SAR TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea

Tel: 031-321-2664, Fax: 031-321-1664

Report No: DRRFCC1601-0008 Pages:(1) / (93) page

1. Customer

· Name : LG Electronics USA, Inc.

Address: 1000 Sylvan Avenue, Englewood Cliffs, New Jersey 07632

2. Use of Report: FCC Original Grant

3. Product Name (FCC ID): Mobile Computer (BEJNT-LG14Z96)

4. Date of Test: 2015-12-02 ~ 2015-12-04

5. Test Method Used: CFR §2.1093

6. Testing Environment :See appended test report

7. Test Result : ☐ Pass☐ Fail

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full.

Affirmation Tested by Name : HoSik Sim (Signature) Technical Manager Name : HakMin Kim (Signature)

2016, 01, 18,

DT&C Co., Ltd.

Test Report Version

Test Report No.	Date	Description
DRRFCC1601-0008	Jan. 18, 2016	Initial issue

Table of Contents

1. DESCRIPTION OF DEVICE	5
1.1 Guidance Applied 1.2 Device Overview 1.3 Nominal and Maximum Output Power Specifications	7
1.4 DUT Antenna Locations	
1.5 SAR Test Exclusions Applied	
1.6 Power Reduction for SAR	
2. INTROCUCTION	
3. DESCRIPTION OF TEST EQUIPMENT	12
3.1 SAR MEASUREMENT SETUP	
3.2 EX3DV4Probe Specification	
3.3 Probe Calibration Process	
3.4 Data Extrapolation	
3.5 ELI PHANTOM	
3.6 Device Holder for Transmitters	
3.7 Muscle Simulation Mixture Characterization	
4. TEST SYSTEM SPECIFICATIONS	
5. SAR MEASUREMENT PROCEDURE	
5.1 Measurement Procedure	
6. RF EXPOSURE LIMITS	
7. FCC MEASUREMENT PROCEDURES	22
7.1 Measured and Reported SAR7.2 SAR Testing with 802.11 Transmitters	
7.2.1 General Device Setup	22
7.2.2 U-NII and U-NII-2A	22
7.2.3 U-NII-2C and U-NII-3	23
7.2.4 Initial Test Position Procedure	23
7.2.5 2.4 GHz SAR Test Requirements	23
7.2.6 OFDM Transmission Mode and SAR Test Channel Selection	23
7.2.7 Initial Test Configuration Procedure	24
7.2.8 Subsequent Test Configuration Procedures	24
7.2.9 Simultaneous Transmission of MIMO Chains	24
8. RF CONDUCTED POWERS	25
8.1 WLAN Conducted Powers	25
8.2 Bluetooth Conducted Powers	
9. SYSTEM VERIFICATION	
9.1 Tissue Verification	
10. SAR TEST RESULTS	
10.1 Body SAR Results	
10.2 SAR Test Notes	38
11. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	
11.1 Introduction	39

FCC ID: BEJNT-LG14Z96

Report No.: DRRFCC1601-0008

11.2 Simultaneous Transmission Procedures	
11.3 Simultaneous Transmission Capabilities	39
11.4 Body Simultaneous Transmission Analysis	
11.5 Simultaneous Transmission Conclusion	
12. SAR MEASUREMENT VARIABILITY	41
12.1 Measurement Variability	41
12.2 Measurement Uncertainty	41
13. IEEE P1528 -MEASUREMENT UNCERTAINTIES	42
14. CONCLUSION	48
15. REFERENCES	49
Attachment 1. – Probe Calibration Data	51
Attachment 2. – Dipole Calibration Data	63
Attachment 3 - SAR SYSTEM VALIDATION	92

1. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

General Information

EUT type	Notebook Computer			
FCC ID	BEJNT-LG14Z96			
Equipment model name	LG14Z96			
Equipment add model name		nechanical, electrical and functi the model name, which are ch		ı.
Equipment serial no.	Identical prototype			
Mode(s) of Operation	2.4 GHz W-LAN(802.	11b/g/n HT20/n HT40), 5 G W-	LAN (802.11a/n HT20/n HT40	0/ac VHT20/ac VHT40/ac VHT80)
	Band	Mode	Bandwidth	Frequency
	DTS	802.11b/g/n	HT20	2412 ~ 2462 MHz
	DIS	802.11n	HT40	2422 ~ 2452 MHz
		802.11a/n	HT20	5180 ~ 5240 MHz
	U-NII-1	802.11n	HT40	5190 ~ 5230 MHz
		802.11ac	VHT 80	5210 MHz
		802.11a/n	HT20	5260 ~ 5320 MHz
	U-NII-2A	802.11n	HT40	5270 ~ 5310 MHz
TX Frequency Range		802.11ac	VHT 80	5290 MHz
		802.11a/n	HT20	5500 ~ 5700 MHz
		802.11n	HT40	5510 ~ 5670 MHz
	U-NII-2C	802.11ac	VHT 20	5720 MHz
		802.11ac	VHT 40	5710 MHz
		802.11ac	VHT 80	5530, 5690 MHz
		802.11a/n	HT20	5745 ~ 5825 MHz
	U-NII-3	802.11n	HT40	5755 ~ 5795 MHz
		802.11ac	VHT 80	5775 MHz
	DTC	802.11b/g/n	HT20	2412 ~ 2462 MHz
	DTS	802.11n	HT40	2422 ~ 2452 MHz
		802.11a/n	HT20	5180 ~ 5240 MHz
	U-NII-1	802.11n	HT40	5190 ~ 5230 MHz
		802.11ac	VHT 80	5210 MHz
		802.11a/n	HT20	5260 ~ 5320 MHz
	U-NII-2A	802.11n	HT40	5270 ~ 5310 MHz
		802.11ac	VHT 80	5290 MHz
RX Frequency Range		802.11a/n	HT20	5500 ~ 5700 MHz
		802.11n	HT40	5510 ~ 5670 MHz
	U-NII-2C	802.11ac	VHT 20	5720 MHz
		802.11ac	VHT 40	5710 MHz
		802.11ac	VHT 80	5530, 5690 MHz
		802.11a/n	HT20	5745 ~ 5825 MHz
	U-NII-3	802.11n	HT40	5755 ~ 5795 MHz
		802.11ac	VHT 80	5775 MHz
		002.11ac	VIII 00	JI I J IVII IZ

				Reported SAR			
Donal	Mada		1g SAR (W/kg)	O.L	1g SAR (W/kg)		
Band	Mode	Ch	SISO	Ch	МІМО		
			Body		Body		
DTS	2.4 GHz W-LAN	6	0.27	6	0.29		
U-NII-1	5.2 GHz W-LAN	46	0.64	N/A	N/A		
U-NII-2A	5.3 GHz W-LAN	62	0.25	54	0.65		
U-NII-2C	5.6 GHz W-LAN	110	0.62	138	0.63		
U-NII-3	5.8 GHz W-LAN	159	0.62	157	0.65		
DSS/DTS	Bluetooth	N/A	0.13 ^{Note}	N/A	N/A		
Simultaneous SAR per	r KDB 690783 D01v01r0)3	0.77	N/A	N/A		
FCC Equipment Class	Part 15 Spread Spe Digital Transmission Unlicensed National	System(D					
Date(s) of Tests	2015-12-02 ~ 2015-	12-04					
Antenna Type	Internal Type Anteni	na					
Note	Bluetooth SAR was	Bluetooth SAR was estimated.					
Functions	BT(2.4GHz) / W-LAN(2.4GHz 802.11b/g/n(HT20)/n(HT40)), W-LAN(5GHz 802.11a/n(HT20)/n(HT40)/ac(VHT20)/ac(VHT40)/ac(VHT80)) supported						
			ssion between W-LAN(2.4GHz) & W-L on between BT Ant.1 & W-LAN Ant.2.	.AN(5GHZ).			

1.1 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 248227 D01v02r02 (802.11 Wi-Fi SAR)
- FCC KDB Publication 447498 D01v06 (General RF Exposure Guidance)
- FCC KDB Publication 616217 D04 SAR for laptop and tablets v01r02
- FCC KDB Publication 690783 D01 SAR Listings on Grants v01r03
- FCC KDB Publication 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB Publication 865664 D02 RF Exposure Reporting v01r02

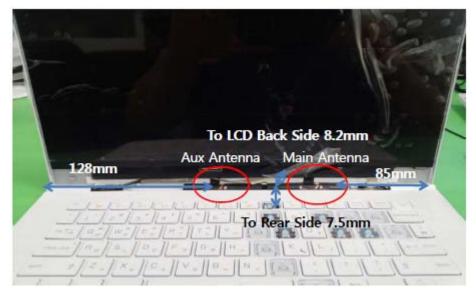
1.2 Device Overview

Band	Mode	Operating Modes	Tx Frequency	
DTS	2.4 GHz WLAN	Data	2412 ~ 2462 MHz	
U-NII-1	5.2 GHz WLAN	Data	5180 ~ 5240 MHz	
U-NII-2A	5.3 GHz WLAN	Data	5260 ~ 5320 MHz	
U-NII-2C	5.6 GHz WLAN	Data	5500 ~ 5700 MHz	
U-NII-3	5.8 GHz WLAN	Data	5745 ~ 5825 MHz	
DSS	Bluetooth	Data	2402 ~ 2480 MHz	

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

						Modulat	ted Avera	ge[dBm			
	Rand & Mada			Ant. 1			Ant. 2		MIMO		
	Band & Mode		Ch Low	Ch Mid	Ch High	Ch Lo	Ch Mid	Ch High	Ch Low	Ch Mid	Ch High
	IEEE 802.11b	Maximum	14.5	18.0	13.5	16.0	17.5	13.0	-	-	-
	(2.4 GHz)	Nominal	13.5	17.0	12.5	15.0	16.5	12.0	-	-	-
	IEEE 802.11g	Maximum	11.0	17.5	11.0	12.5	17.5	9.5	-	-	-
DTC	(2.4 GHz)	Nominal	10.0	16.5	10.0	11.5	16.5	8.5	-	-	-
DTS	IEEE 802.11n	Maximum	9.5	18.0	10.0	12.5	17.5	8.5	12.5	20.5	10.5
	HT20 (2.4 GHz)	Nominal	8.5	17.0	9.0	11.5	16.5	7.5	11.5	19.5	9.5
	IEEE 802.11n	Maximum	7.0	17.5	8.0	9.5	17.5	6.5	9.0	20.5	8.5
	HT40 (2.4 GHz)	Nominal	6.0	16.5	7.0	8.5	16.5	5.5	8.0	19.5	7.5



	Modulated Average [dBm]													
Band & Mode				An					t. 2			MII	-	
			Ch Low	Ch Mid-1 Ch	Ch Mid-2 Mid	Ch High	Ch Low	Ch Mid-1 Ch	Ch Mid-2 Mid	Ch High	Ch Low	Ch Mid-1 Ch	Ch Mid-2 Mid	Ch High
LI NIII 4	IEEE 802.11a	Maximum	8.5	9.5	9.5	10.0	14.0	16.0	16.5	16.0	-	-	-	-
U-NII-1	(5.2 GHz)	Nominal	7.5	8.5	8.5	9.0	13.0	15.0	15.5	15.0	-	-	1	-
U-NII-2A	IEEE 802.11a	Maximum	11.0	12.5	12.5	13.0	15.0	16.0	16.5	13.5	-	-	1	-
U-INII-ZA	(5.3 GHz)	Nominal	10.0	11.5	11.5	12.0	14.0	15.0	15.5	12.5	-	-	ı	-
U-NII-2C	IEEE 802.11a	Maximum	14.0	15.5	15.5	13.5	14.5	16.5	16.5	13.5	-	-	-	-
0-1111-20	(5.6 GHz)	Nominal	13.0	14.5	14.5	12.5	13.5	15.5	15.5	12.5	-	-	-	-
U-NII-3	IEEE 802.11a	Maximum	15.5	15	5.5	16.0	15.5	15	5.5	15.5	-	-	-	-
0-1411-5	(5.8 GHz)	Nominal	14.5	14	1.5	15.0	14.5	14	1.5	14.5	-	-	-	-
U-NII-1	IEEE 802.11n	Maximum	8.5	10.0	11.0	11.5	14.0	16.5	16.5	16.0	12.0	13.5	14.0	14.0
0-1411-1	HT20 (5.2 GHz)	Nominal	7.5	9.0	10.0	10.5	13.0	15.5	15.5	15.0	11.0	12.5	13.0	13.0
U-NII-2A	IEEE 802.11n	Maximum	11.5	13.0	13.5	13.5	15.0	16.0	16.5	13.5	14.0	15.0	15.5	16.0
O IVII Z/V	HT20 (5.3 GHz)	Nominal	10.5	12.0	12.5	12.5	14.0	15.0	15.5	12.5	13.0	14.0	14.5	15.0
U-NII-2C	IEEE 802.11n	Maximum	14.0	15.5	15.5	13.5	14.0	16.5	16.0	13.0	20.0	20.0	18.5	18.5
0 1411 20	HT20 (5.6 GHz)	Nominal	13.0	14.5	14.5	12.5	13.0	15.5	15.0	12.0	19.0	19.0	17.5	17.5
U-NII-3	IEEE 802.11n	Maximum	16.0	16	6.0	15.5	15.5	15.5 15.0		15.0	18.5	.5 18.5		18.0
0-1411-5	HT20 (5.8 GHz)	Nominal	15.0	15	5.0	14.5	14.5	14	1.5	14.0	17.5	17	7.5	17.0
U-NII-1	IEEE 802.11n	Maximum	12.0	-	-	12.5	12.5	-	-	16.5	12.5	-	-	15.5
<u> </u>	HT40 (5.2 GHz)	Nominal	11.0	-	-	11.5	11.5	-	-	15.5	11.5	-	-	14.5
U-NII-2A	IEEE 802.11n	Maximum	13.5	-	-	14.0	11.5	-	-	13.5	17.0	-	-	14.5
0 1tm 27t	HT40 (5.3 GHz)	Nominal	12.5	-	-	13.0	10.5	-	-	12.5	16.0	-	-	13.5
U-NII-2C	IEEE 802.11n	Maximum	14.0	16.5	16.5	17.0	14.0	17.0	16.5	16.0	17.0	19.5	20.0	19.5
0 1411 20	HT40 (5.6 GHz)	Nominal	13.0	15.5	15.5	16.0	13.0	16.0	15.5	15.0	16.0	18.5	19.0	18.5
U-NII-3	IEEE 802.11n	Maximum	15.5	-	-	15.5	14.5	-	-	15.5	16.5	-	-	18.0
0 1111 0	HT40 (5.8 GHz)	Nominal	14.5	-	-	14.5	13.5	-	-	14.5	15.5	-	-	17.0
U-NII-2C	IEEE 802.11ac	Maximum	-	13	3.5	-	-	13	3.0	-	-	17	'.5	-
0 1 20	VHT20 (5.6 GHz)	Nominal	-	12	2.5	-	-	12	2.0	-	-	16	6.5	-
U-NII-2C	IEEE 802.11ac	Maximum	-	17	7.0	-	-	15	5.5	-	-	18	3.0	-
0 1111 20	VHT40 (5.6 GHz)	Nominal	-	16	6.0	-	-	14	1.5	-	-	17	7.0	-
U-NII-1	IEEE 802.11ac	Maximum	-	13	3.5	-	-	10).5	-	-	12	2.5	-
<u> </u>	VHT80 (5.2 GHz)	Nominal	-	12	2.5	-	-	9	.5	-	-	11	.5	-
U-NII-2A	IEEE 802.11ac	Maximum	-	13	3.0	-	-	10	0.0	-	-	14	1.0	-
5 1111 Z/1	VHT80 (5.3 GHz)	Nominal	-	12	2.0	-	-	9	.0	-	-	13	3.0	-
U-NII-2C	IEEE 802.11ac	Maximum	14.0	-	-	15.0	12.0	-	-	14.5	14.0	-	-	20.0
3 1111 20	VHT80 (5.6 GHz)	Nominal	13.0	-	-	14.0	11.0	-	-	13.5	13.0	-	-	19.0
U-NII-3	IEEE 802.11ac	Maximum	-	11	.0	-	-	9	.5	-	-	11	.0	-
5	VHT80 (5.8 GHz)	Nominal	-	10	0.0	-	-	8	.5	-	-	10	0.0	-

	Band & Mod	Modulated Average [dBm]	
	Divista eth 4 Mhns	Maximum	5.0
	Bluetooth 1 Mbps	Nominal	4.0
	Division at the O Miles a	Maximum	1.0
D00/DT0	Bluetooth 2 Mbps	Nominal	0.0
DSS/DTS	Divista eth 2 Mhas	Maximum	0.5
	Bluetooth 3 Mbps	Nominal	-0.5
	Discrete alle I E	Maximum	1.5
	Bluetooth LE	Nominal	0.5

1.4 DUT Antenna Locations

Note: Exact antenna dimensions and separation distances are shown in the "Antenna Location_ BEJNT-LG14Z96" in the FCC Filing.

Mode			Body Sides for SAR Testing						
Wode	Тор	Bottom	Front	Rear	Right	Left			
2.4G W-LAN_Ant.1	Х	Х	Х	0	Х	Х			
2.4G W-LAN_Ant.2	Х	Х	Х	0	Х	Х			
2.4G W-LAN_MIMO	Х	X	Х	0	Х	Х			
5G W-LAN_Ant.1	Х	X	Х	0	Х	Х			
5G W-LAN_Ant.2	Х	X	Х	0	Х	Х			
5G W-LAN_MIMO	Х	X	Х	0	Х	X			

Note: The rear with touch configuration was only tested since only the rear is touched to human body in normal operation condition of this device.

1.5 SAR Test Exclusions Applied

(A) WIFI & BT

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances < 50 mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Table 1. SAR exclusion threshold for distances < 50 mm

Band	Mode	Equation	Result	SAR exclusion threshold	Required SAR
DSS	Bluetooth	[(3/5)* √2.480]	1.0	3.0	X
DTS	Bluetooth LE	[(1/5)* √2.480]	0.4	3.0	X
DTS	2.4 GHz W-LAN	[(112/5)* √2.437]	35.0	3.0	0
U-NII-1	5.2 GHz W-LAN	[(45/5)* √5.230]	20.4	3.0	0
U-NII-2A	5.3 GHz W-LAN	[(50/5)* √5.270]	23.0	3.0	0
U-NII-2C	5.6 GHz W-LAN	[100/5)* √5.690]	47.7	3.0	0
U-NII-3	5.8 GHz W-LAN	[(71/5)* √5.785]	34.1	3.0	0

Per KDB Publication 447498 D01v05r02, the maximum power of the channel was rounded to the nearest mW before

calculation.

1.6 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.7 Device Serial Numbers

Band & Mode	Body Serial Number
2.4 GHz WLAN	FCC #1
5 GHz WLAN	FCC #1

2. INTROCUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95*.1-2005 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Fig. 2.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR MEASUREMENT SETUP

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1).

A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-3770 3.40 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

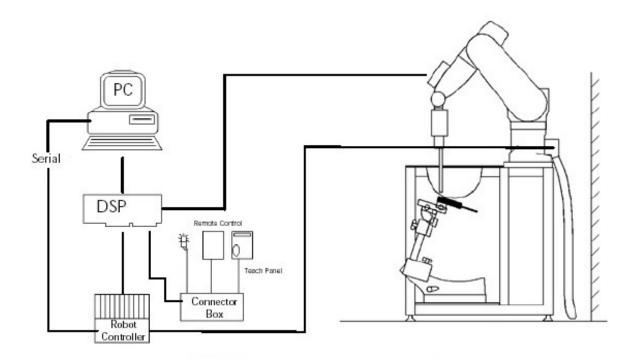


Figure 3.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

3.2 EX3DV4Probe Specification

Calibration In air from 10 MHz to 6 GHz

In brain and muscle simulating tissue at Frequencies of

300 MHz, 450 MHz, 600 MHz, 750 MHz, 835 MHz, 900 MHz, 1750 MHz, 1900 MHz, 2300 MHz 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5500 MHz, 5600 MHz, 5800 MHz

Frequency 10 MHz to 6 GHz

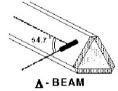
Linearity ± 0.2 dB(30 MHz to 6 GHz)

Dynamic 10 μ W/g to > 100 mW/g

Range Linearity: $\pm 0.2 \text{ dB}$

Dimensions Overall length: 337 mm

Tip length 20 mm


Body diameter 12 mm

Tip diameter 2.5 mm

Distance from probe tip to sensor center 1.0 mm

Application SAR Dosimetry Testing

Compliance tests of mobile phones

Figure 3.2 Triangular Probe Configurations

Figure 3.3 Probe Thick-Film Technique

DAE System

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration(see Fig. 3.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

3.3 Probe Calibration Process

3.3.1 E-Probe Calibration

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

C

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

where: where:

 Δt = exposure time (30 seconds),

heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

 σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

SAR is proportional to $\Delta T \, / \, \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

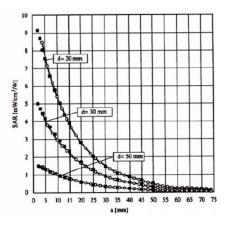


Figure 3.4E-Field and Temperature Measurements at 900MHz

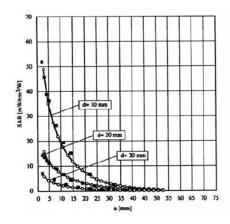


Figure 3.5 E-Field and Temperature Measurements at 1800MHz

3.4 Data Extrapolation

The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

with
$$V_i = \text{compensated signal of channel i}$$
 $(i=x,y,z)$

$$U_i = \text{input signal of channel i}$$
 $(i=x,y,z)$

$$U_i = \text{input signal of channel i}$$
 $(i=x,y,z)$

$$Cf = \text{crest factor of exciting field}$$
 $(DASY parameter)$

$$CDASY parameter)$$

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z)
Norm_i = sensor sensitivity of channel i (i = x,y,z)
 $\mu V/(V/m)^2$ for E-field probes
ConvF = sensitivity of enhancement in solution
 E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with $SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] $\rho = equivalent tissue density in g/cm^3$$

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

3.5 ELI PHANTOM

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 3.6)

Figure 3.6 ELI Phantom

ELI Phantom Specification:

Construction ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4,

but has reinforced top structure. ELI V6.0, released in August 2014, has the same shell geometry as ELI4 but offers increased long term stability. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper

Shell Thickness $2.0 \pm 0.2 \text{ mm}$ Filling VolumeApprox. 30 litersDimensionsMajor axis: 600 mm

Minor axis: 400 mm

surface.

3.6 Device Holder for Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device (Body-Worn) enables testing of tansmitter devices according to IEC 62209-2 specifications. The device holder can be locked for positioning at flat phantom section. Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.7 Mounting Device

3.7 Muscle Simulation Mixture Characterization

The muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Figure 3.8 Simulated Tissues

Table3.1 Composition of the Tissue Equivalent Matter

Ingredients	Frequency (MHz)								
(% by weight)	835	1900	2450	5200 ~ 5800					
Tissue Type	Body	Body	Body	Body					
Water	50.75	70.23	73.40	80.00					
Salt (NaCl)	0.940	0.290	0.060	-					
Sugar	48.21	-	-	-					
HEC	-	-	-	-					
Bactericide	0.100	-	-	-					
Triton X-100	-	-	-	-					
DGBE	-	29.48	26.54	-					
Diethylene glycol hexyl ether	-	-	-	-					
Polysorbate (Tween) 80	-	-	-	20.00					
Target for Dielectric Constant	55.2	53.3	52.7	-					
Target for Conductivity (S/m)	0.97	1.52	1.95	-					

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

3.8 SAR TEST EQUIPMENT

Table 3.2 Test Equipment Calibration

	Type	Manufacturer	Model	Cal.Date	Next.Cal.Date	S/N
\boxtimes	SEMITEC Engineering	SEMITEC	N/A	N/A	N/A	Shield Room
\boxtimes	Robot	SCHMID	TX90XL	N/A	N/A	F13/5RR2A1/A/01
\boxtimes	Robot Controller	SCHMID	CS8C	N/A	N/A	F13/5RR2A1/C/01
\boxtimes	Joystick	SCHMID	N/A	N/A	N/A	S-13200990
\boxtimes	IntelCorei7-3770 3.40 GHz Windows 7 Professional	N/A	N/A	N/A	N/A	N/A
\boxtimes	Probe Alignment Unit LB	N/A	N/A	N/A	N/A	SE UKS 030 AA
\boxtimes	Laptop Holder	SCHMID	SMLH1001CD	N/A	N/A	N/A
\boxtimes	2mm Oval Phantom	SCHMID	QDIVA001BB	N/A	N/A	1223
\boxtimes	Data Acquisition Electronics	SCHMID	DAE4V1	2015-08-27	2016-08-27	1396
\boxtimes	Dosimetric E-Field Probe	SCHMID	EX3DV4	2015-09-29	2017-09-29	3933
	Dummy Probe	N/A	N/A	N/A	N/A	N/A
\boxtimes	2450 MHz SAR Dipole	SCHMID	D2450V2	2015-09-28	2017-09-28	726
\boxtimes	5 GHz SAR Dipole	SCHMID	D5GHzV2	2015-03-23	2017-03-23	1103
\boxtimes	Network Analyzer	Agilent	E5071C	2014-12-19 2015-12-14	2015-12-19 2016-12-14	MY46111534
\boxtimes	Signal Generator	Agilent	E4438C	2015-09-09	2016-09-09	US41461520
\boxtimes	Amplifier	EMPOWER	BBS3Q7ELU	2015-09-09	2016-09-09	1020
\boxtimes	Amplifier	EMPOWER	BBS3Q8CCJ	2015-10-20	2016-10-20	1005
\boxtimes	Power Meter	HP	EPM-442A	2015-02-26	2016-02-26	GB37170267
\boxtimes	Power Meter	Anritsu	ML2495A	2015-09-23	2016-09-23	1435003
\boxtimes	Wide Bandwidth Power Sensor	Anritsu	MA2490A	2015-09-23	2016-09-23	1409034
\boxtimes	Power Sensor	HP	8481A	2015-02-26	2016-02-26	3318A96566
\boxtimes	Power Sensor	HP	8481A	2015-02-06	2016-02-06	2702A65976
\boxtimes	Dual Directional Coupler	Agilent	778D-012	2015-01-06	2016-01-06	50228
\boxtimes	Directional Coupler	HP	772D	2015-07-27	2016-07-27	2889A01064
\boxtimes	Low Pass Filter 3.0 GHz	Micro LAB	LA-30N	2015-09-09	2016-09-09	N/A
\boxtimes	Low Pass Filter 6.0 GHz	Micro LAB	LA-60N	2015-02-25	2016-02-25	N/A
\boxtimes	Attenuators (3 dB)	Agilent	8491B	2015-06-26	2016-06-26	MY39260700
\boxtimes	Attenuators (10 dB)	WEINSCHEL	23-10-34	2015-01-06	2016-01-06	BP4387
	Step Attenuator	HP	8494A	2015-09-10	2016-09-10	3308A33341
\boxtimes	Dielectric Probe kit	SCHMID	DAK-3.5	2014-12-09 2015-11-19	2015-12-09 2016-11-19	1092
\boxtimes	Power Splitter	Anritsu	K241B	2015-02-25	2016-02-25	1301184
\boxtimes	Bluetooth Tester	TESCOM	TC-3000B	2015-01-06	2016-01-06	3000B770243

NOTE: The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DT&C before each test. The brain and muscle simulating material are calibrated by DT&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material. Each equipment item was used solely within its respective calibration period.

4. TEST SYSTEM SPECIFICATIONS

Automated TEST SYSTEM SPECIFICATIONS:

Positioner

Robot Stäubli Unimation Corp. Robot Model: TX60L

Repeatability 0.02 mm

No. of axis 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor Intel Core i7-3770

Clock Speed 3.40 GHz

Operating System Windows 7 Professional DASY5 PC-Board

Data Converter

Features Signal, multiplexer, A/D converter. & control logic

Software DASY5

Connecting Lines Optical downlink for data and status info

Optical uplink for commands and clock

PC Interface Card

Function 24 bit (64 MHz) DSP for real time processing

Link to DAE 4

16 bit A/D converter for surface detection system

serial link to robot

direct emergency stop output for robot

E-Field Probes

Model EX3DV4 S/N: 3933

Construction Triangular core fiber optic detection system

Frequency 10 MHz to 6 GHz

Linearity ± 0.2 dB (30 MHz to 6 GHz)

Phantom

Phantom SAM Twin Phantom (V5.0)

Shell MaterialCompositeThickness $2.0 \pm 0.2 \text{ mm}$

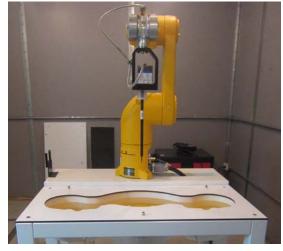


Figure 4.1 DASY5 Test System

5. SAR MEASUREMENT PROCEDURE

5.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 5-1) and IEEE1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

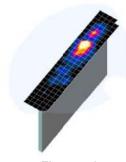


Figure 5.1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 5-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (•	Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
	,	,,	$\Delta z_{zoom}(n)$	$\Delta z_{zoom}(1)^*$ $\Delta z_{zoom}(n>1)^*$		
≤ 2 GHz	≤15	≤8	≤5	≤4	≤1.5*∆z _{zoom} (n-1)	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤ 4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤ 2.5 $\leq 1.5*\Delta z_{zoom}(n-1)$		≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	≤1.5*∆z _{zoom} (n-1)	≥ 22

Table 5.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6

6. RF EXPOSURE LIMITS

Uncontrolled Environment:

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment:

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-2005

	HUMAN EXPO	SURE LIMITS
	General Public Exposure (W/kg) or (mW/g)	Occupational Exposure (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.0

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

7. FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

7.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96 % is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

7.2.2 U-NII and U-NII-2A

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following, with respect to the highest reported SAR and maximum output power specified for production units. The procedures are applied independently to each exposure configuration; for example, head, body, hotspot mode etc.

- 1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
- 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

7.2.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements.

When Terminal Doppler Weather Rader (TDWR) restriction applies, the channels at 5.60 - 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification.

Unless band gap channels are permanently disabled, SAR must be considered for these channels. When band gap channels are disabled, each band is tested independently according to the normally required OFDM SAR measurements and probe calibration frequency points requirements.

7.2.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured.

7.2.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

7.2.6 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz and 5 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a and 802.11n or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n or 802.11g then 802.11n is used for SAR measurement. When the maximum output power ware the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

7.2.7 Initial Test Configuration Procedure

For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

7.2.8 Subsequent Test Configuration Procedures

For OFDM configurations, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration, adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power is ≤ 1.2 W/kg, no additional SAR testing for the subsequent test configurations is required.

7.2.9 Simultaneous Transmission of MIMO Chains

The simultaneous transmission conditions for MIMO must be considered separately for each standalone and aggregated frequency band according to the 802.11 transmission mode configurations and exposure conditions to determine SAR compliance. The aggregate maximum output power of all simultaneous transmitting antennas in all transmission chains may be used to determine SAR test exclusion for each frequency band and transmission mode configuration. The most conservative SAR test separation distance among the antennas must be used to apply the standalone SAR test exclusion provisions in KDB Publication 447498. When this power-based standalone SAR test exclusion does not apply, the sum of 1-g SAR provision in KDB Publication 447498 should be used to determine simultaneous transmission SAR test exclusion.

8. RF CONDUCTED POWERS

8.1 WLAN Conducted Powers

	-			802.11b (2.4 GHz) Con	ducted Power (dBm) A	Ant 1
Mode	Freq.	Channel		ate (Mbps)		
	(MHz)		1	2	5.5	11
	2412	1	14.27	14.22	14.17	14.23
802.11b	2437	6	<u>17.81</u>	17.72	17.65	17.73
	2462	11	13.23	13.19	13.19	12.98

Table 8.1 IEEE 802.11b Average RF Power Ant 1

	-			802.11b (2.4 GHz) Con	ducted Power (dBm) A	Ant 2				
Mode	Freq.	Channel		Data Rate (Mbps)						
	(MHz)		1	2	5.5	11				
	2412	1	15.75	15.71	15.72	15.55				
802.11b	2437	6	<u>17.35</u>	17.19	17.10	17.13				
	2462	11	12.87	12.78	12.78	12.86				

Table 8.2 IEEE 802.11b Average RF Power Ant 2

	Eroa			802	2.11g (2.4 C	GHz) Condι	cted Powe	r (dBm) Ar	nt 1			
Mode	Freq.	Channel		Data Rate (Mbps)								
	(MHz)		6	9	12	18	24	36	48	54		
	2412	1	10.54	10.38	10.46	10.48	10.38	10.52	10.38	10.48		
802.11g	2437	6	17.50	17.46	17.41	17.38	17.27	17.28	17.47	17.32		
	2462	11	10.63	10.59	10.60	10.43	10.48	10.48	10.43	10.53		

Table 8.3 IEEE 802.11g Average RF Power Ant 1

	5			802	2.11g (2.4 C	GHz) Condu	cted Powe	er (dBm) Ar	nt 2		
Mode	Freq.	Channel		Data Rate (Mbps)							
	(MHz)		6	9	12	18	24	36	48	54	
	2412	1	12.09	11.87	12.06	11.90	11.84	11.84	11.98	11.98	
802.11g	2437	6	17.32	17.14	17.15	17.25	17.10	17.11	17.27	17.25	
	2462	11	9.12	8.95	9.02	9.07	8.88	9.07	8.87	8.97	

Table 8.4 IEEE 802.11g Average RF Power Ant 2

				802.1	1n HT20 (2.	4 GHz) Co	nducted Po	wer (dBm)	Ant 1	
Mode	Freq.	Channel				Data Rat	e (Mbps)			
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	2412	1	9.21	9.09	9.05	9.16	9.13	9.01	9.07	9.01
802.11n	2437	6	17.88	17.73	17.65	17.77	17.73	17.69	17.70	17.83
(HT-20)	2462	11	9.76	9.54	9.73	9.57	9.51	9.51	9.65	9.65

Table 8.5 IEEE 802.11n HT20 Average RF Power Ant 1

	F			802.1	1n HT20 (2.	4 GHz) Coi	nducted Po	wer (dBm)	Ant 2		
Mode	Freq.	Channel		Data Rate (Mbps)							
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
	2412	1	12.15	11.93	12.12	11.96	11.90	11.90	12.04	12.04	
802.11n	2437	6	17.33	17.15	17.16	17.26	17.11	17.12	17.28	17.26	
(HT-20)	2462	11	8.42	8.25	8.32	8.37	8.18	8.37	8.17	8.27	

Table8.6 IEEE 802.11n HT20 Average RF Power Ant 2

	5			802.11	In HT20 (2.	4 GHz) Cor	nducted Po	wer (dBm)	МІМО	
Mode Freq. Channel Data Rate (Mbps)										
	(MHz)		MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
	2412	1	12.10	11.98	12.06	12.02	12.07	11.96	11.93	11.93
802.11n	2437	6	20.14	20.05	19.89	20.01	20.03	20.08	20.13	20.07
(HT-20)	2462	11	10.39	10.32	10.19	10.21	10.32	10.27	10.31	10.29

Table 8.7 IEEE 802.11n HT20 Average RF Power MIMO

	_			802.11n HT40 (2.4 GHz) Conducted Power (dBm) Ant 1							
Mode	Freq.	Channel		Data Rate (Mbps)							
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
	2422	3	6.97	6.85	6.81	6.92	6.89	6.77	6.83	6.77	
802.11n	2437	6	17.33	17.18	17.10	17.22	17.18	17.14	17.15	17.28	
(HT-40)	2452	9	7.80	7.58	7.77	7.61	7.55	7.55	7.69	7.69	

Table 8.8 IEEE 802.11n HT40 Average RF Power Ant 1

	F			802.1	1n HT40 (2.	.4 GHz) Co	nducted Po	wer (dBm)	Ant 2	
Mode	Freq.	Channel				Data Rat	e (Mbps)			
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	2422	3	9.18	9.13	9.06	9.07	9.06	9.03	9.15	8.93
802.11n	2437	6	17.21	17.09	17.06	17.08	17.13	17.14	17.10	17.14
(HT-40)	2452	9	6.44	6.36	6.33	6.41	6.39	6.33	6.23	6.32

Table 8.9 IEEE 802.11n HT40 Average RF Power Ant 2

	5			802.11	In HT40 (2.	4 GHz) Coı	nducted Po	wer (dBm)	МІМО		
Mode	Freq.	Channel				Data Rat	e (Mbps)				
	(MHz)		MCS8 MCS9 MCS10 MCS11 MCS12 MCS13 MCS14 MCS								
	2422	3	8.76	8.74	8.59	8.66	8.58	8.63	8.67	8.67	
802.11n	2437	6	20.05	19.81	19.94	19.94	19.98	19.88	19.99	20.02	
(HT-40)	2452	9	8.01	7.78	8.00	7.87	7.95	7.83	7.85	7.82	

Table 8.10 IEEE 802.11n HT40 Average RF Power MIMO

	_			80)2.11a (5 G	Hz) Condu	cted Power	(dBm) An	t 1	
Mode	Freq.	Channel				Data Rat	e (Mbps)			
	(MHz)		6	9	12	18	24	36	48	54
	5180	36	8.44	8.41	8.23	8.20	8.43	8.31	8.38	8.43
	5200	40	9.12	9.03	9.11	8.98	9.02	8.88	8.90	9.10
	5220	44	9.41	9.34	9.31	9.18	9.32	9.33	9.25	9.34
	5240	48	9.95	9.72	9.93	9.85	9.92	9.74	9.82	9.79
	5260	52	10.77	10.71	10.65	10.70	10.70	10.53	10.56	10.54
	5280	56	12.37	12.19	12.33	12.17	12.19	12.17	12.36	12.14
	5300	60	12.13	12.03	12.07	11.92	11.98	11.96	12.05	12.08
802.11a	5320	64	12.72	12.58	12.54	12.66	12.49	12.51	12.58	12.61
	5500	100	13.72	13.60	13.70	13.60	13.63	13.61	13.62	13.55
	5580	116	15.34	15.30	15.18	15.28	15.26	15.27	15.12	15.17
	5660	132	15.48	15.40	15.28	15.33	15.44	15.27	15.44	15.39
	5720	144	13.25	13.15	13.14	13.04	13.17	13.09	13.03	13.15
	5745	149	15.35	15.34	15.22	15.18	15.22	15.27	15.33	15.22
	5785	157	15.05	14.99	15.00	14.83	15.01	14.99	14.93	14.92
	5825	165	<u>15.55</u>	15.42	15.48	15.34	15.52	15.54	15.42	15.45

Table 8.11 IEEE 802.11a Average RF Power Ant 1

	_			80)2.11a (5 G	Hz) Condu	cted Power	(dBm) An	t 2	
Mode	Freq.	Channel 36 40 44 48 52 56 60 64 100 116 132 144				Data Rat	e (Mbps)			
	(MHz)		6	9	12	18	24	36	48	54
	5180	36	13.92	13.84	13.85	13.70	13.75	13.91	13.75	13.70
	5200	40	15.67	15.53	15.62	15.56	15.64	15.61	15.53	15.57
	5220	44	16.21	16.13	16.05	15.99	16.11	16.17	16.08	16.17
	5240	48	15.72	15.59	15.64	15.70	15.59	15.56	15.49	15.51
	5260	52	14.93	14.90	14.70	14.83	14.87	14.88	14.76	14.69
	5280	56	15.92	15.72	15.72	15.89	15.91	15.72	15.83	15.89
	5300	60	16.12	15.99	15.90	16.09	16.03	16.01	15.90	15.92
802.11a	5320	64	13.48	13.41	13.31	13.41	13.47	13.38	13.34	13.31
	5500	100	14.05	13.88	13.93	13.93	13.82	14.03	13.83	13.92
	5580	116	16.28	16.06	16.19	16.24	16.19	16.19	16.15	16.21
	5660	132	16.07	15.90	15.99	15.84	15.97	15.85	16.06	15.95
	5720	144	13.29	13.21	13.14	13.16	13.12	13.27	13.11	13.27
	5745	149	15.25	15.15	15.09	15.22	15.11	15.16	15.07	15.14
	5785	157	15.24	15.16	15.14	15.08	15.21	15.11	15.14	15.06
	5825	165	15.03	14.96	14.85	14.79	14.98	14.95	14.87	14.91

Table 8.12 IEEE 802.11a Average RF Power Ant 2

	_			802.1	11n HT20 (5	GHz) Con	ducted Pov	ver (dBm)	Ant 1	
Mode	Freq.	Channel				Data Rat	e (Mbps)			
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	5180	36	8.31	8.13	8.18	8.28	8.08	8.21	8.25	8.26
	5200	40	9.86	9.84	9.67	9.70	9.84	9.66	9.74	9.70
	5220	44	10.92	10.74	10.83	10.78	10.73	10.81	10.73	10.70
	5240	48	11.49	11.32	11.35	11.42	11.48	11.38	11.27	11.47
	5260	52	11.15	11.13	11.07	11.06	11.04	11.11	10.93	10.98
	5280	56	12.93	12.83	12.85	12.82	12.78	12.84	12.89	12.74
	5300	60	13.01	12.97	12.96	12.92	13.00	12.84	12.88	12.87
802.11n	5320	64	13.47	13.42	13.26	13.39	13.24	13.35	13.41	13.30
(HT-20)	5500	100	13.62	13.42	13.60	13.41	13.54	13.38	13.43	13.40
	5580	116	15.16	15.11	14.93	14.95	15.00	15.14	14.94	15.04
	5660	132	15.31	15.27	15.30	15.20	15.11	15.28	15.21	15.20
	5720	144	13.11	12.98	13.05	13.04	12.96	12.98	13.04	13.03
	5745	149	15.91	15.89	15.72	15.75	15.89	15.71	15.79	15.75
	5785	157	15.94	15.70	15.88	15.88	15.73	15.90	15.78	15.90
	5825	165	15.02	14.84	14.89	14.99	14.79	14.92	14.96	14.97

Table 8.13 IEEE 802.11n HT20 Average RF Power Ant 1

	_			802.1	11n HT20 (GHz) Con	ducted Pov	ver (dBm)	Ant 2	
Mode	Freq.	Channel				Data Rat	e (Mbps)			
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	5180	36	13.88	13.80	13.64	13.69	13.66	13.77	13.85	13.68
	5200	40	16.03	15.84	15.93	15.81	15.81	16.00	15.79	15.89
	5220	44	16.15	15.95	16.12	16.05	16.04	15.97	16.05	16.02
	5240	48	15.64	15.49	15.51	15.57	15.56	15.46	15.62	15.60
	5260	52	14.71	14.62	14.60	14.67	14.49	14.54	14.53	14.48
	5280	56	15.84	15.63	15.80	15.68	15.80	15.73	15.71	15.67
	5300	60	16.05	16.01	15.97	15.84	15.87	15.87	16.01	15.88
802.11n	5320	64	13.42	13.24	13.20	13.22	13.27	13.41	13.33	13.26
(HT-20)	5500	100	13.55	13.44	13.40	13.37	13.40	13.45	13.52	13.33
	5580	116	16.12	15.96	16.11	15.89	15.98	16.02	16.09	15.90
	5660	132	15.95	15.91	15.77	15.78	15.94	15.78	15.90	15.71
	5720	144	12.88	12.76	12.78	12.78	12.85	12.78	12.65	12.82
	5745	149	15.07	14.99	14.84	14.95	15.01	14.90	15.05	14.93
	5785	157	15.15	14.98	14.94	14.98	14.93	15.07	15.04	15.08
	5825	165	14.94	14.72	14.90	14.86	14.86	14.90	14.86	14.77

Table 8.14 IEEE 802.11n HT20 Average RF Power Ant 2

					802.11n H	HT20 (5 GF	lz) Condu	cted Powe	r (dBm) M	IMO	
Mode	Freq.	Channel				D	ata Rate (Mbps)			
	(MHz)		MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15	MCS16
	5180	36	11.94	11.79	11.80	11.82	11.89	11.79	11.81	11.85	11.94
	5200	40	13.14	13.06	13.00	13.07	12.99	13.01	13.01	12.97	13.14
	5220	44	13.74	13.65	13.70	13.61	13.52	13.60	13.51	13.67	13.74
	5240	48	13.71	13.61	13.57	13.60	13.57	13.57	13.60	13.52	13.71
	5260	52	13.68	13.55	13.50	13.60	13.64	13.57	13.65	13.46	13.68
	5280	56	14.51	14.32	14.40	14.46	14.40	14.39	14.30	14.38	14.51
	5300	60	15.09	14.86	14.94	15.00	14.98	14.95	15.01	14.87	15.09
802.11n	5320	64	15.64	15.59	15.54	15.50	15.48	15.51	15.54	15.49	15.64
(HT-20)	5500	100	19.60	19.50	19.44	19.49	19.47	19.45	19.56	19.45	19.60
	5580	116	19.77	19.63	19.64	19.73	19.59	19.64	19.65	19.69	19.77
	5660	132	18.29	18.18	18.14	18.15	18.21	18.22	18.17	18.17	18.29
	5720	144	18.45	18.30	18.37	18.44	18.31	18.34	18.24	18.34	18.45
	5745	149	18.25	18.05	18.13	18.16	18.09	18.11	18.15	18.05	18.25
	5785	157	<u>18.45</u>	18.33	18.34	18.29	18.38	18.33	18.35	18.32	18.45
	5825	165	17.57	17.44	17.51	17.41	17.48	17.39	17.46	17.45	17.57

Table 8.15 IEEE 802.11n HT20 Average RF Power MIMO

	F			802.	11n HT40 (5 GHz) Cor	nducted Po	wer (dBm)	Ant 1	
Mode	Freq.	Channel				Data Ra	te (Mbps)			
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	5190	38	11.51	11.40	11.29	11.49	11.34	11.43	11.28	11.41
	5230	46	12.07	11.86	11.84	11.88	11.97	11.85	11.85	12.04
	5270	54	13.25	13.13	13.13	13.01	13.13	13.05	13.22	13.12
	5310	62	<u>13.78</u>	13.77	13.59	13.76	13.70	13.68	13.62	13.75
802.11n	5510	102	13.82	13.68	13.78	13.76	13.75	13.64	13.58	13.77
(HT-40)	5550	110	16.11	15.97	16.07	16.07	16.04	16.05	15.99	16.07
	5670	134	16.25	16.13	16.14	16.06	16.08	16.08	16.16	16.14
	5710	142	<u>16.98</u>	16.94	16.85	16.86	16.95	16.77	16.80	16.97
	5755	151	15.24	15.18	15.00	15.05	15.11	15.12	15.23	15.18
	5795	159	15.15	14.95	15.13	14.94	15.07	14.91	14.96	14.93

Table 8.16 IEEE 802.11n HT20 Average RF Power Ant 1

	F			802.	11n HT40 (5 GHz) Con	ducted Po	wer (dBm)	Ant 2	
Mode	Freq.	Channel				Data Ra	te (Mbps)			
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	5190	38	12.12	11.96	11.90	12.10	11.95	12.03	12.10	11.92
	5230	46	<u>16.38</u>	16.17	16.34	16.22	16.34	16.27	16.25	16.21
	5270	54	11.04	11.00	10.96	10.83	10.86	10.86	11.00	10.87
	5310	62	13.50	13.32	13.28	13.30	13.35	13.49	13.41	13.34
802.11n	5510	102	13.75	13.64	13.60	13.57	13.60	13.65	13.72	13.53
(HT-40)	5550	110	<u>16.51</u>	16.35	16.50	16.28	16.37	16.41	16.48	16.29
	5670	134	16.25	16.21	16.07	16.08	16.24	16.08	16.20	16.01
	5710	142	15.57	15.45	15.47	15.47	15.54	15.47	15.34	15.51
	5755	151	14.47	14.41	14.45	14.36	14.42	14.23	14.26	14.24
	5795	159	<u>15.01</u>	14.84	14.80	14.84	14.79	14.93	14.90	14.94

Table 8.17 IEEE 802.11n HT20 Average RF Power Ant 2

	-			8	02.11n HT	40 (5 GHz) Conduct	ed Power	(dBm) MIN	10	
Mode	Freq.	Channel				Dat	ta Rate (M	bps)			
	(MHz)		MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15	MCS16
	5190	38	12.21	12.02	12.11	12.08	12.07	12.07	11.99	12.12	12.21
	5230	46	15.38	15.31	15.24	15.27	15.18	15.26	15.29	15.20	15.38
	5270	54	<u>16.88</u>	16.69	16.79	16.72	16.77	16.77	16.66	16.81	16.88
	5310	62	14.07	13.98	13.90	13.97	13.88	13.97	13.99	13.89	14.07
802.11n	5510	102	16.99	16.89	16.86	16.91	16.86	16.86	16.85	16.86	16.99
(HT-40)	5550	110	19.34	19.13	19.20	19.23	19.15	19.15	19.17	19.22	19.34
	5670	134	19.83	19.71	19.66	19.72	19.74	19.69	19.74	19.61	19.83
	5710	142	19.10	18.93	18.91	18.96	19.04	18.93	19.01	18.95	19.10
	5755	151	16.41	16.31	16.36	16.30	16.19	16.30	16.32	16.26	16.41
	5795	159	17.98	17.85	17.76	17.92	17.84	17.88	17.90	17.87	17.98

	F===			1	802.11ac \	/HT20 (5 G	Hz) Cond	ucted Powe	er (dBm) Aı	nt 1		
Mode	Freq.	Channel		Data Rate (Mbps)								
	(MHz)		MCS0	MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7 MC								
802.11ac (VHT-20)	5720	144	13.05	13.03	13.04	12.85	13.00	12.90	12.97	12.99	12.94	

Table 8.19 IEEE 802.11ac VHT20 Average RF Power Ant 1

	-				802.11ac \	/HT20 (5 G	Hz) Cond	ucted Pow	er (dBm) A	nt 2			
Mode	Freq.	Channel				Data Rate (Mbps)							
	(MHz)		MCS0	MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7									
802.11ac (VHT-20)	5720	144	12.75	12.56	12.52	12.66	12.57	12.66	12.68	12.57	12.69		

Table 8.20 IEEE 802.11ac VHT20 Average RF Power Ant 2

				8	302.11ac \	/HT20 (5 G	Hz) Cond	ucted Powe	er (dBm) MI	IMO	
Mode	Freq.	Channel									
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8
802.11ac	F700	444	17.25	17.08	17.20	17.20	17.02	17.11	17.18	17.21	17.12
(VHT-20)	5720	144	17.25	17.00	17.20	17.20	17.02	17.11	17.10	17.21	17.12

Table 8.21 IEEE 802.11ac VHT20 Average RF Power MIMO

	-				802.11ac	: VHT40 (5	GHz) Con	ducted Po	wer (dBm) Ant 1		
Mode	Freq.	Channel					Data Rate	(Mbps)				
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9
802.11ac (VHT-40)	5710	142	16.77	16.56	16.67	16.73	16.64	16.69	16.60	16.59	16.62	16.72

Table 8.22 IEEE 802.11ac VHT40 Average RF Power Ant 1

					802.11ac	VHT40 (5	GHz) Con	ducted Po	wer (dBm) Ant 2			
Mode	Freq.	Channel	el Data Rate (Mbps)										
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	
802.11ac (VHT-40)	5710	142	15.41	15.23	15.27	15.19	15.28	15.28	15.38	15.40	15.18	15.24	

Table 8.23 IEEE 802.11ac VHT40 Average RF Power Ant 2

	F===				802.11ac	VHT40 (5	GHz) Con	ducted Po	wer (dBm)) MIMO		
Mode	Freq.	Channel	Data Rate (Mbps)									
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9
802.11ac (VHT-40)	5710	142	17.84	17.80	17.66	17.72	17.76	17.73	17.75	17.73	17.76	17.70

Table 8.24 IEEE 802.11ac VHT40 Average RF Power MIMO

			802.11ac VHT80 (5 GHz) Conducted Power (dBm) Ant 1											
Mode	Freq.	Channel					Data Rat	e (Mbps)						
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9		
	5210	42	13.02	12.84	12.91	12.81	12.91	12.87	12.84	12.87	12.92	12.99		
	5290	58	12.99	12.80	12.97	12.76	12.83	12.98	12.76	12.85	12.89	12.96		
802.11ac	5530	106	13.54	13.50	13.42	13.49	13.50	13.36	13.37	13.53	13.37	13.49		
(VHT-80)	5690	138	14.95	14.84	14.81	14.78	14.83	14.85	14.85	14.92	14.85	14.72		
	5775	155	10.68	10.66	10.60	10.59	10.57	10.64	10.46	10.51	10.50	10.45		

Table 8.25 IEEE 802.11ac VHT80 Average RF Power Ant 1

	_		802.11ac VHT80 (5 GHz) Conducted Power (dBm) Ant 2											
Mode	Freq.	Channel					Data Rat	e (Mbps)						
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9		
	5210	42	10.11	9.94	9.90	9.94	9.89	10.03	10.00	10.04	10.01	10.02		
	5290	58	9.63	9.41	9.59	9.55	9.55	9.59	9.55	9.46	9.51	9.41		
802.11ac	5530	106	11.59	11.51	11.56	11.50	11.37	11.35	11.35	11.45	11.38	11.41		
(VHT-80)	5690	138	14.01	13.96	13.79	13.87	13.84	13.78	13.86	13.86	13.97	13.82		
	5775	155	9.32	9.26	9.17	9.22	9.30	9.17	9.16	9.27	9.28	9.32		

Table 8.26 IEEE 802.11ac VHT80 Average RF Power Ant 2

			802.11ac VHT80 (5 GHz) Conducted Power (dBm) MIMO											
Mode	Freq.	Channel					Data Ra	te (Mbps)						
	(MHz)		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9		
	5210	42	12.14	11.96	12.02	12.07	11.91	11.98	11.97	12.03	12.08	12.07		
	5290	58	12.51	12.38	12.29	12.45	12.37	12.41	12.43	12.40	12.39	12.37		
802.11ac	5530	106	13.85	13.70	13.77	13.71	13.68	13.65	13.83	13.71	13.66	13.73		
(VHT-80)	5690	138	<u>19.55</u>	19.44	19.41	19.47	19.38	19.35	19.38	19.49	19.48	19.47		
	5775	155	10.91	10.83	10.81	10.74	10.70	10.81	10.81	10.74	10.80	10.80		

Table 8.27 IEEE 802.11ac VHT80 Average RF Power MIMO

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v02r01 and October 2012 / April 2013 FCC/TCB Meeting Notes:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, duo to an even number of channels, both channels were measured.
- Output Power and SAR is not required for 802.11 g/n HT20 channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjust SAR is ≤ 1.2 W/kg.
- The underlined data rate and channel above were tested for SAR.

The average output powers of this device were tested by below configuration.

Figure 8.1 Power Measurement Setup

8.2 Bluetooth Conducted Powers

Channel	Frequency	Pov	'G Output wer bps)	Frame AV Pov (2MI	wer	Frame AVG Output Power (3Mbps)		
	(MHz)	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)	
Low	2402	4.06	2.55	0.28	1.07	-0.18	0.96	
Mid	2441	4.52	2.83	0.61	1.15	0.12	1.03	
High	2480	4.79	3.01	0.84	1.21	0.25	1.06	

Table 8.28 Bluetooth Frame Average RF Power

Channel	Frequency	Frame AVG C (L	Output Power E)
	(MHz)	(dBm)	(mW)
Low	2402	0.98	1.25
Mid	2440	1.30	1.35
High	2480	1.46	1.40

Table 8.29 Bluetooth LE Frame Average RF Power

Bluetooth Conducted Powers procedures

- 1. Bluetooth (BDR, EDR)
- 1) Enter DUT mode in EUT and operate it.
 - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed.
- 2) Instruments and EUT were connected like Figure 10.4(A).
- 3) The maximum output powers of BDR(1 Mbps), EDR(2, 3 Mbps) and each frequency were set by a Bluetooth Tester.
- 4) Power levels were measured by a Power Meter.
- 2. Bluetooth (LE)
- 1) Enter LE mode in EUT and operate it.
 - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed.
- 2) Instruments and EUT were connected like Figure 10.4(B).
- 3) The average conducted output powers of LE and each frequency can measurement according to setting program in EUT.
- 4) Power levels were measured by a Power Meter.

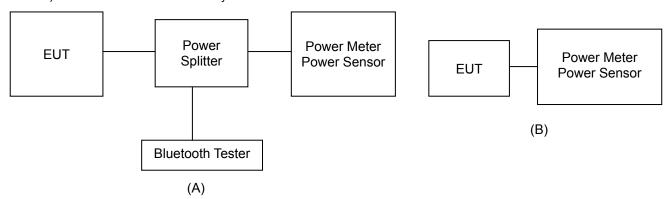


Figure 8.2 Average Power Measurement Setup

The average conducted output powers of Bluetooth were measured using above test setup and a wideband gated RF power meter when the EUT is transmitting at its maximum power level.

9. SYSTEM VERIFICATION

9.1 Tissue Verification

	MEASURED TISSUE PARAMETERS Tissue Ambient Liquid Measured Dielectric Dielect													
Date(s)	Tissue Type	Ambient Temp.[°C]	Liquid Temp.[°C]	Measured Frequency [MHz]		Target Conductivity, σ (S/m)		Measured Conductivity, σ (S/m)	ErDeviation [%]	σ Deviation [%]				
				2402	52.760	1.904	50.937	1.924	-3.46	1.05				
				2412	52.750	1.914	50.912	1.936	-3.48	1.15				
				2422	52.740	1.923	50.889	1.948	-3.51	1.30				
	2450			2437	52.720	1.938	50.852	1.965	-3.54	1.39				
Dec. 02. 2015	Body	20.9	21.3	2441		1.941	50.840		-3.55	1.49				
	Dody			2450		1.950	50.815			1.59				
				2452						1.59				
				2462						1.42				
				2480						1.15				
				5180		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.72						
				5190						-0.74				
				5200						-0.68				
				5210						-0.62				
				5220						-0.56 -0.52				
	5180~			5230 5240						-0.52 -0.52				
Dec. 03, 2015	5320	20.6	21.1	5260						-0.52				
Dec. 03. 2013	Body		-	5270						-0.41				
				5280						-0.30				
				5290						-0.30				
				5300						-0.31				
				5310						-0.28				
				5320						-0.20				
				5500	48.610	5.650			0.28	2.14				
				5510	48.590	5.661	48.738		0.30	2.14				
				5530						2.18				
				5550						2.30				
				5580						2.40				
				5590						2.47				
				5600						2.57				
				5660						2.79				
				5670						2.79				
	5500~			5690						2.86				
Dec. 04. 2015	5825	21.0	21.4	5700						2.96				
	Body					_								
				5710						3.04				
				5720						3.08				
				5745						3.12				
				5755						3.21				
				5775	48.230	5.971	48.239	6.165	0.02	3.25				
				5785	48.220	5.982	48.217	6.179	-0.01	3.29				
				5795	48.210	5.994	48.194	6.194	-0.03	3.34				
				5800	48.200	6.000	48.183	6.202	-0.04	3.37				
				5825	48.170	6.029	48.145	6.243	-0.05	3.55				

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Measurement Procedure for Tissue verification:

- The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight
- The complex admittance with respect to the probe aperture was measured

 The complex relative permittivity , for example from the below equation (Pournaropoulos and

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon'_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho'$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$

9.2 Test System Verification

Prior to assessment, the system is verified to the ± 10 % of the specifications at 2450 MHz and 5 GHz by using the SAR Dipole kit(s). (Graphic Plots Attached)

			SYS	TEM DIPO	LE VERIFIC	ATION TAR	GET & ME	EASUREI)			
SAR Syste m #	Freq. [MHz]	SAR Dipole kits	Date(s)	Tissue Type	Ambient Temp.[°C]	Liquid Temp.[°C]	Probe S/N	Input Powe r (mW)	1 W Target SAR _{1g} (W/kg)	Measure d SAR _{1g} (W/kg)	1 W Normalize d SAR _{1g} (W/kg)	Deviatio n [%]
D	2450	D2450V2, SN: 726	Dec. 02. 2015	Body	20.9	21.3	3933	250	49.5	12.7	50.8	2.63
D	5200	D5GV2, SN: 1103	Dec. 03. 2015	Body	20.6	21.1	3933	100	74.6	7.81	78.1	4.69
D	5300	D5GV2, SN: 1103	Dec. 03. 2015	Body	20.6	21.1	3933	100	75.0	7.25	72.5	-3.33
D	5500	D5GV2, SN: 1103	Dec. 04. 2015	Body	21.0	21.4	3933	100	80.2	7.74	77.4	-3.49
D	5600	D5GV2, SN: 1103	Dec. 04. 2015	Body	21.0	21.4	3933	100	78.7	8.29	82.9	5.34
D	5800	D5GV2, SN: 1103	Dec. 04. 2015	Body	21.0	21.4	3933	100	76.8	7.86	78.6	2.34

Note1 : System Verification was measured with input 250 mW , 100 mW(5200-5800 MHz) and normalized to 1W.

Note2 : To confirm the proper SAR liquid depth, the z-axis plots from the system verifications were included since the system verifications were performed using the same liquid, probe and DAE as the SAR tests in the same time period.

Note3: Full system validation status and results can be found in Attachment 3.

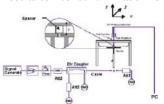


Figure 11.1 Dipole Verification Test Setup Diagram & Photo

10. SAR TEST RESULTS

10.1 Body SAR Results

Table 10.1 DTS Body SAR

						MEASU	REMENT RE	SULTS							
FREQUE	FREQUENCY Mode/ Antenna Service Maximum Allowed Power IdBm IdBm IdBm IdBm IdBm IdBm IdBm IdBm									Duty Cycle	1g SAR	Scaling Factor	Scaling Factor (Duty	1g Scaled SAR	Plots
MHz	MHz Ch [dBm] [dBm] Num									-,	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b Ant.1	DSSS	18.00	17.81	-0.010	0 mm [Rear]	FCC #1	1	98.8	0.146	1.045	1.012	0.154	A1
2437	6	802.11b Ant.2	DSSS	17.50	17.35	-0.180	0 mm [Rear]	FCC #1	1	98.8	0.254	1.035	1.012	0.266	A2
2437	6	802.11n HT40 MIMO	20.05	FCC #1	MCS8	94.7	0.248	1.109	1.056	0.290	А3				
	=		NOL/IEE	- COE 4 20	OF CAFETY	LIMIT	•				Dadu			_	

ANSI / IEEE C95.1-2005— SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population Exposure

Body
1.6 W/kg (mW/g)
averaged over 1 gram

Note: The rear with touch configuration was only tested since only the rear is touched to human body in normal operation condition of this device.

Adjusted SAR results for OFDM SAR												
FREQUENCY MHz Ch		Mode/ Antenna	Service	Maximum Allowed Power	1g Scaled SAR	FREQUENCY [MHz]	Mode	Service	Maximum Allowed Power	Ratio of OFDM to DSSS	1g Adjusted SAR	Determine OFDM SAR
MHZ	Cn			[dBm]	(W/kg)				[dBm		(W/kg)	
2437	6	802.11b Ant.1	DSSS	18.00	0.154	2437	802.11g	OFDM	17.50	0.891	0.137	X
2437	6	802.11b Ant.1	DSSS	18.00	0.154	2437	802.11n HT20	OFDM	18.00	1.000	0.154	X
2437	6	802.11b Ant.1	DSSS	18.00	0.154	2437	802.11n HT40	OFDM	17.50	0.891	0.137	X
2437	6	802.11b Ant.2	DSSS	17.50	0.266	2437	802.11g	OFDM	17.50	1.000	0.266	X
2437	6	802.11b Ant.2	DSSS	17.50	0.266	2437	802.11n HT20	OFDM	17.50	1.000	0.266	X
2437	6	802.11b Ant.2	DSSS	17.50	0.266	2437	802.11n HT40	OFDM	17.50	1.000	0.266	X
2437	6	802.11n HT40 MIMO	OFDM	20.50	0.290	2437	802.11n HT20 MIMO	OFDM	20.50	1.000	0.290	X
ANSI / IEEE C95.1-2005– SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure							Body 1.6 W/kg (mW/g) averaged over 1 gram					

Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Table 10.2 UNII Body SAR

						MEASUF	REMENT RES	SULTS							
FREQUE	ENCY	Mode/ Antenna	Service	Maximum Allowed Power	Conducted Power	Drift Power [dB]	Phantom Position	Device Serial	Data Rate	Duty Cycle	1g SAR	Scaling Factor	Scaling Factor (Duty	1g Scaled SAR	Plots
MHz	Ch			[dBm]	[dBm]	[ub]	1 osition	Number	[Mbps]	Oyolo	(W/kg)	(Power)	Cycle)	(W/kg)	"
5310	62	802.11n HT40 Ant.1	OFDM	14.00	13.78	0.140	0 mm [Rear]	FCC #1	MCS0	97.0	0.231	1.052	1.031	0.251	A4
5710	142	802.11n HT40 Ant.1	OFDM	17.00	16.98	0.180	0 mm [Rear]	FCC #1	MCS0	97.0	0.339	1.005	1.031	0.351	A5
5825	165	802.11a Ant.1	OFDM	16.00	15.55	-0.130	0 mm [Rear]	FCC #1	6	98.6	0.420	1.109	1.014	0.472	A6
5230	46	802.11n HT40 Ant.2	OFDM	16.50	16.38	-0.030	0 mm [Rear]	FCC #1	MCS0	97.0	0.602	1.028	1.031	0.638	A7
5550	110	802.11n HT40 Ant.2	OFDM	17.00	16.51	-0.020	0 mm [Rear]	FCC #1	MCS0	97.0	0.536	1.119	1.031	0.618	A8
5795	159	802.11n HT40 Ant.2	OFDM	15.50	15.01	-0.150	0 mm [Rear]	FCC #1	MCS0	97.0	0.535	1.119	1.031	0.617	A9
5270	54	802.11n HT40 MIMO	OFDM	17.00	16.88	-0.010	0 mm [Rear]	FCC #1	MCS8	94.3	0.593	1.028	1.060	0.646	A10
5690	138	802.11ac VHT80 MIMO	OFDM	20.00	19.55	0.060	0 mm [Rear]	FCC #1	MCS0	89.7	0.506	1.109	1.115	0.626	A11
5785	157	802.11n HT20 MIMO	OFDM	18.50	18.45	-0.050	0 mm [Rear]	FCC #1	MCS8	97.1	0.623	1.012	1.030	0.649	A12
	ANSI / IEEE C95.1-2005- SAFETY LIMIT							Body							
l	Spatial Peak										1.6 W/kg (n				
i		Uncontr	olled Exp	osure/Gener	ral Population	Exposure		'			ave	eraged over	r 1 gram		

Note: The rear with touch configuration was only tested since only the rear is touched to human body in normal operation condition of this device.

	Adjusted SAR results for UNII-1 and UNII-2A SAR											
FREQUENCY		Mode/ Antenna	Service	Maximum Allowed Power	1g Scaled SAR	FREQUENCY [MHz]	Mode	Service	Maximum Allowed Power	Adjusted Factor	1g Adjusted SAR	SAR for the band with lower maximum
MHz	Ch			[dBm]	(W/kg)	[MT12]			[dBm	Factor	(W/kg)	output power
5310	62	802.11n HT40 Ant.1	OFDM	14.00	0.251	5210	802.11ac VHT80 Ant.1	OFDM	13.50	0.891	0.224	X
5230	46	802.11n HT40 Ant.2	OFDM	16.50	0.638	5280	802.11a Ant.2	OFDM	16.50	1.000	0.638	X
5270	54	802.11n HT40 MIMO	OFDM	17.00	0.646	5240	802.11n HT20 MIMO	OFDM	15.50	0.631	0.408	X
	ANSI / IEEE C95.1-2005— SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure						Body 1.6 W/kg (mW/g) averaged over 1 gram					

Note(s)

^{1.} U-NII-1 and U-NII-2A Bands: When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration.

10.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCCKDB Publication 447498 D01v06
- 6. The rear with touch configuration was only tested since the rear is touched to human body in normal operation condition of this device.
- 7. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 14 for variability analysis.

WLAN Notes:

- 1. The initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required duo to the maximum allowed powers and the highest reported DSSS SAR when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output and the adjust SAR is ≤ 1.2 W/kg.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg.
- 4. When the maximum reported 1g averaged SAR ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor to determine compliance.

11. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to handsets with built-in unlicensed transmitters such as 802.11b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 11.1 Estimated 1g SAR

Mode	Frequency		mum d Power	Separation Distance (Body)	Estimated SAR (Body)	
	[MHz]	[dBm]	[mW]	[mm]	[W/kg]	
Bluetooth	2480	5	3	5	0.133	

11.3 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 13.1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 11.1 Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06.

Table 11.2 Simultaneous Transmission Scenarios

No	Capable TX configuration	W-LAN 2.4GHz 802.11b/g/n	W-LAN 5GHz 802.11a/n/ac	Bluetooth 2.4GHz
1	W-LAN 2.4GHz 802.11b/g/n		No	Yes
2	W-LAN 5GHz 802.11a/n/ac	No		Yes
3	Bluetooth 2.4GHz	Yes	Yes	

Table 11.3 Simultaneous SAR Cases

No.	Capable Transmit Configuration	Body	Note				
1	W-LAN 2.4 GHz Ant.2 + Bluetooth Ant.1	Yes	Bluetooth transmitter does simultaneous transmit with the W-LAN				
2	2 W-LAN 5 GHz Ant.2 + Bluetooth Ant.1		transmitter. When the BT is turn on, it transmits on Ant.1 and the \LAN transmits on Ant.2.				

Notes:

- 1. This device supports only simultaneous transmission between BT Ant.1 & W-LAN Ant.2.
- This device supports 2x2 MIMO Tx for W-LAN 802.11n/ac. Each W-LAN antenna can transmit independently or together when operating with MIMO.

11.4 Body Simultaneous Transmission Analysis

Table 11.4 Simultaneous Transmission Scenario with Bluetooth

Configuration	Mode	W-LAN Ant.2 SAR (W/kg)	Bluetooth Ant.1 SAR (W/kg)	ΣSAR (W/kg)
Rear Side	W-LAN 2.4 GHz	0.266	0.133	0.399
Rear Side	W-LAN 5.2 GHz	0.638	0.133	0.771
Rear Side	W-LAN 5.6 GHz	0.618	0.133	0.751
Rear Side	W-LAN 5.8 GHz	0.617	0.133	0.750

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

11.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

12. SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1. When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2. A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3. A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664D01v01r04, the standard measurement uncertainty analysis per IEEE 1528-2013 was not required.

13. IEEE P1528 -MEASUREMENT UNCERTAINTIES

2450 MHz Body

From Decemention	Uncertainty	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1g	(1g)	Veff
Measurement System						
Probe calibration	± 6.0	Normal	1	1	± 6.0 %	8
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	8
Detection limits	± 0.25	Rectangular	√3	1	± 0.145 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	8
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	∞
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.31 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	∞
Liquid conductivity (Meas.)	± 4.4	Normal	1	0.64	± 4.4 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞
Liquid permittivity (Meas.)	± 3.8	Normal	1	0.6	± 3.8 %	∞
Combined Standard Uncertainty					± 12.1 %	330
Expanded Uncertainty (k=2)					± 24.2 %	

5200 MHz Body

Error Description	Uncertainty	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	DIVISOI	1g	(1g)	Veff
Measurement System						
Probe calibration	± 6.55	Normal	1	1	± 6.55 %	∞
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.145 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	∞
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	8
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.31 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	∞
Liquid conductivity (Meas.)	± 3.9	Normal	1	0.64	± 3.9 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞
Liquid permittivity (Meas.)	± 4.2	Normal	1	0.6	± 4.2 %	∞
Combined Standard Uncertainty					± 12.3 %	330
Expanded Uncertainty (k=2)					± 24.6 %	

5300 MHz Body

Error Description	Uncertainty	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	DIVISOR	1g	(1g)	Veff
Measurement System				•	•	
Probe calibration	± 6.55	Normal	1	1	± 6.55 %	∞
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	8
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	8
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.145 %	8
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	8
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	8
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	8
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	8
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	8
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.31 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	8
Liquid conductivity (Meas.)	± 4.4	Normal	1	0.64	± 4.4 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	8
Liquid permittivity (Meas.)	± 4.0	Normal	1	0.6	± 4.0 %	8
Combined Standard Uncertainty					± 12.4 %	330
Expanded Uncertainty (k=2)					± 24.8 %	

5500 MHz Body

Error Description	Uncertainty	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	DIVISOI	1g	(1g)	Veff
Measurement System						
Probe calibration	± 6.55	Normal	1	1	± 6.55 %	∞
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.145 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	∞
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	∞
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.31 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	∞
Liquid conductivity (Meas.)	± 4.2	Normal	1	0.64	± 4.2 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞
Liquid permittivity (Meas.)	± 4.5	Normal	1	0.6	± 4.5 %	∞
Combined Standard Uncertainty					± 12.4 %	330
Expanded Uncertainty (k=2)					± 24.8 %	

5600 MHz Body

Error Description	Uncertainty	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	DIVISOI	1g	(1g)	Veff
Measurement System						
Probe calibration	± 6.55	Normal	1	1	± 6.55 %	∞
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.145 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	∞
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	∞
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.31 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	∞
Liquid conductivity (Meas.)	± 4.7	Normal	1	0.64	± 4.7 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞
Liquid permittivity (Meas.)	± 4.3	Normal	1	0.6	± 4.3 %	∞
Combined Standard Uncertainty					± 12.5 %	330
Expanded Uncertainty (k=2)					± 25.0 %	

5800 MHz body

Error Description	Uncertainty	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	DIVISOI	1g	(1g)	Veff
Measurement System						
Probe calibration	± 6.55	Normal	1	1	± 6.55 %	∞
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.145 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	∞
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	8
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.31 %	8
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	8
Liquid conductivity (Meas.)	± 4.2	Normal	1	0.64	± 4.2 %	8
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	8
Liquid permittivity (Meas.)	± 3.8	Normal	1	0.6	± 3.8 %	8
Combined Standard Uncertainty					± 12.3 %	330
Expanded Uncertainty (k=2)					± 24.6 %	

14. CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s)tested.

Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease).

Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

15. REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 IEEE Std. 1528-2013, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.

- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02r02
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] 615223 D01 802 16e WI-Max SAR Guidance v01, Nov. 13, 2009
- [30] Anexo à Resolução No. 533, de 10 de September de 2009.
- [31] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), Mar. 2010.

Attachment 1. - Probe Calibration Data

Calibration Laboratory of

Schmid & Partner Engineering AG Zeighavstrasse 43, 8094 Zurich, Switzerland

S Schweizerischer Kelityrierdenst
G Service suisse d'Ateinenage
Bervick sviggero di taretura
Sales Calibration Service

Apprecitation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

DT&C (Dymstec)

Certificate No. EX3-3933 Sep 15

CALIBRATION CERTIFICATE

Ottavel

EX3DV4 - SN:3933

California (mosture))

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4; QA CAL-23.v5,

QA CAL-25.V6

Calibration procedure for dosimetric E-field probes

Calibration date

September 29, 2015

The calibrators surficular occurrents the traceability to notional standards, which resize the physical units of measurements (SO.
The measurements and the uncortainties with confidence probability are given on the following pages and are part of the cereficales.

At unitirations have been constacted in the closed laboratory facility, environment temperature (22 x 3/10 and humidity < 70%.

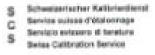
Calibration Explanent used (M&TE ortical for celibrature)

Princey Standards	10	Cal Date (Cuttingle No.)	Scheduled Californian
Power mater E44196	GS41293874	D1-Apr-16-(No. 217-02128)	Mar-16
Power sangur E4412A	MY41486087	211-Apr-15 (No. 217-02128)	Mar-76
Reference 3 off Attenuator	SN: 55054 (3x)	D1-Apr-15 (No. 217-00129)	Mar fil
Heteroca 20 dB Attenuator	SN: 35277 (20s)	D1-Apr-16 (No. 217-00102)	Mar-18
Reference 30 off Attenuater	8N 85129 (30k)	(01-Apr.15 (No. 217-00133)	Mar-18
Reference Prote EB30V2	SN: 3013	30-Dec-14 (No. ESS-2013 Dec14)	Das-15
DNEA	SN: 600	14-Jan-15 (No. GAE4-660 Jan-15)	Jan-16
Secondary Standards	ID O	Check Date (in Fouse)	Scheduled Check
RF generator NF 6649C	US3642U01700	4-Aug-99 (in house check Apr-13)	In Inquiae of each; Apr-18
National Stationar HP EPGIE	LISSTORGERS	18-Oct-01 (in house check Oct-14)	In frause charts: Out-16

Cultivated by Israe Ethicoxy Laboratory Technician Officer Children

Issued: September 30, 2015.
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3933_Sep15


Page 1 of 11

Galibration Laboratory of Schmid & Partner Engineering AG Zaughanninasse 41, 850s Zurim, Santaerland

Accomplisation No.: SCS 0108

Appreciated by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the eighatories to the EA
Multilateral Agreement for the recognition of collaboration certificates

Glossary:

TSL teams simulating liquid semilibrity in free epoce semilibrity in free epoce semilibrity in TSL / NORMu,y.z DCP diode compression point

CF creat factor (1/buty, cycle) of the RF signal A. B. C. D modulation dependent interstation parameters

Polarization φ o rotation around probe axis

Polarization 9 3 rotation around an exis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1529-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Avaraged Specific Absorption Rate (SAR) in the Hymon Head from Wiseless Communications Devices, Measurement Techniques, June 2013.
- Tophriques*, June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005
- EG 62209-2. "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010.
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 5 = 0 (f s 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSI, (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software varsions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of CurvF.
- DCPx,y,c: DCP are numerical inegrization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Pask to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diods.
- ConvF and Boundary Effect Parameters: Assessed in flat phontom using E-field (or Temperature Transfer
 Standard for f s 800 MHz) and inside waveguide using analytical field distributions based on power
 measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for
 boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are
 used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds
 to NOWMx,y,z * Corse whereby the uncertainty corresponds to that given for ConsF. A frequency dependent
 GonvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
 MHz.
- Spherical isotropy (3D seviation from isotropy): in a fleid of low gradients realized using a flat phantom exposed by a patch antenne.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No. EX3-2033, Sept.

Page 2 of 11

FCC ID: BEJNT-LG14Z96

Report No.: DRRFCC1601-0008

EX3DV4 - SN:3933 September 29, 2015

Probe EX3DV4

SN:3933

Manufactured: July 24, 2013

Calibrated: September 29, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system/)

Certificate No: EX3-3933_Sep15

Page 3 of 11

EX3DV4-- SN:3933

September 29, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3933

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Uno (k=2)
Norm (µV/(V/m) ²) ²	0.51	0.53	0.19	± 10.1 %
DCP (mV) ^a	99.9	100.1	88.1	

Modulation Calibration Parameters

UIID	Communication System Name		A dB	B dB√ _p V	С	D dB	VR mV	Une ^c (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	186.0	±3.3 %
		Y	0.0	0.0	1.0		194.3	
		Z	0.0	0.0	1.0		178.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3933_Sep15

The uncertainties of Norm X,Y,Z do not affect the E²-field uncontainty inside TSL (see Pages 5 and 6).

Namerical linearization parameter uncontainty not required.

Uncontainty is determined using the max. daviation from I near response applying rectangular distribution and is expressed for the square of the Seld value.

EX3DV4- 8N:3933

September 29, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3933

Calibration Parameter Determined in Head Tissue Simulating Media

r (MHz) ^d	Relative Permittivity	Conductivity (8im)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ⁶ (mm)	Une (k=2)
300	45.3	0.87	12.77	12.77	12.77	0.05	1.20	± 13.3 %
450	43.5	0.87	12.15	12.15	12.15	0.16	1.90	± 13.3 %
600	42.7	0.88	11.12	11,12	11.12	0.05	1.20	± 13.3 %
750	41.9	0.89	10.60	10.60	10.60	0.21	1.35	± 12.0 %
835	41.5	0.90	10.22	10.22	10.22	0.13	1.82	± 12.0 %
900	41.5	0.97	9.94	9.94	9.94	0.16	1.76	± 12.0 %
1750	40.1	1.37	8.62	8.62	8.62	0.22	1.05	± 12.0 %
1900	40.0	1,40	8.32	8.32	8.32	0.38	0.81	± 12.0 %
2300	39.5	1.67	7.94	7.94	7.94	0.29	0.93	± 12.0 %
2450	39.2	1.80	7.51	7.51	7.51	0.26	1.09	± 12.0 %
2600	39.0	1.96	7.65	7.65	7.65	0.27	1.15	± 12.0 %
3500	37.9	2.91	7.36	7.36	7.36	0.16	1,90	± 13.1 %
5200	36.0	4.66	5.25	5.25	5.25	0.35	1.80	± 13.1 %
5300	35.9	4.76	5.03	5.03	5.03	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.78	4.78	4.78	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.70	4.70	4.70	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.81	4.61	4.61	0.40	1.80	± 13.1 %

⁶ Prequency validity above 300 MHz of ± 100 MHz only applies for DAS'n' v4.4 and higher (see Page 2), else it is restricted to ± 60 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF essessments at 30, 64, 126, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
⁸ At frequencies below 3 GHz, the validity of tissue parameters (cland a) can be reloxed to ± 10% if liquid companisation formula is applied to measured SAR values. At frequencies (cland a) and companisation formula is applied to measured for values. At frequencies (cland a) the restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indigated tensor tissue parameters.

Certificate No: EX3-3933_Sep15

the Com/F uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during celloration. SPEAG walrants that the remaining deviation due to the boundary effect after compensation is always loss than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip clamater from the boundary.

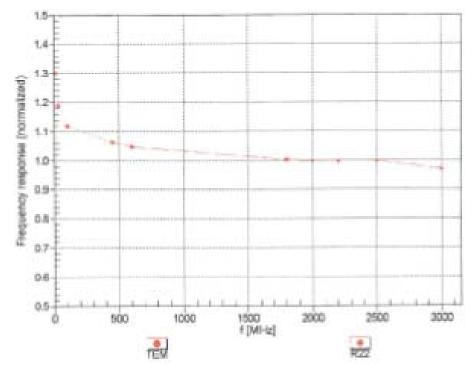
EX3DV4- SN:3933

Soptomber 29, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3933

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ⁶	Relative Permittivity*	Conductivity (Sim)	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ¹⁰ (mm)	Unc (k=2)
300	58.2	0.92	12,13	12.13	12.13	0.05	1.10	± 13.3 %
450	56.7	0.94	12.46	12.46	12.46	0.06	1.10	± 13.3 %
600	56.1	0.95	11.11	11,11	11.11	0.06	1.10	113.3 %
750	55.5	0.96	10.79	10.79	10.79	0.24	1,18	± 12.0 %
835	55.2	0.97	10.40	10.40	10.40	0.20	1.48	± 12.0 %
900	55.0	1.05	10.29	10.29	10.29	0.23	1.24	± 12.0 %
1750	53.4	1.49	8.49	8.49	8.49	0.37	0.85	± 12.0 %
1900	53.3	1.52	8.03	8.03	8.03	0.33	0.92	± 12.0 %
2300	52.9	1.81	7.81	7.81	7.81	0.30	1.01	± 12.0 %
2450	52.7	1.95	7.63	7.63	7.63	0.39	0.80	± 12.0 %
2600	52.5	2.16	7.25	7.25	7.25	0.37	0.90	± 12.0 %
3500	51.3	3.31	6.85	6.85	6.85	0.20	1.90	213.1%
5200	49.0	5.30	4.75	4.75	4.75	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.65	4.65	4.65	0.36	1.90	± 13.1 %
5500	48.6	5.65	4.26	4.26	4.26	0.40	1.90	± 13.1 %
5600	48.5	5.77	3.98	3.96	3.98	0.45	1.90	± 13.1 %
5800	48.2	6.00	4.07	4.07	4.07	0.50	1.90	± 13.1 %

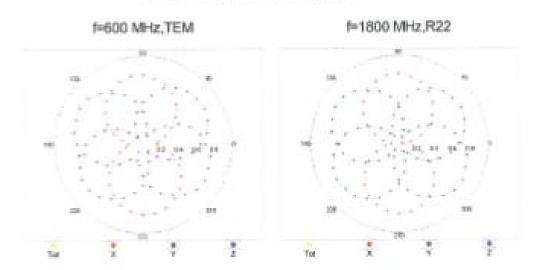

Of Prequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to a 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 54, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to a 110 MHz.
At frequencies below 3 CHz, the validity of bloou parameters is and o) can be relaxed to ± 10% Filipaid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of bloous parameters (clarid) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target below a GHz of semination. SPEAG semants that the remaining deviation due to the boundary offect after compensation is always less than a 1% for frequencies below 3 GHz and below a 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

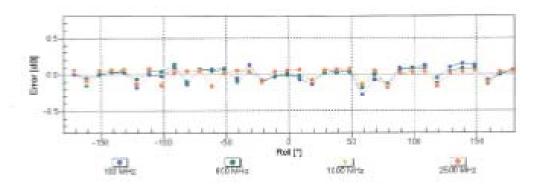
Certificate No: EX3-3933_Sep15

EX3DV4- 5N 3933 September 29, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

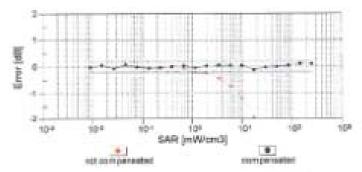

Certificate No: EX3-3933_Sep15


Page 7 of 11

EX3DV4- 5N:3833 September 25, 2015

Receiving Pattern (4), 9 = 0°

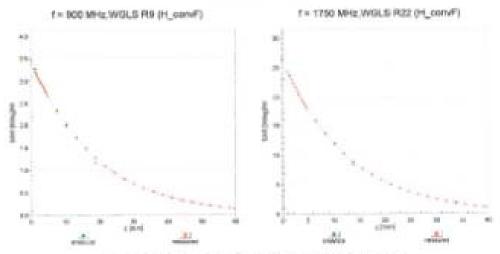



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

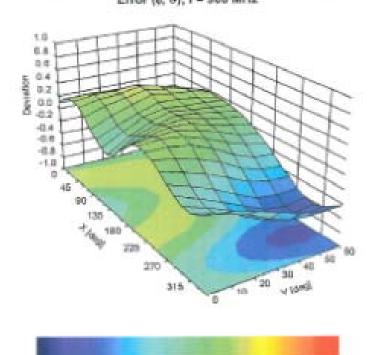
EX3DV4- 5% 3993 September 29, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No. EXXI-3933_Sep15

Fage 9 of 11



EX3DV4-5N:3933 September 28, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (6, 8), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Certificate No. EX3-3933_Sep15

Page 10 of 11

0.0 0.0

EX3DV4- SN:3833

September 29, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3933

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	78.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Cartificate No: EX3-3833_Sep15

Page 11 of 11

Attachment 2. - Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

ALIBRATION C	ERTIFICATE					
Object	D2450V2 - SN: 726					
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz			
Calibration date:	September 28, 20	015				
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}$ C	d are part of the certificate.			
Primary Standards	ID#	Cal Date (Certificate No.)	Oak and Jank Oakharakina			
			Scheduled Calibration			
	GB37480704	07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15			
ower meter EPM-442A	GB37480704 US37292783	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)				
ower meter EPM-442A ower sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15			
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	US37292783 MY41092317		Oct-15 Oct-15			
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	US37292783	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Oct-15 Oct-15 Oct-15			
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	US37292783 MY41092317 SN: 5058 (20k)	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131)	Oct-15 Oct-15 Oct-15 Mar-16			
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16			
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15			
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-16			
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check			
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check In house check: Jun-18 In house check: Oct-15			
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards RF generator R&S SMT-06 Retwork Analyzer HP 8753E	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check In house check: Jun-18 In house check: Oct-15			
Prower meter EPM-442A Prower sensor HP 8481A Prower sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check In house check: Jun-18 In house check: Oct-15			
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. EX3-7349_Dec14) 17-Aug-15 (No. DAE4-601_Aug15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-16 Scheduled Check In house check: Jun-18 In house check: Oct-15			

Certificate No: D2450V2-726_Sep15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Multilateral Agreement for the recognition of calibration certificates

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-726_Sep15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	2777	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.84 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-726_Sep15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.5 \Omega + 5.0 j\Omega$	
Return Loss	- 24.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.3 Ω + 6.1 jΩ	
Return Loss	- 24.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	January 09, 2003	

Certificate No: D2450V2-726_Sep15

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 28.09.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 726

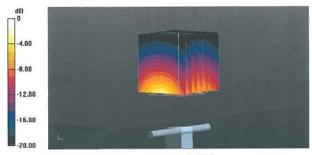
Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

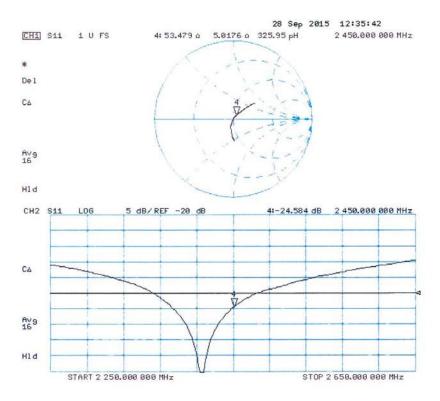

- Probe: EX3DV4 SN7349; ConvF(7.67, 7.67, 7.67); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.1 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 21.5 W/kg



0 dB = 21.5 W/kg = 13.32 dBW/kg

Certificate No: D2450V2-726_Sep15

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 28.09.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 726

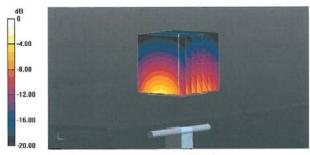
Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2$ S/m; $\varepsilon_r = 53.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

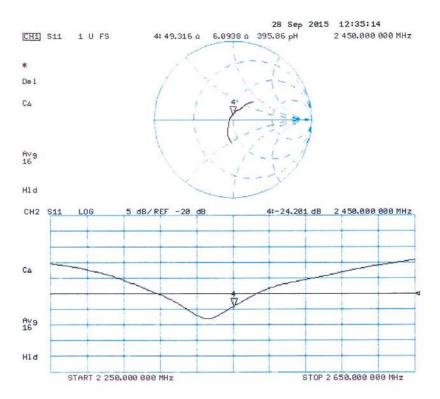
DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.53, 7.53, 7.53); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.5 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 24.7 W/kg

SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.84 W/kg


Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-726_Sep15

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

	CERTIFICATE		
Object	D5GHzV2 - SN:	1103	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	March 23, 2015		
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical ur robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	ID # GB37480704	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15
Power meter EPM-442A			70700000
Power meter EPM-442A Power sensor HP 8481A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	GB37480704 US37292783	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Oct-15 Oct-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Oct-15 Oct-15 Oct-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. EX3-3503_Dec14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15
Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. EX3-3503_Dec14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. EX3-3503_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. EX3-3503_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. EX3-3503_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # 100005 US37390585 S4206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. EX3-3503_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. EX3-3503_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E Callibrated by:	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # 100005 US37390585 S4206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. EX3-3503_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D5GHzV2-1103_Mar15

Page 1 of 20

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1103_Mar15 Page 2 of 20

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.53 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	100 mW input power	2.28 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)	

Certificate No: D5GHzV2-1103_Mar15

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.63 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1103_Mar15

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

,	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	4.82 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1103_Mar15

Page 5 of 20

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.00 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	5.13 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1103_Mar15

Page 6 of 20