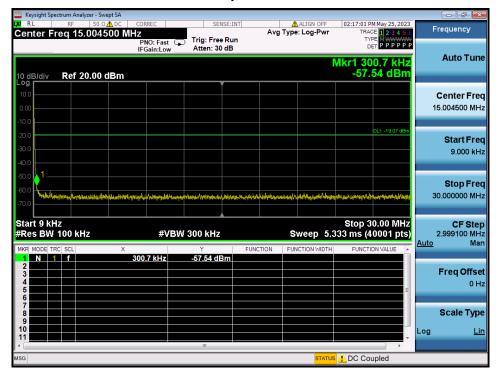
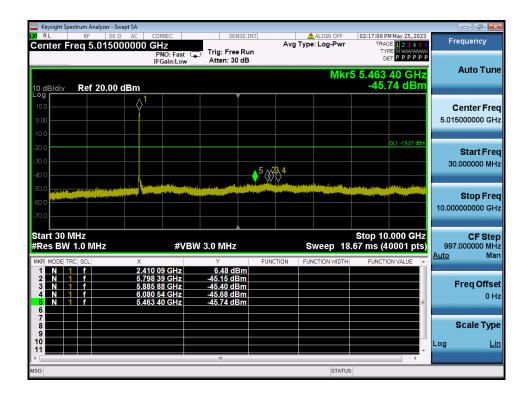
| Keysight Spectrum Analyzer -      |                                          |                                |                        |                                                      | - 7 💌                       |
|-----------------------------------|------------------------------------------|--------------------------------|------------------------|------------------------------------------------------|-----------------------------|
| RL RF 50                          |                                          | SENSE:INT                      | ALIGN OFF              | 02:03:40 PM May 25, 2023                             | Frequency                   |
| enter Freq 17.50                  | DOOOOOO GHZ<br>PNO: Fast C<br>IFGain:Low | Trig: Free Run<br>Atten: 30 dB | Avg Type: Log-Pwr      | TRACE 1 2 3 4 5 6<br>TYPE M WWWWW<br>DET P P P P P P |                             |
| 0 dB/div Ref 20.00                | ) dBm                                    |                                | Mkr3 2                 | 4.764 500 GHz<br>-33.90 dBm                          | Auto Tune                   |
| 10.0                              |                                          | <b>`</b>                       |                        |                                                      | Center Free                 |
| 0.00                              |                                          |                                |                        |                                                      | 17.500000000 GH             |
| 20.0                              |                                          |                                |                        | DL1 -14.97 dBm                                       | Start Free                  |
| 30.0                              |                                          |                                | aut tille som          | $\bigcirc^2 \Diamond^2 \bigcirc$                     | 10.00000000 GH              |
| 40.0                              |                                          |                                |                        | أنكأ شغب                                             |                             |
| 50.0                              |                                          |                                |                        |                                                      | Stop Free<br>25.00000000 GH |
| 70.0                              |                                          |                                |                        |                                                      |                             |
| tart 10.000 GHz<br>Res BW 1.0 MHz | #VB                                      | W 3.0 MHz                      | Sweep 40               | Stop 25.000 GHz<br>.00 ms (40001 pts)                | CF Step<br>1.50000000 GH    |
| KR MODE TRC SCL                   | Х                                        |                                | JNCTION FUNCTION WIDTH | FUNCTION VALUE                                       | <u>Auto</u> Ma              |
| 1 N 1 f<br>2 N 1 f                | 24.214 000 GHz<br>23.729 125 GHz         | -32.54 dBm<br>-33.36 dBm       |                        |                                                      | FreqOffse                   |
| 3 N 1 f<br>4 5                    | 24.764 500 GHz                           | -33.90 dBm                     |                        |                                                      | 0F                          |
| 6                                 |                                          |                                |                        | =                                                    |                             |
| 8                                 |                                          |                                |                        |                                                      | Scale Typ                   |
|                                   |                                          |                                |                        | · ·                                                  | Log <u>Li</u>               |
| G                                 |                                          |                                | STATUS                 | •                                                    |                             |
| -                                 |                                          |                                | 314103                 |                                                      |                             |

# TM 2 & 2412


#### Reference



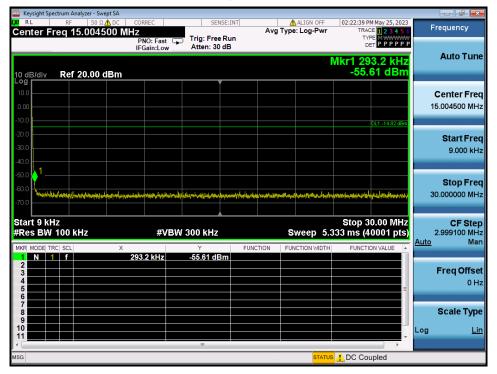

#### Low Band-edge



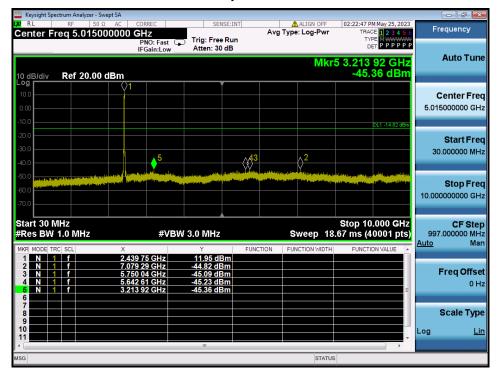


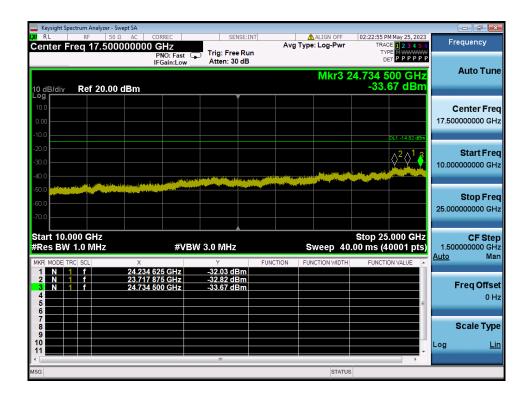




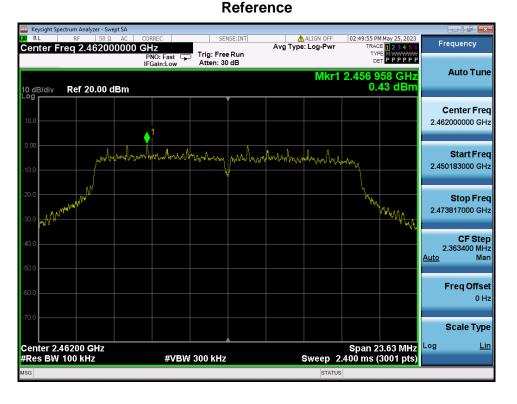






# TM 2 & 2437


#### Keysight Spectrum Analyzer - Swept S 02:22:32 PM May 25, 2023 ALIGN OFF Frequency Center Freq 2.437000000 GHz TACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P P PNO: Fast IFGain:Low Trig: Free Run Atten: 30 dB Auto Tune Mkr1 2.438 232 GHz 5.18 dBm 10 dB/div Ref 20.00 dBm Center Freq 2.437000000 GHz Start Freq 2.425153000 GHz JN I ø Stop Freq MVV, 2.448847000 GHz CF Step 2.369400 MHz <u>Auto</u> Man Freq Offset 0 Hz Scale Type Center 2.43700 GHz #Res BW 100 kHz Span 23.69 MHz Sweep 2.400 ms (3001 pts) Log Lin #VBW 300 kHz

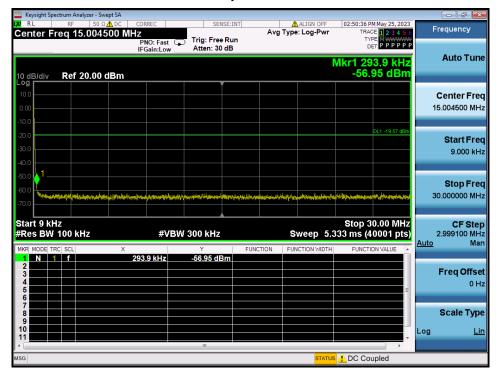
#### Reference

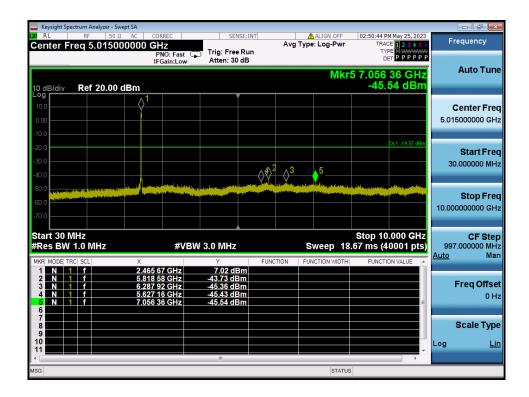










# TM 2 & 2462




# High Band-edge

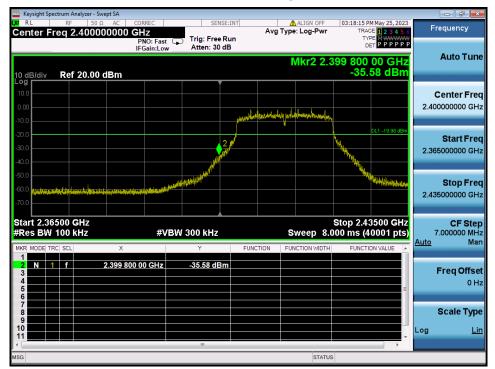













# TM 3 & 2412



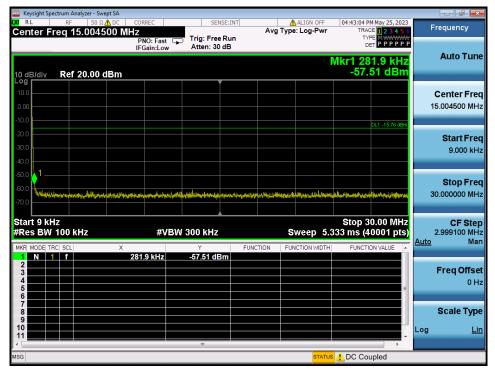
Reference

Low Band-edge

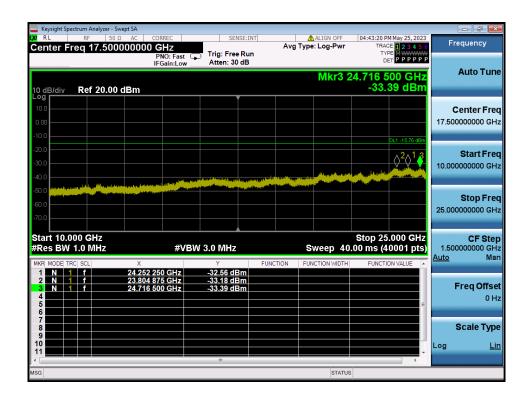




| Keysight Spectrum Analyzer - Swept SA                                    |                                        |                                   |                                        |                                                                  |                                                   |
|--------------------------------------------------------------------------|----------------------------------------|-----------------------------------|----------------------------------------|------------------------------------------------------------------|---------------------------------------------------|
| ଅଷ୍ଟା ଅକ୍ଟର ସହ ଅଳ୍କ ଅଳ୍କ ଅଲ୍ଲ ଅଳ୍କ ଅଲ୍ଲ ଅଲ୍ଲ ଅଲ୍ଲ ଅଲ୍ଲ ଅଲ୍ଲ ଅଲ୍ଲ ଅଲ୍ଲ ଅଲ | CORREC                                 | SENSE:INT                         | ALIGN OFF<br>Avg Type: Log-Pwr         | 03:18:22 PM May 25, 2023<br>TRACE 1 2 3 4 5 6                    | Frequency                                         |
| 10 dB/div Ref 20.00 dBm                                                  |                                        | Atten: 30 dB                      |                                        | TYPE M WARNAW<br>DET P P P P P P<br>Mkr1 281.9 kHz<br>-57.67 dBm | Auto Tune                                         |
| 10.0<br>0.00<br>-10.0                                                    |                                        |                                   |                                        |                                                                  | Center Freq<br>15.004500 MHz                      |
| -20.0                                                                    |                                        |                                   |                                        | DL1 -19.98 dBm                                                   | Start Freq<br>9.000 kHz                           |
| -50.0 1                                                                  | schartmonationstration to internations | hathladensit and with a tend of a | halanathranalanasythinanythinanaalanas | adys, ywrastad fawrio ywraitwry henro Marad                      | Stop Freq<br>30.000000 MHz                        |
| Start 9 kHz<br>#Res BW 100 kHz<br>MKR MODE TRC SCL X                     | #VBW 3                                 |                                   | Sweep 5.3                              | Stop 30.00 MHz<br>333 ms (40001 pts)<br>FUNCTION VALUE           | <b>CF Step</b><br>2.999100 MHz<br><u>Auto</u> Man |
|                                                                          | 261.9 KHZ -                            | 57.07 dBm                         |                                        | E                                                                | <b>Freq Offset</b><br>0 Hz                        |
| 7<br>8<br>9<br>10<br>11                                                  |                                        |                                   |                                        |                                                                  | Scale Type<br>Log <u>Lin</u>                      |
| MSG                                                                      |                                        |                                   | STATIS                                 | DC Coupled                                                       |                                                   |


| 🔤 Keysight Spectrum Analyzer - Si |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                               | - F            |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------|
| Center Freq 5.0150                |                                                                                                                 | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALIGN OFF<br>Avg Type: Log-Pwr                 | 03:18:30 PM May 25, 2023<br>TRACE 1 2 3 4 5 6 | Frequency      |
| Center Freq 5.0150                | PNO: Fast 🕞                                                                                                     | Trig: Free Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                                               |                |
|                                   | IFGain:Low                                                                                                      | Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                                               | Auto Tune      |
|                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr                                            | 5 6.312 84 GHz                                | Auto Tulk      |
| 10 dB/div Ref 20.00               | dBm                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | -45.67 dBm                                    |                |
| 10.0                              | <b>1</b>                                                                                                        | ļĬ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                                               | Center Free    |
| 0.00                              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                               | 5.015000000 GH |
|                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                               | 5.01500000 GH  |
| -10.0                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | DL1 -19.98 dBm                                |                |
| -20.0                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | DET -19.96 GBM                                | Start Free     |
| -30.0                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0-                                           |                                               | 30.000000 MH   |
| -40.0                             | \ <b>\</b>                                                                                                      | $ \longrightarrow  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≥ <sup>2</sup> ( <sup>35</sup>                 |                                               |                |
| -50.0                             | and a local state of the second se | and a state of the | an and the suggest of the surgery of the local | addition and the art the part of the          |                |
| -60.0                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                               | Stop Fre       |
| -70.0                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                               | 10.00000000 GH |
| -70.0                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                               |                |
| Start 30 MHz                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Stop 10.000 GHz                               | CF Ste         |
| #Res BW 1.0 MHz                   | #VBW                                                                                                            | / 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sweep 18                                       | .67 ms (40001 pts)                            | 997.000000 MH  |
| MKR MODE TRC SCL                  | Х                                                                                                               | Y FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NCTION FUNCTION WIDTH                          | FUNCTION VALUE                                | <u>Auto</u> Ma |
| 1 N 1 f                           | 2.413 33 GHz                                                                                                    | 5.12 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                                               |                |
| 3 N 1 f                           | 5.797 89 GHz<br>6.171 02 GHz                                                                                    | -44.57 dBm<br>-44.62 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                                               | Freq Offse     |
| 4 N 1 f                           | 3.177 28 GHz                                                                                                    | -45.46 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                               | 0 H            |
| 5 N 1 f                           | 6.312 84 GHz                                                                                                    | -45.67 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | E                                             |                |
| 7                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                               | Scale Typ      |
| 8                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                               | Scale Typ      |
| 10                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                               | Log <u>Li</u>  |
| <pre></pre>                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                               |                |
| MSG                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATU                                          | 6                                             |                |
|                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                               |                |




# TM 3 & 2437

#### Reference

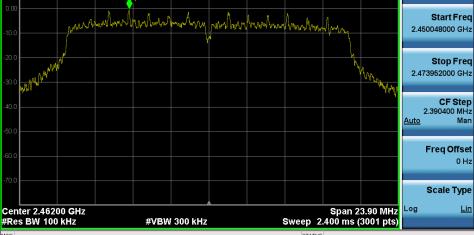




| Keysight Spectrum Analyzer - Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| RL RF 50 Ω<br>enter Freg 5.0150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT                                              | ALIGN OFF                                  | 04:43:12 PM May 25, 2023<br>TRACE 1 2 3 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Frequency                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PNO: Fast<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trig: Free Run<br>Atten: 30 dB                         | - // -                                     | TYPE MWWWWW<br>DET PPPPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Auto Tun                   |
| 0 dB/div Ref 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ¥                                                      | MKr                                        | 5 7.258 00 GHz<br>-45.98 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center Fre                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.015000000 GH             |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                            | DL1 -15.76 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start Fre                  |
| 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | <sup>2</sup> ∧ <sup>4</sup> ▲ <sup>5</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.000000 MI               |
| 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the state of the s | the second standard stress on a debining of the second |                                            | and the second of the second state of the seco |                            |
| 50.0 <b>Constant and the second se</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                            | n de Minister, es en Minister, en Minister, el ballitabilitat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stop Fre<br>10.00000000 Gi |
| 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.00000000000             |
| tart 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>A</b>                                               |                                            | Stop 10.000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CF Ste                     |
| Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3W 3.0 MHz                                             |                                            | .67 ms (40001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 997.000000 M<br>Auto M     |
| KR MODE TRC SCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×<br>2.441 00 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y FUI<br>10.90 dBm                                     | FUNCTION FUNCTION WIDTH                    | FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| 2 N 1 f<br>3 N 1 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.835 28 GHz<br>5.664 55 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -44.85 dBm<br>-45.91 dBm                               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq Offs                  |
| 4 N 1 f<br>5 N 1 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.276 95 GHz<br>7.258 00 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -45.97 dBm<br>-45.98 dBm                               |                                            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01                         |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scale Ty                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Log <u>L</u>               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | III                                                    |                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | STATU                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |



10 dB/div


Frequency

Auto Tune


Center Freq 2 462000000 GHz

#### TM 3 & 2462

#### Keysight Spectrum Analyzer - Swept SA 04:50:17 PM May 25, 2023 ALIGN OFF TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P P Center Freq 2.462000000 GHz PNO: Fast IFGain:Low Trig: Free Run Atten: 30 dB Mkr1 2.456 972 GHz -0.63 dBm Ref 20.00 dBm



#### **High Band-edge**



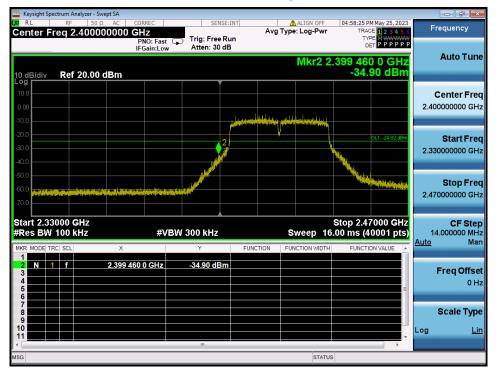
# Reference



| Keysight Spectrum Analyzer - Swept SA                |                                              |                                     |                                                  |                                                                 | - đ <del>x</del>                                  |
|------------------------------------------------------|----------------------------------------------|-------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|
| ₩ RL RF 50 Ω ▲ DC<br>Center Freq 15.004500 Γ         | CORREC HHZ                                   | SENSE:INT                           | ALIGN OFF                                        | 04:50:57 PM May 25, 2023<br>TRACE 1 2 3 4 5 6<br>TYPE MMAAAAAAA | Frequency                                         |
| 10 dB/div Ref 20.00 dBm                              |                                              | Atten: 30 dB                        |                                                  | TYPE MWWW<br>DET PPPPPP<br>Wkr1 285.7 kHz<br>-56.32 dBm         | Auto Tune                                         |
| 10.0<br>0.00<br>-10.0                                |                                              |                                     |                                                  |                                                                 | Center Freq<br>15.004500 MHz                      |
| -20.0                                                |                                              |                                     |                                                  | DL1 -20.63 dBm                                                  | Start Freq<br>9.000 kHz                           |
| -50.0                                                | Madeet, Sorry May 12 to 19 Sorris 100 Sorris | afathirtis,Hadashirangatry,mitashir | enthandiaeathristeliae (patienes), service reter | disenterit kanna andarda di disemutation ma                     | Stop Freq<br>30.000000 MHz                        |
| Start 9 kHz<br>#Res BW 100 kHz<br>MKR MODE TRC SCL X |                                              | Y FUNC                              |                                                  | Stop 30.00 MHz<br>333 ms (40001 pts)<br>FUNCTION VALUE          | <b>CF Step</b><br>2.999100 MHz<br><u>Auto</u> Man |
| 1 N 1 f<br>2                                         | 285.7 kHz -                                  | 56.32 dBm                           |                                                  | E                                                               | <b>Freq Offset</b><br>0 Hz                        |
| 7<br>8<br>9<br>9<br>10<br>11                         |                                              |                                     |                                                  |                                                                 | Scale Type                                        |
| •                                                    |                                              | III                                 |                                                  | Þ                                                               |                                                   |
| MSG                                                  |                                              |                                     | STATUS                                           | L Coupled                                                       |                                                   |

| 🔤 Keysight Spectrum Analyzer - Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                           |                        |                                               | - 6 <b>×</b>            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|------------------------|-----------------------------------------------|-------------------------|
| Center Freq 5.0150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | SENSE:INT                                 | ALIGN OFF              | 04:51:06 PM May 25, 2023<br>TRACE 1 2 3 4 5 6 | Frequency               |
| Center Freq 5.0150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PNO: Fast 🕞                  | Trig: Free Run                            | Ang Type. Log Thi      | TYPE MWWWWW<br>DET P P P P P P                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IFGain:Low                   | Atten: 30 dB                              |                        |                                               | Auto Tune               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           | Mkr                    | 5 5.858 96 GHz                                | Auto Tulk               |
| 10 dB/div Ref 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dBm                          |                                           |                        | -45.52 dBm                                    |                         |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | ļĪ                                        |                        |                                               | Center Fre              |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                           |                        |                                               | 5.015000000 GH          |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                                           |                        |                                               | 0.01000000000           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |                        | DL1 -20.63 dBm                                |                         |
| -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                                           |                        | 021-20.03 0211                                | Start Fre               |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 4                          |                                           | ∧ <u>4</u> 5 ∧3        |                                               | 30.000000 MH            |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                     |                                           |                        |                                               |                         |
| -50.0 scall research research the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | approximation of the lead of the party of |                        |                                               | Stop Fre                |
| -60.0 Printed and the second s |                              |                                           |                        |                                               | 10.000000000 GH         |
| -70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                                           |                        |                                               | 10.00000000 GH          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                           |                        |                                               |                         |
| Start 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | #\/D\\                       |                                           | <b>O</b>               | Stop 10.000 GHz                               | CF Ste<br>997.000000 MH |
| #Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VBV                         | / 3.0 MHz                                 | Sweep 18               | .67 ms (40001 pts)                            | Auto Ma                 |
| MKR MODE TRC SCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×<br>2.457 70 GHz            | Y F<br>5.56 dBm                           | UNCTION FUNCTION WIDTH | FUNCTION VALUE                                |                         |
| 2 N 1 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.762 25 GHz                 | -44.77 dBm                                |                        |                                               |                         |
| 3 N 1 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.896 09 GHz<br>3.164 57 GHz | -44.80 dBm<br>-45.13 dBm                  |                        |                                               | FreqOffse               |
| 5 N 1 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.858 96 GHz                 | -45.52 dBm                                |                        | E                                             | он                      |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                           |                        |                                               |                         |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                           |                        |                                               | Scale Typ               |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                           |                        |                                               |                         |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                           |                        |                                               | Log <u>Li</u>           |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | m                                         |                        | •                                             |                         |
| ISG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                           | STATUS                 |                                               |                         |






#### TM 4 & 2422

#### Keysight Spectrum Analyzer - Swept SA 04:57:29 PM May 25, 2023 ALIGN OFF Frequency TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P Center Freq 2.422000000 GHz PNO: Fast IFGain:Low Trig: Free Run Atten: 30 dB Auto Tune Mkr1 2.433 255 GHz -4.82 dBm 10 dB/div Ref 20.00 dBm Center Freq 2 422000000 GHz البران المرابية Start Freq يتعاييه والمراب المراجع 1. And description of the 2.395579750 GHz Stop Freq 2.448420250 GHz WVWWAL. CF Step 5.284050 MHz <u>Auto</u> Man Freq Offset 0 Hz Scale Type Center 2.42200 GHz #Res BW 100 kHz Span 52.84 MHz Sweep 5.200 ms (3001 pts) Log Lin #VBW 300 kHz

#### Reference

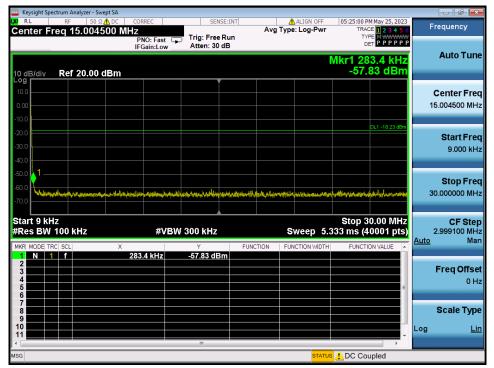
Low Band-edge



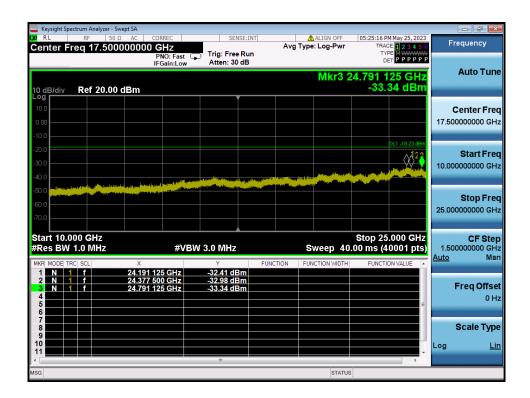



|                       | ectrum Analyzer                                                                                                 |                                                                                                                 |                               |                    |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                             |                    |                       |                                                |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------|--------------------|-----------------------|------------------------------------------------|
| LXI RL                |                                                                                                                 | 50 Ω <u>Λ</u> DC                                                                                                | CORREC                        |                    | SENSE:I                                                                                                         | NT          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALIGN OFF                                                                         |                             | M May 25, 20       |                       | Frequency                                      |
| Center F              | req 15.00                                                                                                       | 04500 MI                                                                                                        |                               | <b>T</b> -1        |                                                                                                                 |             | Avg Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e: Log-Pwr                                                                        | TRAC                        |                    | 6                     | Frequency                                      |
| 10 dB/div             | Ref 20.0                                                                                                        | 00 dBm                                                                                                          | PNO: Fas<br>IFGain:Lo         |                    | g: Free Ru<br>ten: 30 dB                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   | <u> Mkr1 28</u>             | 2.7 kH             |                       | Auto Tune                                      |
|                       | KCI 20.                                                                                                         |                                                                                                                 |                               |                    |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                             |                    |                       |                                                |
| 10.0<br>0.00<br>-10.0 |                                                                                                                 |                                                                                                                 |                               |                    |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                             |                    |                       | Center Freq<br>15.004500 MHz                   |
| -20.0                 |                                                                                                                 |                                                                                                                 |                               |                    |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                             |                    |                       |                                                |
| -30.0                 |                                                                                                                 |                                                                                                                 |                               |                    |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                             | DL1 -24.82 dE      | n                     | Start Freq<br>9.000 kHz                        |
| -50.0 1               | olan kanala katala k | and the second secon | the spin of the second second | aning and a second | an the second | the standed | en son the state of the state o | موايار وارد وارد وارد وارد و<br>موايار وارد و رو و و رو و و و و و و و و و و و و و | he the stand of the section |                    | •                     | Stop Freq<br>30.000000 MHz                     |
| Start 9 kl<br>#Res BW | 100 kHz                                                                                                         | X                                                                                                               | #\                            | /BW 300            |                                                                                                                 | FUNC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | weep 5.3                                                                          | 333 ms (4                   | 0.00 MH<br>0001 pt | z<br>s)<br><u>Aut</u> | <b>CF Step</b><br>2.999100 MHz<br><u>o</u> Man |
| 1 N '                 | l f                                                                                                             |                                                                                                                 | 282.7 kHz                     | -56                | .56 dBm                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                             |                    |                       |                                                |
| 2<br>3<br>4<br>5<br>6 |                                                                                                                 |                                                                                                                 |                               |                    |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                             |                    | =                     | Freq Offset<br>0 Hz                            |
| 7<br>8<br>9           |                                                                                                                 |                                                                                                                 |                               |                    |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                             |                    |                       | Scale Type                                     |
| 10                    |                                                                                                                 |                                                                                                                 |                               |                    |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                             |                    | Lo                    | ) <u>Lin</u>                                   |
| •                     |                                                                                                                 |                                                                                                                 |                               |                    |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                             |                    |                       |                                                |
| MSG                   |                                                                                                                 |                                                                                                                 |                               |                    |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                                                            | L DC Cou                    | pled               |                       |                                                |


| 🏧 Keysight Spectrum Analyzer - Sv                                                                                                                                                                                   |                                                                              |                                                                  |                                |                                               |                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| Center Freq 5.0150                                                                                                                                                                                                  |                                                                              | SENSE:INT                                                        | ALIGN OFF<br>Avg Type: Log-Pwr | 04:58:41 PM May 25, 2023<br>TRACE 1 2 3 4 5 6 | Frequency                                           |
| 10 dB/div Ref 20.00                                                                                                                                                                                                 | PNO: Fast 🖵<br>IFGain:Low                                                    | ) Trig: Free Run<br>Atten: 30 dB                                 | Mkr                            | 5 4.846 51 GHz<br>-45.66 dBm                  | Auto Tune                                           |
|                                                                                                                                                                                                                     |                                                                              |                                                                  |                                |                                               | Center Freq<br>5.015000000 GHz                      |
| -20.0<br>-30.0<br>-40.0                                                                                                                                                                                             |                                                                              | ∳⁵♦                                                              | 2                              | DL1 -24.82 dBm                                | Start Freq<br>30.000000 MHz                         |
| -50.0<br>-60.0<br>-70.0                                                                                                                                                                                             |                                                                              |                                                                  |                                |                                               | <b>Stop Freq</b><br>10.000000000 GHz                |
| Start 30 MHz<br>#Res BW 1.0 MHz                                                                                                                                                                                     | #VBW                                                                         | 3.0 MHz                                                          | Sweep 18                       | Stop 10.000 GHz<br>3.67 ms (40001 pts)        | <b>CF Step</b><br>997.000000 MH2<br><u>Auto</u> Mar |
| 1         N         1         f           2         N         1         f           3         N         1         f           4         N         1         f           5         N         1         f           6 | 2.415 82 GHz<br>5.733 34 GHz<br>6.440 46 GHz<br>6.336 52 GHz<br>4.846 51 GHz | 2.48 dBm<br>-45.13 dBm<br>-45.29 dBm<br>-45.36 dBm<br>-45.66 dBm |                                |                                               | Freq Offset<br>0 Hz                                 |
| 7 8<br>8 9<br>10 10                                                                                                                                                                                                 |                                                                              |                                                                  |                                |                                               | Scale Type                                          |
|                                                                                                                                                                                                                     |                                                                              |                                                                  |                                | • • • •                                       |                                                     |
| MSG                                                                                                                                                                                                                 |                                                                              |                                                                  | STATU                          | 6                                             |                                                     |







# TM 4 & 2437

#### Reference





| Keysight Spectrum Analyzer - Swept SA                |                                                               |                                 |                       |                                               | - # ×                                       |
|------------------------------------------------------|---------------------------------------------------------------|---------------------------------|-----------------------|-----------------------------------------------|---------------------------------------------|
| KIRL RF 50Ω AC                                       | CORREC                                                        | SENSE:INT                       | ALIGN OFF             | 05:25:08 PM May 25, 2023<br>TRACE 1 2 3 4 5 6 | Frequency                                   |
| Center Freq 5.015000000                              | PNO: Fast                                                     | Trig: Free Run<br>Atten: 30 dB  | Avg Type. Log-Pwi     |                                               |                                             |
| 10 dB/div Ref 20.00 dBm                              |                                                               |                                 | Mkr                   | 5 5.529 95 GHz<br>-46.09 dBm                  | Auto Tune                                   |
| 10.0                                                 |                                                               |                                 |                       |                                               | Center Fred<br>5.015000000 GHz              |
| -10.0                                                |                                                               |                                 |                       | DL1 -18.23 dBm                                | Start Fred                                  |
| -30.0                                                |                                                               | 5                               | § <sup>2</sup> 4      |                                               | 30.000000 MH:                               |
| -50.0 <b>1</b> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                                                               |                                 |                       |                                               | Stop Free<br>10.000000000 GH;               |
| Start 30 MHz<br>#Res BW 1.0 MHz                      | #VBW                                                          | 3.0 MHz                         |                       | Stop 10.000 GHz<br>3.67 ms (40001 pts)        | CF Step<br>997.000000 MH<br><u>Auto</u> Mar |
| 2 N 1 f 5.8<br>3 N 1 f 5.7<br>4 N 1 f 6.3            | 45 23 GHz<br>52 73 GHz<br>55 02 GHz<br>17 08 GHz<br>29 95 GHz | Y         FU           7.96 dBm | NCTION FUNCTION WIDTH | FUNCTION VALUE                                | Freq Offse                                  |
| 7                                                    |                                                               |                                 |                       |                                               | Scale Type                                  |
| 10                                                   |                                                               |                                 |                       |                                               | Log <u>Lir</u>                              |
|                                                      |                                                               |                                 |                       |                                               |                                             |



#### TM 4 & 2452

#### Reference



#### **High Band-edge**





|                      |         | Analyzer - Swe              |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      |                 |
|----------------------|---------|-----------------------------|----------------------|---------------------------|-----------------------|-----------------|-----------------------|---------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------|------|-----------------|
| L <mark>XI</mark> RL | RF      |                             | \Lambda DC 📗         | CORREC                    |                       | SEN             | SE:INT                |                           | ALIGN OFF                                    |                                                                                                                  | M May 25, 20        |      | Frequency       |
| Center               | Freq 1  | 15.0045                     | 500 MI               |                           | т.                    | ig: Free        | Dum                   | Avg T                     | ype: Log-Pwr                                 | TRAC                                                                                                             | E 1 2 3 4           | 5 6  | riequency       |
|                      |         |                             |                      | PNO: Fas<br>IFGain:Lo     |                       | tten: 30        |                       |                           |                                              |                                                                                                                  |                     | _    | Auto Tun        |
| 10 dB/div<br>Log     | Ref     | 20.00 (                     | dBm                  |                           |                       |                 |                       |                           |                                              | Mkr1 28<br>-55.                                                                                                  | 4.2 KH<br>40 dBi    | n    |                 |
| 10.0                 |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      | Center Fre      |
|                      |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      | 15.004500 MH    |
| 0.00                 |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      | 15.004500 MH    |
| -10.0                |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      |                 |
| -20.0                |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  | DL1 -25.37 dt       | an I | Start Fre       |
| -30.0                |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      | 9.000 kH        |
| -40.0                |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      | 9.000 KH        |
| 1                    |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      |                 |
| -50.0                |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      | Stop Fre        |
| -60.0                |         | Res and the second distance | and the section that | han anan                  | an and distants Mare  | والمحمد والمحمد |                       | a becaudear.              | ىرىلىلەر بىر بىر ئۇغا بىر بىر بار ب          | ومرادع والمراجع والمراجع                                                                                         | a ana sa kara da ka |      | 30.000000 MH    |
| -70.0                |         | and the strength of the     | di internet si di s  | يروز والالولاد وتوجد الله | and the second second |                 | التقريبية وبلقع والشع | for the providence of the | Contrast of Contrast of Contrast of Contrast | and the second | Contraction of the  |      | 00.000000 1111  |
|                      |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      |                 |
| Start 9 k            |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  | 0.00 MH             |      | CF Ste          |
| #Res BV              | V 100   | kHz                         |                      | #                         | VBW 30                | 0 kHz           |                       |                           | Sweep 5.3                                    | 333 ms (4                                                                                                        | 0001 pt             |      | 2.999100 MH     |
| MKR MODE             | TRC SCL |                             | х                    |                           |                       | Y               | FUN                   | CTION                     | FUNCTION WIDTH                               | FUNCTI                                                                                                           | ON VALUE            | r l  | <u>Auto</u> Ma  |
| 1 N                  | 1 f     |                             |                      | 284.2 kHz                 | -5                    | 5.40 dE         | lm                    |                           |                                              |                                                                                                                  |                     |      |                 |
| 2                    |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      | Freq Offse      |
| 4                    |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      | он              |
| 5                    |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     | =    |                 |
| 7                    |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      |                 |
| 8                    |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     |      | Scale Typ       |
| 9                    |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     | ш.   | _og <u>Li</u> i |
| 11                   |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  |                     | ÷    |                 |
| • [                  |         |                             |                      |                           |                       |                 |                       |                           |                                              |                                                                                                                  | +                   |      |                 |
| MSG                  |         |                             |                      |                           |                       |                 |                       |                           | STATUS                                       | DC Co                                                                                                            | upled               |      |                 |

|                 |                      | m Analyzer -                                                                                                    |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   |                             |       |             |                |
|-----------------|----------------------|-----------------------------------------------------------------------------------------------------------------|--------|---------------------------|-----------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|---------|----------------------------|-------------------|-----------------------------|-------|-------------|----------------|
| enter           |                      |                                                                                                                 | 0 Ω AC |                           | RREC                              |    | SEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SE:INT                                                                                                          | Ava       |         | ALIGN OFF                  |                   | PM May 25, 2<br>ACE 1 2 3 4 |       | Fr          | equency        |
| Jenner          |                      | 5.015                                                                                                           | 0000   | Р                         | NO: Fast<br>Gain: Low             |    | Trig: Free<br>Atten: 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |           | .,,,,,  |                            |                   |                             | P P P |             |                |
|                 |                      |                                                                                                                 |        |                           | Gameen                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         | Mkr                        | 5 5 87            | 0 92 G                      | 87    |             | Auto Tur       |
| I0 dB/div       | R                    | ef 20.0                                                                                                         | 0 dBn  | n                         |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            | -45               | .68 dE                      | ŝm    |             |                |
| - <sup>og</sup> |                      |                                                                                                                 |        | ∧1                        |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   |                             |       |             | Center Fre     |
| 0.00            |                      |                                                                                                                 |        | <u> </u>                  |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   |                             |       |             | 5000000 GI     |
| 10.0            |                      |                                                                                                                 |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   |                             |       |             |                |
| 20.0            |                      |                                                                                                                 |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   |                             |       |             |                |
| 30.0            |                      |                                                                                                                 |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   | DL1 -25.37                  | dBm   |             | Start Fr       |
| 40.0            |                      |                                                                                                                 |        | 2                         |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 5         |         |                            |                   |                             |       | 30          | .000000 M      |
|                 |                      |                                                                                                                 |        |                           | and the state of the state of the |    | ويعقبل متعتد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and                                                                         | and trees | analara | ورور ومقاومتها ومرووط والم | and in the second | . In subdates to see        |       |             |                |
| and a set       | or e-cons<br>Andores | a the first of the second s |        | A DESCRIPTION OF A        |                                   |    | and a first state of the state | and the second secon |           | Konski  | All the state of the local |                   |                             |       |             | Stop Fr        |
| 60.0<br>70.0    |                      |                                                                                                                 |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   |                             |       | 10.00       | 0000000 G      |
| /0.0            |                      |                                                                                                                 |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   |                             |       |             |                |
| Start 30        |                      |                                                                                                                 |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   | 0.000 G                     |       |             | CF Ste         |
| Res BV          | V 1.0                | MHz                                                                                                             |        |                           | #V                                | BW | 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |           | S       | weep 18                    | .67 ms i          | (40001 p                    | ots)  | 997<br>Auto | .000000 M<br>M |
| IKR MODE        | TRC S                | CL                                                                                                              |        | X                         |                                   |    | Y<br>D DD JD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 | CTION     | FUN     | NCTION WIDTH               | FUNC              | TION VALUE                  | L.    | Auto        | IN             |
| 1 N<br>2 N      | 1                    | f                                                                                                               |        | <u>2.460 9</u><br>2.394 3 | 9 GHz                             |    | 2.06 dB<br>-42.05 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m                                                                                                               |           |         |                            |                   |                             |       |             |                |
| 3 N<br>4 N      | 1                    | f                                                                                                               |        | <u>5.728 3</u><br>5.776 4 |                                   |    | -44.47 dB<br>-45.55 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |           |         |                            |                   |                             |       |             | olfs<br>ا 0    |
| 5 N             | 1                    | f                                                                                                               |        | 5.870 9                   |                                   |    | -45.68 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |           |         |                            |                   |                             | =     |             | U              |
| 6<br>7          |                      |                                                                                                                 |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   |                             |       |             |                |
| 8               |                      |                                                                                                                 |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   |                             |       |             | Scale Ty       |
| 10              |                      |                                                                                                                 |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            | _                 |                             |       | Log         | L              |
|                 |                      |                                                                                                                 |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         |                            |                   |                             | •     |             |                |
| SG              | _                    |                                                                                                                 |        |                           |                                   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |           |         | STATUS                     |                   |                             |       |             |                |







# 5.5. Unwanted Emissions (Radiated)

#### Test Requirements and limit,

#### Part 15.247(d), Part 15.205, Part 15.209 & RSS-247 [5.5], RSS-Gen [8.9], RSS-Gen [8.10]

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

| - Part 15.209 & RSS-Gen[6.9]. General requirement |                  |                   |                          |  |  |  |  |  |  |  |  |
|---------------------------------------------------|------------------|-------------------|--------------------------|--|--|--|--|--|--|--|--|
| Frequency (MHz)                                   | FCC Limit (uV/m) | IC Limit (µA/m)   | Measurement Distance (m) |  |  |  |  |  |  |  |  |
| 0.009 - 0.490                                     | 2 400 / F (kHz)  | 6.37/F (F in kHz) | 300                      |  |  |  |  |  |  |  |  |
| 0.490 – 1.705                                     | 24 000 / F (kHz) | 63.7/F (F in kHz) | 30                       |  |  |  |  |  |  |  |  |
| 1.705 - 30.0                                      | 30               | 0.08              | 30                       |  |  |  |  |  |  |  |  |

#### Part 15 209 & RSS-Gen[8 9]: General requirement

| Frequency (MHz) | FCC Limit (uV/m) | IC Limit (uV/m) | Measurement Distance (m) |
|-----------------|------------------|-----------------|--------------------------|
| 30 ~ 88         | 100 **           | 100             | 3                        |
| 88 ~ 216        | 150 **           | 150             | 3                        |
| 216 ~ 960       | 200 **           | 200             | 3                        |
| Above 960       | 500              | 500             | 3                        |

\*\*Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.



#### - Part 15.205(a): Restricted band of operation

| MHz                 | MHz                   | MHz                     | MHz               | GHz          | GHz           |
|---------------------|-----------------------|-------------------------|-------------------|--------------|---------------|
| 0.009 ~ 0.110       | 8.414 25 ~ 8.414 75   | 108 ~ 121.94            | 1 300 ~ 1 427     | 4.5 ~ 5.15   | 14.47 ~ 14.5  |
| 0.495 ~ 0.505       | 12.29 ~ 12.293        | 123 ~ 138               | 1 435 ~ 1 626.5   | 5.35 ~ 5.46  | 15.35 ~ 16.2  |
| 2.173 5 ~ 2.190 5   | 12.519 75 ~ 12.520 25 | 149.9 ~ 150.05          | 1 645.5 ~ 1 646.5 | 7.25 ~ 7.75  | 17.7 ~ 21.4   |
| 4.125 ~ 4.128       | 12.576 75 ~ 12.577 25 | 156.524 75 ~ 156.525 25 | 1 660 ~ 1 710     | 8.025 ~ 8.5  | 22.01 ~ 23.12 |
| 4.177 25 ~ 4.177 75 | 13.36 ~ 13.41         | 156.7 ~ 156.9           | 1 718.8 ~ 1 722.2 | 9.0 ~ 9.2    | 23.6 ~ 24.0   |
| 4.207 25 ~ 4.207 75 | 16.42 ~ 16.423        | 162.012 5 ~ 167.17      | 2 200 ~ 2 300     | 9.3 ~ 9.5    | 31.2 ~ 31.8   |
| 6.215 ~ 6.218       | 16.694 75 ~ 16.695 25 | 167.72 ~ 173.2          | 2 310 ~ 2 390     | 10.6 ~ 12.7  | 36.43 ~ 36.5  |
| 6.267 75 ~ 6.268 25 | 16.804 25 ~ 16.804 75 | 240 ~ 285               | 2 483.5 ~ 2 500   | 13.25 ~ 13.4 | Above 38.6    |
| 6.311 75 ~ 6.312 25 | 25.5 ~ 25.67          | 322 ~ 335.4             | 2 655 ~ 2 900     |              |               |
| 8.291 ~ 8.294       | 37.5 ~ 38.25          | 399.90 ~ 410            | 3 260 ~ 3 267     |              |               |
| 8.362 ~ 8.366       | 73 ~ 74.6             | 608 ~ 614               | 3 332 ~ 3 339     |              |               |
| 8.376 25 ~ 8.386 75 | 74.8 ~ 75.2           | 960 ~ 1 240             | 3 345.8 ~ 3 358   |              |               |
|                     |                       |                         | 3 600 ~ 4 400     |              |               |

#### - RSS-Gen[8.10]: Restricted frequency bands

| MHz                 | MHz                   | MHz                | MHz               | MHz             | GHz           |
|---------------------|-----------------------|--------------------|-------------------|-----------------|---------------|
| 0.090 ~ 0.110       | 8.362 ~ 8.366         | 73 ~ 74.6          | 608 ~ 614         | 3 345.8 ~ 3 358 | 9.0 ~ 9.2     |
| 0.495 ~ 0.505       | 8.376 25 ~ 8.386 75   | 74.8 ~ 75.2        | 960 ~ 1 427       | 3 500 ~ 4 400   | 9.3 ~ 9.5     |
| 2.173 5 ~ 2.190 5   | 8.414 25 ~ 8.414 75   | 108 ~ 138          | 1 435 ~ 1 626.5   | 4 500 ~ 5 150   | 10.6 ~ 12.7   |
| 3.020 ~ 3.026       | 12.29 ~ 12.293        | 149.9 ~ 150.05     | 1 645.5 ~ 1 646.5 | 5 350 ~ 5 460   | 13.25 ~ 13.4  |
| 4.125 ~ 4.128       | 12.519 75 ~ 12.520 25 | 156.524 75 ~       | 1 660 ~ 1 710     | 7 250 ~ 7 750   | 14.47 ~ 14.5  |
| 4.177 25 ~ 4.177 75 | 12.576 75 ~ 12.577 25 | 156.525 25         | 1 718.8 ~ 1 722.2 | 8 025 ~ 8 500   | 15.35 ~ 16.2  |
| 4.207 25 ~ 4.207 75 | 13.36 ~ 13.41         | 156.7 ~ 156.9      | 2 200 ~ 2 300     |                 | 17.7 ~ 21.4   |
| 5.677 ~ 5.683       | 16.42 ~ 16.423        | 162.01 25 ~ 167.17 | 2 310 ~ 2 390     |                 | 22.01 ~ 23.12 |
| 6.215 ~ 6.218       | 16.694 75 ~ 16.695 25 | 167.72 ~ 173.2     | 2 483.5 ~ 2 500   |                 | 23.6 ~ 24.0   |
| 6.267 75 ~ 6.268 25 | 16.804 25 ~ 16.804 75 | 240 ~ 285          | 2 655 ~ 2 900     |                 | 31.2 ~ 31.8   |
| 6.311 75 ~ 6.312 25 | 25.5 ~ 25.67          | 322 ~ 335.4        | 3 260 ~ 3 267     |                 | 36.43 ~ 36.5  |
| 8.291 ~ 8.294       | 37.5 ~ 38.25          | 399.90 ~ 410       | 3 332 ~ 3 339     |                 | Above 38.6    |

# 5.5.1. Test Setup

Refer to the APPENDIX I.

#### 5.5.2. Test Procedures

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

#### Note: Measurement Instrument Setting for Radiated Emission Measurements.

- KDB558074 D01v05r02 Section 8.6
- ANSI C63.10-2013 Section 11.12

#### 1. Frequency Range Below 1 GHz

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

#### 2. Frequency Range > 1 GHz

Peak Measurement > 1 GHz

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes Average Measurement > 1 GHz

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW  $\geq$  3 x RBW.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power (i.e., RMS).
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
  - 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is  $10 \log(1 / D)$ , where D is the duty cycle.
  - 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1 / D), where D is the duty cycle.
  - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

| Test Mode | Date rate | T <sub>on</sub> (ms) | T <sub>on+off</sub> (ms) | $D = T_{on}  /  (T_{on+off})$ | DCCF = 10 log(1/D) (dB) |  |  |  |  |  |
|-----------|-----------|----------------------|--------------------------|-------------------------------|-------------------------|--|--|--|--|--|
| TM 1      | 1 Mbps    | 12.430               | 12.540                   | 0.991 2                       | 0.04                    |  |  |  |  |  |
| TM 2      | 6 Mbps    | 2.064                | 2.171                    | 0.950 7                       | 0.22                    |  |  |  |  |  |
| TM 3      | MCS 0     | 1.924                | 2.040                    | 0.943 1                       | 0.25                    |  |  |  |  |  |
| TM 4      | MCS 0     | 0.948                | 1.082                    | 0.876 2                       | 0.57                    |  |  |  |  |  |

#### Duty Cycle Information

Note1: Where, T= Transmission duration / D= Duty cycle Note2: Please refer to the appendix II for duty cycle plots.

**Detector Mode : QPK** 

# 5.5.3. Test Results

#### - Test Notes

1. The radiated emissions below 1GHz were investigated 9 kHz to 1 GHz and the worst case data was reported.

2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log( tested distance / specified distance )

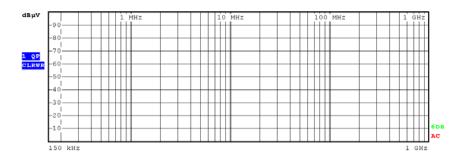
At frequencies at or above 30 MHz = 20 log( tested distance / specified distance )

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor


|                              | Unwanted Emissions data(9 KHZ ~ 1 GHZ) : <u>1M1</u> |            |                           |                  |                   |              |              |             |                    |                   |            |
|------------------------------|-----------------------------------------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|------------|
| Tested<br>Frequency<br>(MHz) | Frequency<br>(MHz)                                  | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin(dB) |
|                              | 31.10                                               | V          | Z                         | QPK              | 42.60             | -9.73        | N/A          | N/A         | 32.87              | 40.00             | 7.13       |
| 2 412                        | 66.78                                               | V          | Z                         | QPK              | 38.50             | -9.77        | N/A          | N/A         | 28.73              | 40.00             | 11.27      |
| 2412                         | -                                                   | -          | -                         | -                | -                 | -            | -            | -           | -                  | -                 | -          |
|                              | -                                                   | -          | -                         | -                | -                 | -            | -            | -           | -                  | -                 | -          |

#### Unwanted Emissions data(9 KHz ~ 1 GHz) : TM1

#### TM 1 & 2412 & Zaxis & Ver

X

# REW 120 kHz MT 10 ms Att 0 dB AUTO PREAMP OFF FREQUENCY 31.0950000 MHz QPK 42.29 dBµV (42.6 31.095000 MHz



Date: 23.MAY.2023 16:25:32



#### - Test Notes

1. The radiated emissions above 1GHz were investigated up to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies.

2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log( tested distance / specified distance ) At frequencies at or above 30 MHz = 20 log( tested distance / specified distance )

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

Radiated Emissions data(1 GHz ~ 25 GHz) : TM 1

| Tested<br>Frequency<br>(MHz) | Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin(dB) |
|------------------------------|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|------------|
|                              | 2 388.94           | Н          | Y                         | PK               | 51.26             | 4.60         | N/A          | N/A         | 55.86              | 74.00             | 18.14      |
| 2 412                        | 2 389.86           | Н          | Y                         | AV               | 41.29             | 4.60         | N/A          | N/A         | 45.89              | 54.00             | 8.11       |
| 2 412                        | 4 823.86           | V          | Х                         | PK               | 50.67             | 2.34         | N/A          | N/A         | 53.01              | 74.00             | 20.99      |
|                              | 4 823.93           | V          | Х                         | AV               | 42.31             | 2.34         | N/A          | N/A         | 44.65              | 54.00             | 9.35       |
| 2 437                        | 4 873.90           | V          | Х                         | PK               | 51.30             | 2.18         | N/A          | N/A         | 53.48              | 74.00             | 20.52      |
| 2 437                        | 4 873.99           | V          | Х                         | AV               | 42.41             | 2.18         | N/A          | N/A         | 44.59              | 54.00             | 9.41       |
|                              | 2 486.26           | Н          | Y                         | PK               | 52.54             | 5.66         | N/A          | N/A         | 58.20              | 74.00             | 15.80      |
| 2 462                        | 2 485.70           | Н          | Y                         | AV               | 42.66             | 5.65         | N/A          | N/A         | 48.31              | 54.00             | 5.69       |
| 2 402                        | 4 923.60           | V          | Х                         | PK               | 49.39             | 2.57         | N/A          | N/A         | 51.96              | 74.00             | 22.04      |
|                              | 4 923.96           | V          | Х                         | AV               | 40.44             | 2.57         | N/A          | N/A         | 43.01              | 54.00             | 10.99      |

# Radiated Emissions data(1 GHz ~ 25 GHz) : TM 2

| Tested<br>Frequency<br>(MHz) | Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin(dB) |
|------------------------------|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|------------|
|                              | 2 389.01           | Н          | Y                         | PK               | 50.19             | 4.60         | N/A          | N/A         | 54.79              | 74.00             | 19.21      |
| 2 412                        | 2 389.24           | Н          | Y                         | AV               | 39.34             | 4.60         | 0.22         | N/A         | 44.16              | 54.00             | 9.84       |
| 2 412                        | 4 824.52           | V          | Х                         | PK               | 50.07             | 2.34         | N/A          | N/A         | 52.41              | 74.00             | 21.59      |
|                              | 4 824.22           | V          | Х                         | AV               | 39.27             | 2.34         | 0.22         | N/A         | 41.83              | 54.00             | 12.17      |
| 2 437                        | 4 874.30           | V          | Х                         | PK               | 50.78             | 2.19         | N/A          | N/A         | 52.97              | 74.00             | 21.03      |
| 2 437                        | 4 874.05           | V          | Х                         | AV               | 39.93             | 2.18         | 0.22         | N/A         | 42.33              | 54.00             | 11.67      |
|                              | 2 483.98           | H          | Y                         | PK               | 50.97             | 5.62         | N/A          | N/A         | 56.59              | 74.00             | 17.41      |
| 2 462                        | 2 483.54           | Н          | Y                         | AV               | 39.56             | 5.62         | 0.22         | N/A         | 45.40              | 54.00             | 8.60       |
| 2 402                        | 4 924.04           | V          | Х                         | PK               | 49.34             | 2.45         | N/A          | N/A         | 51.79              | 74.00             | 22.21      |
|                              | 4 924.13           | V          | Х                         | AV               | 39.07             | 2.45         | 0.22         | N/A         | 41.74              | 54.00             | 12.26      |

| Tested<br>Frequency<br>(MHz) | Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin(dB) |
|------------------------------|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|------------|
|                              | 2 389.72           | Н          | Y                         | PK               | 48.76             | 4.60         | N/A          | N/A         | 53.36              | 74.00             | 20.64      |
| 2 412                        | 2 389.97           | Н          | Y                         | AV               | 39.26             | 4.60         | 0.25         | N/A         | 44.11              | 54.00             | 9.89       |
| 2412                         | 4 824.31           | V          | Х                         | PK               | 49.35             | 2.33         | N/A          | N/A         | 51.68              | 74.00             | 22.32      |
|                              | 4 824.09           | V          | Х                         | AV               | 39.64             | 2.33         | 0.25         | N/A         | 42.22              | 54.00             | 11.78      |
| 2 437                        | 4 873.84           | V          | Х                         | PK               | 49.96             | 2.16         | N/A          | N/A         | 52.12              | 74.00             | 21.88      |
| 2 437                        | 4 873.70           | V          | Х                         | AV               | 39.73             | 2.16         | 0.25         | N/A         | 42.14              | 54.00             | 11.86      |
|                              | 2 484.63           | Н          | Y                         | PK               | 52.39             | 5.63         | N/A          | N/A         | 58.02              | 74.00             | 15.98      |
| 2.462                        | 2 483.68           | Н          | Y                         | AV               | 41.99             | 5.62         | 0.25         | N/A         | 47.86              | 54.00             | 6.14       |
| 2 462                        | 4 923.66           | V          | Х                         | PK               | 49.33             | 2.57         | N/A          | N/A         | 51.90              | 74.00             | 22.10      |
|                              | 4 923.87           | V          | Х                         | AV               | 39.27             | 2.57         | 0.25         | N/A         | 42.09              | 54.00             | 11.91      |

# Radiated Emissions data(1 GHz ~ 25 GHz) : TM 3

# Radiated Emissions data(1 GHz ~ 25 GHz) : TM 4

| Tested<br>Frequency<br>(MHz) | Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | TF<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin(dB) |
|------------------------------|--------------------|------------|---------------------------|------------------|-------------------|--------------|--------------|-------------|--------------------|-------------------|------------|
|                              | 2 389.43           | Н          | Y                         | PK               | 51.24             | 4.60         | N/A          | N/A         | 55.84              | 74.00             | 18.16      |
| 2 422                        | 2 389.87           | Н          | Y                         | AV               | 42.36             | 4.60         | 0.57         | N/A         | 47.53              | 54.00             | 6.47       |
| 2 422                        | 4 843.02           | V          | Х                         | PK               | 49.33             | 2.26         | N/A          | N/A         | 51.59              | 74.00             | 22.41      |
|                              | 4 843.61           | V          | Х                         | AV               | 39.13             | 2.26         | 0.57         | N/A         | 41.96              | 54.00             | 12.04      |
| 2 437                        | 4 874.63           | V          | Х                         | PK               | 50.85             | 2.18         | N/A          | N/A         | 53.03              | 74.00             | 20.97      |
| 2 437                        | 4 874.06           | V          | Х                         | AV               | 39.59             | 2.16         | 0.57         | N/A         | 42.32              | 54.00             | 11.68      |
|                              | 2 484.27           | Н          | Y                         | PK               | 55.02             | 5.63         | N/A          | N/A         | 60.65              | 74.00             | 13.35      |
| 2 452                        | 2 483.54           | Н          | Y                         | AV               | 42.97             | 5.62         | 0.57         | N/A         | 49.16              | 54.00             | 4.84       |
| 2 402                        | 4 903.32           | V          | Х                         | PK               | 49.87             | 2.50         | N/A          | N/A         | 52.37              | 74.00             | 21.63      |
|                              | 4 903.14           | V          | Х                         | AV               | 39.30             | 2.50         | 0.57         | N/A         | 42.37              | 54.00             | 11.63      |



# 5.6. AC Power-Line Conducted Emissions

#### Test Requirements and limit, Part 15.207 & RSS-Gen [8.8]

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

|                       | Conducted Limit (dBuV) |            |  |  |  |  |
|-----------------------|------------------------|------------|--|--|--|--|
| Frequency Range (MHz) | Quasi-Peak             | Average    |  |  |  |  |
| 0.15 ~ 0.5            | 66 to 56 *             | 56 to 46 * |  |  |  |  |
| 0.5 ~ 5.0             | 56                     | 46         |  |  |  |  |
| 5 ~ 30                | 60                     | 50         |  |  |  |  |

\* Decreases with the logarithm of the frequency

#### 5.6.1. Test Setup

#### NA

#### 5.6.2. Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

#### 5.6.3. Test Results

NA



# 5.7. Occupied Bandwidth

#### Test Requirements, RSS-Gen [6.7]

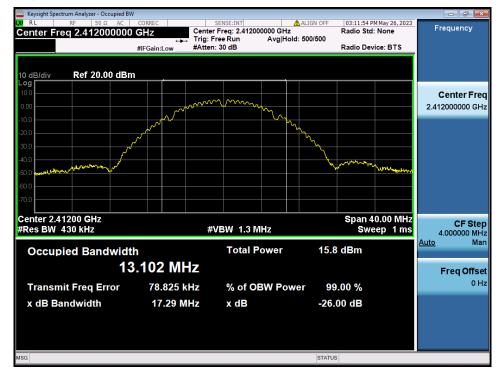
When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99 % emission bandwidth, as calculated or measured.

#### 5.7.1. Test Setup

Refer to the APPENDIX I.

#### 5.7.2. Test Procedures

The 99 % power bandwidth was measured with a calibrated spectrum analyzer.

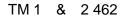

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 × RBW.

#### 5.7.3. Test Results

| Test Mode | Frequency | Test Results (MHz) |
|-----------|-----------|--------------------|
|           | 2 412     | 13.10              |
| TM 1      | 2 437     | 13.27              |
|           | 2 462     | 13.25              |
|           | 2 412     | 16.59              |
| TM 2      | 2 437     | 16.75              |
|           | 2 462     | 16.68              |
|           | 2 412     | 17.68              |
| ТМ 3      | 2 437     | 17.81              |
|           | 2 462     | 17.77              |
|           | 2 422     | 36.25              |
| TM 4      | 2 437     | 36.50              |
|           | 2 452     | 36.23              |

#### **Occupied Bandwidth**

TM 1 & 2412




#### **Occupied Bandwidth**

TM 1 & 2437



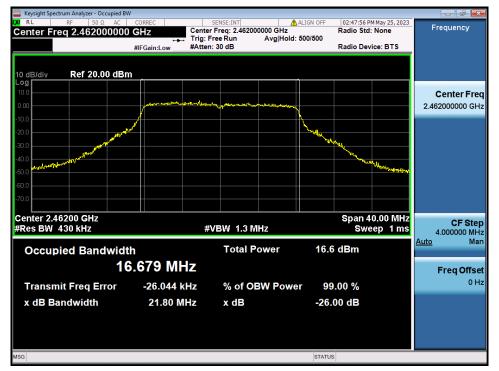
#### **Occupied Bandwidth**

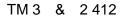




# **Occupied Bandwidth**







#### **Occupied Bandwidth**

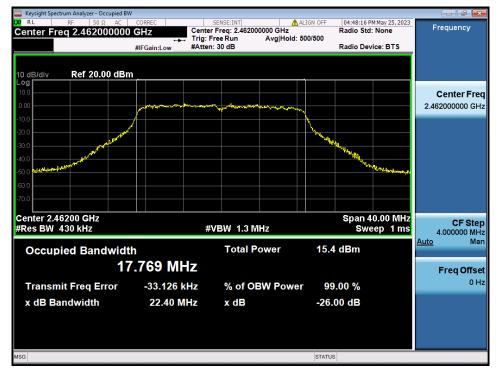
TM 2 & 2437



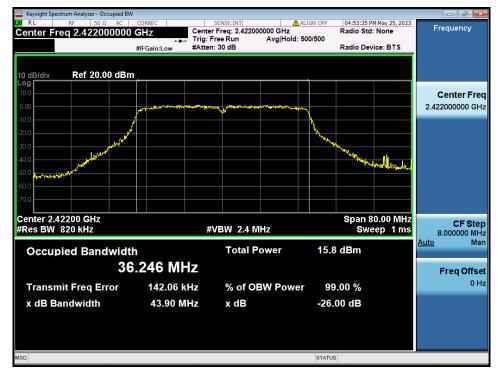









#### **Occupied Bandwidth**

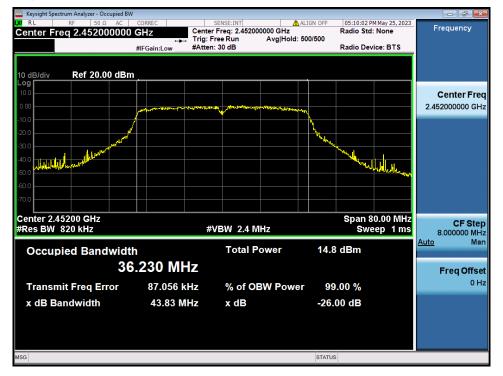

TM 3 & 2437







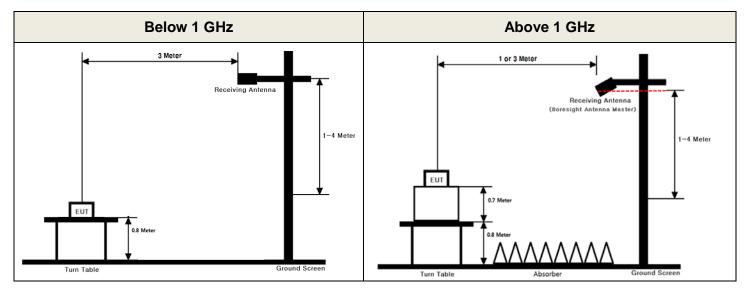
TM 4 & 2422



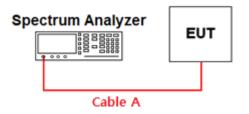

#### **Occupied Bandwidth**

TM 4 & 2437




TM 4 & 2452




# **APPENDIX I**

## Test set up diagrams

#### Radiated Measurement



#### Conducted Measurement





# APPENDIX II

# **Duty cycle plots**

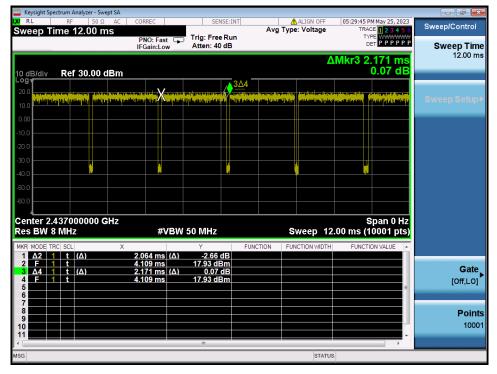
### Test Procedures

### - KDB558074 D01v05r02 - Section 6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set VBW  $\geq$  RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50 /T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zerospan method of measuring duty cycle shall not be used if  $T \le 16.7$  microseconds.)

### **Duty Cycle**


TM 1 2 437 MHz &



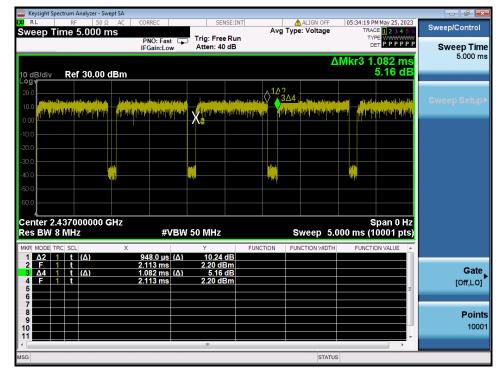
# **Duty Cycle**

**Duty Cycle** 

TM 2 & 2 437 MHz

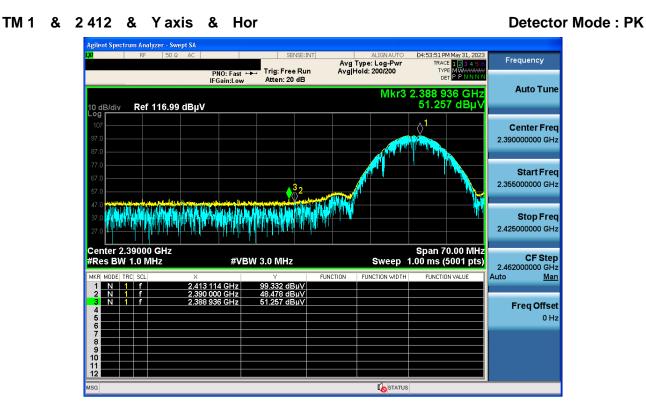


# TM 3 & 2 437 MHz


 ight Spectrum Analyzer - Swept SA
 Image: Solution of the state of the state

|     | BW   |     |          | 00000<br>z |                             | /BW | 50 MHz                |          | Sweep 10.      | Span 0  <br>00 ms (10001 p |    |        |
|-----|------|-----|----------|------------|-----------------------------|-----|-----------------------|----------|----------------|----------------------------|----|--------|
| MKR | MODE | TRC | SCL      |            | х                           |     | Y                     | FUNCTION | FUNCTION WIDTH | FUNCTION VALUE             | •  |        |
| 1   | Δ2   | 1   | t        | <u>(Δ)</u> | 1.924 ms                    |     | -2.49 dB              |          |                |                            |    |        |
| 2   | F    | 1   | t        | (A)        | <u>3.029 ms</u><br>2.040 ms |     | 17.22 dBm<br>-0.42 dB |          |                |                            |    | G      |
| 4   | F    | 1   | +        | (Δ)        | 3.029 ms                    |     | 17.22 dBm             |          |                |                            | 11 |        |
| 5   |      | -   | <u> </u> |            | 0.020 1113                  |     | IT.LL UDIII           |          |                |                            | =  | [Off,I |
| 6   |      |     |          |            |                             |     |                       |          |                |                            |    |        |
| 7   |      |     |          |            |                             |     |                       |          |                |                            |    |        |
| 8   |      |     |          |            |                             |     |                       |          |                |                            |    | Po     |
| 9   |      |     |          |            |                             |     |                       |          |                |                            |    | 1      |
| 10  |      | _   |          |            |                             |     |                       |          |                |                            |    |        |

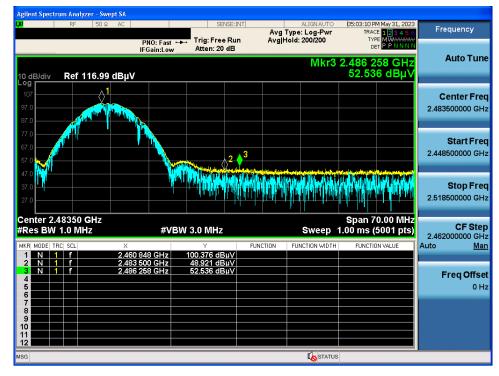
# **Dt&C**


# **Duty Cycle**

TM 4 & 2 437 MHz



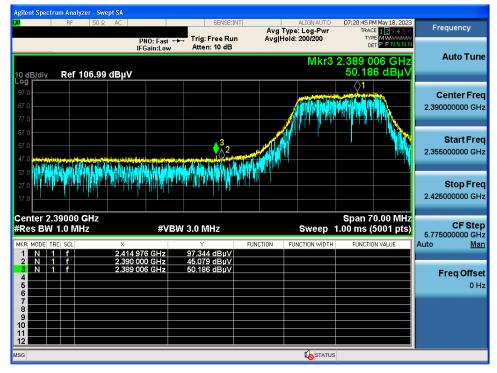
# APPENDIX III


# **Unwanted Emissions (Radiated) Test Plot**



#### TM 1 & 2412 & Yaxis & Hor

lent Spectrum Analyzer - Swept SA :07 PM May 31, 20 ALIGN AUTO Avg Type: RMS Avg|Hold: 200/200 Frequency Trig: Free Run Atten: 20 dB PNO: Fast + IFGain:Low Auto Tune Mkr3 2.389 860 GHz 41.286 dBµV 10 dB/div Ref 116.99 dBµV **Center Freq**  $\Diamond$ 2.390000000 GHz Start Freq 2.355000000 GHz 2 Stop Freq 2.425000000 GHz Center 2.39000 GHz #Res BW 1.0 MHz Span 70.00 MHz 1.00 ms (5001 pts) CF Step 2.46200000 GHz #VBW 3.0 MHz\* Sweep Man uto 40.657 dBµ 41.286 dBµ N Freq Offset 0 Hz **I**STATUS


#### TM 1 & 2462 & Yaxis & Hor



#### TM 1 & 2462 & Yaxis & Hor



### TM 2 & 2412 & Yaxis & Hor

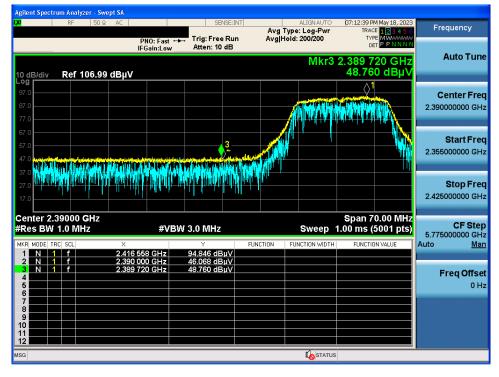


#### TM 2 & 2412 & Yaxis & Hor

#### **Detector Mode : AV**

# Agilent Spectrum Analyzer - Swept SA

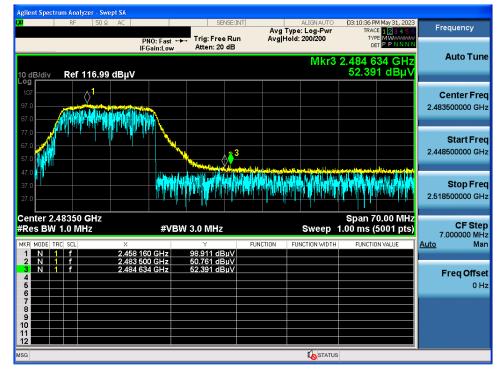
| X RF 50 S                                 | 2 AC   | PNO: Fast ↔                   | SENSE:INT                                 | Avg Type<br>Avg Hold: |                 | TYPE                                | May 18, 2023<br><b>1 2 3 4 5 6</b><br>A WWWWWW<br>A P N N N N | Frequency                                   |
|-------------------------------------------|--------|-------------------------------|-------------------------------------------|-----------------------|-----------------|-------------------------------------|---------------------------------------------------------------|---------------------------------------------|
| 10 dB/div Ref 106.99                      | 9 dBµV | IFGain:Low                    | Atten: 10 dB                              |                       | Mkr3            | 2.389 24<br>39.343                  | 4 GHz                                                         | Auto Tune                                   |
| 97.0<br>87.0<br>77.0                      |        |                               |                                           | /                     |                 | (                                   |                                                               | Center Fred<br>2.390000000 GHz              |
| 67.0<br>57.0<br>47.0                      |        |                               | 3 <u>2</u>                                |                       |                 |                                     |                                                               | Start Free<br>2.355000000 GH;               |
| 37.0<br>27.0<br>17.0                      |        |                               |                                           |                       |                 |                                     |                                                               | Stop Fred<br>2.425000000 GH;                |
| Center 2.39000 GHz<br>FRes BW 1.0 MHz     | ×      |                               | V 3.0 MHz*                                | FUNCTION FUT          | Sweep           | Span 70.<br>1.00 ms (50<br>FUNCTION | 001 pts)                                                      | CF Step<br>5.775000000 GH<br>Auto <u>Ma</u> |
| 1 N 1 f<br>2 N 1 f<br>3 N 1 f<br>4 5<br>6 | 2.390  | 796 GHz<br>000 GHz<br>244 GHz | 89.015 dBµV<br>38.732 dBµV<br>39.343 dBµV |                       |                 |                                     |                                                               | Freq Offse<br>0 H                           |
| 7<br>8<br>9<br>10<br>11<br>12             |        |                               |                                           |                       |                 |                                     |                                                               |                                             |
| ISG                                       |        |                               |                                           |                       | <b>I</b> STATUS |                                     |                                                               |                                             |


#### TM 2 & 2462 & Yaxis & Hor



#### TM 2 & 2462 & Yaxis & Hor

| Agilent Spectrum Analyzer - Swept SA |                        |                            |                                                  |                                                                                  |                                             |
|--------------------------------------|------------------------|----------------------------|--------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|
| XI RF 50Ω AC                         | PNO: Fast ↔            | SENSE:INT                  | ALIGN AUTO<br>Avg Type: RMS<br>Avg Hold: 200/200 | 02:32:43 PM May 17, 2023<br>TRACE 1 2 3 4 5 6<br>TYPE A WWWWW<br>DET A P N N N N | Frequency                                   |
| 10 dB/div Ref 106.99 dBµV            | IFGain:Low             | Atten: 10 dB               | Mkr3                                             | 2.483 542 GHz<br>39.557 dBµV                                                     | Auto Tune                                   |
| P7.0<br>67.0<br>77.0                 |                        |                            |                                                  |                                                                                  | Center Fred<br>2.483500000 GH;              |
| 67.0<br>57.0<br>47.0                 |                        | 3                          |                                                  |                                                                                  | Start Fred<br>2.448500000 GH                |
| 37.0                                 |                        |                            |                                                  |                                                                                  | <b>Stop Fre</b><br>2.518500000 GH           |
|                                      | 3 174 GHz              | 88.536 dBuV                | Sweep                                            | Span 70.00 MHz<br>1.00 ms (5001 pts)<br>FUNCTION VALUE                           | CF Stej<br>2.437000000 GH<br>Auto <u>Ma</u> |
|                                      | 3 500 GHz<br>3 542 GHz | 38.753 dBµV<br>39.557 dBµV |                                                  |                                                                                  | <b>Freq Offse</b><br>0 H                    |
| 8<br>9<br>10<br>11<br>12             |                        |                            |                                                  |                                                                                  |                                             |
| ISG                                  |                        |                            |                                                  | 3                                                                                |                                             |

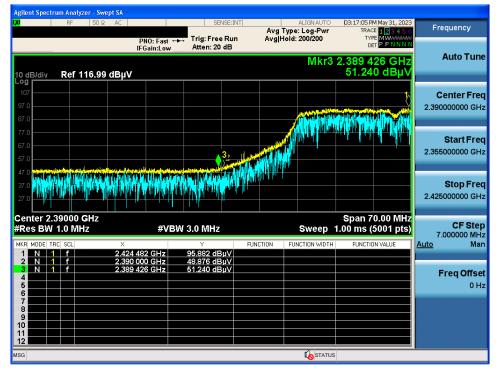

#### TM 3 & 2 412 & Yaxis & Hor



#### TM 3 & 2412 & Yaxis & Hor

| Agilent Spectrum<br>XI              | n Analyzer - Swe |       |                               |                                            |          |                                        |                                  |                                                        |                                     |
|-------------------------------------|------------------|-------|-------------------------------|--------------------------------------------|----------|----------------------------------------|----------------------------------|--------------------------------------------------------|-------------------------------------|
| <b>U</b>                            | RF 50 Ω          | AC    | PNO: Fast ←                   | SENSE:IN<br>Trig: Free Run<br>Atten: 10 dB | Avg Ty   | ALIGN AUTO<br>/pe: RMS<br>ild: 200/200 | TRACE                            | May 18, 2023<br>1 2 3 4 5 6<br>A WWWWWW<br>A P N N N N | Frequency                           |
| 10 dB/div                           | Ref 106.99       | dBµV  | IFGain:Low                    | Atten: 10 dB                               |          | Mkr3                                   | 2.389 9                          |                                                        | Auto Tune                           |
| 97.0<br>97.0<br>87.0<br>77.0        |                  |       |                               |                                            |          |                                        | \$ <sup>1</sup>                  |                                                        | Center Fre<br>2.390000000 GH        |
| 67.0<br>57.0<br>47.0                |                  |       |                               | 3-                                         |          |                                        |                                  |                                                        | <b>Start Fre</b><br>2.355000000 GH  |
| 37.0<br>27.0<br>17.0                |                  |       |                               |                                            |          |                                        |                                  |                                                        | <b>Stop Fre</b><br>2.425000000 GH   |
| Res BW 1                            | .0 MHz           | ×     | #VB                           | W 3.0 MHz*                                 | FUNCTION | Sweep                                  | Span 70<br>1.00 ms (5<br>FUNCTIO |                                                        | CF Ste<br>5.775000000 GH<br>Auto Ma |
| 1 N 1<br>2 N 1<br>3 N 1<br>4 5<br>6 | f<br>f<br>f      | 2.415 | 900 GHz<br>000 GHz<br>972 GHz | 86.688 dBµV<br>38.946 dBµV<br>39.259 dBµV  |          |                                        |                                  |                                                        | Freq Offse                          |
| 7<br>8<br>9<br>10<br>11<br>12       |                  |       |                               |                                            |          |                                        |                                  |                                                        |                                     |
| 5G                                  |                  |       |                               |                                            | I        |                                        | ;                                |                                                        |                                     |

#### TM 3 & 2462 & Yaxis & Hor



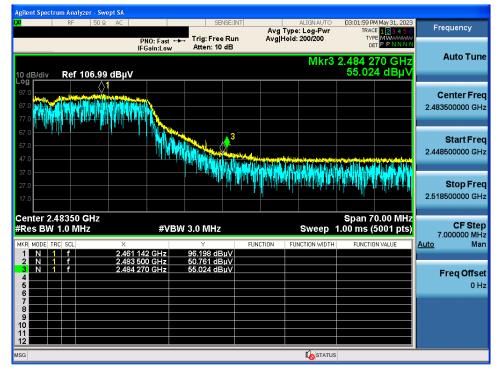

#### TM 3 & 2462 & Yaxis & Hor

### **Detector Mode : AV**

SENSE:INT 03:08:05 PM Frequency Avg Type: RMS Avg|Hold: 200/200 TRACE TYPE DET PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 20 dB Auto Tune Mkr3 2.483 682 GHz 41.994 dBu Ref 116.99 dBµV **Center Freq** 2.483500000 GHz Start Freq 2.448500000 GHz 3 Stop Freq 2.518500000 GHz Center 2.48350 GHz #Res BW 1.0 MHz Span 70.00 MHz 1.00 ms (5001 pts) CF Step 7.000000 MHz Man #VBW 3.0 MHz\* Sweep FUNCTION Auto 41.698 dBµ∖ 41.994 dBµ∖ Freq Offset 0 Hz **I**STATUS

### TM 4 & 2 422 & Y axis & Hor




#### TM 4 & 2 422 & Y axis & Hor

#### **Detector Mode : AV**



#### This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-236(05)210316

#### TM 4 & 2 452 & Y axis & Hor



#### TM 4 & 2 452 & Y axis & Hor

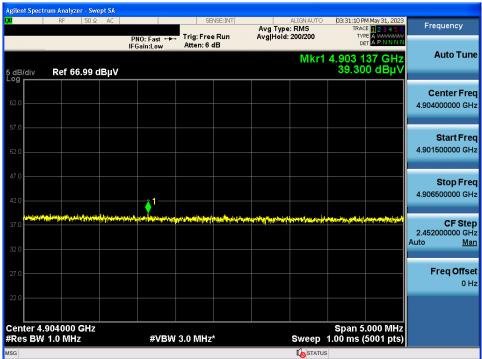


#### **Detector Mode : AV**

#### TM 1 & 2412 & Yaxis & Ver



#### TM 2 & 2 437 & Y axis & Ver




**Detector Mode : AV** 

#### TM 3 & 2412 & Xaxis & Ver



#### TM 4 & 2 452 & Y axis & Ver

