

FCC 2.1093 SAR Test Report

for

LG Electronics Inc.

222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea

Product Name : Notebook Computer

Model Name : (1)16ZB90Q (2)16ZG90Q

Brand LG

FCC ID : BEJNT-16ZB90Q

Prepared by: : AUDIX Technology Corporation, EMC Department

The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo.

File Number: C1M2207003 Report Number: EM-SR220049

TABLE OF CONTENTS

De	Description					
TE	ST RI	EPORT	3			
1.	REV	VISION RECORD OF TEST REPORT	4			
2.	SUN	MMARY OF TEST RESULTS	5			
3.		NERAL INFORMATION				
	3.1.	Description of Application	6			
	3.2.	Description of EUT				
	3.3.	Reference Test Guidance				
	3.4.	Antenna Information	8			
	3.5.	EUT Specifications Assessed in Current Report	9			
	3.6.	Description of Key Components	11			
	3.7.	Test Environment	12			
	3.8.	Description of Test Facility	13			
	3.9.	Measurement Uncertainty	14			
4.	ME	ASUREMENT EQUIPMENTLIST				
5.	SAF	R MEASUREMENT SYSTEM				
	5.1.	Definition of Specific Absorption Rate (SAR)	17			
	5.2.	SPEAG DASY System				
	5.3.	SAR System Verification				
	5.4.	SAR Measurement Procedure	31			
6.	SAF	R MEASUREMENT EVALUATION				
	6.1.	Test Configuration and EUT setting	34			
	6.2.	EUT Testing Position				
	6.3.	Tissue Calibration Result				
	6.4.	SAR Exposure Limits				
	6.5.	Conducted Power Measurement				
	6.6.					

APPENDIX A TEST DATA AND PLOTS APPENDIX B TESTPHOTOGRAPHS

TEST REPORT

Applicant LG Electronics Inc. Manufacturer : LG Electronics Inc.

LG Electronics Nanjing New Technology Co., Ltd. **Factory**

EUT Description

(1) Product Notebook Computer

(2) Model (1)16ZB90Q (2)16ZG90Q

(3) Brand LG

(4) Power Supply: DC 20V, 3.25A

Applicable Standards:

47 CFR FCC Part 2(§2.1093)

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. Audix Technology Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Report: 2022, 07, 20

Reviewed by:

Approved by:

(Sabrina Wang/Administrator)

Sotring Wang
Tohnny Hough (Johnny Hsueh/Section Manager)

File Number: C1M2207003 Report Number: EM-SR220049

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Date	Revision Summary	Report Number
0	2022. 07. 20	Original Report	EM-SR220049

2. SUMMARY OF TEST RESULTS

Highest Transmission SAR	Reported Body SAR1g	Limit
WLAN 2.4G	0.796 W/kg	1.6 W/kg
BT	0.116 W/kg	1.6 W/kg
WLAN 5G	0.917 W/kg	1.6 W/kg

3. GENERAL INFORMATION

3.1. Description of Application

A muli 2 au 4	LG Electronics Inc.
Applicant	222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea
Manufacturer	LG Electronics Inc.
Manuracturer	222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea
Footomy	LG Electronics Nanjing New Technology Co., Ltd.
Factory	No.346, Yaoxin Road, Economic & Technical Development Zone, Nanjing, China.
Product	Notebook Computer
Brand	LG
Madal	(1)16ZB90Q (2)16ZG90Q
Model	The difference between all models is different in the sales customers.

3.2. Description of EUT

Test Model	16ZB90Q			
Serial Number	N/A			
Power Rating	DC 20V, 3.25A			
Software Version	XY (X, Y can be 0 to 9 for different SW version not i	nfluence RF para	ameter)	
RF Features	WLAN:802.11 a/b/g/n/ac/ax Bluetooth: BT and BLE (BT 5.1)			
	2.4 GHz			
	802.11b	1T1R		
	802.11g	1T1R		
	802.11n-HT20	2T2R		
	802.11n-HT40	2T2R		
	802.11ax-HE20	2T2R		
	802.11ax-HE40	2T2R		
Transmit Type	BT/BLE	1T1R		
	U-NII Bands			
	802.11a	1T1R		
	802.11n-HT20/802.11ac-VHT20/802.11ax-HE20	2T2R		
	802.11n-HT40/802.11ac-VHT40/802.11ax-HE40	2T2R		
	802.11ac-VHT80/802.11ax-HE80	2T2R		
	802.11ac-VHT160/802.11ax-HE160 2T2R			
	The MIMO is uncorrelated and supported SDM mode only.			
Test Comple	Sample No. Test Item	Firmware		
Test Sample	04 SAR	N/A		
Sample Status	Trial sample			
Date of Receipt	2022. 07. 01			
Date of Test	2022. 07. 08 ~ 09			
 One HDMI Port Two USB Type C Ports One Earphone Port One Micro SD Card Slot Two USB 3.0 Ports 				
Accessories Supplied	AC AdapterLAN Gender			

3.3. Reference Test Guidance

IEEE 1528-2013

IEC/IEEE 62209-1528:2020

KDB 447498 D04 Interim General RF Exposure Guidance v01

KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04

KDB 616217 D04 SAR for laptop and tablets v01r02

KDB 248227 D01 802 11 Wi-Fi SAR v02r02

3.4. Antenna Information

	Antenna Part			Emaguamay		Gain (dBi)					
No.		Manufacturer	Antenna Type	Frequency (MHz)	Max		Directional				
	Number			(MITIZ)	Main	AUX	Directional				
				2400	3.10	1.90	2.54				
				2425	4.80	2.30	3.73				
				2450	4.40	2.20	3.44				
				2475	4.50	3.20	3.90				
				2500	5.30	3.40	4.45				
				5150	2.70	2.70	2.70				
1.	WA-P-LELE-04-026	INPAQ	Mono-Pole	5250	3.70	3.70	3.70				
				5350	3.10	3.10	3.10				
							5725	5725	3.10	3.10	3.10
				5825	3.00	3.00	3.00				
				5925	2.00	2.30	2.15				
				6525	1.90	2.20	2.05				
				7125	1.90	2.10	2.00				

According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

We chose the antenna gain corresponding to the frequency listed on the table which is closer to center frequency of WLAN.

3.5. EUT Specifications Assessed in Current Report

2.4GHz				
Mode	Mode Fundamental Range (MHz)			
802.11b		13		
802.11g	2412-2472	13		
802.11n-HT20		13		
802.11n-HT40	2422-2462	9		
Bluetooth	2402-2480	79		
BLE	2402-2480	40		

5GHz				
Mode	U-NII Band	Fundamental Range (MHz)	Channel Number	
	I	5180-5240	4	
902.11.	2A	5260-5320	4	
802.11a	2C	5500-5720	12	
	3	5745-5825	5	
	I	5180-5240	4	
802.11n-HT20/	2A	5260-5320	4	
802.11ac-VHT20 802.11ax-HE20	2C	5500-5720	12	
	3	5745-5825	5	
	I	5190-5230	2	
802.11n-HT40/ 802.11ac-VHT40	2A	5270-5310	2	
802.11ac-VH140 802.11ax-HE40	2C	5510-5710	6	
	3	5755-5795	2	
	I	5210	1	
802.11ac-VHT80	2A	5290	1	
802.11ax-HE80	2C	5530-5690	3	
	3	5775	1	
	I	5250	1	
802.11ac-VHT160/8 02.11ax-HE160	2A	5250	1	
02.11dX-11L100	2C	5570	1	
Remark: U-NII Band 2A	A and 2C (DFS Function	on, Slave/no In service monitor, no Ad-	-Hoc mode)	

File Number: C1M2207003 Report Number: EM-SR220049

Mode	Modulation	Data Rate (Mbps)
802.11b	DSSS (DBPSK/DQPSK/CCK)	Up to 11
802.11g	OFDM (BPSK/QPSK/16QAM/64QAM)	Up to 54
802.11a	OFDM (BPSK/QPSK/16QAM/64QAM)	Up to 54
802.11n-HT20	OEDM (DDCV/ODCV/160AM/640AM)	Up to 144.4
802.11n-HT40	OFDM (BPSK/QPSK/16QAM/64QAM)	Up to 300
802.11ac-VHT20		Up to 173.3
802.11ac-VHT40	OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)	Up to 400
802.11ac-VHT80		Up to 866.7
802.11ac-VHT160		Up to 1733.3
802.11ax-HE20		Up to 287
802.11ax-HE40	OFDMA (BPSK/ QPSK/ 16QAM/ 64QAM/	Up to 574
802.11ax-HE80	256QAM/1024QAM)	Up to 1201
802.11ax-HE160		Up to 2402
Bluetooth	luetooth FHSS (GFSK, π/4 DQPSK, 8-DPSK)	
BLE	GFSK (1M, 2M, PHY Coded S8, PHY Coded S2)	2

3.6. Description of Key Components

3.6.1. For the All Component Lists

Item	Supplier	Model / Type	Character
	T. P.	Win 10	
System	Microsoft	Win 10 Pro	
		Win11	
Main Board	LG	Queen LP4X MAIN B/D PCB	Manufacturer: #1 HannstarBoardTech(Jiang Yin)Corp.,Ltd. #2 Elec&Eltek Company (MCO) Limited.
WLAN SUB Board	LG	16Z90Q B2B SUB B/D	Manufacturer: #1 HannstarBoardTech(Jiang Yin)Corp.,Ltd. #2 Elec&Eltek Company (MCO) Limited. #3 JiangSuHuaShen Electronic co.,ltd (HXF)
	Intel	i7-1260P	2.5GHz
	Intel	i7-1255U	2.5GHz
CPU	Intel	i5-1240P	2.1GHz
(Socket: BGA1744)	Intel	i5-1235U	2.1GHz
,	Intel	i3-1220P	1.5GHz
	Intel	i3-1215U	1.5GHz
16" LCD Panel	LG Display	LP160WQ1 (SP)(B2)	Resolution: 2560 x 1600, 60Hz WQXGA IPS
			1TB
	SK hynix		512GB
a (995)			256GB
Storage (SSD)			1TB
	Samsung		512GB
			256GB
			32GB LPDDR4x(On Board)
	Samsung		16GB LPDDR4x(On Board)
M (DA) ()			8GB LPDDR4x(On Board)
Memory (RAM)			32GB LPDDR4x(On Board)
	SK Hynix		16GB LPDDR4x(On Board)
			8GB LPDDR4x(On Board)
Battery Pack	LG	LBV7227E	DC7.74V, 80Wh Typ 10336mAh
WLAN Combo Card	Intel	AX211D2W	WLAN and BT, 2x2 PCle M.2 1216 SD adapter card FCC ID: PD9AX211D2 IC: 1000M-AX211D2
WLAN Combo Antenna	LG (INPAQ)	WA-P-LELE-04-026	PCB, Mono-pole Type Main: Black, Aux: Gray
TZ 1 1	TIC	KT0120B8	
Keyboard	LITE ON	SN8101	
	LITE-ON	SP8001(SG-A0630-00A)	
Touch Pad	ELAN	SD081A-36H0	
W. I. G	Chicony	CKFKH33-0	EBP63421711
Web Camera	Luxvisions	0BF108N3	EBP63421709

Item	Supplier	Model / Type	Character	
	SUZHOU MEC	80-5946-111	(White) 10/100 Megabit Ethernet	
	ELECTRONICS	80-5946-101	(Black) 10/100 Megabit Ethernet	
T ANG 1	ARIN TECH CO. LTD	GD-08MF-36-WH-LP10	(White) 10/100 Megabit Ethernet	
LAN Gender (Type C to LAN)		GD-08MF-36-BK-LP11	(Black) 10/100 Megabit Ethernet	
(Type C to Lint)	HUIZHOU DEHONG TECHNOLOGY CO.,LTD.	370-50713	(White) 10/100 Megabit Ethernet	
		370-50714	(Black) 10/100 Megabit Ethernet	
	Type C to LAN: Shielded, Undetached, 0.12m			
	LG (HONOR)	ADT-65DSU-D03-2	I/P: AC 100-240V, 1.6A, 50-60Hz O/P: DC 20V, 3.25A	
AC Adapter (65W)	DC Power Cord: Non-Shielded, Undetached, 1.5m			
	AC Power Cord: Non-Shielded, Detached, 1.0m (2C) (For Other Countries)			
	AC Power Cord: Non-Shielded, Detached, 1.55m (2C) (For US, Canada, Mexico)			

Remark: For more detailed features description, please refer to the manufacturer's specifications or the user manual.

3.6.2. The EUT collocates with following worst components, which are used to establish a basic configuration of system during test:

SKU (Mode) 1			
Main Board		Queen LP4X MAIN B/D PCB	
SUB Board		LG, 16Z90Q B2B SUB B/D	
CPU		Intel, i7-1260P	
16" LCD Panel		LG Display, LP160WQ1(SP)(B2)	
C4 (CCD)		Samsung, 1TB	
Storage (SSD)		Samsung, 256GB	
Memory (RAM))	32GB	
Battery Pack		LG, LBV7227E (80Wh)	
Keyboard		TIC, KT0120B8	
Touch Pad		LITE-ON, SP8001(SG-A0630-00A)	
Web Camera		Chicony, CKFKH33-0	
WLAN Combo	Card	Intel, AX211D2W	
WLAN Combo Antenna		LG (INPAQ), WA-P-LELE-04-026	
HDMI		2560 x 1600, 60Hz	
Type C #1	AC Adapter	LG (HONOR), ADT-65DSU-D03-2	
Type C #2	Link to LAN Gender	MEC (Black) (100Mbps)	

File Number: C1M2207003 Report Number: EM-SR220049

3.7. Test Environment

Ambient conditions in the laboratory:

Item	Require	Actual
Temperature (°C)	18-25	22 ±2
Humidity (%RH)	30-70	48 ± 2

3.8. Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 491, Zhongfu Rd., Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website: www.audixtech.com Contact e-mail: attemc_report@audixtech.com	
Accreditations	The laboratory is accredited by following organizations under ISO/IEC 17025:2017 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724	
Test Facilities	FCC OET Designation Number under APEC MRA by NCC is: TW1724 (1) SAR Room	

3.9. Measurement Uncertainty

DASY5 Uncertainty According to IEEE 1528-2013 and IEC 62209-1/2016 (0.3 - 6 GHz range)								
Error Description	Uncert.	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(Vi) Veff
Measurement System			•	•	•		-	
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related			•	•	•	•	-	
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncertainty			•	•		±11%	±10.8%	387
Expanded STD Uncertainty	Expanded STD Uncertainty ±22% ±21.5%							

Ac	cording to		5 Uncer		6 GHz ran	ge)		
Error Description	Uncert. value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(Vi) Veff
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronic	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Modulation Response	±2.5%	R	√3	1	1	±1.45	±1.45	∞
Post-processing	±3.8%	R	√3	1	1	±2.2%	±2.2%	∞
Test Sample Related			•	1	•	ı	•	
Test Sample Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Power Scaling	±0.0%	R	√3	1	1	±0.0%	±0.0%	∞
Phantom and Setup								
Phantom Uncertainty	±4.5%	R	√3	1	1	±2.4%	±2.4%	∞
SAR correction	±1.9%	R	√3	1	0.84	±1.9%	±1.9%	∞
Liquid Conductivity (target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (mea.)DAK	±2.5%	R	√3	0.64	0.43	±0.9%	±0.6%	∞
Liquid Permittivity (target)	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity(mea.)DAK	±2.5%	R	√3	0.6	0.49	±0.9%	±0.7%	∞
Combined Std. Uncertainty						±11.0%	±10.9%	387
Expanded STD Uncertainty						±22.1%	±21.8%	

4. MEASUREMENT EQUIPMENTLIST

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Stäubli Robot TX90 XL	Stäubli	TX90	F12/5K9SA1/A101	N/A	N/A
2.	Controller	SPEAG	CS8c	N/A	N/A	N/A
3.	SAM Twin Phantom	SPEAG	N/A	1706	N/A	N/A
4.	ELI5 Phantom	SPEAG	N/A	1170	N/A	N/A
5.	Device Holder	SPEAG	N/A	N/A	N/A	N/A
6.	Data Acquisition Electronic	SPEAG	DAE4	1337	2023. 03. 29	1 Year
7.	E-Field Probe	SPEAG	EX3DV4	3855	2021. 09. 24	1 Year
8.	SAR Software	SPEAG	DASY52	V.52.8.8.1222	N/A	N/A
9.	ENA Network Analyzer	Agilent	E5071C-480	MY46214331	2021. 10. 08	1 Year
10.	Signal Generator	Aglient	N5181A	MY50143917	2021. 09. 15	1 Year
11.	Power Meter	Aglient	ML2487A	MY52180007	2021. 09. 15	1 Year
12.	Power Sensor	Aglient	N8481	MY52080006	2021. 09. 15	1 Year
13.	Dipole Antenna	SPEAG	D2450V2	888	2021. 09. 13	3 Years
14.	Dipole Antenna	SPEAG	D5GHzV2	1124	2021. 09. 27	3 Years

5. SAR MEASUREMENT SYSTEM

5.1. Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \Big(\frac{dW}{dm} \Big) = \frac{d}{dt} \Big(\frac{dW}{\rho dv} \Big)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

5.2. SPEAG DASY System

DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

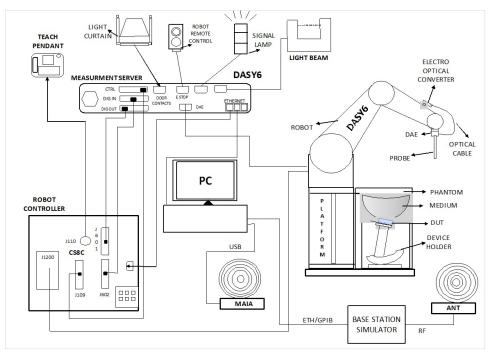
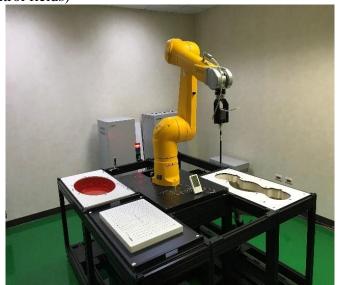



Fig-3.1 DASY6 System Setup

5.2.1. Robot

The DASY6 system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

File Number: C1M2207003 Report Number: EM-SR220049

5.2.2. Probes

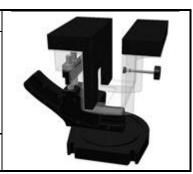
Model	EX3DV4	
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB	1
Directivity	\pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	$10 \ \mu W/g$ to $100 \ mW/g$ Linearity: $\pm 0.2 \ dB$ (noise: typically $< 1 \ \mu W/g$)	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

5.2.3. Data Acquisition Electronics (DAE)

Model	DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)	
Input Offset Voltage	< 5µV (with auto zero)	
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

5.2.4. Phantom

Model	Twin SAM	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	

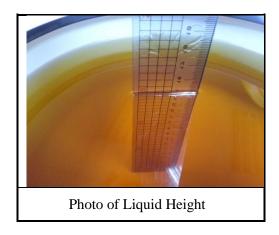

Model	ELI	
Construction	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.	
Material	Vinylester, glass fiber reinforced (VE-GF)	TOTAL STREET,
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	THE PERSONAL PROPERTY OF
Dimensions	Major axis: 600 mm Minor axis: 400 mm	
Filling Volume	approx. 30 liters	

5.2.5. Device Holder

Model	Mounting Device
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).
Material	POM

Model	Laptop Extensions Kit	
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.	
Material	POM, Acrylic glass, Foam	

5.2.6. Reference Dipole


Model	System Validation Dipoles	
Construction	Symmetrical dipole with 1/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	750 MHz to 5800 MHz	
Return Loss	> 20 dB	l l
Power Capability	> 100 W (f < 1GHz), > 40 W (f > 1GHz)	Ť

File Number: C1M2207003 Report Number: EM-SR220049

5.2.7. Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-5.1.

The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528 and FCC OET 65 Supplement C Appendix C. For the body tissue simulating liquids, the dielectric properties are defined in FCC OET 65 Supplement C Appendix C. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Table-5.1 Targets of Tissue Simulating Liquid

	Table-3.1 Targets	of Tissue Simulatii	ig Liquiu	
Target Frequency [MHz]	Target Permittivity (ɛr)	Range of ± 5%	Target Conductivity σ[s/m]	Range of ± 5%
750	41.9	39.805 ~ 43.995	0.89	0.846 ~ 0.935
835	41.5	39.425 ~ 43.575	0.90	0.855 ~ 0.945
900	41.5	39.425 ~ 43.575	0.97	0.922 ~ 1.019
1450	40.5	38.475 ~ 42.525	1.20	1.140 ~ 1.260
1640	40.3	38.285 ~ 42.315	1.29	1.226 ~ 1.355
1750	40.1	38.095 ~ 42.105	1.37	1.302 ~ 1.439
1800	40.0	38.000 ~ 42.000	1.40	1.330 ~ 1.470
1900	40.0	38.000 ~ 42.000	1.40	1.330 ~ 1.470
2000	40.0	38.000 ~ 42.000	1.40	1.330 ~ 1.470
2300	39.5	37.525 ~ 41.475	1.67	1.587 ~ 1.754
2450	39.2	37.240 ~ 41.160	1.80	1.710 ~ 1.890
2600	39.0	37.050 ~ 40.950	1.96	1.862 ~ 2.058
3500	37.9	36.005 ~ 39.795	2.91	2.765 ~ 3.056
5200	36.0	34.2.00 ~ 37.800	4.66	4.427 ~ 4.893
5300	35.9	34.105 ~ 37.695	4.76	4.522 ~ 4.998
5500	35.6	33.820 ~ 37.380	4.96	4.712 ~ 5.208
5600	35.5	33.725 ~ 37.275	5.07	4.817 ~ 5.324
5800	35.3	33.535 ~ 37.065	5.27	5.007 ~ 5.534
6000	35.1	33.345~ 36.855	5.48	5.206 ~ 5.754
6500	34.5	32.775 ~ 36.225	6.07	5.767 ~ 6.374
7000	33.9	32.205 ~ 35.595	6.65	6.318 ~ 6.983

New Taipei City244, Taiwan

Tel: +886 2 26099301 Fax: +886 2 26099303

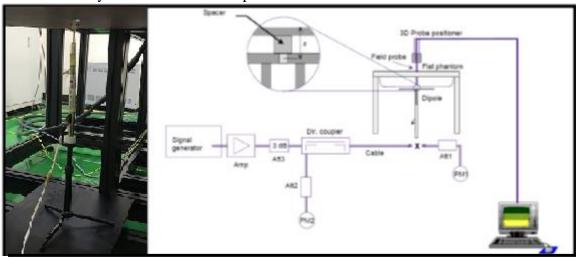
Table-5.2-1 Recipes of Tissue Simulating Liquid, 30MHz to 900MHz

Frequency (MHz)	30	5	0	14	44	4	50	835	90	0
Recipe source number	3	3	2	2	3	2	4	2	2	4
Ingredients (% by	weight)		•			•	•	•		
De-ionized water	48,30	48,30	53,53	55,12	48,30	48,53	56	50,36	50,31	56
Tween 20			44,70	43,31		49,51		48,39	48,34	
Oxidized mineral oil							44			44
Diethylenglycol monohexylether										
Triton X-100										
Diacetin	50,00	50,00			50,00					
DGBE										
NaCl	1,60	1,60	1,77	1,57	1,60	1,96		1,25	1,35	
Additives and salt	0,10	0,10			0,10					
Measured tempera	ture dep	endence								
Temp. (°C)			21	21		21	20	21	21	20
$\varepsilon_{ m liquid\ temp.\ unc.\ }(\%)$	0,8	0,1			0,1	0,1		0,04	0,04	
$\sigma_{ m liquid\ temp.\ unc.}$ (%)	2,8	2,8			2,6	4,2		1,6	1,6	

Table-5.2-2 Recipes of Tissue Simulating Liquid, 1800MHz to 10000MHz

1 8	00	2 450	4 000	5 000	5 200	5 800	6 000	8 000	10 000
2	4	4	4	4	1	1	4	5	5
		•		•					•
54,23	56	56	56	56	65,53	65,53	56	67,8	66,0
45,27								31,1	33,0
	44	44	44	44			44		
					17,24	17,24			
					17,24	17,24			
0,50									
pendend	e								
21	20	20	20	20	22	22	20	20	20
0,4					1,7	1,8			
2,3					2,7	2,6			
	2 54,23 45,27 0,50 pendence 21 0,4	54,23 56 45,27 44 0,50 0,50 pendence 21 20 0,4	2 4 4 54,23 56 56 45,27 44 44 0,50 0,50 pendence 21 20 20 0,4	2 4 4 4 54,23 56 56 45,27 44 44 44 0,50 0,50 pendence 21 20 20 20 0,4	2 4 4 4 4 4 4 4 4 44 44 44 44 44 44 44 4	2 4 4 4 4 1 54,23 56 56 56 56 65,53 45,27 44 44 44 44 17,24 17,24 0,50 1 17,24 pendence 21 20 20 20 20 22 22 0,4 1,7	2 4 4 4 4 1 1 54,23 56 56 56 56 65,53 65,53 45,27 44 44 44 44 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 21 20 20 20 22 22 0,4 1,7 1,8	2 4 4 4 4 1 1 4 54,23 56 56 56 56 65,53 65,53 56 45,27 44 44 44 44 44 17,24 17,24 17,24 17,24 0,50 17,24 17,24 17,24 10,4 20 20 20 22 22 20 0,4 1,7 1,8	2 4 4 4 1 1 4 5 54,23 56 56 56 56 65,53 65,53 56 67,8 45,27 31,1 44 44 44 44 17,24 17,24 17,24 17,24 17,24 0,50 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17,24 18,20 20 20 20 22 22 20 20 17,4 1,7 1,8

NOTE 1 Multiple columns under a single frequency indicate optional recipes


NOTE 2 Recipe source numbers: 1 verified by different labs, 2 Reference [59], 3 developed by IT'IS Foundation, 4 developed by IT'IS Foundation, 5 Reference [60].

NOTE 3 The values of $\varepsilon_{\text{liquid temp. unc.}}$ and $\sigma_{\text{liquid temp. unc.}}$ are liquid temperature uncertainties described in 0.9.6, based on measurements of the applicable liquid recipes given above. These are not part of the original publications but have been subsequently developed by the project team.

NOTE 4 The recipes at 8 000 MHz and 10 000 MHz are sufficiently broadband that they cover the frequency range of 6 000 MHz to 10 000 MHz within a tolerance of ± 10 % for permittivity and conductivity.

5.3. SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the loation of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

5.3.1. SAR System Verification Result

Dipole Kit: Di	Dipole Kit: D2450V2										
Test Date: 20	22. 07. 09	9		Liquid Temp. [$^{\circ}$ C]: 21.0							
Frequency [MHz] 1g SAR					10g SAR						
2450	Zoom Scan to 250mW	Normalize to 1W	Target Value Reference result ± 10% window	Zoom Scan to 250mW	Normalize to 1W	Target Value Reference result ± 10% window					
	13.40	53.60	52.90 47.61 to 58.19	6.28	25.12	24.80 22.32 to 27.28					

Dipole Kit: D	Dipole Kit: D5GHzV2										
Test Date: 2022. 07. 08 Liquid Temp. [°C]: 20.0											
Frequency [MHz]	I g SAR					10g SAR					
5300	Zoom Scan to 100mW Normalize to 1W Target Value Reference result ± 10% window				Zoom Scan to 100mW	Normalize to 1W	Refe	rget Varence r	esult		
	8.36	83.60	83.20 74.88 to 91.52			2.37	23.70	21.15	23.50 to	25.85	

Dipole Kit: D:	Dipole Kit: D5GHzV2										
Test Date: 2022. 07. 08 Liquid Temp. [°C]: 20.0											
Frequency [MHz]	19 SAR					10g SAR					
5600	Zoom Scan to 100mW	Scan to Normalize Reference result			Zoom Scan to 100mW	Normalize to 1W	Refe	rget Va rence r % win	esult		
	8.45	84.50	83.90 75.51 to 92.29			2.42	24.20	21.42	23.80 to	26.18	

			()								
Dipole Kit: D5GHzV2 Test Date: 2022. 07. 08 Liquid Temp. [°C]: 20.0											
Frequency [MHz] 1g SAR					10g SAR						
5800	Zoom Scan to 100mW Normalize to 1W Target Value Reference result ± 10% window				Zoom Scan to 100mW	Normalize to 1W	Refe	get Varence r win	esult		
	8.39	83.90	81.80 73.62 to	89.98	2.32	23.20	20.61	22.90 to	25.19		

5.3.2. SAR System Check Data

Page 1 of 1

Date: 7/9/2022

Test Laboratory: Audix_SAR Lab

System Check_H2450

DUT: D2450V2 - SN888

Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle:1:1 Medium parameters used: f = 2450 MHz; σ = 1.767 S/m; ϵ_r = 38.605; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(7.7, 7.7, 7.7) @ 2450 MHz; Calibrated: 9/24/2021
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 3/29/2022

Maximum value of SAR (measured) = 20.6 W/kg

- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1170
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

P=250mW/Area Scan (9x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 22.7 W/kg

P=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 110.85 V/m; Power Drift = 0.08 dB
Peak SAR (extrapolated) = 26.8 W/kg
SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.28 W/kg
Smallest distance from peaks to all points 3 dB below = 9.8 mm
Ratio of SAR at M2 to SAR at M1 = 55.1%

W/kg 20.600 16.489 12.379 8.268 4.158

File Number: C1M2207003 Report Number: EM-SR220049

Page 1 of 1

Date: 7/8/2022

Test Laboratory: Audix SAR Lab

System Check H5300

DUT: D5GHzV2 - SN1124

Communication System: UID 0, CW (0); Frequency: 5300 MHz; Duty Cycle:1:1 Medium parameters used: f = 5300 MHz; $\sigma = 4.854$ S/m; $\varepsilon_r = 35.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

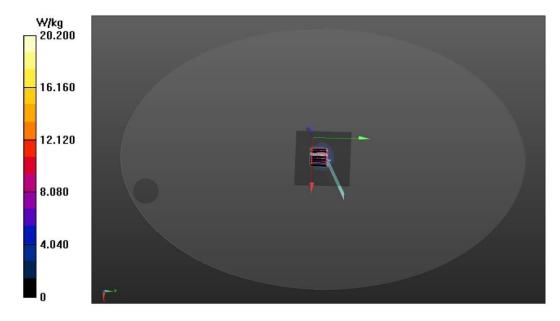
DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(5.15, 5.15, 5.15) @ 5300 MHz; Calibrated: 9/24/2021
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 3/29/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1170
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

P=100mW/Area Scan (9x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 18.4 W/kg

P=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 78.09 V/m; Power Drift = -0.36 dB


Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 8.36 W/kg; SAR(10 g) = 2.37 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 54.9%

Maximum value of SAR (measured) = 20.2 W/kg

Page 1 of 1

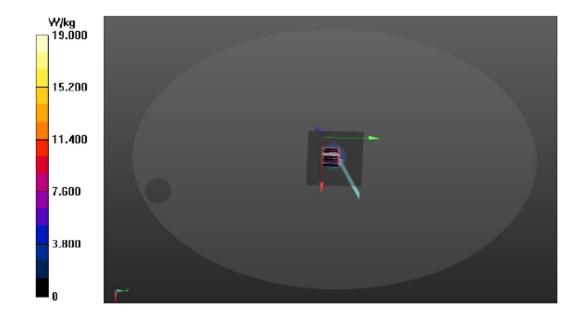
Date: 7/8/2022

Test Laboratory: Audix_SAR Lab

System Check_H5600

DUT: D5GHzV2 - SN1124

Communication System: UID 0, CW (0); Frequency: 5600 MHz;Duty Cycle:1:1 Medium parameters used: f = 5600 MHz; σ = 5.23 S/m; ϵ_r = 35.043; ρ = 1000 kg/m³


Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(4.7, 4.7, 4.7) @ 5600 MHz; Calibrated: 9/24/2021
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 3/29/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1170
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

P=100mW/Area Scan (9x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 17.4 W/kg

P=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 73.92 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 54.2% Maximum value of SAR (measured) = 19.0 W/kg

Page 1 of 1

Date: 7/8/2022

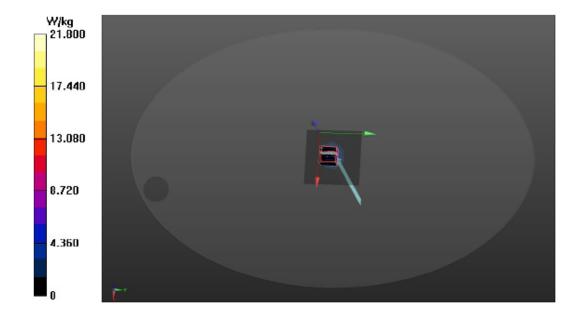
Test Laboratory: Audix_SAR Lab

System Check_H5800

DUT: D5GHzV2 - SN1124

Communication System: UID 0, CW (0); Frequency: 5800 MHz;Duty Cycle:1:1 Medium parameters used: f = 5800 MHz; σ = 5.495 S/m; ϵ_r = 34.609; ρ = 1000 kg/m³

Phantom section: Flat Section


DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(4.8, 4.8, 4.8) @ 5800 MHz; Calibrated: 9/24/2021
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 3/29/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1170
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Maximum value of SAR (measured) = 21.8 W/kg

P=100mW/Area Scan (9x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 18.8 W/kg

P=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 74.65 V/m; Power Drift = -0.01 dB
Peak SAR (extrapolated) = 43.6 W/kg
SAR(1 g) = 8.39 W/kg; SAR(10 g) = 2.32 W/kg
Smallest distance from peaks to all points 3 dB below = 7.4 mm
Ratio of SAR at M2 to SAR at M1 = 54.4%

File Number: C1M2207003 Report Number: EM-SR220049

5.4. SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the DASY system
- (e) Record the SAR value

5.4.1. Area & Zoom Scan Procedure

According to IEC/IEEE 62209-1528, the resolution for Area and Zoom scan is specified in the table below.

Items	≤ 2 GHz	2-3 GHz	3-4 GHz	4-5 GHz	5-6 GHz
Area Scan $(\Delta x, \Delta y)$	≤ 15mm	≤ 12mm	≤ 12mm	≤ 10mm	≤ 10mm
Zoom Scan $(\Delta x, \Delta y)$	≤ 8mm	≤ 5mm	≤ 5mm	≤ 4mm	≤ 4mm
Zoom Scan (Δz)	≤ 5mm	≤ 5mm	≤ 4mm	≤ 3mm	≤ 2mm
Zoom Scan Volume	≥30mm	≥30mm	≥28mm	≥25mm	≥22mm

Note:

When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of Δx / Δy (2-3GHz: ≤ 8 mm, 3-4GHz: ≤ 7 mm, 4-6GHz: ≤ 5 mm) may be applied.

According to IEC/IEEE 62209-1528, if the zoom scan measured as specified in the preceding paragraphs complies with both of the following items, or if the peak spatial-average SAR is below 0.1 W/kg, no additional measurements are needed:

- (1) The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal gird steps in both x and y directions (Δx , Δy). This shall be checked for the measured zoom scan plane conformal to the phantom at the distance z_{M1} .
- (2) The ratio of the SAR at the second measured point (M2) to the SAR at the closest measured point (M1) at the x, y location of the measured mazimum SAR value shall be at least 30%.

5.4.2. Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

5.4.3. Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

5.4.4. Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

5.4.5. SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

6. SAR MEASUREMENT EVALUATION

6.1. Test Configuration and EUT setting

The standalone SAR test exclusion shall be refer to FCC § 1.1307 (b)(3)(i)(B) SAR-Based exemption which device determined the distance from antenna to user/bystander. The formula is

 P_{th} (mW) = ERP_{20cm} (d / 20) for distance d \leq 20cm

 P_{th} (mW) = ERP_{20cm} for distance 20cm < d \leq 40cm

 $X = -\log 10 \left(\frac{60}{ERP20cm\sqrt{f}} \right)$

 $ERP_{20cm}(mW)$ 0.3 GHz \leq f \leq 1.5 GHz: 2040f

 $1.5 \text{ GHz} \le f \le 6 \text{ GHz}$: 3060

F = GHz

 P_{th} (mW) = available maximum time-average power or effective radiated power, whichever is greater.

D =the separation distance (cm)

From KDB 616217 D04 section 4.2 to 4.3, The SAR exclusion threshold can be applied to KDB 447498 to determine if SAR necessary test.

Test program "DRTU" is used for enabling EUT BT or WLAN function under continues transmitting and choosing data rate/ channel and supported stable power rating.

6.2. EUT Testing Position

SAR-Based exemption table

SAK-Based exem	iption tubic						
Centre Frequency (MHz)	5	10	15	20	25	Distance(mm)	
2450	3.000	10.000	22.000	38.000	59.000		
5200	2.000	6.000	15.000	26.000	42.000	Downer(mW)	
5500	1.000	6.000	14.000	26.000	41.000	Power(mW)	
5800	1.000	6.000	14.000	25.000	40.000		
	30	35	40	45	50	Distance(mm)	
2450	83.000	111.000	143.000	179.000	219.000		
5200	61.000	84.000	110.000	110.000	110.000	Down (m.W.)	
5500	59.000	82.000	108.000	108.000	108.000	Power(mW)	
5800	58.000	80.000	106.000	106.000	106.000		
	7	10	15	20	25	Distance(cm)	
2450	415.000	819.000	1770.000	3060.000	4678.000		
5200	350.000	731.000	1689.000	3060.000	4852.000	D	
5500	345.000	725.000	1683.000	3060.000	4865.000	Power(mW)	
5800	341.000	719.000	1678.000	3060.000	4877.000		
	30	33	35	37	40	Distance(cm	
2450	6617.000	7932.000	8872.000	8872.000	11437.000		
5200	7071.000	8609.000	9722.000	9722.000	12809.000	Dower(mW)	
5500	7106.000	8662.000	9788.000	9788.000	12918.000	Power(mW)	
5800	7139.000	8712.000	9851.000	9851.000	13021.000		

The SAR testing required mode is listed as below.

Antenna	Front Face	Rear Face	Top Side	Bottom Side	Left Side	Right Side	Screen Side
WLAN				$\sqrt{}$			$\sqrt{}$

According to SAR-Based exemption table, the laptop only need evaluate bottom side and screen side.

6.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using Agilent Dielectric Probe Kit and Agilent E5071C Vector Network Analyzer.

Body Tissue Simulate Measurement									
Frequency	Description	Dielectric l	Parameters	Liquid Temp.					
[MHz]	Description	$\epsilon_{ m r}$	σ[s/m]	[°C]					
	Reference result	39.2	1.8	N/A					
2450MHz	± 5% window	37.240 to 41.160	1.710 to 1.890	N/A					
	2022. 07. 09	38.605	1.767	21.0					

Body Tissue Simulate Measurement									
Frequency	Description	Dielectric l	Parameters	Liquid Temp.					
[MHz]	Description	$\epsilon_{ m r}$	σ[s/m]	[℃]					
	Reference result	35.9	4.76	N/A					
5300MHz	± 5% window	34.105 to 37.695	4.522 to 4.998	N/A					
	2022. 07. 08	35.700	4.854	20.0					

Body Tissue Simulate Measurement							
Frequency [MHz]	Description	Dielectric Parameters		Liquid Temp.			
		$\epsilon_{ m r}$	σ[s/m]	[℃]			
5600MHz	Reference result	35.50	5.07	N/A			
	± 5% window	33.725 to 37.275	4.817 to 5.324	N/A			
	2022. 07. 08	35.043	5.23	20.0			

Body Tissue Simulate Measurement							
Frequency [MHz]	Description	Dielectric Parameters		Liquid Temp.			
		$\epsilon_{ m r}$	σ[s/m]	[°C]			
5800MHz	Reference result	35.3	5.27	N/A			
	± 5% window	33.535 to 37.065	5.007 to 5.534				
	2022. 07. 08	34.609	5.495	20.0			

6.4. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

Tel: +886 2 26099301

Fax: +886 2 26099303

6.5. Conducted Power Measurement

Note:

- 1. Per KDB 447498 D04 the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - Scale Factor = tune-up limit power (mW)/EUT Conducted power (mW), where tune-up limit is the maximum rated power among all production units.
 - Scale SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor
- 2. Per KDB 447498 D04 for each exposure position, if the highest output channel reported SAR ≤0.8W/kg, other channels SAR testing is not necessary.
- 3. Per KDB 248227 D01, for OFDM transmission configuration in the 2.4G and 5G bands. An initial test configuration is determined by the highest maximum output power including tune-up tolerance. When multiple transmission modes(802.11a/g/n/ac/ax) have same maximum power, largest channel bandwidth, lowest order modulation and lowest data rate, lowest order 802.11 mode is selected.(i.e. a, g, n, ac then ax)
- 4. Per KDB 248227 D01, when the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 5. Per KDB 248227 D01,U-NII-1 and U-NII-2A bands have the same specified maximum output and tolerance; SAR is measured for U-NII-2A band first. Adjusted SAR of U-NII-2A band is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.
- 6. Per KDB 248227 D01, When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested.
- 7. Pursuant section 2.8.1(2) KDB 865664 D01, when the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 8. Pursuant section 2.8.1(3) KDB 865664 D01, perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit)

6.5.1. For WLAN Function

0.5.	1. 101 //	LAN Fun	Ction	Ou	tnut Po	wer (dBn	n)			
Type of	C1 1	Frequency		AUX (ant1)		, or (abi	Main (ant2)		CAD TO	
Network	Channel	(MHz)	Average	Tune-Up Limit	Scale	Average	Tune-Up Limit	Scale	SAR Test	
	CII 1	2412	Power	-	Factor	Power		Factor	No ^{NOTE2}	
	CH 1	2412	19.98	20.5	1 202	19.89	20.5	1 150		
000 111	CH 7	2442	20.02	21.0	1.202	19.88	20.5	1.153	Yes	
802.11b	CH 11	2462	19.92	20.5		19.88	20.5		No ^{NOTE2}	
	CH 12	2467	19.08	20.0		18.82	19.5		No	
	CH 13	2472	16.72	17.3		15.66	16.3			
	CH 1	2412	16.61	17.3		17.17	18.0			
	CH 2	2417	18.48	19.0		18.71	19.3			
002.11	CH 7	2442	19.36	20.0		19.52	20.3		No ^{NOTE6}	
802.11g	CH 10	2457	18.26	19.0		18.53	19.3		No	
	CH 11	2462	16.44	17.0		16.65	17.3			
	CH 12	2467	14.35	15.0		14.40	15.0			
	CH 13	2472	11.41	12.0		11.26	12.0			
	CH 1	2412	15.09	16.0		15.22	16.0			
	CH 2	2417	16.41	17.0		16.57	17.3			
	CH 3	2422	17.81	18.3		17.67	18.3			
802.11n-	CH 7	2442	19.29	20.0		19.46	20.3		No ^{NOTE4 · 3}	
HT20	CH 10	2457	17.96	18.6		17.98	18.5		110	
	CH 11	2462	14.62	15.3		14.64	15.3			
	CH 12	2467	10.63	11.3		10.53	11.3			
	CH 13	2472	7.65	8.3		7.69	8.3			
	CH 3	2422	14.22	15.0		14.35	15.0			
802.11n-	CH 7	2442	14.87	15.5		15.13	16.0			
HT40	CH 9	2452	13.86	15.5		14.18	15.0		$No^{NOTE4 \cdot 3}$	
11170	CH 10	2457	11.20	12.0		11.13	12.0			
	CH 11	2462	8.04	9.0		8.21	9.0			
	CH 1	2412	15.32	16.0		15.42	16.3			
	CH 2	2417	16.70	17.3		16.78	17.3			
	CH 3	2422	17.85	18.5		17.82	18.5			
802.11ax-	CH 7	2442	19.34	20.0		19.57	20.3		No ^{NOTE4 · 3}	
HE20	CH 10	2457	18.10	19.0		18.15	19.0		110	
	CH 11	2462	14.76	15.3		14.86	15.5			
	CH 12	2467	10.84	11.5		10.60	11.3			
	CH 13	2472	7.53	8.3		7.64	8.3			
	CH 3	2422	14.04	15.0		14.28	15.0			
802.11ax-	CH 7	2442	14.68	15.3		14.94	15.5			
HE40	CH 9	2452	13.64	14.3		13.99	14.5		$No^{NOTE4 \cdot 3}$	
пь40	CH 10	2457	13.65	14.3		14.00	15.0			
	CH 11	2462	7.97	8.5		8.11	9.0			
				Out	tnut Po	wer (dBn	n)			
Type of	Frequency	RU		AUX (ant1)	iput I 0	,, cr (uDI	Main (ant2)			
Network	(MHz)	Configuration	Average	, ,	Scale	Average		Scale	SAR Test	
	, ,		Power	Tune-Up Limit	Factor	Power	Tune-Up Limit	Factor		
		26/0	17.40	18.0		17.46	18.0			
	2412	52/37	18.06	19.0		18.13	19.0			
802.11ax-		106/53	17.88	18.5		17.94	18.5		No ^{NOTE4 · 3}	
HE20		26/8	5.20	6.0		5.35	6.0		NO	
	2472	52/40	6.17	7.0		6.26	7.0			
		106/54	6.35	7.0		6.46	7.3			
802.11ax-	2422	242/61	15.01	16.0		15.19	16.0		- NOTE4 : 2	
HE40	2462	242/62	7.75	8.3		7.86	8.5		$No^{NOTE4 \cdot 3}$	
112.10	2702	2-T2/U2	1.13	0.5		7.00	0.5			

Network Band CH 36 S180 16.18 17.0 16.30 17.0 16.30 17.0 16.30 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.37 17.0 16.37 17.0 16.37 17.0 16.37 17.0 16.37 17.0 16.37 17.0 16.33 17.0 16.33 17.0 16.33 17.0 16.33 17.0 16.33 17.0 16.33 17.0 16.33 17.0 16.28 17.0 16.28 17.0 16.28 17.0 16.28 17.0 16.28 17.0 16.33 17.0 16.33 17.0 16.34 17.0 16.33 17.0 16.33 17.0 16.28 17.0 16.28 17.0 16.28 17.0 16.28 17.0 16.33 17.0 16.34 17.0 16.34 17.0 16.28 17.0 16.28 17.0 16.28 17.0 16.28 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.34 17.0 16.28 17.0 16.28 17.0 16.28 17.0 16.28 17.0 16.38 17.0 16.38 17.0 16.38 17.0 16.38 17.0 16.38 17.5 16.38 17.5 16.38 17.5 16.38 17.5 16.38 17.5 16.38 17.5 16.38 17.5 16.38 17.5 16.38 17.5 16.38 17.0 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5 15.38 16.5	Yes Yes ONOTE2 · 3 Yes ONOTE2 · 3	
Network Band Channel (MHz) Average Power Tune-Up Limit Factor Fact	ONOTES · 3 Yes Yes ONOTE2 · 3	
802.11a CH 36	Yes Yes ONOTE2 · 3	
802.11a CH 40 5200 16.17 17.0 16.34 17.0 CH 48 5240 16.07 17.0 16.11 17.0 CH 52 5260 16.21 17.0 16.17 17.0 CH 60 5300 16.18 17.0 16.33 17.0 CH 64 5320 16.25 17.0 1.138 16.44 17.3 1.189 CH 100 5500 16.44 17.3 1.132 16.37 17.0 1.156 CH 116 5580 16.32 17.0 16.28 17.0 CH 140 5700 16.29 17.0 16.19 17.0 CH 144 5720 16.41 17.3 16.46 17.3 CH 149 5745 16.65 17.3 16.89 17.5 CH 149 5745 16.59 17.3 1.178 16.92 17.5 1.143 CH 165 5825 16.59 17.3 16.86 17.5 CH 36 5180 16.20 17.0 15.81 16.5 CH 48 5240 15.72 16.3 15.83 16.5 CH 52 5260 15.80 16.5 15.91 16.5 CH 64 5320 15.81 16.5 16.00 17.0 CH 64 5320 15.83 16.5 16.00 17.0 CH 64 5320 15.83 16.5 16.00 17.0 CH 149 5745 5785	Yes Yes ONOTE2 · 3	
CH 48	Yes Yes ONOTE2 · 3	
802.11a CH 52 5260 16.21 17.0 16.17 17.0 CH 60 5300 16.18 17.0 16.33 17.0 CH 64 5320 16.25 17.0 1.138 16.44 17.3 1.189 CH 100 5500 16.44 17.3 1.132 16.37 17.0 1.156 CH 116 5580 16.32 17.0 16.28 17.0 CH 140 5700 16.29 17.0 16.19 17.0 CH 144 5720 16.41 17.3 16.46 17.3 CH 149 5745 16.65 17.3 16.89 17.5 3 CH 157 5785 16.59 17.3 1.178 16.92 17.5 1.143 CH 165 5825 16.59 17.3 16.86 17.5 1 CH 36 5180 16.20 17.0 15.81 16.5 CH 48 5240 15.72 16.3 15.83 16.5 CH 52 5260 15.80 16.5 15.91 16.5 CH 60 5300 15.81 16.5 16.00 17.0 CH 64 5320 15.83 16.5 16.00 17.0 CH	Yes Yes ONOTE2 · 3	
802.11a 2A	Yes o ^{NOTE2 · 3}	
802.11a	Yes o ^{NOTE2 · 3}	
802.11a 2C CH 100 5500 16.44 17.3 1.132 16.37 17.0 1.156 CH 116 5580 16.32 17.0 16.28 17.0 CH 140 5700 16.29 17.0 16.19 17.0 CH 144 5720 16.41 17.3 16.46 17.3 CH 149 5745 16.65 17.3 16.89 17.5 CH 157 5785 16.59 17.3 1.178 16.92 17.5 1.143 CH 165 5825 16.59 17.3 16.86 17.5 No CH 36 5180 16.20 17.0 15.81 16.5 CH 40 5200 16.26 17.0 15.87 16.5 CH 48 5240 15.72 16.3 15.83 16.5 CH 52 5260 15.80 16.5 15.91 16.5 CH 60 5300 15.81 16.5 16.02 17.0 CH 64 5320 15.83 16.5 16.00 17.0 CH 64 5320 15.83 16.5 16.00 17.0 CH 52 5260 15.80 16.5 16.00 17.0 CH 64 5320 15.83 16.5 16.00 17.0 CH 64 54 54 54 54 54 54 54	Yes o ^{NOTE2 · 3}	
2C CH 116 5580 16.32 17.0 16.28 17.0 No CH 140 5700 16.29 17.0 16.19 17.0 No CH 144 5720 16.41 17.3 16.46 17.3 No CH 149 5745 16.65 17.3 16.89 17.5 3 CH 157 5785 16.59 17.3 1.178 16.92 17.5 1.143 CH 165 5825 16.59 17.3 16.86 17.5 No CH 36 5180 16.20 17.0 15.81 16.5 No 1 CH 40 5200 16.26 17.0 15.87 16.5 CH 48 5240 15.72 16.3 15.91 16.5 2A CH 60 5300 15.81 16.	ONOTE2 · 3	
CH 140 5700 16.29 17.0 16.19 17.0 No CH 144 5720 16.41 17.3 16.46 17.3 16.46 17.3 16.46 17.5 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.5 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.3 16.46 17.5	Vas	
CH 144 5720 16.41 17.3 16.46 17.3 NO CH 149 5745 16.65 17.3 16.89 17.5 3 CH 157 5785 16.59 17.3 1.178 16.92 17.5 1.143 CH 165 5825 16.59 17.3 16.86 17.5 No CH 36 5180 16.20 17.0 15.81 16.5 15.87 16.5 CH 40 5200 16.26 17.0 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0 15.80 16.5 16.00 17.0	Vas	
CH 149 5745 16.65 17.3 16.89 17.5 CH 157 5785 16.59 17.3 1.178 16.92 17.5 1.143 CH 165 5825 16.59 17.3 16.86 17.5 No CH 36 5180 16.20 17.0 15.81 16.5 CH 40 5200 16.26 17.0 15.87 16.5 CH 48 5240 15.72 16.3 15.83 16.5 CH 52 5260 15.80 16.5 15.91 16.5 2A CH 60 5300 15.81 16.5 16.02 17.0 CH 64 5320 15.83 16.5 16.00 17.0	Yes o ^{NOTE2 · 3}	
3 CH 157 5785 16.59 17.3 1.178 16.92 17.5 1.143 CH 165 5825 16.59 17.3 16.86 17.5 No CH 36 5180 16.20 17.0 15.81 16.5 15.87 16.5 15.88 5240 15.72 16.3 15.83 16.5 15.88 16.5 15.88 16.5 15.89 16.5 15.89 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 16.02 17.0 15.91 16.5 16.02 17.0 15.91 16.5 16.02 17.0 15.91 16.5 16.02 17.0 15.91 16.5 16.02 17.0 15.91 16.5 16.02 17.0 15.91 16.5 16.02 17.0	Yes o ^{NOTE2 · 3}	
CH 165 5825 16.59 17.3 16.86 17.5 No CH 36 5180 16.20 17.0 15.81 16.5 1 CH 40 5200 16.26 17.0 15.87 16.5 CH 48 5240 15.72 16.3 15.83 16.5 CH 52 5260 15.80 16.5 15.91 16.5 2A CH 60 5300 15.81 16.5 16.02 17.0 CH 64 5320 15.83 16.5 16.00 17.0	oNOTE2 · 3	
CH 36 5180 16.20 17.0 15.81 16.5 15.40 5200 16.26 17.0 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.87 16.5 15.83 16.5 15.83 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 15.91 16.5 16.02 17.0 15.91 16.5 16.02 17.0 15.91 16.5 16.02 17.0 15.91 16.5 16.02 17.0 15.91 16.5 16.02 17.0 15.91 16.5 16.02 17.0		
1 CH 40 5200 16.26 17.0 15.87 16.5 CH 48 5240 15.72 16.3 15.83 16.5 CH 52 5260 15.80 16.5 15.91 16.5 2A CH 60 5300 15.81 16.5 16.02 17.0 CH 64 5320 15.83 16.5 16.00 17.0		
CH 48 5240 15.72 16.3 15.83 16.5 CH 52 5260 15.80 16.5 15.91 16.5 2A CH 60 5300 15.81 16.5 16.02 17.0 CH 64 5320 15.83 16.5 16.00 17.0		
2A CH 60 5300 15.81 16.5 15.91 16.5 CH 64 5320 15.83 16.5 16.00 17.0		
2A CH 60 5300 15.81 16.5 16.02 17.0 CH 64 5320 15.83 16.5 16.00 17.0		
CH 64 5320 15.83 16.5 16.00 17.0		
V(1) In		
L CH 100 5500 15.63 16.3 15.98 16.5 No	o ^{NOTE4 · 3}	
H120 CH 116 5580 15.78 16.3 15.81 16.5		
2C CH 140 5700 15.86 16.5 16.05 17.0		
CH 144 5720 15.81 16.5 16.08 17.0		
CH 149 5745 15.75 16.3 16.20 17.0		
3 CH 157 5785 15.79 16.3 16.26 17.0	-	
CH 165 5825 15.85 16.5 16.21 17.0		
CH 38 5190 15.84 16.5 16.05 17.0		
1 CH 46 5230 16.32 17.0 16.12 17.0		
CH 54 5270 16 34 17 0 16 35 17 0		
2A CH 62 5310 15.72 16.5 15.52 16.3		
	oNOTE4 · 3	
HT40 CH 110 5550 1621 170 1505 165 NO	0	
2C CH 110 3330 16.21 17.0 15.93 16.3 CH 134 5670 16.37 17.0 16.01 17.0		
CH 142 5710 16.37 17.0 16.03 17.0		
CH 151 5755 16.69 17.3 16.60 17.3		
3 CH 151 5755 16.65 17.5 16.66 17.5 CH 159 5190 16.62 17.3 16.73 17.3		
1 CH 52 5210 14.69 15.3 14.17 15.0		
2A CH 58 5290 14.98 15.5 14.55 15.3		
	NOTE4 · 3	
-VHT80 2C CH 133 5610 15.80 16.5 15.72 16.5 No	No ^{NOTE4 · 3}	
CH 138 5690 15.71 16.3 15.81 16.5		
3 CH 155 5775 16.17 17.0 16.46 17.3		
	o ^{NOTE4 · 3}	
-VHT160 2C CH 114 5570 14.89 15.5 14.85 15.5 ^{No}	0	

					Out	put Po	wer (dBr	n)		
Type of	U-NII	Channel	Frequency		AUX (ant1)			Main (ant2)		SAR Test
Network	Band	Chamici	(MHz)	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	SAR Test
		CH 36	5180	16.09	17.0		16.08	17.0		
	1	CH 40	5200	16.07	17.0		15.95	16.5		
		CH 48	5240	15.80	16.5		15.94	16.5		
		CH 52	5260	15.90	16.5		16.03	17.0		
	2A	CH 60	5300	15.96	16.5		16.16	17.0		
002 11		CH 64	5320	15.83	16.5		16.14	17.0		
802.11ax -HE20		CH 100	5500	15.67	16.3		16.13	17.0		$No^{NOTE4 \cdot 3}$
-nezu	2C	CH 116	5580	15.87	16.5		16.01	17.0		
		CH 140	5700	15.98	16.5		16.15	17.0		
		CH 144	5720	15.91	16.5		16.21	17.0		
		CH 149	5745	15.87	16.5		16.32	17.0		
	3	CH 157	5785	15.84	16.5		16.28	17.0		
		CH 165	5825	15.93	16.5		16.32	17.0		
	1	CH 38	5190	15.73	16.3		15.76	16.3		
	1	CH 46	5230	16.21	17.0		16.07	17.0		
	2A	CH 54	5270	16.32	17.0		16.06	17.0		
	2A	CH 62	5310	15.56	16.3		15.28	16.0		
802.11ax		CH 102	5510	16.13	17.0		16.04	17.0		No ^{NOTE4 · 3}
-HE40	20	CH 110	5550	16.16	17.0		15.93	16.5		NO
	2C	CH 134	5670	16.37	17.0		15.93	16.5		
		CH 142	5710	16.23	17.0		16.05	17.0		
	2	CH 151	5755	16.36	17.0		16.34	17.0		
	3	CH 159	5190	16.43	17.0		16.44	17.3		
	1	CH 52	5210	14.33	15.0		14.49	15.3		
	2A	CH 58	5290	14.78	15.3		14.50	15.3		
802.11ax		CH 106	5530	15.09	16.0		15.30	16.0		No ^{NOTE4 · 3}
-HE80	2C	CH 133	5610	15.61	16.3		15.45	16.0		Nonoil
		CH 138	5690	15.47	16.0		15.58	16.3		
	3	CH 155	5775	15.88	16.5		16.18	17.0		
802.11ax	1/2A	CH 50	5250	11.11	12.0		11.27	12.0		No ^{NOTE4 · 3}
-HE160	2C	CH 114	5570	14.61	15.3	1	14.76	15.3		110

					Oı	utput Po	wer (dBr	n)		
Type of	U-NII	Frequency	RU		AUX (ant1)			Main (ant2)		SAR
Network	Band	(MHz)	Configuration	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	Test
			26/0	9.54	10.3		9.68	10.3		
	1	5180	52/37	13.04	14.0		13.11	14.0		
			106/53	15.89	16.5		15.53	16.3		No
			26/8	9.63	10.3		9.88	10.5		NOTE4 · 3
	2A	5320	52/40	13.19	14.0		13.30	17.0		
			106/54	15.46	16.3		15.27	16.0		
			26/0	9.74	10.3		9.70	10.3		
	2C	5500	52/37	13.25	14.0		13.16	14.0		
802.11ax			106/53	14.89	15.5		14.72	15.3		No
-HE20		5700	26/8	9.68	10.3		9.50	10.3		NOTE4 · 3
			52/40	13.09	14.0		12.93	13.5		
			106/54	15.95	16.5		15.62	17.3		
			26/0	15.34	16.0		15.32	16.0		
		5745	52/37	15.91	16.5		15.89	16.5		
	3		106/53	16.04	17.0		16.01	17.0		No
	3		26/8	14.90	15.5		15.31	16.0		NOTE4 · 3
		5825	52/40	12.98	13.5		13.00	14.0		
			106/54	15.88	16.5		15.92	16.5		
	1	5190	242/61	16.00	17.0		15.68	16.3		No
	2A	5310	242/62	17.48	18.3		17.40	18.3		NOTE4 · 3
802.11ax	20	5510	242/61	15.69	16.3		15.67	16.3		No
-HE40	2C	5710	242/62	16.33	17.0		16.17	17.0		NOTE4 · 3
	2	5755	242/61	15.84	16.5		15.83	16.5		No
	3	5795	242/62	16.30	17.0		16.33	17.0		NOTE4 · 3
	1	5210	484/65	15.21	16.0		15.29	16.0		No
	2A	5290	484/66	12.10	13.0		12.12	13.0		NOTE4 · 3
802.11ax	20	5530	484/65	15.00	16.0		14.89	15.5		No
-HE80	2C	5610	484/66	16.04	17.0		15.61	16.3		NOTE4 · 3
	2	5775	484/65	15.93	16.5		15.87	16.5		No
	3	5775	484/66	15.90	16.5		15.94	16.5		NOTE4 · 3
	1 /0 :	5250	996/67	14.58	15.3		14.62	15.3		No
802.11ax	1/2A	5250	996/S67	12.21	13.0		12.43	13.0		NOTE4 · 3
-HE40	2.5	5570	996/67	14.55	15.3		14.65	15.3		No
	2C	5570	996/S67	15.37	16.0		15.40	16.0		NOTE4 · 3

6.5.2. For BT Function

				Ou	tput Po	wer (dBm	n)		
Type of	Channel	Frequency		AUX (ant1)			Main (ant2)		SAR Test
Network	Chamici	(MHz)	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	SAK Test
Divoto oth	CH 0	2402	9.15	10.0					No
Bluetooth- GFSK	CH 39	2441	9.61	10.3					NO
GFSK	CH 78	2480	9.83	10.5	1.167				Yes
Dissets atla	CH 0	2402	7.28	8.0					
Bluetooth- 8-DPSK	CH 39	2441	7.70	8.3					No
0-DFSK	CH 78	2480	7.69	8.3					
DIE	CH 37	2402	5.40	6.0					
BLE (1M)	CH 17	2440	5.74	6.3					No
(11/1)	CH 39	2480	5.75	6.3					
DIE	CH 37	2402	5.41	6.0					
BLE (2M)	CH 17	2440	5.76	6.3					No
(2IVI)	CH 39	2480	5.79	6.3					
BLE	CH 37	2402	5.39	6.0					
(PHY	CH 17	2440	5.73	6.3					No
Coded S2)	CH 39	2480	5.75	6.3					
BLE	CH 37	2402	5.39	6.0					
(PHY	CH 17	2440	5.72	6.3					No
Coded S8)	CH 39	2480	5.73	6.3					

6.6. SAR Test Result

6.6.1. WiFi 2.4G/Bluetooth

Test Date	2022. 07. 08	Temp./Hum.	21°C/49%
Test Voltage	AC 120V, 60Hz (with AC Adapter)	Tested by	Sean Wang

Liquid	l Temperatu	re:21.0°C						Depth of Liquid: > 15cm		
Test	Test Mode: 2.4GHz									
Plot No.	Test Position: Body	Antenna Position	Separation Distance (cm)	Frequency	Conducted Power (dBm)	Maximum Tune-up (dBm)	SAR 1g (W/kg)	Scale Factor	Scale SAR	Limit (W/kg)
	802.11b									
				Ante	enna: AUX (ant1)				
1	Screen	Fixed	0.5	2442	20.20	21.00	0.071	1.202	0.085	1.60
3	Bottom	Fixed	0	2442	20.20	21.00	0.021	1.202	0.025	1.60
	Antenna: Main (ant2)									
2	Screen	Fixed	0.5	2442	19.88	20.50	0.690	1.153	0.796	1.60
4	Bottom	Fixed	0	2442	19.88	20.50	0.086	1.153	0.099	1.60

Liqui	Liquid Temperature : 21.0°C Depth of Liquid: >15cm									
Test	Test Mode: BT-GFSK									
Plot No.	Test Position: Body	Antenna Position	Separation Distance (cm)	Frequency	Conducted Power (dBm)	Maximum Tune-up (dBm)	SAR 1g (W/kg)	Scale Factor	Scale SAR	Limit (W/kg)
				Ante	enna: AUX (ant1)				
15	Screen	Fixed	0.5	2480	9.83	10.50	0.011	1.167	0.116	1.60
16	Bottom	Fixed	0	2480	9.83	10.50	0.010	1.167	0.105	1.60

File Number: C1M2207003 Report Number: EM-SR220049

6.6.2. WiFi 5G

Test Date	2022. 07. 09	Temp./Hum.	22°C/47%
Test Voltage	AC 120V, 60Hz (with AC Adapter)	Tested by	Sean Wang

Liquio	l Temperatu	re : 21.0°C				Depth of Liquid: > 15cm					
Test	Test Mode: 5GHz										
Plot No.	Test Position: Body	Antenna Position	Separation Distance (cm)	Frequency	Conducted Power (dBm)	Maximum Tune-up (dBm)	SAR 1g (W/kg)	Scale Factor	Scale SAR	Limit (W/kg)	
	802.11a										
				Ante	enna: AUX (ant1)					
5	Screen	Fixed	0.5	5320	16.44	17.00	0.140	1.138	0.159	1.60	
7	Screen	Fixed	0.5	5500	16.46	17.00	0.390	1.132	0.442	1.60	
9	Screen	Fixed	0.5	5785	16.59	17.30	0.717	1.178	0.844	1.60	
11	Bottom	Fixed	0	5785	16.59	17.30	0.241	1.178	0.284	1.60	
				Ante	enna: Main (ant2)					
6	Screen	Fixed	0.5	5320	16.25	17.00	0.618	1.189	0.734	1.60	
8	Screen	Fixed	0.5	5500	16.37	17.00	0.793	1.156	0.917	1.60	
10	Screen	Fixed	0.5	5785	16.92	17.50	0.780	1.143	0.891	1.60	
12	Bottom	Fixed	0	5785	16.92	17.50	0.285	1.143	0.326	1.60	

6.6.3. Highest Simultaneous Transmission SAR

Highest Simultaneous Transmission SAR	Reported Body SAR _{1g}
WLAN 2.4G (2442MHz) ANT AUX +	0.881 W/kg
WLAN 2.4G (2442MHz) ANT Main	0.001 W/Kg
WLAN 2.4G (2442MHz) ANT Main +	0.912 W/kg
BT (2441MHz)ANT AUX	0.912 W/Kg
WLAN 5G (5500MHz) ANT Main+	1.033 W/kg
BT (2441MHz)ANT AUX	1.033 W/kg
WLAN 5G (5785MHz) ANT Main +	1.735 W/kg Note 3
WLAN 5G (5785MHz) ANT AUX	1./33 W/kg
WLAN 5G (5785MHz) ANT Main +	
WLAN 5G (5785MHz) ANT AUX +	$1.851 \text{ W/kg}^{\text{Note 3}}$
BT (2441MHz)ANT AUX	
,	

Note: 1. The SAR limit (SAR1g 1.6 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093).

2. It is calculated from scale SAR.

3. It is larger than the limit 1.6(W/kg), SAR test exclusion is determined by the SAR to peak location separation ratio.

Simultaneous Transmission SAR	Frequency	Measured Body SAR _{1g} (SAR1+SAR2) ^{Note2}	Ri (mm) Note2	SPLSR Note2
WLAN 5G ANT Main+ WLAN 5G ANT AUX	5785MHz	$1.74 (W/kg)^{Note 2}$	60.43	0.04
Note: 1. The SAR limit (SAR1g 1.6 W/k 2. SPLSR=(SAR1+SAR2) ^{1.5} /Ri m	g) for general populat ust ≤0.04	ion / uncontrolled exposure is specified in FC	C 47 CFR part 2	(2.1093).
Find distance of maxima			x	
 ☐ Maxima and position w.r.t ☐ Zoom Scan (D:\SAR Textsquare) 		associated 1g averages B90Q\dasy\P9 802.11a CH157 5785MHz ant1 Scr	een.da53:0/U	
Max. 1 at (90.60, -46.60, -1.07) mm 0.85 W/kg (Power Scale Factor: 1.18)				
		B90Q\dasy\P10 802.11a CH157 5785MHz ant2 Se	reen.da53:0/	
Max. 2 at (92.60, 13.80, -1.20) mm 0.89 W/kg (Power Scale Factor: 1.14)				
□ Distances and Separation	Ratios			
Max. 1 - Max. 2		Distance [mm]: 60.43 / Separation ratio [W/l	(g/mm]: 0.04	
Done				

APPENDIX A

GRAPH RESULT

(Model: 16ZB90Q)

APPENDIX B

TEST PHOTOGRAPHS

(Model: 16ZB90Q)

APPENDIX C

Test Equipment Calibration Data