 19/12/18	2944A07774
PreAmplifier	Agilent	8449B	18/07/05	19/07/05	3008A02108
High-pass filter	Wainwright	WHKX12-935- 1000-15000-40SS	18/07/05	19/07/05	7
High-pass filter	Wainwright	WHKX12-2580- 3000-18000-80SS	18/07/05	19/07/05	3
High-pass filter	Wainwright	WHNX8.5/26.5G- 6SS	18/07/03	19/07/03	1
Cable	DTNC	Cable	18/07/06	19/07/06	M-01
Cable	DTNC	Cable	18/07/06	19/07/06	M-02
Cable	Junkosha	MWX315	18/11/19	19/11/19	M-05
Cable	Junkosha	MWX221	18/11/19	19/11/19	M-06
Cable	Radiall	TESTPRO3	18/07/05	19/07/05	RF-84

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	RSS-132 [5.4] RSS-133 [6.4] RSS-139 [6.5]	Conducted Output Power	с
22.913(a) 24.232(c) 27.50(d.4)	RSS-132 [5.4] [SRSP-503(5.1.3)] RSS-133 [6.4] [SRSP-510(5.1.2)] RSS-139[6.5] SRSP-513(5.1.2)]	Effective Radiated Power Equivalent Isotropic Radiated Power	С
2.1049	RSS-Gen [6.7]	Occupied Bandwidth	с
2.1051 22.917(a) 24.238(a) 27.53(h)	RSS-132 [5.5] RSS-133 [6.5] RSS-139 [6.6]	Band Edge Emissions at Antenna Terminal Spurious Emissions at Antenna Terminal	с
24.232(d) 27.50(d.5)	RSS-132 [5.4] RSS-133 [6.4] RSS-139 [6.5]	Peak to Average Ratio	с
2.1053 22.917(a) 24.238(a) 27.53(h)	RSS-132 [5.5] RSS-133 [6.5] RSS-139 [6.6]	Radiated Spurious and Harmonic Emissions	С
2.1055 22.355 24.235 27.54	RSS-132 [5.3] RSS-133 [6.3] RSS-139 [6.4]	Frequency Stability	с
Note 1: C=Comply	NC=Not Comply N	T=Not Tested NA=Not Applicable	

6. EMISSION DESIGNATOR AND SAMPLE CALCULATION

A. Emission Designator

GPRS850 Emission Designator

Emission Designator = **245KGXW** GPRS OBW = 244.96 kHz (Measured at the 99.75 % power bandwidth) G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

EDGE850 Emission Designator

Emission Designator = **247KG7W** EDGE OBW = 246.51 kHz (Measured at the 99.75 % power bandwidth) G = Phase Modulation 7 = Cases not otherwise covered W = Combination (Audio/Data)

WCDMA850 Emission Designator

Emission Designator = **4M16F9W** WCDMA OBW = 4.1590 MHz (Measured at the 99.75 % power bandwidth) F = Frequency Modulation 9 = Composite Digital Information W = Combination (Audio/Data) **WCDMA1700 Emission Designator**

Emission Designator = **4M13F9W** WCDMA OBW = 4.1288 MHz (Measured at the 99.75 % power bandwidth) F = Frequency Modulation 9 = Composite Digital Information W = Combination (Audio/Data) HSUPA1700 Emission Designator

Emission Designator = **4M15F9W** HSUPA OBW = 4.1512 MHz (Measured at the 99.75 % power bandwidth) F = Frequency Modulation 9 = Composite Digital Information W = Combination (Audio/Data)

GPRS1900 Emission Designator

Emission Designator = **249KGXW** GPRS OBW = 248.57 kHz (Measured at the 99.75 % power bandwidth) G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

EDGE1900 Emission Designator

Emission Designator = **248KG7W** EDGE OBW = 248.16 kHz (Measured at the 99.75 % power bandwidth) G = Phase Modulation 7 = Cases not otherwise covered W = Combination (Audio/Data)

HSUPA850 Emission Designator

Emission Designator = **4M16F9W** HSUPA OBW = 4.1587 MHz (Measured at the 99.75 % power bandwidth) F = Frequency Modulation 9 = Composite Digital Information W = Combination (Audio/Data) **WCDMA1900 Emission Designator**

Emission Designator = **4M15F9W** WCDMA OBW = 4.1516 MHz (Measured at the 99.75 % power bandwidth) F = Frequency Modulation 9 = Composite Digital Information W = Combination (Audio/Data) HSUPA1900 Emission Designator Emission Designator = **4M14F9W** HSUPA OBW = 4.1404 MHz

(Measured at the 99.75 % power bandwidth)

- F = Frequency Modulation
- 9 = Composite Digital Information
- W = Combination (Audio/Data)

B. For substitution method

EIRP for GPRS1900

MODE	MODE Channel Free	Channel	Channel	Freq.(MHz)	Spectrum Reading	Ant Pol	Level (dBm) @ Ant	TX Ant	Res	sult
MODE C		Freq.(WINZ)	Value (dBm)	(H/V)	Terminal	Gain (dBi)	(dBm)	(W)		
GPRS1900	512	1850.20	-24.90	V	19.38	4.96	24.34	0.272		

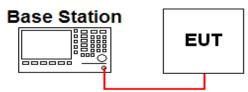
ERP or EIRP = Level @ Ant Terminal LEVEL(dBm) + Tx Ant. Gain

1) The EUT mounted on a non-conductive turntable is 0.8 meter above test site ground level.

2) During the test, the turn table is rotated until the maximum signal is found.

3) Record the field strength meter's level.

4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.


5) Increase the signal generator output till the field strength meter's level is equal to the item (3).

6) The signal generator output level with substituted antenna gain is the rating of ERP, EIRP or Radiated spurious emission.

7. TEST DATA

7.1 Conducted OUTPUT POWER

A base station simulator was used to establish communication with the EUT. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested under all configurations and the highest power is reported. Conducted Output Powers of EUT are reported below.

The output power was measured using the Agilent E5515C

GPRS/EDGE

		Maximum Burst-Averaged Output Power(dBm)										
Band	Channel	GSM Voice	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1 TX Slot	EDGE 2 TX Slot	EDGE 3 TX Slot	EDGE 4 TX Slot		
	128	-	31.50	31.39	31.32	31.22	25.62	25.38	25.34	25.07		
Cellular	190	-	31.83	31.73	31.66	31.50	25.72	25.67	25.61	25.51		
	251	-	31.66	31.61	31.45	31.32	25.91	25.79	25.75	25.53		
	512	-	29.38	29.33	29.28	29.17	25.00	24.52	24.62	24.18		
PCS	661	-	29.34	29.30	29.19	29.10	24.65	24.59	24.27	24.17		
	810	-	29.87	29.80	29.74	29.61	24.61	24.50	24.44	24.21		

GPRS/EDGE

		Calculated Maximum Frame-Averaged Output Power(dBm)										
Band	Channel	GSM Voice	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1 TX Slot	EDGE 2 TX Slot	EDGE 3 TX Slot	EDGE 4 TX Slot		
	128	-	23.98	26.81	28.41	29.85	18.87	21.86	23.34	24.35		
Cellular	190	-	24.33	27.23	28.80	29.92	18.83	21.70	23.46	24.61		
	251	-	24.04	26.93	28.76	29.89	19.00	21.85	23.61	24.90		
	512	-	19.91	22.70	24.47	25.41	16.03	19.62	20.87	22.18		
PCS	661	-	20.23	23.19	24.87	25.85	16.18	19.04	20.75	22.15		
	810	-	20.33	23.24	24.93	26.01	16.83	19.86	21.70	22.45		

Note: Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots

Dt&C

WCDMA

3GPP	Mode	3GPP 34.121	Cellu	lar Band ((dBm)	AW	S Band (d	Bm)	3GPP
Release Version	Wode	Subtest	4132	4183	4233	1312	1412	1513	MPR (dB)
99	WCDMA	12.2 kbps RMC	22.60	22.73	22.75	23.46	23.43	23.46	-
99	WCDIVIA	12.2 kbps AMR	-	-	-	-	-	-	-
5		Subtest 1	21.48	21.11	21.19	21.60	21.68	21.62	0
5		Subtest 2	21.61	21.60	21.72	21.68	21.68	21.62	0
5	HSDPA	Subtest 3	21.05	21.11	21.22	21.15	21.14	20.98	0.5
5		Subtest 4	21.04	21.18	21.20	21.14	21.13	20.97	0.5
6		Subtest 1	21.46	21.51	21.57	21.44	21.20	21.56	0
6		Subtest 2	20.24	20.58	20.19	20.34	20.61	20.14	2
6	HSUPA	Subtest 3	19.69	20.66	19.83	20.10	20.27	19.78	1
6		Subtest 4	21.02	21.13	20.86	20.62	20.89	20.33	2
6		Subtest 5	21.60	21.71	21.77	21.65	21.63	21.57	0

3GPP	Mede	3GPP 34.121	PCS	6 Band (d	Bm)	3GPP
Release Version	Mode	Subtest	9262	9400	9538	MPR (dB)
99	WCDMA	12.2 kbps RMC	23.29	23.41	23.52	-
99	WCDIVIA	12.2 kbps AMR	-	-	-	-
5		Subtest 1	21.51	21.67	21.72	0
5	HSDPA	Subtest 2	21.57	22.41	21.66	0
5		Subtest 3	21.05	21.18	21.07	0.5
5		Subtest 4	21.05	21.07	21.05	0.5
6		Subtest 1	21.11	21.34	21.71	0
6		Subtest 2	20.37	20.49	20.51	2
6	HSUPA	Subtest 3	20.26	20.50	20.70	1
6		Subtest 4	20.95	21.13	20.74	2
6		Subtest 5	21.57	21.67	21.74	0

*This device was not supported the voice call.

7.2 PEAK TO AVERAGE RATIO

- Plots of the EUT's Peak- to- Average Ratio are shown in Clause 8.1

7.3 OCCUPIED BANDWIDTH (99 % Bandwidth)

Mode	Channel	Frequency(MHz)	Test Result (kHz)
	128	824.2	244.21
GPRS850	190	836.6	244.69
	251	848.8	244.96
	128	824.2	246.34
EDGE850	190	836.6	242.93
	251	848.8	246.51
	512	1850.2	248.57
GPRS1900	661	1880.0	241.73
	810	1909.8	244.39
	512	1850.2	247.63
EDGE1900	661	1880.0	248.16
	810	1909.8	243.39
	4132	826.4	4143.70
WCDMA850	4183	836.6	4159.00
	4233	846.6	4128.90
	4132	826.4	4133.40
HSUPA850	4183	836.6	4152.70
	4233	846.6	4158.70
	1312	1712.4	4128.80
WCDMA1700	1412	1732.4	4110.50
	1513	1752.6	4128.40
	1312	1712.4	4128.40
HSUPA1700	1412	1732.4	4122.80
	1513	1752.6	4151.20
	9262	1852.4	4143.20
WCDMA1900	9400	1880.0	4128.00
	9538	1907.6	4151.60
	9262	1852.4	4126.40
HSUPA1900	9400	1880.0	4131.20
	9538	1907.6	4140.40

7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Conducted Spurious Emissions are shown in Clause 8.3

7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Band Edge are shown in Clause 8.4

7.6 EFFECTIVE RADIATED POWER

- GPRS850 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
GPRS850	128	824.2	Н	27.48	1.23	28.71	0.743	1TX
GPRS850	190	836.6	Н	25.00	1.22	26.22	0.419	1TX
GPRS850	251	848.8	Н	25.50	1.21	26.71	0.469	1TX
GPRS850	128	824.2	Н	27.05	1.23	28.28	0.673	4TX
EDGE850	128	824.2	Н	23.78	1.23	25.01	0.317	1TX

- GPRS850 data

Mode	СН	Frequency (MHz)	Calculated frame ERP ^{Note1} (dBm)	Note.
GPRS850	128	824.2	19.68	1TX
GPRS850	190	836.6	17.19	1TX
GPRS850	251	848.8	17.68	1TX
GPRS850	128	824.2	25.27	4TX
EDGE850	128	824.2	15.98	1TX

Note1: The Frame-ERP was calculated from the measured burst-ERP power by converting the slot powers into

linear units and calculating the energy over 8 timeslots

- WCDMA850 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
WCDMA850	4132	826.4	Н	18.43	1.23	19.66	0.092	-
WCDMA850	4183	836.6	Н	17.15	1.22	18.37	0.069	-
WCDMA850	4233	846.6	Н	17.02	1.21	18.23	0.067	-

- HSUPA850 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
HSUPA850	4132	826.4	Н	17.25	1.23	18.48	0.070	-
HSUPA850	4183	836.6	Н	15.79	1.22	17.01	0.050	-
HSUPA850	4233	846.6	Н	16.50	1.21	17.71	0.059	-

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

7.7 EQUIVALENT ISOTROPIC RADIATED POWER

- GPRS1900 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
GPRS1900	512	1850.2	Н	19.38	4.96	24.34	0.272	1TX
GPRS1900	661	1880.0	Н	18.72	4.80	23.52	0.225	1TX
GPRS1900	810	1909.8	Н	18.68	4.64	23.32	0.215	1TX
GPRS1900	512	1850.2	Н	19.12	4.96	24.08	0.256	4TX
EDGE1900	512	1850.2	Н	16.02	4.96	20.98	0.125	1TX

- GPRS1900 data

Mode	СН	Frequency (MHz)	Calculated frame EIRP ^{Note1} (dBm)	Note.
GPRS1900	512	1850.2	15.31	1TX
GPRS1900	661	1880.0	14.49	1TX
GPRS1900	810	1909.8	14.29	1TX
GPRS1900	512	1909.8	21.07	4TX
EDGE1900	810	1909.8	11.95	1TX

Note1: The Frame-EIRP was calculated from the measured burst-EIRP power by converting the slot powers into

linear units and calculating the energy over 8 timeslots

- WCDMA1700 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1700	1312	1712.4	Н	13.85	6.02	19.87	0.097	-
WCDMA1700	1412	1732.4	Н	13.52	5.84	19.36	0.086	-
WCDMA1700	1513	1752.6	Н	13.27	5.65	18.92	0.078	-

- HSUPA1700 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
HSUPA1700	1312	1712.4	Н	13.46	6.02	19.48	0.089	-
HSUPA1700	1412	1732.4	Н	12.91	5.84	18.75	0.075	-
HSUPA1700	1513	1752.6	Н	12.55	5.65	18.20	0.066	

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

- WCDMA1900 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1900	9262	1852.4	V	15.81	4.95	20.76	0.119	-
WCDMA1900	9400	1880.0	V	15.89	4.80	20.69	0.117	-
WCDMA1900	9538	1907.6	V	15.41	4.65	20.06	0.101	-

- HSUPA1900 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
HSUPA1900	9262	1852.4	V	14.73	4.95	19.68	0.093	-
HSUPA1900	9400	1880.0	V	14.63	4.80	19.43	0.088	-
HSUPA1900	9538	1907.6	V	14.47	4.65	19.12	0.082	-

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

7.8 RADIATED SPURIOUS EMISSIONS

- GPRS850 data

Channel (ERP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)
		1648.63	V	-49.89	3.82	-46.07	-13.00	33.07
		2472.50	V	-47.09	3.79	-43.30	-13.00	30.30
		3297.24	V	-53.66	5.53	-48.13	-13.00	35.13
128 (0.743 W)	824.2	4120.65	V	-51.73	6.93	-44.80	-13.00	31.80
(0.1 10 11)		4944.90	V	-50.83	7.75	-43.08	-13.00	30.08
		5768.88	V	-48.27	8.59	-39.68	-13.00	26.68
		6593.61	V	-50.95	8.66	-42.29	-13.00	29.29
		1672.77	V	-53.22	3.89	-49.33	-13.00	36.33
		2509.91	V	-38.11	3.80	-34.31	-13.00	21.31
		3345.22	V	-54.55	5.66	-48.89	-13.00	35.89
190 (0.419 W)	836.6	4183.13	V	-50.03	6.93	-43.10	-13.00	30.10
(00)		5019.94	V	-51.85	7.89	-43.96	-13.00	30.96
		5856.10	V	-50.15	8.52	-41.63	-13.00	28.63
		6692.48	V	-51.33	8.88	-42.45	-13.00	29.45
		1697.55	V	-51.27	3.97	-47.30	-13.00	34.30
		2546.51	V	-32.95	3.71	-29.24	-13.00	16.24
		3393.24	V	-55.38	5.78	-49.60	-13.00	36.60
251 (0.469 W)	848.8	4243.79	V	-50.34	6.85	-43.49	-13.00	30.49
(000)		5092.90	V	-52.90	8.09	-44.81	-13.00	31.81
		5941.68	V	-48.79	8.56	-40.23	-13.00	27.23
		6790.11	V	-51.39	9.01	-42.38	-13.00	29.38

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported.

- WCDMA850 data

Channel (ERP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)
4132	826.4	1650.53	Н	-56.58	3.82	-52.76	-13.00	39.76
(0.092 W)	020.4	2473.23	Н	-54.07	3.79	-50.28	-13.00	37.28
4183	836.6	1670.75	н	-57.40	3.89	-53.51	-13.00	40.51
(0.069 W)	030.0	2509.33	Н	-50.79	3.81	-46.98	-13.00	33.98
4233	946.6	1696.65	Н	-57.47	3.97	-53.50	-13.00	40.50
(0.067 W)	846.6	2539.40	Н	-47.48	3.73	-43.75	-13.00	30.75

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

- HSUPA850 data

Channel (ERP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)
4132	826.4	1648.21	Н	-56.99	3.82	-53.17	-13.00	40.17
(0.070 W)	020.4	2469.69	Н	-53.41	3.78	-49.63	-13.00	36.63
4183	836.6	1671.61	Н	-56.71	3.89	-52.82	-13.00	39.82
(0.050 W)	030.0	2513.14	Н	-51.72	3.80	-47.92	-13.00	34.92
4233	846.6	1703.08	Н	-57.28	3.95	-53.33	-13.00	40.33
(0.059 W)	040.0	2546.26	Н	-47.68	3.71	-43.97	-13.00	30.97

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

GPRS190	Ju uala							
Channel (EIRP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)
		3700.12	Н	-54.67	8.38	-46.29	-13.00	33.29
		5550.50	V	-39.47	10.41	-29.06	-13.00	16.06
512 (0.272 W)	1850.2	7400.91	V	-48.76	11.70	-37.06	-13.00	24.06
(0.272 11)		9250.74	V	-49.23	13.24	-35.99	-13.00	22.99
	11100.43	V	-44.38	13.33	-31.05	-13.00	18.05	
		3760.16	V	-50.35	8.36	-41.99	-13.00	28.99
		5640.11	V	-37.03	10.64	-26.39	-13.00	13.39
661 (0.225 W)	1880.0	7520.50	V	-50.95	11.94	-39.01	-13.00	26.01
(0.220 11)		9400.13	V	-50.34	13.28	-37.06	-13.00	24.06
		11279.76	V	-45.49	13.26	-32.23	-13.00	19.23
		3819.66	V	-39.89	8.22	-31.67	-13.00	18.67
		5729.40	V	-37.05	10.72	-26.33	-13.00	13.33
810 (0.215 W)	1909.8	7639.86	V	-49.47	12.18	-37.29	-13.00	24.29
(0.2.0.0)		9549.16	V	-47.57	13.12	-34.45	-13.00 33.29 -13.00 16.06 -13.00 24.06 -13.00 24.06 -13.00 22.99 -13.00 18.05 -13.00 18.05 -13.00 28.99 -13.00 13.39 -13.00 26.01 -13.00 19.23 -13.00 19.23 -13.00 13.33 -13.00 13.33 -13.00 24.29 -13.00 24.29 -13.00 13.33 -13.00 24.29 -13.00 24.29 -13.00 24.29	21.45
		11459.09	V	-43.56	13.21	-30.35	-13.00	17.35

- GPRS1900 data

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported.

TRF-RF-210(11)171208

- WCDMA1700 data

Channel (EIRP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)
1312	1712.4	3424.72	V	-54.23	8.01	-46.22	-13.00	33.22
(0.097 W)	(0.097 W)	-	-	-	-	-	-	-
1412	1732.4	3468.10	V	-55.13	8.12	-47.01	-13.00	34.01
(0.086 W)	1752.4	-	-	-	-	-	-	-
1513 1752.6	3504.59	V	-54.61	8.21	-46.40	-13.00	-33.40	
(0.078 W)	1/5/6	-	-	-	-	-	-	-

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported.

- HSUPA1700 data

Channel (EIRP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)
1312	1712 /	3430.86	V	-54.62	8.03	-46.59	-13.00	33.59
(0.089 W)	1/1/2/1	-	-	-	-	-	-	
1412	1732.4	3467.69	V	-54.41	8.12	-46.29	-13.00	33.29
(0.075 W)	1732.4	-	-	-	-	-	-	
1513 1752.6	3509.19	V	-54.64	8.22	-46.42	-13.00	33.42	
(0.066 W)	1752.6	-	-	-	-	-	-	

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

- WCDMA1900 data

Channel (EIRP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)
9262	1952 /	3700.72	V	-53.58	8.38	-45.20	-13.00	32.20
(0.119 W)	18527	5554.96	V	-50.06	10.43	-39.63	-13.00	26.63
9400	1880.0	3763.63	V	-53.93	8.35	-45.58	-13.00	32.58
(0.117 W)	1000.0	5640.12	V	-47.77	10.64	-37.13	-13.00	24.13
9538	1907.6	3817.03	V	-53.41	8.22	-45.19	-13.00	32.19
(0.101 W)	1907.0	5719.32	V	-47.70	10.73	-36.97	-13.00	23.97

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

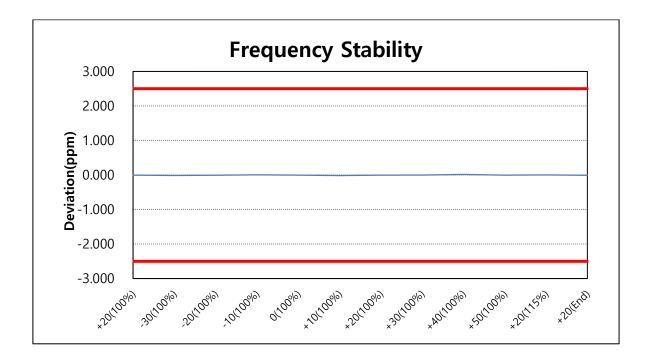
This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

- HSUPA1900 data

Channel (EIRP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)
9262 (0.093 W) 1852.4	1952 /	3703.31	V	-55.03	8.38	-46.65	-13.00	33.65
	1002.4	5557.69	V	-50.39	10.44	-39.95	-13.00	26.95
9400 (0.088 W)	1880.0	3758.50	V	-53.72	8.37	-45.35	-13.00	32.35
		5640.76	V	-47.37	10.65	-36.72	-13.00	23.72
9538 (0.082 W)	1007.6	3818.11	V	-53.93	8.22	-45.71	-13.00	32.71
	1907.6	5721.39	V	-47.80	10.73	-37.07	-13.00	24.07

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

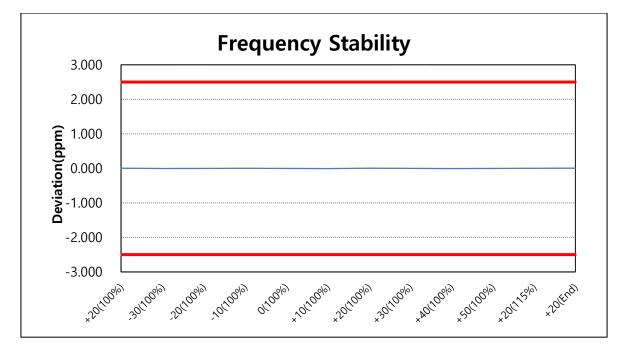
NOTES:


This EUT was tested under all configurations and the highest power is reported in GPRS mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GPRS mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported.

7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

7.9.1 FREQUENCY STABILITY (GPRS850)

OPERATING FREQUENCY	:	<u>836,600,000</u> Hz		
CHANNEL	:	190(Mid)		
REFERENCE VOLTAGE	:	<u>12 </u> V DC		
DEVIATION LIMIT	:	<u>± 0.00025</u> % or	2.5	_ppm


VOLTAGE	POWER (V DC)	TEMP (℃)	FREQ	Deviation		
(%)			(Hz)	(ppm)	(%)	
100%		+20(Ref)	836,600,008	0.010	0.00000096	
100%		-30	836,599,997	-0.004	-0.0000036	
100%		-20	836,600,002	0.002	0.00000024	
100%	12.00	-10	836,600,006	0.007	0.00000072	
100%		0	836,600,004	0.005	0.00000048	
100%		+10	836,599,998	-0.002	-0.00000024	
100%		+20	836,600,008	0.010	0.00000096	
100%		+30	836,599,997	-0.004	-0.00000036	
100%		+40	836,600,002	0.002	0.00000024	
100%		+50	836,600,006	0.007	0.00000072	
115%	13.80	+20	836,600,004	0.005	0.00000048	
BATT.ENDPOINT	6.00	+20	836,599,998	-0.002	-0.00000024	

7.9.2 FREQUENCY STABILITY (WCDMA850)

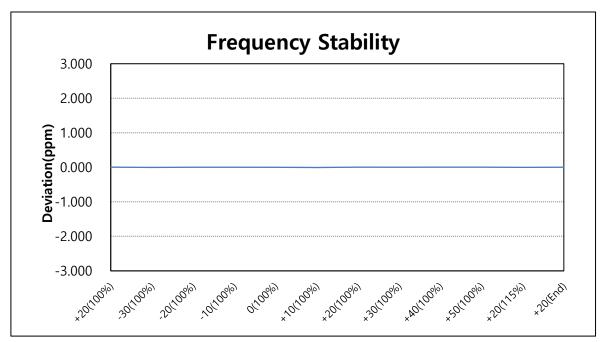
OPERATING FREQUENCY	:	<u>836,600,000 Hz</u>	
CHANNEL	:	4183(Mid)	
REFERENCE VOLTAGE	:	<u>12 V DC</u>	
DEVIATION LIMIT	:	<u>± 0.00025</u> % or <u>2.5</u> ppm	

VOLTAGE	POWER	TEMP (℃)	FREQ	Deviation		
(%)	(V DC)		(Hz)	(ppm)	(%)	
100%		+20(Ref)	836,600,007	0.008	0.0000084	
100%		-30	836,599,999	-0.001	-0.00000012	
100%		-20	836,599,995	-0.006	-0.00000060	
100%	12.00	-10	836,600,003	0.004	0.0000036	
100%		0	836,600,002	0.002	0.00000024	
100%		+10	836,600,005	0.006	0.0000060	
100%		+20	836,600,007	0.008	0.0000084	
100%		+30	836,599,998	-0.002	-0.00000024	
100%		+40	836,600,003	0.004	0.0000036	
100%		+50	836,600,006	0.007	0.00000072	
115%	13.80	+20	836,599,996	-0.005	-0.00000048	
BATT.ENDPOINT	6.00	+20	836,600,002	0.002	0.00000024	

7.9.3 FREQUENCY STABILITY (GPRS1900)

OPERATING FREQUENCY CHANNEL **REFERENCE VOLTAGE** LIMIT

1,880,000,000 Hz


661(Mid) 1 1

12 V DC

:

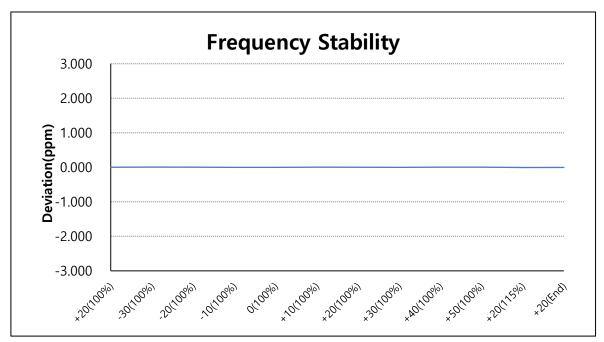
The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

VOLTAGE	POWER (V DC)	TEMP (℃)	FREQ	Deviation		
(%)			(Hz)	(ppm)	(%)	
100%		+20(Ref)	1,880,000,006	0.003	0.0000032	
100%		-30	1,879,999,998	-0.001	-0.00000011	
100%		-20	1,880,000,003	0.002	0.00000016	
100%		-10	1,880,000,003	0.002	0.00000016	
100%	12.00	0	1,879,999,994	-0.003	-0.0000032	
100%		+10	1,880,000,002	0.001	0.00000011	
100%		+20	1,880,000,006	0.003	0.0000032	
100%		+30	1,880,000,004	0.002	0.00000021	
100%		+40	1,879,999,999	-0.001	-0.00000005	
100%		+50	1,880,000,007	0.004	0.0000037	
115%	13.80	+20	1,879,999,998	-0.001	-0.00000011	
BATT.ENDPOINT	6.00	+20	1,880,000,003	0.002	0.00000016	

Note. Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

7.9.4 FREQUENCY STABILITY (WCDMA1700)

OPERATING FREQUENCY CHANNEL REFERENCE VOLTAGE LIMIT


1,732,400,000 Hz

1412(Mid) : 12 V DC

: :

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

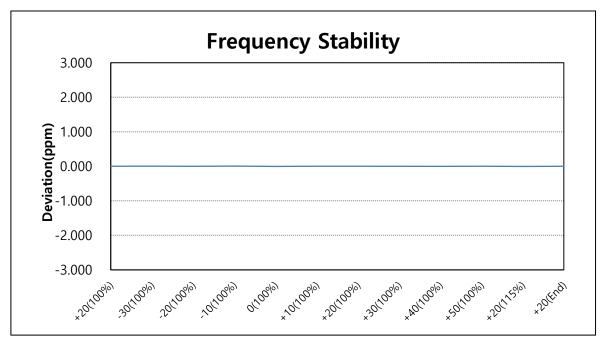
VOLTAGE	POWER	TEMP	FREQ	Dev	viation
(%)	(V DC)	(°C)	(Hz)	(ppm)	(%)
100%		+20(Ref)	1,732,400,010	0.006	0.0000058
100%		-30	1,732,400,004	0.002	0.0000023
100%		-20	1,732,400,002	0.001	0.00000012
100%		-10	1,732,399,996	-0.002	-0.0000023
100%	12.00	0	1,732,400,002	0.001	0.00000012
100%	12.00	+10	1,732,400,005	0.003	0.00000029
100%		+20	1,732,400,010	0.006	0.0000058
100%		+30	1,732,399,998	-0.001	-0.00000012
100%		+40	1,732,400,004	0.002	0.0000023
100%		+50	1,732,400,003	0.002	0.00000017
115%	13.80	+20	1,732,400,001	0.001	0.0000006
BATT.ENDPOINT	6.00	+20	1,732,399,998	-0.001	-0.00000012

Note. Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

7.9.5 FREQUENCY STABILITY (WCDMA1900)

OPERATING FREQUENCY CHANNEL **REFERENCE VOLTAGE** LIMIT

1,880,000,000 Hz

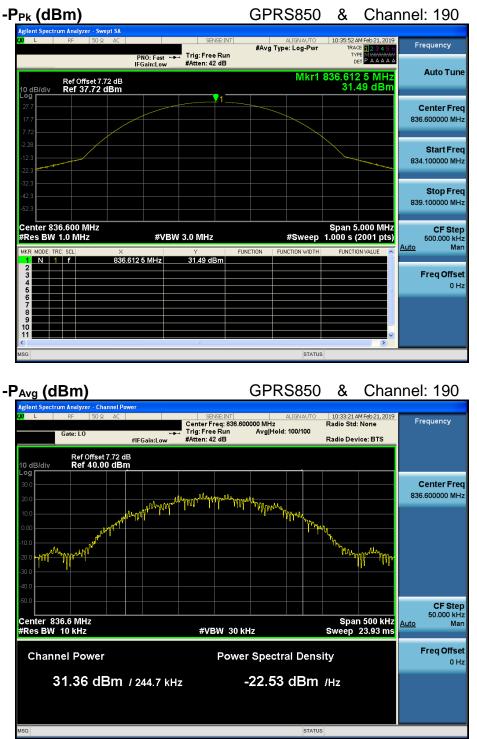

9400(Mid) 1

:

12 V DC :

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

VOLTAGE	POWER	TEMP	FREQ	Dev	viation
(%)	(V DC)	(°C)	(Hz)	(ppm)	(%)
100%		+20(Ref)	1,880,000,005	0.003	0.0000027
100%		-30	1,879,999,999	-0.001	-0.00000005
100%		-20	1,879,999,996	-0.002	-0.00000021
100%		-10	1,880,000,003	0.002	0.00000016
100%	12.00	0	1,880,000,005	0.003	0.00000027
100%	12.00	+10	1,879,999,998	-0.001	-0.00000011
100%		+20	1,880,000,005	0.003	0.0000027
100%		+30	1,880,000,008	0.004	0.00000043
100%		+40	1,880,000,002	0.001	0.00000011
100%		+50	1,880,000,004	0.002	0.00000021
115%	13.80	+20	1,879,999,998	-0.001	-0.00000011
BATT.ENDPOINT		+20	1,880,000,003	0.002	0.00000016



Note. Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

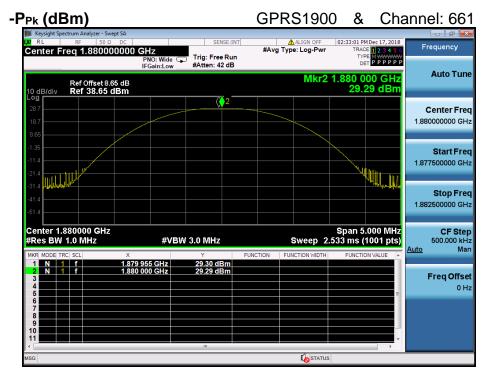
8. TEST PLOTS

🛈 Dt&C

8.1 PEAK TO AVERAGE RATIO

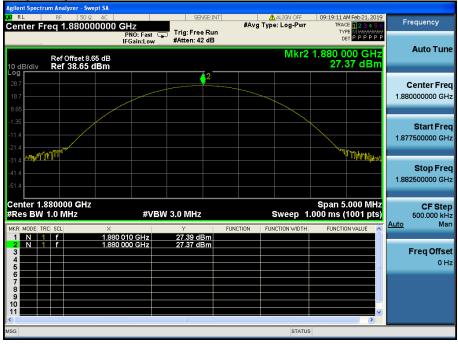
 $PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 31.49 dBm - 31.36 dBm = 0.13 dBm$

EDGE850 & Channel: 190

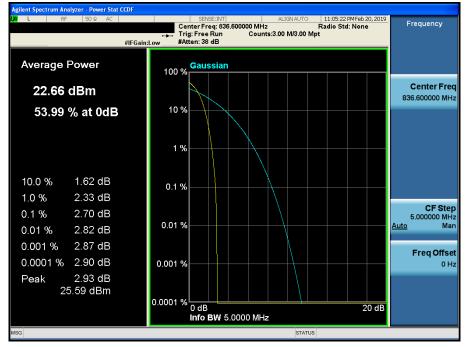


-P_{Avg} (dBm) EDGE850 & Channel: 190

 $PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 28.92 dBm - 25.44 dBm = 3.48 dBm$


-P_{Avg} (dBm) GPRS1900 & Channel: 661

 $PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 29.30 dBm - 29.08 dBm = 0.22 dBm$


-P_{Avg} (dBm) EDGE1900 & Channel: 661

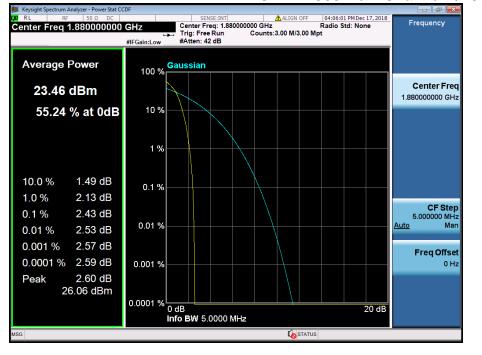
 $PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 27.39 dBm - 23.90 dBm = 3.49 dBm$

Dt&C

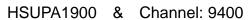

WCDMA850 & Channel: 4183

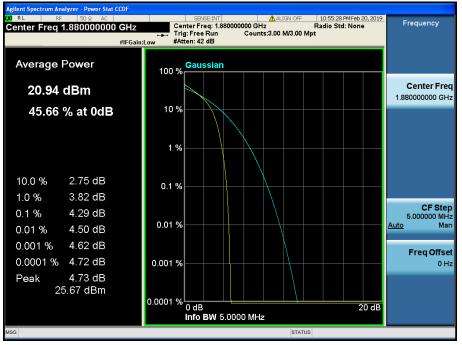
HSUPA850 & Channel: 4183

TDt&C



WCDMA1700 & Channel: 1412

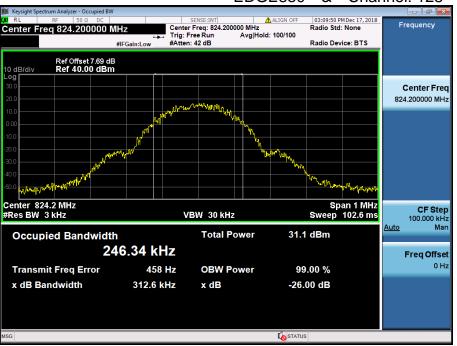

HSUPA1700 & Channel: 1412



WCDMA1900 & Channel: 9400

8.2 OCCUPIED BANDWIDTH (99 % Bandwidth)

GPRS850 & Channel: 128 Keysight Sp 02:12:17 PM Dec 17, 2018 Radio Std: None ALIGN OFF Center Freq: 824.200000 MHz Trig: Free Run Avg|Ho #Atten: 42 dB Center Freq 824.200000 MHz Frequency Avg|Hold: 100/100 Radio Device: BTS #IFGain:Low Ref Offset 7.69 dB Ref 40.00 dBm 10 dB/d **Center Freq** 824.200000 MHz жyМ WID WID Center 824.2 MHz #Res BW 3 kHz Span 1 MHz Sweep 102.6 ms CF Step 100.000 kHz VBW 30 kHz Auto Man Total Power 37.0 dBm **Occupied Bandwidth** 244.21 kHz Freq Offset 0 Hz -1.888 kHz **Transmit Freq Error OBW Power** 99.00 % x dB Bandwidth 310.6 kHz x dB -26.00 dB **I**STATUS ISG


GPRS850 & Channel: 190

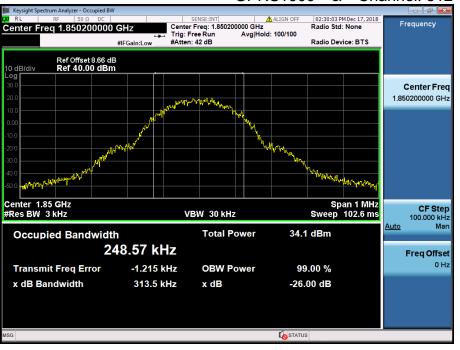
GPRS850 & Channel: 251

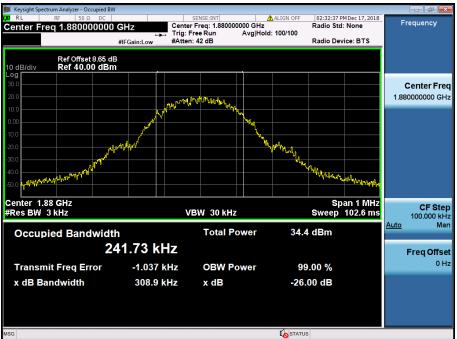
🛈 Dt&C



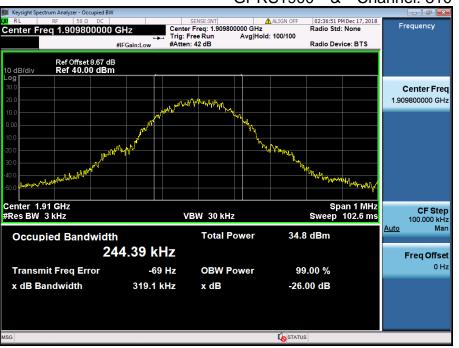
EDGE850 & Channel: 128

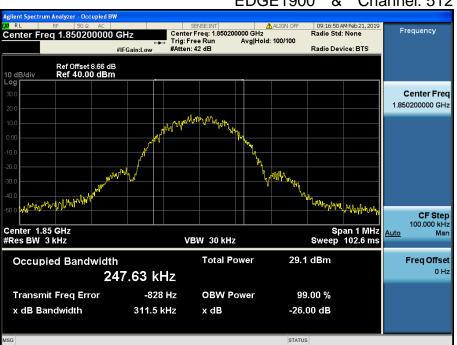
EDGE850 & Channel: 190

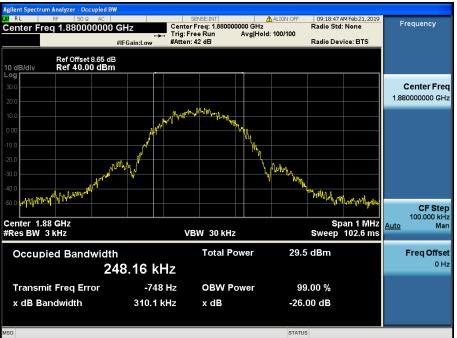

🛈 Dt&C

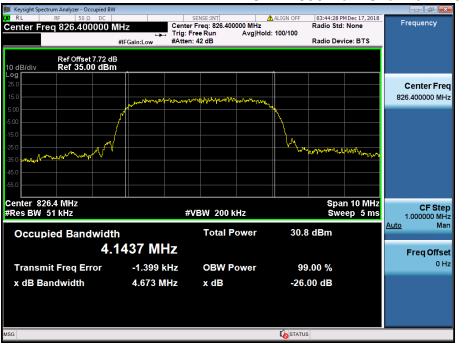


EDGE850 & Channel: 251

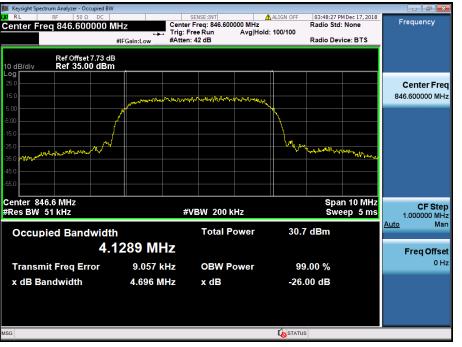

🛈 Dt&C





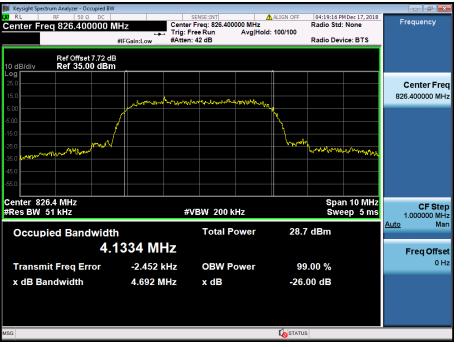

EDGE1900 & Channel: 661

Dt&C



WCDMA850 & Channel: 4132

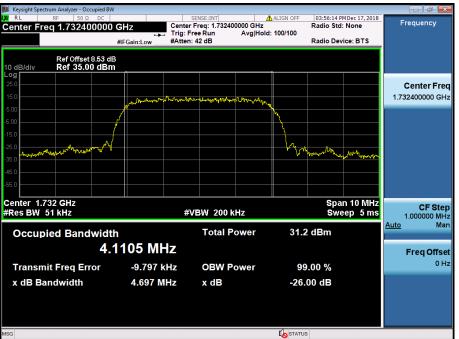
WCDMA850 & Channel: 4183



WCDMA850 & Channel: 4233

HSUPA850 & Channel: 4132

HSUPA850 & Channel: 4183


HSUPA850 & Channel: 4233

i Kev SENSE:INT ALIGN OFF Center Freq: 1.712400000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 42 dB 03:52:19 PM Dec 17, 2018 Radio Std: None Frequency Center Freq 1.712400000 GHz Radio Device: BTS #IFGain:Low Ref Offset 8.52 dB Ref 35.00 dBm 10 dB/di **Center Freq** 1.712400000 GHz Center 1.712 GHz #Res BW 51 kHz Span 10 MHz Sweep 5 ms CF Step 1.000000 MHz Man #VBW 200 kHz Auto Total Power 31.0 dBm **Occupied Bandwidth** 4.1288 MHz Freq Offset 0 Hz -8.736 kHz Transmit Freq Error **OBW Power** 99.00 % 4.686 MHz x dB Bandwidth x dB -26.00 dB **STATUS**

WCDMA1700 & Channel: 1312

WCDMA1700 & Channel: 1412

📕 Keysight : <mark>X/</mark> R L SENSE:INT ALIGN OFF Center Freq: 1.752600000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 42 dB 03:58:13 PM Dec 17, 2018 Radio Std: None Frequency Center Freq 1.752600000 GHz Radio Device: BTS #IFGain:Low Ref Offset 8.54 dB Ref 35.00 dBm 10 dB/di **Center Freq** 1.752600000 GHz Mar. Ale Span 10 MHz Sweep 5 ms Center 1.753 GHz #Res BW 51 kHz CF Step 1.000000 MHz Man #VBW 200 kHz Auto Total Power 30.9 dBm **Occupied Bandwidth** 4.1284 MHz Freq Offset 0 Hz -1.583 kHz Transmit Freq Error **OBW Power** 99.00 % 4.657 MHz x dB Bandwidth x dB -26.00 dB ISG

WCDMA1700 & Channel: 1513

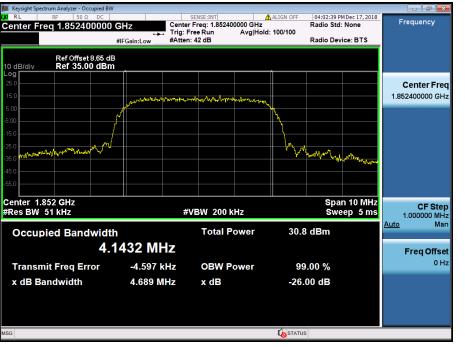
HSUPA1700 & Channel: 1312

HSUPA1700 & Channel: 1412

x dB Bandwidth

4.670 MHz

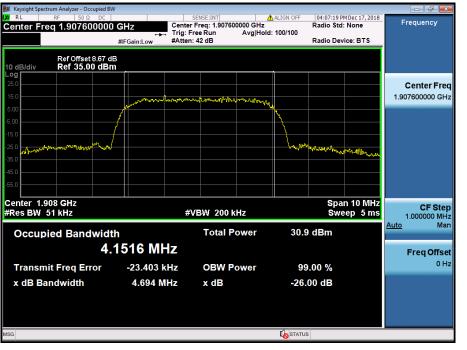
SENSE:INT ALIGN OF Center Freq: 1.752600000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 42 dB RL 10:47:13 PM Feb 20, 2019 Radio Std: None Frequency Center Freq 1.752600000 GHz #IFGain:Low Radio Device: BTS Ref Offset 8.54 dB Ref 35.00 dBm 10 dB/div **Center Freq** 1.752600000 GHz م اسر م 10 margale margan مماميل M (New ĥ. CF Step 1.000000 MHz Man Center 1.753 GHz #Res BW 51 kHz Span 10 MHz Sweep 3.667 ms <u>Auto</u> #VBW 200 kHz Total Power 28.5 dBm Freq Offset **Occupied Bandwidth** 0 Hz 4.1512 MHz 7.164 kHz Transmit Freq Error **OBW** Power 99.00 %


x dB

-26.00 dB

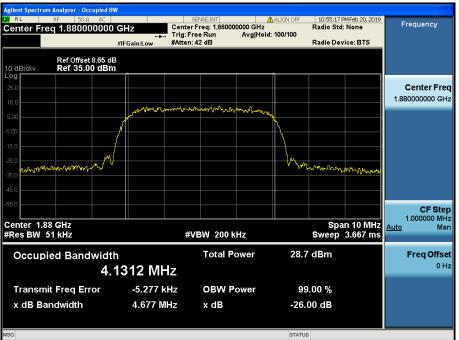
STATUS

HSUPA1700 & Channel: 1513

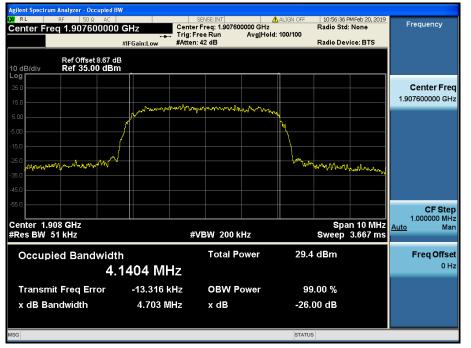


WCDMA1900 & Channel: 9262

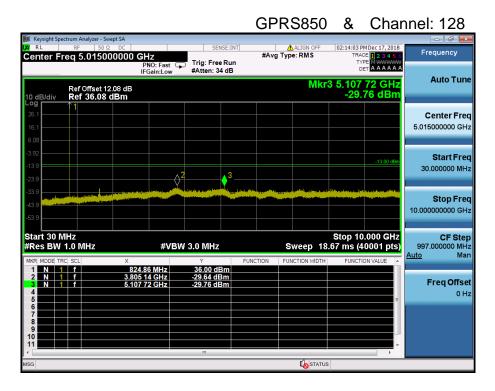
WCDMA1900 & Channel: 9400

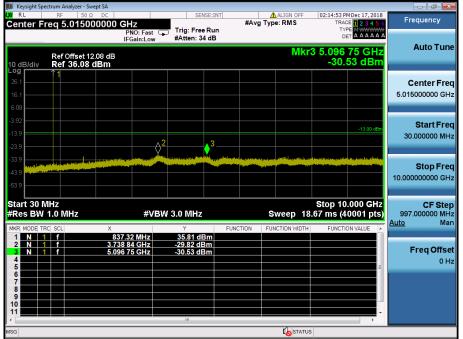


WCDMA1900 & Channel: 9538


HSUPA1900 & Channel: 9262

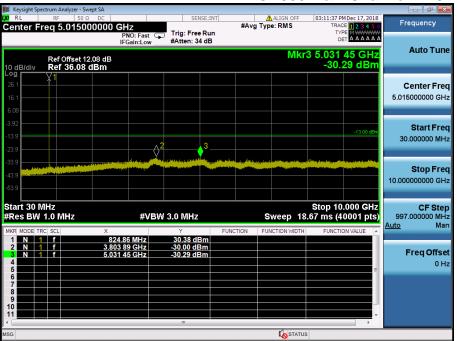
HSUPA1900 & Channel: 9400

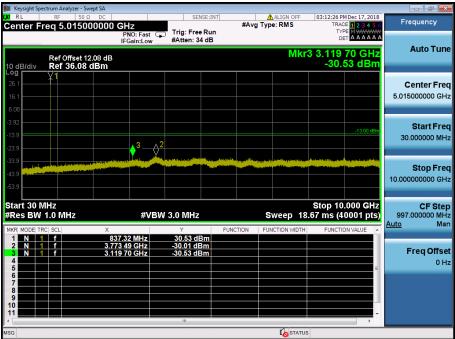

Dt&C



HSUPA1900 & Channel: 9538

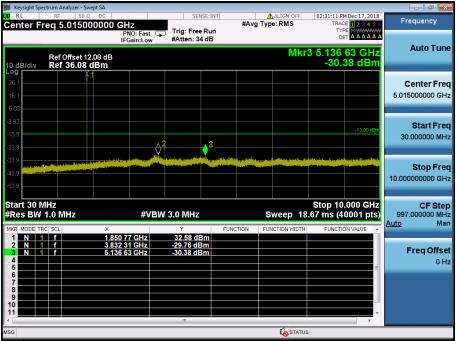
8.3 SPURIOUS EMISSIONS AT ANTENNA TERMINAL

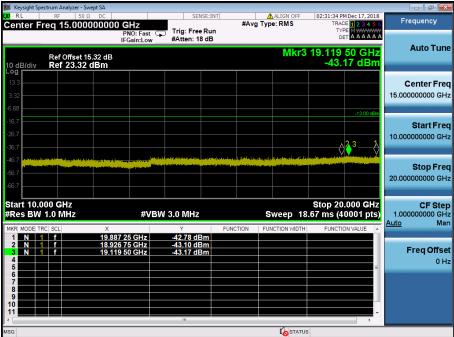

GPRS850 & Channel: 190

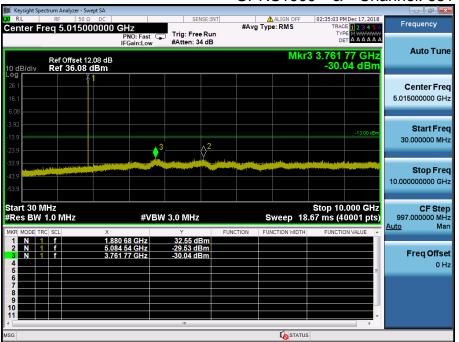

				0000	a	Onai	
Keysight Spectrum Analyzer - Sw							- ¢ 💌
RL RF 50 ຊ enter Freq 5.01500		SENSE:INT	#Avg Ty	ALIGN OFF	TRAC	Dec 17, 2018 E 1 2 3 4 5 6 DE MWWWW	Frequency
Ref Offset 12 dB/div Ref 36.08	IFGain:Low	#Atten: 34 dB		Mkr	3 5.097	50 GHz 46 dBm	Auto Tune
99 1 5.1 5.1							Center Fre 5.015000000 GH
92 1.9 1.9		<mark>_</mark> 3				-13.00 dBm	Start Free 30.000000 MH
 .9 .9 .9 .9 				میں داندی داندی اس میں داندی در اقتصاد ا		l harri (r. 304) erne filstenen finne Artoliteten Allulijue	Stop Fre 10.000000000 GH
art 30 MHz Res BW 1.0 MHz	X	SW 3.0 MHz		Sweep 18.	.67 ms (4	.000 GHz 0001 pts) ^{DN VALUE}	CF Stej 997.000000 MH <u>Auto</u> Ma
N 1 f N 1 f N 1 f J 1 f	849.53 MHz 1.698 23 GHz 5.097 50 GHz	35.98 dBm -30.45 dBm -30.46 dBm					Freq Offse 0 H
7 8 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						-	

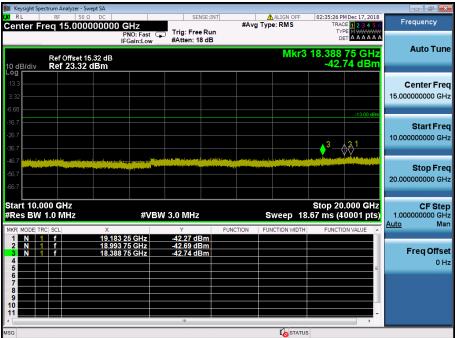
GPRS850 & Channel: 251

EDGE850 & Channel: 128

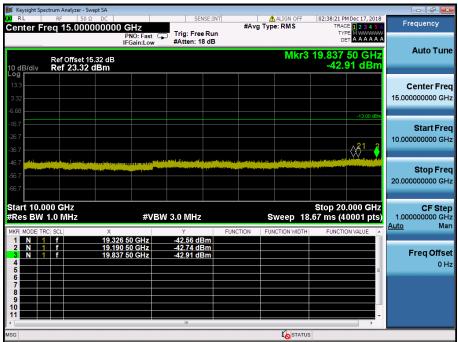

EDGE850 & Channel: 190

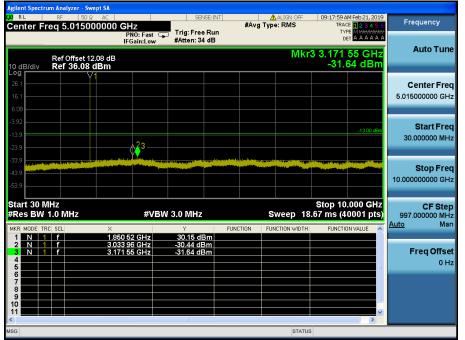


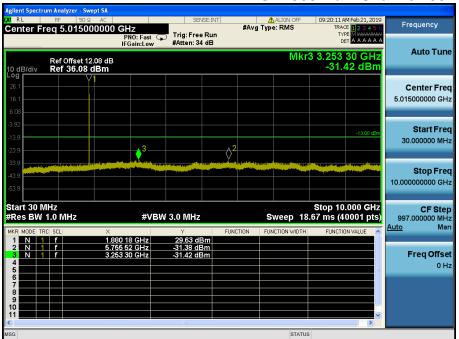


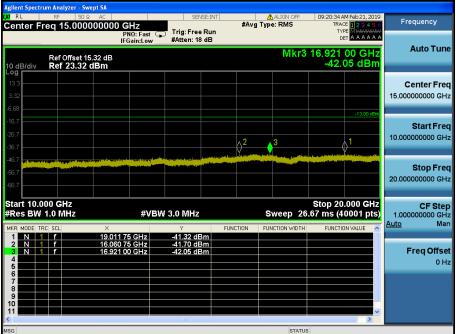

		LDGLO		
Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω DC				
RL RF 50 Ω DC enter Freq 5.015000000				Frequency
Ref Offset 12.08 dB dB/div Ref 36.08 dBm			Wkr3 5.125 17 GHz -30.34 dBm	
Dg				Center Free 5.015000000 GH
92	2		-13.00 dBm	Start Free 30.000000 MH
 3.9 3.9 3.9 3.9 				Stop Fre 10.000000000 GH
art 30 MHz Res BW 1.0 MHz	#VBW 3.0 MHz		Stop 10.000 GHz 18.67 ms (40001 pts)	CF Stej 997.000000 MH <u>Auto</u> Ma
2 N 1 f 3.78	49.53 MHz 30.40 dB 86 95 GHz -30.09 dB 25 17 GHz -30.34 dB	3m		Freq Offse 0 H
7 8 8 9 9 0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
3	m		STATUS	

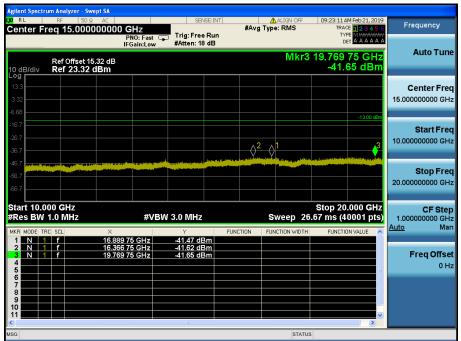
EDGE850 & Channel: 251

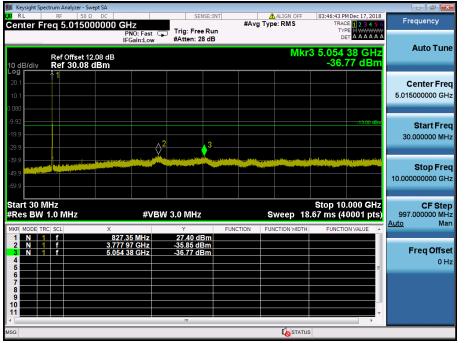


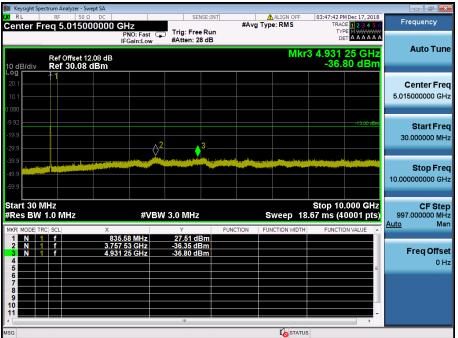


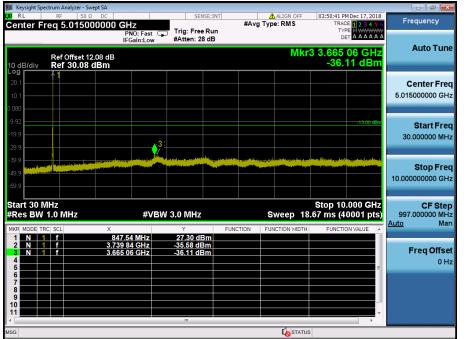


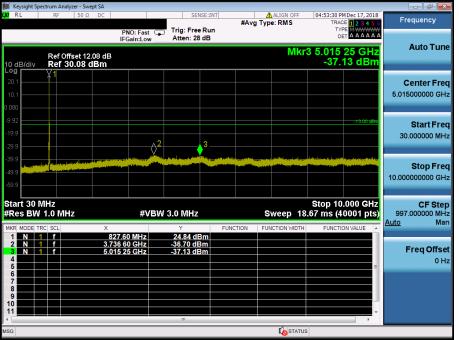

							0100	<u>u</u>		
📕 Keysight Sp	ectrum Analyzer	- Swept SA								- đ -
RL		50 Ω DC		SEN	SE:INT		ALIGN OFF		1Dec 17, 2018	Frequency
enter F	req 5.015	5000000	GHz		_	#Avg Ty	/pe:RMS	TRAC	E 1 2 3 4 5 6	
			PNO: Fast C	Trig: Free				TYP		
			IFGain:Low	#Atten: 34	dB					
							Mkr	3 5.136	14 GHz	Auto Tune
0 dB/div	Ref 0ff 36.0	t 12.08 dB							27 dBm	
	Rei Ju.									
26.1		↑								Center Free
20.1										
16.1										5.015000000 GH
6.08										
3.92										Start Fre
13.9									-13.00 dBm	30.000000 MH
				2	▲3					30.000000 101
23.9					♦ ٽ ——					
33.9		the second s	And the second se	free allower work from the	and the second s	and the second states of the	and the second second	and the second because of the	In a second second second	
(Allowed and		States International			No. of Concession, Name	and the second			and the second	Stop Free
43.9										10.00000000 GH
-53.9										
Start 30 P	MHz							Stop 10	.000 GHz	CF Step
Res BW	1.0 MHz		#VB	W 3.0 MHz			Sweep 18	.67 ms (4	0001 pts)	997.000000 MH
										Auto Mai
IKR MODE TI	RC SCL	Х		Y	FUNC	TION F	UNCTION WIDTH	FUNCTIO	N VALUE	
			10 34 GHz 12 92 GHz	32.87 dB -30.19 dB	m					
2 N			36 14 GHz	-30.27 dB	m					Freq Offse
4		- Unit		00.21 40						он
5									E	011
6									_	
8					_					
9										
10										
11									-	
				m					P I	
SG								6		
							-0			



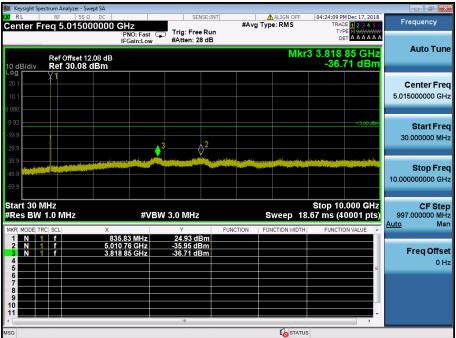

URL	um Analyzer - Sw RF 50 S req 15.000	2 AC 000000 Q	GHZ NO: Fast C Gain:Low		E:INT Run dB	#Avg	ALIGN OFF	TRA	AM Feb 21, 2019 CE 1 2 3 4 5 6 PE M WAMMA ET A A A A A A A	Frequency
10 dB/div	Ref Offset 1 Ref 23.32	5.32 dB dBm					Mkr	3 18.522 -41.	25 GHz 53 dBm	Auto Tune
13.3 3.32 -6.68									-13.00 dBm	Center Fred 15.000000000 GH
-16.7 -26.7 -36.7							1	3	-13.00 dBm	Start Free 10.000000000 GH
-46.7 -56.7 -66.7										Stop Fre 20.000000000 GH
Start 10.0 Res BW	1.0 MHz	×		W 3.0 MHz Y		ICTION	Sweep 2	6.67 ms (4	0.000 GHz 00001 pts)	CF Ste 1.000000000 G⊢ <u>Auto</u> Ma
1 N 1 2 N 1 3 N 1 4 5 6		16.526 0 16.459 2 18.522 2	5 GHz	-41.25 dB -41.34 dB -41.53 dB	m					Freq Offse 0 ⊦
7 8 9 10 11										
G				1111			STATU	IS	>	


						_		<u> </u>		
gilent Spectr	um Analyzer - S	Swept SA								
RL	RF 50	Ω AC		SENS	EINT	4	ALIGN OFF	09:22:08 A	M Feb 21, 2019	_
enter Fr	rea 5.0150	000000 GI	Iz			Avg Typ	e: RMS	TRAC	E 123456	Frequency
		P	NO: Fast 🔾	🖵 Trig: Free F						
		IF	Gain:Low	#Atten: 34 d	IB			Di	AAAAAA	
							Mkr	3 3.179	52 GHz	Auto Tu
	Ref Offset								52 dBm	
dB/div	Ref 36.08	s abm						-01.		
-		Υľ								
6.1										Center Fr
6.1										5.015000000 G
.08										
.92										Start Fr
3.9									-13.00 dBm	
										30.000000 M
3.9			↓ ♪							
3.9		and the second second second	ALC: NUMBER OF STREET	A Designation of the local division of the		-	Contraction of the local division of the loc			
R.9		and the second state	1		المري وتشكر التجريد والتمر	and the second state	and the second statement of the second		and the second division of	Stop Fr
1.9										10.00000000 G
3.9										10.00000000000
art 30 N	1Hz							Stop 10	.000 GHz	CF St
	1.0 MHz		#VB	W 3.0 MHz		S	weep 18	.67 ms (4		997.000000 M
										Auto M
R MODE TR	IC SCL	×		Y	FUNCTION	N FUN	ICTION WIDTH	FUNCTIO	IN VALUE	
	- I	2.581 3	9 GHz	29.99 dBr -31.06 dBr						
2 N 1	f	3.179 5	2 GHz	-31.52 dBn	n					Freq Offs
4		0.1100								0
5									=	U
5										
8										
9										
1									~	
									>	
3							STATUS	3		

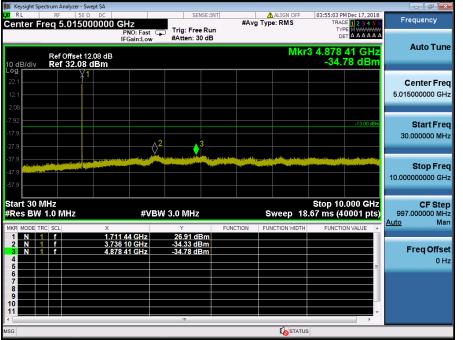



WCDMA850 & Channel: 4132

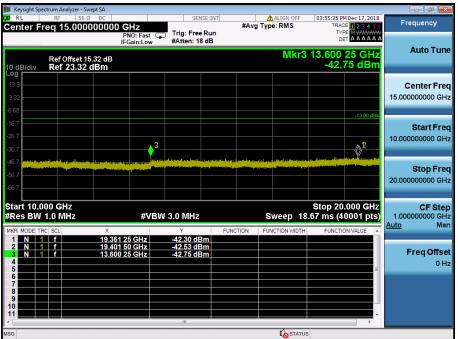
WCDMA850 & Channel: 4183



WCDMA850 & Channel: 4233


HSUPA850 & Channel: 4132

HSUPA850 & Channel: 4183


RL	RF 51	Ω DC		SENSE		ALIGN AUTO	04:59:17 PM Dec TRACE		Frequency
			PNO: Fast G FGain:Low	Trig: Free R Atten: 28 d	Run	wg Type. Rivis	TYPE M	2 3 4 5 6 WWWWW A A A A A A	
dB/div	Ref Offset Ref 30.0					Mkr	3 4.871 68 -37.04		Auto Tun
g 1	Υ1								Center Fre
.1								=.	5.015000000 GH
2								13.00 dBm	Start Fre
9									
				2 3					30.000000 MH
9	alarah <mark>Pilanakanahanahanahanahanahanahanahanahanah</mark>	A STATE OF THE STATE	The second s			allenning oggenere forste kallen for som en som er ge		en generalist og	
9		(yysia ya baya da daga baya a	The second s			allen generation belander en en esta est Maria porta de l'Allen en esta de la composition de la composition de la composition de la composition de la co		مەر يەرىپ رومىيەرىكە يەر رومىيەرىكە يەرىپ رومىيەرىكە يەرىپ رومىيەرىكە يەرىپ رومىيەرىكە يەرىپ رومىيەر يەرىيەر يە	Stop Fre
9 9 9 9 9 9 9 9 9 9 9 9		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	eper literaturaja nue Militaten Literatu					0 GHz)1 pts)	Stop Fre 10.00000000 GH CF Ste 997.000000 MH
9 9 9 9 9 art 30 M es BW	MHZ 1.0 MHZ RC SCL	, <u>and a second distant fine of the second sec</u>	#VBI	W 3.0 MHz	FUNCTION	Sweep 18	Stop 10.00	0 GHz 01 pts)	30.000000 МН Stop Free 10.000000000 GH CF Stej 997.000000 МН uto Ма
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	VIHZ 1.0 MHZ RC SCL	<u>ر بالمرا</u> بع المرابع الم لا 847.	#VB\	W 3.0 MHz	FUNCTION	Sweep 18	Stop 10.00 .67 ms (4000	0 GHz 01 pts)	Stop Free 10.00000000 GH CF Stej 997.000000 MH uto Ma
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	MHZ 1.0 MHZ RC SCL	× 847 3.749	#VB1	W 3.0 MHz	FUNCTION	Sweep 18	Stop 10.00 .67 ms (4000	0 GHz 01 pts)	Stop Fre 10.000000000 GH CF Stej 997.000000 MH
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	MHZ 1.0 MHZ RC SCL	× 847 3.749	#VB	W 3.0 MHz	FUNCTION	Sweep 18	Stop 10.00 .67 ms (4000	0 GHz 01 pts)	Stop Free 10.00000000 GH CF Stej 997.000000 MH uto Ma
.9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	MHZ 1.0 MHZ RC SCL	× 847 3.749	#VB	W 3.0 MHz 23.89 dBn -36.21 dBn	FUNCTION	Sweep 18	Stop 10.00 .67 ms (4000	0 GHz 01 pts)	Stop Free 10.000000000 GH CF Stej 997.00000 MH uto Mai Freq Offse
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	MHZ 1.0 MHZ RC SCL	× 847 3.749	#VB	W 3.0 MHz 23.89 dBn -36.21 dBn	FUNCTION	Sweep 18	Stop 10.00 .67 ms (4000	0 GHz 01 pts)	Stop Free 10.000000000 GH CF Stej 997.00000 MH uto Mai Freq Offse
.9 .9 .9 .9 .9 art 30 M tes BW	MHZ 1.0 MHZ RC SCL	× 847 3.749	#VB	W 3.0 MHz 23.89 dBn -36.21 dBn	FUNCTION	Sweep 18	Stop 10.00 .67 ms (4000	0 GHz 01 pts)	Stop Free 10.000000000 GH CF Stej 997.00000 MH uto Mai Freq Offse

HSUPA850 & Channel: 4233

WCDMA1700 & Channel: 1312

WCDMA1700 & Channel: 1312

