

# RF Test Report 125 kHz RFID

| Report No.          | :   | FCCBVCI-WAY-P22090077R1                                                                                                         |  |  |  |
|---------------------|-----|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Customer            | :   | LG Electronics Inc.                                                                                                             |  |  |  |
| Customer Address    | :   | 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do 451-713<br>Korea.                                                           |  |  |  |
| Manufacturer        | :   | LG Electronics Nanjing New Technology Co., Ltd                                                                                  |  |  |  |
| Manufacturer Addres | s:  | 346, Yaoxin Road, Economic & Technical Development Zone, 210038 Nanjing, China                                                  |  |  |  |
| Use of Report       | :   | Certification                                                                                                                   |  |  |  |
| Model Name (FCC)    | :   | 24CR670N                                                                                                                        |  |  |  |
| Model Name (IC)     | :   | 24CR670IK                                                                                                                       |  |  |  |
| FCC ID              | :   | BEJNT-24CR670                                                                                                                   |  |  |  |
| IC                  | :   | 2703H-24CR670                                                                                                                   |  |  |  |
| Date of Test        | :   | 2022.09.30 to 2022.10.26                                                                                                        |  |  |  |
| Test Method Used    | :   | FCC 47 CFR PART 15 Subpart C (Section §15.207)<br>FCC 47 CFR PART 15 Subpart C (Section §15.209)<br>RSS-Gen Issue 5, April 2018 |  |  |  |
| Testing Environment | :   | Refer to the Test Condition                                                                                                     |  |  |  |
|                     | Те  | st Result : 🖂 Pass 🗌 Fail                                                                                                       |  |  |  |
| ISSUED              | BY: | BV CPS ADT Korea Ltd., EMC/RF Laboratory                                                                                        |  |  |  |
| ADDRESS:            |     | Innoplex No.2 106, Sinwon-ro 306, Yeongtong-gu,<br>Suwon-si, Gyeonggi-do, Korea 16675                                           |  |  |  |
| TEST LOCATION:      |     | HeungAn-daero 49, DongAn-gu, Anyang-si,<br>Gyeonggi-do, Korea, 14119                                                            |  |  |  |
| Tested by           |     | / Technical Manager                                                                                                             |  |  |  |
| Name : Donghwa Shin |     | (Signature) Name : Jungwoo Kim                                                                                                  |  |  |  |
|                     |     | 2022. 12. 12                                                                                                                    |  |  |  |

### BV CPS ADT Korea Ltd.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the compliance or non-compliance to the specification.

Report No.: FCCBVCI-WAY-P22090077R1

Page: 1 of 22

Report Format Version: BV-FRFTF-01-004



### **RELEASE CONTROL RECORD**

| REPORT NO.              | REASON FOR CHANGE               | DATE ISSUED |
|-------------------------|---------------------------------|-------------|
| FCCBVCI-WAY-P22090077   | Original release                | 2022.10.31  |
| FCCBVCI-WAY-P22090077R1 | Family Series add note (page 6) | 2022.12.12  |



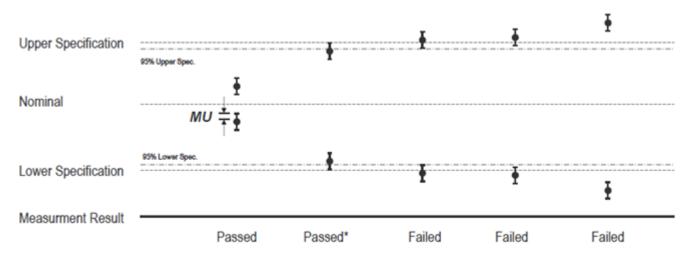
## **Table of Contents**

| RELEAS | E CONTROL RECORD                                     | 2  |
|--------|------------------------------------------------------|----|
| 1 SUM  | IMARY OF TEST RESULTS                                | 4  |
| 1.1 C  | Decision Rules for Statement of Conformity           | 5  |
| 1.2 N  | Aeasurement Uncertainty                              | 5  |
| 2 GEN  | ERAL INFORMATION                                     | 6  |
| 2.1    | General Description of EUT                           | 6  |
| 2.2    | Description of Test Mode                             | 7  |
| 2.2.   | 1 Test Mode Applicability and Tested Channel Details | 8  |
| 2.3    | GENERAL DESCRIPTION OF APPLIED STANDARDS             | 9  |
| 2.4    | Test Equipment                                       | 10 |
| 3 TEST | r RESULTS                                            |    |
| 3.1    | Antenna Requirement                                  | 11 |
| 3.2    | Occupied Bandwidth                                   | 12 |
| 3.3    | Spurious Emission, Band edge and Restricted Bands    | 13 |
| 3.3.   | 1 Regulation                                         |    |
| 3.3.   | 2 Test Procedure                                     |    |
| 3.3.   | 3 Deviation from Test Standard                       |    |
| 3.3.   | 4 Test Setup                                         |    |
| 3.3.   | 5 Test Result of Radiated Spurious Emission          |    |
| 3.4    | AC CONDUCTED EMISSIONS (150 KHz to 30 MHz)           | 19 |
| 3.4.   | 1 Regulation                                         |    |
| 3.4.   | 2 Test Procedure                                     |    |
| 3.4.   | 3 Deviation from Test Standard                       |    |
| 3.4.   | 4 Test Setup                                         |    |
| 3.4.   | 5 Test Result                                        |    |
| APPENI | DIX – INFORMATION OF THE TESTING LABORATORIES        |    |



### **1** Summary of Test Results

| Applied Standard : FCC Part 15, Subpart C 15.207/15.209), RSS-Gen Issue 5 |                   |                                              |                                                                                         |                |             |  |  |
|---------------------------------------------------------------------------|-------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-------------|--|--|
| FCC Part<br>Section(s)                                                    | RSS<br>Section(s) | Test Description                             | Limit                                                                                   | Test<br>Result | Reference   |  |  |
| 15.207                                                                    | RSS- Gen [8.8]    | AC Conducted Emissions<br>(150 kHz – 30 MHz) | < FCC 15.207 limits                                                                     | PASS           | Section 3.4 |  |  |
| -                                                                         | RSS-Gen [6.7]     | Occupied Bandwidth<br>(99 % Bandwidth)       | N/A                                                                                     | PASS           | Section 3.2 |  |  |
| 15.209                                                                    | RSS-Gen           | Transmitter Radiated Emission                | Emissions in Restricted<br>bands must meet the<br>radiated limits detailed<br>in 15.209 | PASS           | Section 3.3 |  |  |
| 15.203                                                                    | RSS-Gen           | Antenna Requirement                          | < FCC 15.207 limits                                                                     | PASS           | Section 3.1 |  |  |


The EUT has been tested according to the following specifications

#### NOTES

- **1)** The general test methods used to test on this devices are ANSI C63.10.
- 2) Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 3) According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz.

Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.





### **1.1** Decision Rules for Statement of Conformity

#### QUA-52 Decision Rule(QA Document) was applied.

Step 1) : Reference Check, Daily Check, Peripheral device Check

Step 2) : Re-test Procedure (Repeat the test maximum 3 times, Different Test Engineer)

- 1) If the original test results are subject to retesting and the judgement is unclear, the retest is carried out.
- 2) If the result of the first retest is the same as the initial test, the judgement is made based on the value.
- 3) If the result of the first retest differ from the results of the initial test, the second re-test is carried out.
- 4) After completion of the second retest, the average of the three test results is determined as the final result. However, if the deviation of the three test values is more than 5 % of the reference value, the technical manager should review the reproducibility of the test from the beginning.

### 1.2 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2

| Measurement Items                 | Frequency Range  | Expanded Uncertainty<br>U = <i>k</i> Uc ( <i>k</i> = 2) |
|-----------------------------------|------------------|---------------------------------------------------------|
| Conducted Emissions at main ports | 150 kHz – 30 MHz | 2.99                                                    |
| Dedicted Courieus Ersissions      | 9 kHz – 30 MHz   | 1.92                                                    |
| Radiated Spurious Emissions       | 30 MHz – 1 GHz   | 4.00                                                    |

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k = 2.



### 2 General Information

### 2.1 General Description of EUT

| Product                    | All-in-One Thin Client                                                                                                                                                                                                                                |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brand                      | LG Electronics Inc.                                                                                                                                                                                                                                   |
| Factory                    | LG Electronics Inc.168, Suchul-daero, Gumi-si, Gyeongsangbuk-do, 39368 Republic of<br>KoreaLG Electronics Nanjing New Technology Co.,Ltd.No. 346, Yaoxin Road, Economic & Technical Development Zone<br>Nanjing 210038, P.R. ChinaLG Electronics Inc. |
|                            | 77, Sanho-daero Gumi-si, Gyeongsangbuk-do, 39381, Republic of                                                                                                                                                                                         |
| FCC Model                  | Korea<br>24CR670N                                                                                                                                                                                                                                     |
|                            | 24CR670IK                                                                                                                                                                                                                                             |
| Identification No. of EUT  | 207NTHME4201                                                                                                                                                                                                                                          |
| FCC Series Model           | 24CR670N, 24CR670NK, 24CR670W, 24CR671N, 24CR671NK,<br>24CR671W, 24CR671WK, 24CR670I, 24CR670IK, 24CR671I,<br>24CR671IK, 24CR670WK                                                                                                                    |
| Model Difference           | Model difference based on CPU, OS, keyboard and mouse                                                                                                                                                                                                 |
| HVIN                       | 24CR670IK                                                                                                                                                                                                                                             |
| FVIN                       | -                                                                                                                                                                                                                                                     |
| Power Supply               | DC 19 V, Adaptor<br>(Input: AC 100-240 V, 50/60 Hz, Output: DC 19 V)                                                                                                                                                                                  |
| Modulation Type            | ASK                                                                                                                                                                                                                                                   |
| Transfer Rate              | -                                                                                                                                                                                                                                                     |
| <b>Operating Frequency</b> | 125 kHz                                                                                                                                                                                                                                               |
| Number of Channel          | 1                                                                                                                                                                                                                                                     |
| Output Power               | -4.05 dBμV                                                                                                                                                                                                                                            |
| Antenna Type               | Loop Coil Antenna                                                                                                                                                                                                                                     |
| Antenna Connector          | Internal                                                                                                                                                                                                                                              |
| H/W Version                | V1.3                                                                                                                                                                                                                                                  |
| S/W Version                | V2.0                                                                                                                                                                                                                                                  |

NOTES

- 1) The above equipment has been tested by <u>Bureau Veritas Consumer Products Services ADT Korea</u>, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.
- 2) These differences do not degrade the radio.
- **3)** The following antennas were provided to the EUT.

| Antonno | Tuno                 | Connector | Peak Gain (dBi) |  |
|---------|----------------------|-----------|-----------------|--|
| Antenna | Туре                 | Connector | 125 kHz         |  |
| RFID    | Loop Coil<br>Antenna | Internal  | -               |  |



#### 4) List of Accessories

| Accessories | Brand | Model | Manufacturer | Specification |
|-------------|-------|-------|--------------|---------------|
| -           | -     | -     | -            | -             |

#### 5) <u>Auxiliary test equipment</u>

| Accessories | Brand | Model | Manufacturer | Specification |
|-------------|-------|-------|--------------|---------------|
| -           | -     | -     | -            | -             |

### 2.2 Description of Test Mode

#### [Test Channel of EUT]

| Channel | Frequency [MHz] |
|---------|-----------------|
| 1       | 0.125           |



### 2.2.1 Test Mode Applicability and Tested Channel Details

Following channel(s) was(were) selected for the final test as listed below :

| EUT Configure |         | A       | pplicable t | Description |    |                            |  |
|---------------|---------|---------|-------------|-------------|----|----------------------------|--|
| mode          | RE < 1G | RE ≥ 1G | PLC         | FS          | EB | Description                |  |
| А             | V       | ٧       | V           | -           | -  | Powered by Adaptor         |  |
| В             | -       | -       | -           | -           | -  | Powered by DC Power Supply |  |

Where RE ≥ 1 G : Radiated Emission above 1 GHz RE < 1 G : Radiated Emission below 1 GHz PLC : Power Line Conducted Emission FS : Antenna Port Conducted Measurement EB : 20 dB Bandwidth

#### Radiated Emission Test (Below 1 GHz)

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT Configure<br>Mode | lested Channel |   | Modulation<br>Type |
|-----------------------|----------------|---|--------------------|
| А                     | 1              | 1 | ASK                |

#### Radiated Emission Test (Above 1 GHz)

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT Configure<br>Mode | Available<br>Channel | Tested Channel | Modulation<br>Type |  |
|-----------------------|----------------------|----------------|--------------------|--|
| А                     | 1                    | 1              | ASK                |  |

#### Power line Conducted Emission Test

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| EUT Configure<br>Mode | Available<br>Channel | Tested Channel | Modulation<br>Type |  |
|-----------------------|----------------------|----------------|--------------------|--|
| А                     | 1                    | 1              | ASK                |  |



#### **Test Condition**

| Applicable to | Environmental Conditions         | Test Voltage    | Tested by    |  |
|---------------|----------------------------------|-----------------|--------------|--|
| RE < 1G       | (21.9 ± 2) °C, (46.5 ± 3) % R.H. | AC 230 V, 60 Hz | Donghwa Shin |  |
| RE ≥ 1G       | (21.9 ± 2) °C, (46.5 ± 3) % R.H. | AC 230 V, 60 Hz | Donghwa Shin |  |
| PLC           | (21.9 ± 2) °C, (46.5 ± 3) % R.H. | AC 230 V, 60 Hz | Donghwa Shin |  |
| FS            | N/A                              | N/A             | N/A          |  |
| EB            | EB N/A                           |                 | N/A          |  |

### **2.3** General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards.

FCC CFR 47 Part 15, Subpart C (§15.207) FCC CFR 47 Part 15, Subpart C (§15.209) ANSI C63.10-2013 RSS-GEN Issue 5

All test items in this test report have been performed and recorded as per the above standards.



### 2.4 Test Equipment

Test Equipment is traceable to the National Institute of Standards and Technology (NIST). Measurement antenna used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

|   | Equipment Name                                      | Manufacturer | Model No. | Serial No. | Next Cal. Date |
|---|-----------------------------------------------------|--------------|-----------|------------|----------------|
| • | Temperature & Humidity<br>Chamber                   | Espec        | PL-2J     | 15015910   | 2023-06-03     |
|   | True-RMS Digital<br>Multimeter                      | Fluke        | 177       | 43240434   | 2023-06-03     |
| - | Termination                                         | Warison      | WTER-18S2 | 1          | 2022-11-24     |
|   | VUBA 9117 Biconical<br>VHF-UHF Broadband<br>Antenna | Schwarzbeck  | VUBA 9117 | 403        | 2023-12-22     |
| - | Signal Conditioning Unit                            | R&S          | SCU08F2   | 08400015   | 2022-11-23     |
|   | Active Loop Antenna                                 | R&S          | HFH2-Z2E  | 349806     | 2023-02-18     |
|   | Trilog Antenna<br>(with 6 dB ATT.)                  | Schwarzbeck  | VULB 9163 | 01199      | 2023-02-22     |
| - | EMI Test Receiver                                   | R&S          | ESW8      | 101170     | 2022-11-24     |
|   | EMI Test Receiver                                   | R&S          | ESW44     | 101812     | 2022-11-25     |
|   | Spectrum Analyzer                                   | R&S          | FSV30     | 103017     | 2022-11-22     |



### 3 Test Results

### **3.1** Antenna Requirement

#### Except from §15.203 of the FCC Rules/Regulations:

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of the section.

- The antenna(s) of the EUT are Permanently attached.
- There are no provisions for connection to an external antenna.

#### <u>Result</u>

The EUT complies with the requirement of §15.203



### 3.2 Occupied Bandwidth

| Frequency (kHz) | 99% Bandwidth (kllz) | 20 dB Bandwidth (kHz) | Limit(kHz) | Pass/Fail |
|-----------------|----------------------|-----------------------|------------|-----------|
| 125             | 2.185                | 0.535                 | N/A        | Pass      |

| 125 kHz 99% Bandwidth                                                                            | 125 kHz 20 dB Bandwidth                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spectrum                                                                                         | Spectrum                                                                                                                                                                                                                     |
| RefLevel -40.00 dBm ● RBW 100 Hz<br>Att 0 dB SWT 19 ms ● VBW 300 Hz Mode Auto FFT<br>Count 10/10 | Ref Level -40.00 dBm         RBW 100 Hz           Att         0 dB         SWT 19 ms         VBW 300 Hz         Mode Auto FFT           Count 10/10         Count 10/10         VBW         VBW 300 Hz         Mode Auto FFT |
| 1Pk Max                                                                                          | e 1Pk Max                                                                                                                                                                                                                    |
| 50 dBm Occ Bw 2.1852897                                                                          | 125.0000 125.0000 125.0000 125.0000                                                                                                                                                                                          |
|                                                                                                  | -60 dBm O factor 23                                                                                                                                                                                                          |
| -60 dBm-                                                                                         | -70 dBm-                                                                                                                                                                                                                     |
| -70 dBm                                                                                          | -80 dBm-                                                                                                                                                                                                                     |
| -80 dBm-                                                                                         | -90 dBm                                                                                                                                                                                                                      |
| -90 dBm                                                                                          | -100 dBm                                                                                                                                                                                                                     |
| 100 dBm                                                                                          | -110 dBm-                                                                                                                                                                                                                    |
|                                                                                                  | -120 dBm                                                                                                                                                                                                                     |
| -110 dBm                                                                                         | -130 dBm                                                                                                                                                                                                                     |
| -120 dBm-                                                                                        | CF 125.0 kHz 691 pts Span 10.0 k                                                                                                                                                                                             |
|                                                                                                  | Marker Type   Ref   Trc   X-value   Y-value   Function   Function Result                                                                                                                                                     |
| -130 dBm                                                                                         | M1 1 125.0 kHz -76.41 dBm ndB down 535.0                                                                                                                                                                                     |
| CF 125.0 kHz 691 pts Span 5.                                                                     | T2 1 125.275 kHz _06.52 dBm _0 factor222                                                                                                                                                                                     |
| Measuring (11111) / 15/15                                                                        | Measuring 17.10.2022                                                                                                                                                                                                         |



### **3.3** Transmitter Radiated Emission

### 3.3.1 Regulation

§15.247(d) : In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

§15.209(a) : Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) |
|-----------------|-----------------------------------|-------------------------------|
| 0.009-0.490     | 2400/F(kHz)                       | 300                           |
| 0.490-1.705     | 24000/F(kHz)                      | 30                            |
| 1.705-30.0      | 30                                | 30                            |
| 30-88           | 100**                             | 3                             |
| 88-216          | 150**                             | 3                             |
| 216-960         | 200**                             | 3                             |
| Above 960       | 500                               | 3                             |

\*\*Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§15.231 and 15.241.



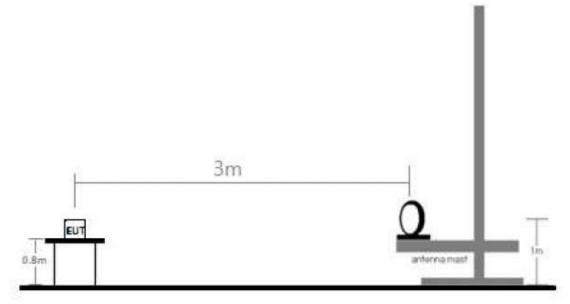
#### 3.3.2 Test Procedure

#### **Spurious Radiated Emissions**

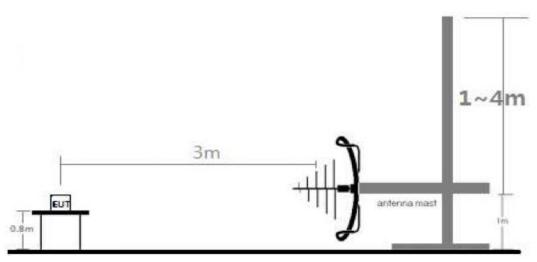
- 1. The preliminary radiated measurement were performed to determine the frequency producing the maximum emissions in an semi-anechoic chamber at a distance of 3 meters.
- The EUT was placed on the top of the 0.8-meter height, 1 x 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 to 1000 MHz using the Bi-Log antenna, and from 1000 MHz to 26500 MHz using the horn antenna.
- 4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4 x 4 meter in an semi-anechoic chamber. The EUT was tested at a distance 3 meters.
- 5. Each frequency found during preliminary measurements was re-examined and investigated. The testreceiver system was set up to average, peak, and quasi-peak detector fuction with specified bandwidth.
- 6. The 0.8 m height is for below 1 GHz testing, and 1.5 m is for above 1GHz testing.

#### - Procedure for unwanted emissions measurements below 1 000 MHz

The procedure for unwanted emissions measurements below 1 000 MHz is as follows:


- a) Follow the requirements in 12.7.4.
- b) Compliance shall be determined using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.




### **3.3.3** Deviation from Test Standard

No deviation.

### 3.3.4 Test Setup



[Radiated Emission Test Setup Below 30 MHz]



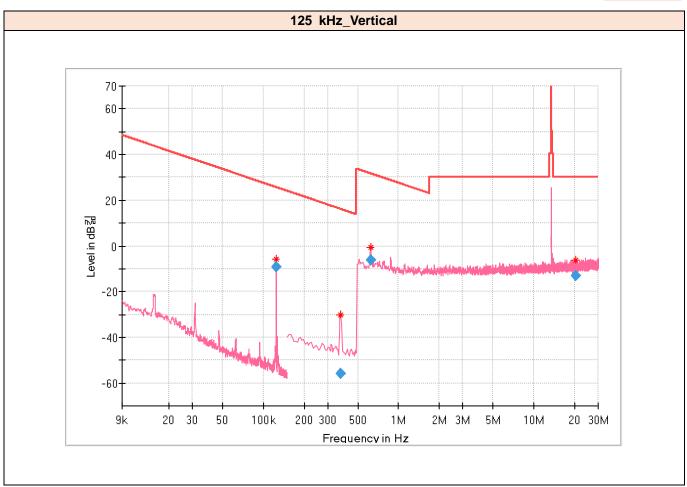
[Radiated Emission Test Setup Below 1 GHz]



### 3.3.5 Test Result of Radiated Spurious Emission

### 3.3.5.1 Radiated Emissions (Below 30 MHz)




### FCC

| Frequency<br>[MHz] | QuasiPeak<br>[dBuV/m] | Distance<br>Correction<br>Factor<br>[dB] | Limit<br>[dBuV/m] | Margin<br>[dB] | Height<br>[cm] | Pol      | Azimuth<br>[deg] | Correction<br>Factor<br>[dB/m] |
|--------------------|-----------------------|------------------------------------------|-------------------|----------------|----------------|----------|------------------|--------------------------------|
| 0.13               | -4.05                 | -80.00                                   | 25.66             | 29.71          | 100.00         | Parallel | 0.00             | -59.40                         |
| 0.37               | -56.06                | -80.00                                   | 16.15             | 72.21          | 100.00         | Parallel | 0.00             | -59.30                         |
| 0.62               | -15.62                | -40.00                                   | 31.74             | 47.36          | 100.00         | Parallel | 356.00           | -19.20                         |
| 0.87               | -15.88                | -40.00                                   | 28.78             | 44.66          | 100.00         | Parallel | 356.00           | -19.20                         |
| 27.22              | -12.05                | -40.00                                   | 30.00             | 42.05          | 100.00         | Parallel | 165.00           | -16.50                         |

#### ISED

| Frequency<br>[MHz] | QuasiPeak<br>[dBuA/m] | Distance<br>Correction<br>Factor<br>[dB] | Limit<br>[dBuA/m] | Margin<br>[dB] | Height<br>[cm] | Pol      | Azimuth<br>[deg] | Correction<br>Factor<br>[dB/m] |
|--------------------|-----------------------|------------------------------------------|-------------------|----------------|----------------|----------|------------------|--------------------------------|
| 0.13               | -55.55                | -80.00                                   | -25.84            | 29.71          | 100.00         | Parallel | 0.00             | -59.40                         |
| 0.37               | -107.56               | -80.00                                   | -35.35            | 72.21          | 100.00         | Parallel | 0.00             | -59.30                         |
| 0.62               | -67.12                | -40.00                                   | -19.76            | 47.36          | 100.00         | Parallel | 356.00           | -19.20                         |
| 0.87               | -67.38                | -40.00                                   | -22.72            | 44.66          | 100.00         | Parallel | 356.00           | -19.20                         |
| 27.22              | -63.55                | -40.00                                   | -21.50            | 42.05          | 100.00         | Parallel | 165.00           | -16.50                         |



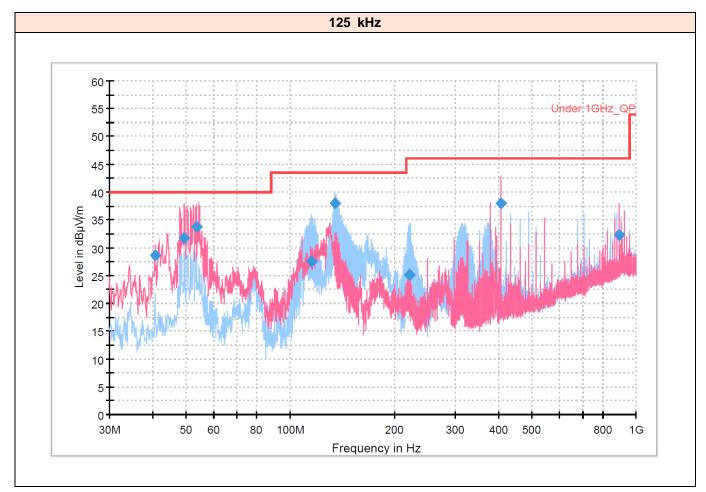


#### FCC

| Frequency<br>[MHz] | QuasiPeak<br>[dBuV/m] | Distance<br>Correction<br>Factor<br>[dB] | Limit<br>[dBuV/m] | Margin<br>[dB] | Height<br>[cm] | Pol           | Azimuth<br>[deg] | Correction<br>Factor<br>[dB/m] |
|--------------------|-----------------------|------------------------------------------|-------------------|----------------|----------------|---------------|------------------|--------------------------------|
| 0.13               | -9.34                 | -80.00                                   | 25.66             | 35.00          | 100.00         | Perpendicular | 72.00            | -59.40                         |
| 0.37               | -56.05                | -80.00                                   | 16.15             | 72.20          | 100.00         | Perpendicular | 83.00            | -59.30                         |
| 0.62               | -6.02                 | -40.00                                   | 31.74             | 37.76          | 100.00         | Perpendicular | 53.00            | -19.20                         |
| 20.35              | -13.00                | -40.00                                   | 30.00             | 43.00          | 100.00         | Perpendicular | 190.00           | -17.00                         |

#### ISED

| Frequency<br>[MHz] | QuasiPeak<br>[dBuA/m] | Distance<br>Correction<br>Factor<br>[dB] | Limit<br>[dBuA/m] | Margin<br>[dB] | Height<br>[cm] | Pol           | Azimuth<br>[deg] | Correction<br>Factor<br>[dB/m] |
|--------------------|-----------------------|------------------------------------------|-------------------|----------------|----------------|---------------|------------------|--------------------------------|
| 0.13               | -60.84                | -80.00                                   | -25.84            | 35.00          | 100.00         | Perpendicular | 72.00            | -59.40                         |
| 0.37               | -107.55               | -80.00                                   | -35.35            | 72.20          | 100.00         | Perpendicular | 83.00            | -59.30                         |
| 0.62               | -57.52                | -40.00                                   | -19.76            | 37.76          | 100.00         | Perpendicular | 53.00            | -19.20                         |
| 20.35              | -64.50                | -40.00                                   | -21.50            | 43.00          | 100.00         | Perpendicular | 190.00           | -17.00                         |


#### Remarks

1. QuasiPeak(dBuV/m) = QuasiPeak Reading Value(dBµV/m) + Correction Factor(dB) + Distance Factor(dB)

- 2. Correction Factor(dB) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) 3. Margin(dB) = (Quasi Peak) Limit (dB $\mu$ V/m) (Quasi Peak) Result (dB $\mu$ V/m) 4. dBuA/m = dBuV/m 51.5 dB

5. We tested three kind of Antenna Pol (Parallel, Perpendicular, Ground parallel) and reported worst case antenna Pol.





### 3.3.5.2 Radiated Emissions (Below 1 GHz)

| Frequency<br>[MHz] | Quasi Peak<br>[dBuV/m] | Limit<br>[dBuV/m] | Margin<br>[dB] | Height<br>[cm] | Pol | Azimuth<br>[deg] | Correction<br>Factor<br>[dB/m] |
|--------------------|------------------------|-------------------|----------------|----------------|-----|------------------|--------------------------------|
| 40.67              | 28.68                  | 40.00             | 11.32          | 100            | V   | 358              | -18.70                         |
| 49.40              | 31.69                  | 40.00             | 8.31           | 104            | V   | 358              | -18.40                         |
| 53.57              | 33.69                  | 40.00             | 6.31           | 100            | V   | 232              | -18.90                         |
| 115.36             | 27.47                  | 43.52             | 16.05          | 250            | Н   | 124              | -22.10                         |
| 134.76             | 37.97                  | 43.52             | 5.55           | 154            | Н   | 150              | -24.40                         |
| 221.28             | 25.07                  | 46.02             | 20.95          | 104            | Н   | 108              | -21.20                         |
| 406.75             | 38.02                  | 46.02             | 8.00           | 104            | V   | 234              | -15.60                         |

#### Remarks

- 1. Quasi Peak( $dB\mu V/m$ ) = Quasi Peak Reading Value( $dB\mu V/m$ ) + Correction Factor(dB) 2. Correction Factor(dB) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) 3. Margin(dB) = (Quasi Peak) Limit ( $dB\mu V/m$ ) (Quasi Peak) Result ( $dB\mu V/m$ )



## 3.4 AC Conducted Emissions (150 kHz to 30 MHz)

### 3.4.1 Regulation

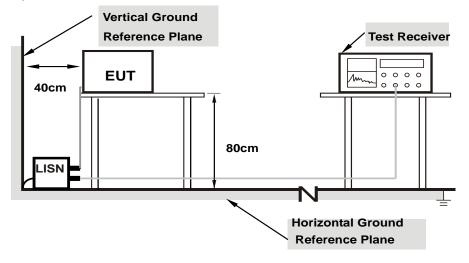
\$15.207(a): Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

|                             | Conducted limit (dBµV) |           |  |  |  |
|-----------------------------|------------------------|-----------|--|--|--|
| Frequency of emission (MHz) | Quasi-peak             | Average   |  |  |  |
| 0.15-0.5                    | 66 to 56*              | 56 to 46* |  |  |  |
| 0.5-5                       | 56                     | 46        |  |  |  |
| 5-30                        | 60                     | 50        |  |  |  |

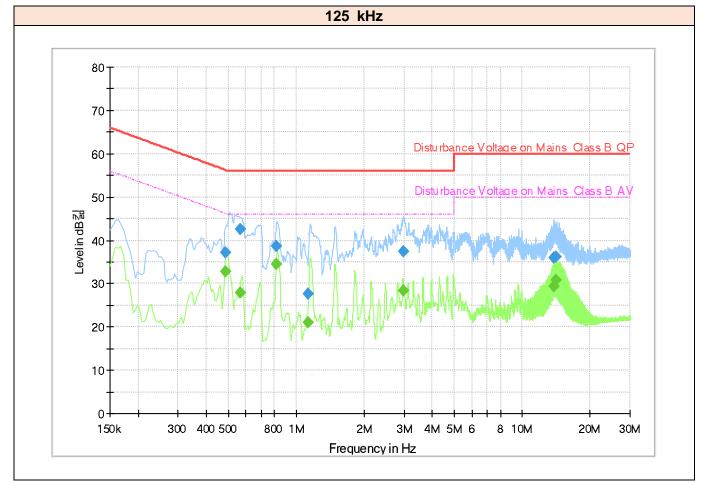
\* Decreases with the logarithm of the frequency.

#### 3.4.2 Test Procedure

- a) The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm / 50 µH of coupling impedance for the measuring instrument.
- b) Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c) The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.


**Remark** : The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz – 30 MHz.

#### 3.4.3 Deviation from Test Standard


No deviation.



### 3.4.4 Test Setup







#### 3.4.5 **Test Result**

| Frequency<br>[MHz] | Quasi Peak<br>Reading Value<br>[dBuV] | Quasi Peak<br>Result<br>[dBuV] | CAV Reading<br>Value<br>[dBuV] | CAV Result<br>[dBuV] | Line | Correction<br>Factor<br>[dB/m] | Quasi Peak<br>Margin<br>[dBuV] | Quasi Peak<br>Limit<br>[dBuV] | CAV Margin<br>[dBuV] | CAV Limit<br>[dBuV] |
|--------------------|---------------------------------------|--------------------------------|--------------------------------|----------------------|------|--------------------------------|--------------------------------|-------------------------------|----------------------|---------------------|
| 0.49               | 27.31                                 | 37.31                          |                                |                      | L1   | 10.00                          | 18.88                          | 56.19                         |                      |                     |
| 0.49               |                                       |                                | 22.74                          | 32.74                | L1   | 10.00                          |                                |                               | 13.45                | 46.19               |
| 0.56               | 32.63                                 | 42.53                          |                                |                      | L1   | 9.90                           | 13.47                          | 56.00                         |                      |                     |
| 0.56               |                                       |                                | 18.04                          | 27.94                | L1   | 9.90                           |                                |                               | 18.06                | 46.00               |
| 0.82               | 28.82                                 | 38.62                          |                                |                      | N    | 9.80                           | 17.38                          | 56.00                         |                      |                     |
| 0.82               |                                       |                                | 24.59                          | 34.39                | N    | 9.80                           |                                |                               | 11.61                | 46.00               |
| 1.13               | 17.89                                 | 27.69                          |                                |                      | N    | 9.80                           | 28.31                          | 56.00                         |                      |                     |
| 1.13               |                                       |                                | 11.16                          | 20.96                | N    | 9.80                           |                                |                               | 25.04                | 46.00               |
| 2.96               | 27.75                                 | 37.45                          |                                |                      | L1   | 9.70                           | 18.55                          | 56.00                         |                      |                     |
| 2.96               |                                       |                                | 18.69                          | 28.39                | L1   | 9.70                           |                                |                               | 17.61                | 46.00               |
| 13.77              | 25.95                                 | 35.95                          |                                |                      | N    | 10.00                          | 24.05                          | 60.00                         |                      |                     |
| 13.77              |                                       |                                | 19.28                          | 29.28                | N    | 10.00                          |                                |                               | 20.72                | 50.00               |
| 14.10              | 26.10                                 | 36.10                          |                                |                      | N    | 10.00                          | 23.90                          | 60.00                         |                      |                     |
| 14.10              |                                       |                                | 20.88                          | 30.88                | N    | 10.00                          |                                |                               | 19.12                | 50.00               |

#### Remarks

1. Final Value (QP and/or CAV) = Reading Value (QP and/or CAV) + Corr. (LISN Insertion Loss + Cable Loss)

Margin (QP and/or CAV) = Limit – Final Value (QP and/or CAV) QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor 2. Two graphs measured for both Live (L1) and Neutral (N) of the LISN are combined into one graph.



### **Appendix – Information of the Testing Laboratories**

We, Bureau Veritas Consumer Products Services Korea. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

Test Firm Name : BV CPS ADT Korea Ltd.

Main Address : Innoplex No.2 106, Sinwon-ro 306, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675 KOREA

Satellite Address : Bureau Veritas Bldg, HeungAn-daero 49, DongAn-gu, Anyang-si, Gyeonggi-do, 14119,

KOREA

FCC

Designation Number : KR0158 Test Firm Registration Number : 666061

ISED

Designation Number : KR0158 Test Firm Registration Number : 25944 (Main) Test Firm Registration Number : 26316 (Satellite)

If you have any comments, please feel free to contact us at the following:

Email: <u>Meyer.Shin@bureauveritas.com</u> Web Site: <u>www.bureauveritas.co.kr/cps/eaw</u>

The address and road map of all our labs can be found in our web site also.

