

Page 1 of 27 Tel: +886 2 26099301 Fax: +886 2 26099303

FCC 15.407 NII DFS Test Report

for

LG Electronics Inc.

222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea

Product Name	:	Notebook Computer
Model Name	:	(1)16Z90TS (2)16ZD90TS
		(3)16ZG90TS (4)16ZB90TS
Brand	:	LG
FCC ID	:	BEJNT-16Z90TS

The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

File Number: C1M2407254

Report Number: EM-F240353

Page 2 of 27 Tel: +886 2 26099301 Fax: +886 2 26099303

TABLE OF CONTENTS

De	scrip	tion	Page
TE	ST RE	EPORT	
1.	REV	ISION RECORD OF TEST REPORT	
2.		IMARY OF TEST RESULTS	
3.		VERAL INFORMATION	
	3.1.	Description of Application	
	3.2.	Description of Hypfication	
	3.3.	Reference Test Guidance	
	3.4.	Antenna Information	8
	3.5.	EUT Specifications Assessed in Current Report	9
	3.6.	Description of Key Components	10
	3.7.	Test Configuration	
	3.8.	Output Power Setting	
	3.9.	Description of Test Facility	
		Measurement Uncertainty	
4.	MEA	ASUREMENT EQUIPMENTLIST	
5.	WO]	RKING MODES AND REQUIREMENT TEST ITEM	
	5.1.	Applicability of DFS Requirements Prior to Use of a Channel	14
	5.2.	Applicability of DFS Requirements during Normal Operation	14
6.	DFS	DETECTION THRESHOLOS AND RADAR TEST WAVEFORMS	
	6.1.	Interference Threshold Value, Master or Client Incorporating In-Service Monitoring	15
	6.2.	Radar Test Waveform Minimum Step	
	6.3.	Short Pulse Radar Test Waveforms	16
	6.4.	Long Pulse Radar Test Waveforms	17
	6.5.	Frequency Hopping Pulse Radar Test Waveforms	
	6.6.	Conducted Calibration Setup	
	6.7.	Radar Waveform Calibration Procedure	
	6.8.	Calibration Deviation	
	6.9.	Radar Waveform Calibration Result	
7.	TES	T SETUP AND TEST RESULT	
	7.1.	Test Setup	23
	7.2.	Channel Move Time, Channel Closing Transmission Time, Non-Occupancy Period,	
	Non-	Associated Client Beacon Measurement	25

APPENDIX A TEST PHOTOGRAPHS

Report Number: EM-F240353

Page 3 of 27 Tel: +886 2 26099301 Fax: +886 2 26099303

TEST REPORT

Applicant	:	LG Electronics Inc.
Manufacturer	:	LG Electronics Inc.
Factory	:	LG Electronics Nanjing New Technology Co., Ltd.
EUT Description		
(1) Product	:	Notebook Computer
(2) Model	:	(1)16Z90TS (2)16ZD90TS (3)16ZG90TS (4)16ZB90TS
(3) Brand	:	LG
(4) Power Supply	:	DC 20V, 3.25A

Applicable Standards:

47 CFR FCC Part 15 Subpart E

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. *Audix Technology Corp.* does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Reviewed by:

Approved by:

Sabara	Wang
Johnny	Hsuch

(Sabrina Wang/Administrator)

(Johnny Hsueh/Section Manager)

File Number: C1M2407254

Report Number: EM-F240353

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Date	Revision Summary	Report Number
0	2024. 08. 28	Original Report	EM-F240353

File Number: C1M2407254

Report Number: EM-F240353

2. SUMMARY OF TEST RESULTS

Description	Results
Channel Availability Check Time	N/A
Channel Move Time	PASS
Non-Occupancy Period	PASS
Non-Associated Client Beacon	PASS
Channel Closing Transmission Time	PASS
U-NII Detection Bandwidth	N/A
N/A is an abbreviation for Not Applicable, sine the product is client without function	radar detection
Note: The uncertainties value is not used in determining the result.	

3. GENERAL INFORMATION

Applicant	LG Electronics Inc. 222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea
Manufacturer	LG Electronics Inc. 222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea
Factory	LG Electronics Nanjing New Technology Co., Ltd. No.346,Yaoxin Road, Economic & Technical Development Zone, Nanjing, China.
Product	Notebook Computer
Model	(1)16Z90TS (2)16ZD90TS (3)16ZG90TS (4)16ZB90TS The difference between all models is different in the sales customers and color difference.
Brand	LG

3.1. Description of Application

File Number: C1M2407254

3.2. Description of EUT

Test Model	16Z90TS				
Serial Number	N/A	N/A			
Power Rating	DC 20V, 3.25A				
Software Version	XY (X, Y can be 0 to 9 for different SW version	on not influence RF parameter			
RF Features	WLAN:802.11 a/b/g/n/ac/ax/be Bluetooth: BT and BLE (BT5.4)				
	2.4 GHz Bands				
	802.11b	1T1R			
	802.11g	1T1R			
	802.11n-HT20/40	2T2R			
	802.11ax-HE20/40	2T2R			
	802.11be-EHT20/40	2T2R			
	BT/BLE	1T1R			
	U-NII Bands				
	802.11a	1T1R			
Transmit Type	802.11n-HT20/40	2T2R			
	802.11ac-VHT20/40/80/160	2T2R			
	802.11ax-HE20/40/80/160	2T2R			
	802.11be-EHT20/40/80/160	2T2R			
	WLAN 6E Bands				
	802.11ax-HE20/40/80/160	2T2R			
	802.11be-EHT20/40/80/160/320	2T2R			
	The MIMO is uncorrelated and supported SDM (Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).				
	Outdoor Access Point				
	Fixed point-to-point Access Point				
Device Category	Indoor Access Point				
	■ Mobile and Portable client device				

Report Number: EM-F240353

Sample Status	Trial sample					
Test Sample	Sample No. 01					
Date of Receipt	2024. 06. 26					
Date of Test	2024. 08. 17					
Interface Ports of EUT	 One HDMI Port Two USB Type C Ports One Earphone Port Two USB 3.0 Ports 					
Accessories Supplied	 AC Adapter USB C Cable LAN Gender 					

Note: Pursuant ISO 17025:2017 section 7.8.2, Audix Technology Corp. does not assume responsibility for all EUT's information including RF features, transmit type, antenna information...etc are provided by customer.

3.3. Reference Test Guidance

KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02 KDB 905462 D03 U-NII Clients Without Radar Detection New Rules v01r02

3.4. Antenna Information

No.	Antenna Part Number	Manufacturer	Antenna Type	Frequency (MHz)	Max Gain(dBi)		Directional	
140.	Antenna i art i vuniber	Wandacturer			Aux	Main	Gain	
				2400-2500	2.0	2.1	2.05	
1.	WA-P-LALB-04-011	INPAQ	Mono-Pole	5150-5895	0.1	2.1	1.21	
				5925-7125	3.6	3.3	3.45	
Accor	According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then							
Direct	ional gain = $10 \log[(10^{G1/10} +$	$10^{G2/10} + \ldots + 10^{GN/10})/$	N _{ANT}] dBi					
Note 1	Note 1. 2400-2500MHz Directional gain = $10 \log[(10^{2.0/10} + 10^{2.1/10})/2] = 2.05$ dBi							
Note 2. 5150-5895MHz Directional gain = $10 \log[(10^{0.1/10} + 10^{2.1/10})/2] = 1.21$ dBi								
Note 3	Note 3. 5925-7125MHz Directional gain = $10 \log[(10^{3.6/10} + 10^{3.3/10})/2] = 3.45$ dBi							

File Number: C1M2407254

Report Number: EM-F240353

Page 9 of 27 Tel: +886 2 26099301 Fax: +886 2 26099303

Mode	U-NII Band	Fundamental Range (MHz)	Channel Number
902.11	2A	5260-5320	4
802.11a	2C	5500-5720	12
802.11n-HT20 802.11ac-VHT20	2A	5260-5320	4
802.11ax-HE20 802.11be-EHT20	2C	5500-5720	12
802.11n-HT40 802.11ac-VHT40	2A	5270-5310	2
802.11ax-HE40 802.11be-EHT40	2C	5510-5710	6
802.11ac-VHT80 802.11ax-HE80	2A	5290	1
802.11be-EHT80	2C	5530-5690	3
802.11ac-VHT160 802.11ax-HE160	2A	5250	1
802.11be-EHT160	2C	5570	1
	nd 2A and 2C (DFS Function	on, Slave/no In service monitor, no Ad-He	oc mode)

3.5. EUT Specifications Assessed in Current Report

2. 802.11ax/be channel puncturing is not implemented.

Mode	Modulation	Data Rate (Mbps)
802.11a		Up to 54
802.11n-HT20	OFDM (BPSK/QPSK/16QAM/64QAM)	Up to 144.4
802.11n-HT40		Up to 300
802.11ac-VHT20		Up to 173.3
802.11ac-VHT40	OFDM	Up to 400
802.11ac-VHT80	(BPSK/QPSK/16QAM/64QAM/256QAM)	Up to 866.7
802.11ac-VHT160		Up to 1733.3
802.11ax-HE20		Up to 287
802.11ax-HE40	OFDMA	Up to 574
802.11ax-HE80	(BPSK/ QPSK/ 16QAM/ 64QAM/ 256QAM/ 1024QAM)	Up to 1201
802.11ax-HE160		Up to 2402
802.11be-EHT20		Up to 344
802.11be-EHT40	OFDMA	Up to 688
802.11be-EHT80	(BPSK/ QPSK/ 16QAM/ 64QAM/ 256QAM/ 1024QAM/ 4096QAM)	Up to 1441
802.11be-EHT160		Up to 2882

File Number: C1M2407254

Report Number: EM-F240353

3.6. Description of Key Components

3.6.1. For the All Component Lists

Item	Supplier	Model / Type	Character
G		Win10 Home / Pro	
System	Microsoft	Win11 Home / Pro	
Main Board	LG	16Z90TS MAIN B/D PCB	Manufacturer: #1 Hannstar Board Tech (Jiang Yin) Corp.,Ltd. #2 Elec&Eltek Company (MCO) Limited.
SUB Board	LG	16Z90TS/TP SUB B/D	Manufacturer: #1 HannstarBoardTech(Jiang Yin)Corp.,Ltd. #2 JiangSuHuaShen Electronic co.,ltd (HXF) #3 Elec&Eltek Company (MCO) Limited.
	Intel	Ultra 9 288V (RAM 32GB)	3.3GHz(RAM 32GBLPDDR5x on CPU RAM)
CPU	Intel	Ultra 7 258V (RAM 32GB)	2.2GHz(RAM 32GB LPDDR5x on CPU RAM)
(Socket: BGA2833)	Intel	Ultra 7 256V (RAM 16GB)	2.2GHz(RAM 16GB LPDDR5x on CPU RAM)
	Intel	Ultra 5 226V (RAM 16GB)	2.1GHz(RAM 16GB LPDDR5x on CPU RAM)
16" LCD Panel	LG Display	LP160WQ2	Resolution: 2560 x 1600, 144Hz
a (885)	SAMSUNG		1TB/512GB/256GB
Storage (SSD)	SK hynix		1TB/512GB/256GB
Battery Pack	LG	LB3122MM	77Wh, DC 15.52V, 4963mAh
WLAN Combo Card	Intel	BE201D2W	WLAN and BT, 2x2 PCle M.2 1216-soldered down module FCC ID: PD9BE201D2 IC: 1000M-BE201D2
WLAN Combo Antenna	LG (INPAQ)	WA-P-LBLB-04-111	PCB, Mono-pole Type Main: Black, Aux: Gray
		22L2P	
Keyboard	TIC	22L2Q	
		22L2R	
Touch Pad	LITE-ON	SP8B00B31(SG-A0660-00A)	
Web Camera	Luxvisions	ABG213N3A	
	SUZHOU MEC	80-5946-111	(White) 10/100 Megabit Ethernet
	ELECTRONICS	80-5946-101	(Black) 10/100 Megabit Ethernet
	ARIN TECH CO. LTD	GD-08MF-36-WH-LP10	(White) 10/100 Megabit Ethernet
	AKIN IECH CO. LID	GD-08MF-36-BK-LP11	(Black) 10/100 Megabit Ethernet
LAN Gender	HUIZHOU DEHONG	370-50713	(White) 10/100 Megabit Ethernet
(Type C to LAN)	TECHNOLOGY CO.,LTD.	370-50714	(Black) 10/100 Megabit Ethernet
	Type C to LAN: Shielde	d, Undetached	
		GD-08MF-50-WH-LP12	(White) 10/100/1000 Megabit Ethernet
	ARIN TECH CO. LTD	GD-08MF-50-BK-LP13	(Black) 10/100/1000 Megabit Ethernet
	Type C to LAN: Shielded, Undetached, 0.12m		
AC Adapter	LG (PI ELECTRONICS)	LP65WFC20P-NJ	(B = Black),(W = White) I/P: AC 100-240V, 1.6A, 50-60Hz O/P:DC 5V,3A(15W) or DC 9V, 3A(27W)or DC 15V,3A (45W) or DC 20V,3.25A (65W) US Type, Wall-Mounted: (2C)
	#1 Type C Cable (3A) #2 Type C Cable (5A)		

Remark: For more detailed features description, please refer to the manufacturer's specifications or the user manual.

File Number: C1M2407254

Report Number: EM-F240353

3.6.2. The EUT collocates with following worst components, which are used to establish a basic configuration of system during test:

SKU (Mode)			1	
Main Board		LG, 16Z90TS MAIN B/D PCB	V	
SUB Board		LG, 16Z90TS/TP SUB B/D	V	
CPU		Intel, Ultra 9 288V (RAM 32GB)	V	
16" LCD Panel		LG Display, LP160WQ2	V	
Storage (SSD)		SK hynix, 1TB+256GB	V	
Battery Pack		LG, LB3122MM, 77Wh	V	
Keyboard		TIC, 22L2P	V	
Touch Pad		LITE-ON, SP8B00B31(SG-A0660-00A)	V	
Web Camera		Luxvisions, ABG213N3A	V	
WLAN Combo Card		Intel, BE201D2W	V	
WLAN Combo Antenna		LG (INPAQ), WA-P-LBLB-04-111	V	
Type C #1	AC Adapter	LG (PI ELECTRONICS), LP65WFC20P-NJ	V	

3.7. Test Configuration

Item	Bandwidth	Test Channel	
Channel Move Time& Channel Closing Transmission Time	160MHz	50	
Non-Occupancy Period & Non-associated Test	160MHz	50	

3.8. Output Power Setting

Item	Manufacturer	Model	Remark
AP Server	ASUS	RT-BE96U	FCC ID: MSQ-RTBE6G00

3.9. Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 491, Zhongfu Rd., Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website : www.audixtech.com Contact e-mail: attemc_report@audixtech.com	
Accreditations	 The laboratory is accredited by following organizations under ISO/IEC 17025:2017 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724 	
Test Facilities	FCC OET Designation Number under APEC MRA by NCC is : TW1724(1) RF Test Room	

3.10.Measurement Uncertainty

Test Item	Uncertainty	
DFS Measurement	±0.5ms	
Threshold	±0.33dB	

File Number: C1M2407254

Page 13 of 27 Tel: +886 2 26099301 Fax: +886 2 26099303

4. MEASUREMENT EQUIPMENTLIST

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Vector Signal Generation	R&S	SMU200A	104893	2024.05.31	1 Year
2.	Spectrum Analyzer	R&S	FSV30	101181	2024.07.13	1 Year
3.	Atteuator (10dB) X2	Worken	WK0602-10	0120A02208001S	N.C.R	N.C.R
4.	Atteuator (30dB) X2	Worken	WK0602-30	0120A02208002S	N.C.R	N.C.R
5.	Digital Thermo-Hygro Meter	iMax	HTC-1	RF-03	2024.04.11	1 Year

File Number: C1M2407254

Report Number: EM-F240353

5. WORKING MODES AND REQUIREMENT TEST ITEM

	Operational Mode				
Requirement	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

5.1. Applicability of DFS Requirements Prior to Use of a Channel

5.2. Applicability of DFS Requirements during Normal Operation

	Operational Mode			
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices	Operational Mode			
with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link		
All other tests	Any single BW mode	Not required		

File Number: C1M2407254

Report Number: EM-F240353

6. DFS DETECTION THRESHOLOS AND RADAR TEST

WAVEFORMS

6.1. Interference Threshold Value, Master or Client Incorporating

In-Service Monitoring

Maximum Transmit Power	Value (See Notes 1 and 2)	
\geq 200 milliwatt	-64dBm	
< 200 milliwatt	-62dBm	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

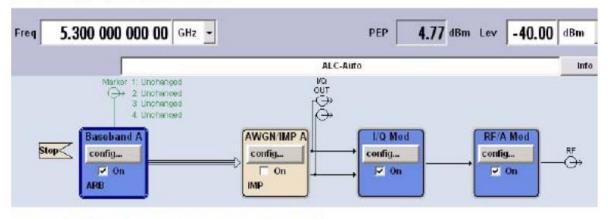
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

The radar Detection Threshold, lowest antenna gain is the parameter of interference radar DFS detection threshold.

6.2. Radar Test Waveform Minimum Step

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Page 16 of 27


Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulse	Minimum Percentage of Successful Detection	Minimum number of Trials
0	1	1428	18	See Note 1	See Note 1
1A	1	15 unique PRI in KDB 905462 D02 Table 5a	$Roundup\left\{\left(\frac{1}{360}\right) \times \left(\frac{19 \times 10^{6}}{PRI}\right)\right\}$	60%	15
1B	1	15 unique PRI within 518-3066, Excluding 1A PRI		60%	15
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4)			80%	120	

6.3. Short Pulse Radar Test Waveforms

ote 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

FCC Radar Types (1~4) System Diagram

Used R&S SMU200A (Vector SG with two ARB)

B11: Base-band Generator with ARB (16M samples) and Digital Modulation

B13: Base-band Main Module

B106: frequency range (100 kHz to 6 GHz)

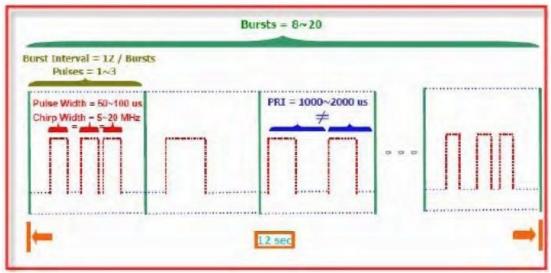
For selecting the waveform parameters from within the bounds of the signal type, system was random selection using uniform distribution.

6.4. Long Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulse Per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse radar test signal. If more 30 waveforms are used for the Long Pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms. Each waveform is defined as following:

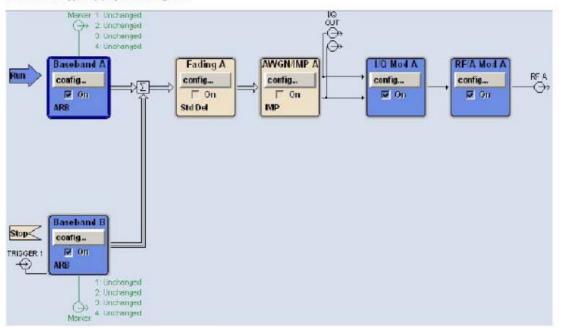
- (1) The transmission period for the Long Pulse Radar test signal is 12 seconds.
- (2) There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst_Count.
- (3) Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- (4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the some pulse width. Pulses in different Bursts may have different pulse widths.


File Number: C1M2407254

Report Number: EM-F240353

- (5) Each pulse has a linear FM chirp between 5 and 20MHz, with the chirp width being randomly chosen. Each pulse within a Burst will have the same chirp width. Pulses in different Burst may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300MHz and a 20MHz chirped signal, the chirp starts at 5290MHz and ends at 5310MHz.
- (6) If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- (7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst_Count. Each interval is of length (12000000/Burst_Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12000000/Burst_Count)-(Total Burst length)+(One Random PRI interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

A representative example of a Long Pulse radar test waveform:


- (1) The total test signal length is 12 seconds.
- (2) 8 Bursts are randomly generated for the Burst_Count.
- (3) Burst 1 has 2 randomly generated pulses.
- (4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- (5) The PRI is randomly selected to be at 1213 microseconds.
- (6) Bursts 2 through 8 are generated using steps 3-5.
- (7) Each Burst is contained in even intervals of 1500000 microseconds. The starting location for Pulse 1. Burst 1 is randomly generated (1 to 1500000 minus the total Burst 1 length + 1 random PRI interval) at the 325001 microsecond step. Bursts 2 through 8 randomly fall in successive 1500000 microsecond intervals (i.e. Burst 2 falls in the 1500001-3000000 microsecond range).

File Number: C1M2407254

Report Number: EM-F240353

FCC Radar Types (5) System Diagram

Used R&S SMU200A (Vector SG with two ARB)

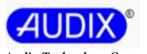
Path A/Path B Two B11: Base-band Generator with ARB (16M samples) and Digital Modulation

B13: Base-band Main Module

B106: frequency range (100 kHz to 6 GHz)

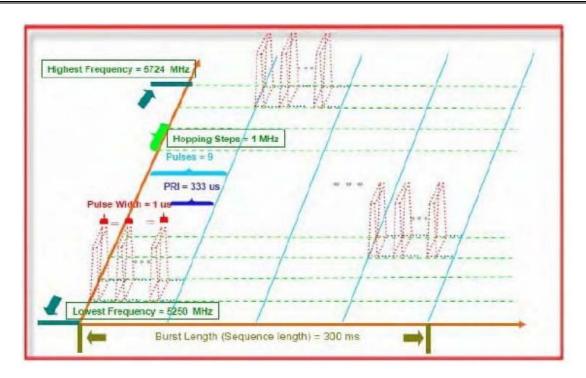
For selecting the waveform parameters from within the bounds of the signal type, system was random selection using uniform distribution.

6.5. Frequency Hopping Pulse Radar Test Waveforms

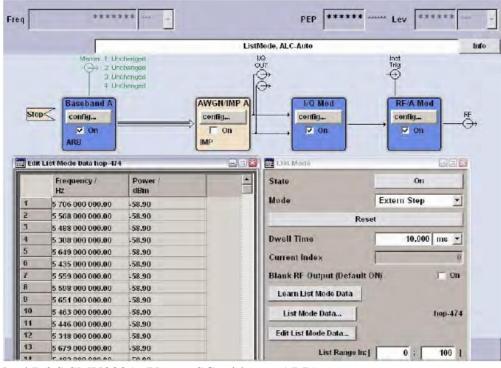

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses Per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies form 5250-5274MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of random frequency, the frequencies remaining within the group are always treated as equally likely.


File Number: C1M2407254

Report Number: EM-F240353



Audix Technology Corp. No. 491, Zhongfu Rd., Linkou Dist., New Taipei City244, Taiwan *Tel:* +886 2 26099301 *Fax:* +886 2 26099303

Page 20 of 27

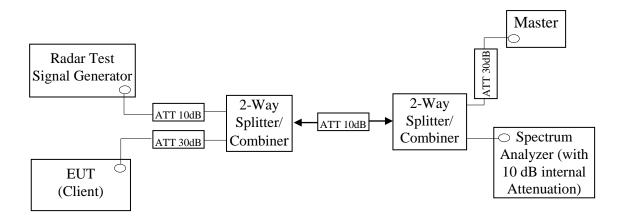
FCC Radar Types (6) System Diagram

Used R&S SMU200A (Vector SG with two ARB)

B11: Base-band Generator with ARB (16M samples) and Digital Modulation

B13: Base-band Main Module

B106: frequency range (100 kHz to 6 GHz)


For selecting the waveform parameters from within the bounds of the signal type, system was random selection using uniform distribution.

File Number: C1M2407254

Report Number: EM-F240353

6.6. Conducted Calibration Setup

6.7. Radar Waveform Calibration Procedure

The measured frequency is 5250MHz. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The calibrated conducted detection threshold level is set to -62dBm. The tested level is lower than required level hence it provides margin to the limit.

6.8. Calibration Deviation

There is no deviation with the original standard.

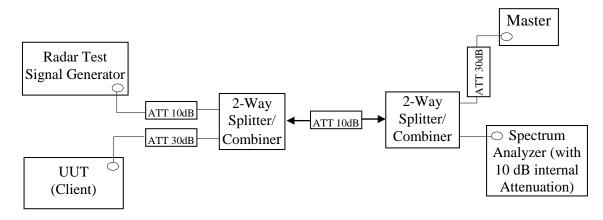
File Number: C1M2407254

6.9. Radar Waveform Calibration Result

DFS detection threshold level and the burst of pulses on the Channel frequency

I60MHz Spectrum Ref Level -10.00 dBm • RBW 3 MHz Att 0 dB • SWT 120 ms VBW 3 MHz TRG:VID • IPk Clrw • • • • • • • • • • • • • • • • • • •	Test Date		2024/08/	/17	Temp./Hum.			24°C/58%	
Spectrum Ref Level -10.00 dBm RBW 3 MHz Att 0 dB SWT 120 ms VBW 3 MHz TRG: VID IPR CInw IPR CInw IPR CInw -20 dBm IPR CInw IPR CInw IPR CInw -30 dBm IPR Cinw IPR Cinw IPR Cinw -40 dBm IPR Cinw IPR Cinw IPR Cinw -50 dBm IPR Cinw IPR Cinw IPR Cinw -60 dBm IPR Cinw IPR Cinw IPR Cinw -90 dBm IPR Cinw IPR Cinw IPR Cinw -90 dBm IPR Cinw IPR Cinw IPR Cinw IPR Cinw IPR Cinw IPR Cinw IPR Cinw -90 dBm IPR Cinw IPR Cinw	160MTI-								
Ref Level -10.00 dBm RBW 3 MHz Att 0 dB • SWT 120 ms VBW 3 MHz TRG: VID • IPk Clrw • 20 dBm • • • • • • • • • • • • • • • • • • •				1001	VINZ				
Att 0 dB • SWT 120 ms VBW 3 MHz TRG: VID Image: Classical state	Spectrum								E Contraction of the second se
TRG: VID 91Pk Chw -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm <	Ref Level -10.00 dBi	m	🖷 R	BW 3 MHz					(=
1Pk Clrw -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm		B 👄 SWT	120 ms 🛛 🗸	BW 3 MHz					
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm TRG -62.000 dBm -70									
-30 dBm									
-30 dBm									
-40 dBm	-20 dBm								
-40 dBm									
-50 dBm -60 dBm -70 dBm -70 dBm -90 dBm -100 dBm -	-30 dBm								
-50 dBm -60 dBm -70	40 dBm								
-60 dBm TRG -62.000 dBm Image: Comparison of the second data is the se	-40 0811								
-60 dBm TRG -62.000 dBm Image: Comparison of the second data is the se	-50 dBm								
-70 dBm -70 dBm -70 dBm -70 dBm -90 dBm									
-70 dBm -70 dBm -90 dBm -100 dBm	-60 dBm	D dDm							
-90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -100 dBm -100 dBm -100 dBm CF 5.25 GHz 32001 pts 12.0 m Wait for Trigger ● 17.08.2024 13:05:45	TRO -02.00								
чей айми и на	-70 dBm					i inchina		ا بر ایل ا	ale netter oc
-90 dBm -100 dBm -100 dBm CF 5.25 GHz 32001 pts 12.0 m Wait for Trigger Wait for Trigger 17.08.2024 13:05:45									
-100 dBm100 dBm -	^{nu} qqinguyan ana ana ana ana a na ana ana ana ana ana	hite hite and and	al al and a second s In the second s		<mark>en al factor en al factor de la constantista de la constantista de la constantista de la constantista de la cons La constantista de la constantista d</mark>	an a	<mark>i falla litad an transforma</mark>	┙ <mark>┙┙┑╝╗╘┷╝╕╗┷┿┥</mark> ╏╍╖╢	instanting dan persona persona Persona persona
-100 dBm100 dBm -									
CF 5.25 GHz 32001 pts 12.0 m Wait for Trigger 17.08.2024 13:05:45	-90 dBm								
CF 5.25 GHz 32001 pts 12.0 m Wait for Trigger 17.08.2024 13:05:45	-100 dBm								
Wait for Trigger 📲 17.08.2024 13:05:45									
Wait for Trigger					1				10.0 m = /
)	GF 3.23 GHZ			3200	-			M 17.0	
Date: 17.AUG.2024 13:05:45				,	wait for Tr	igger T		1	3:05:45
)ate: 17.AUG.202	4 13 : 05	5:45						

File Number: C1M2407254


Report Number: EM-F240353

7. TEST SETUP AND TEST RESULT

7.1. Test Setup

7.1.1. Test Setup Diagram

Following is the test setup for generated the radar waveforms and used to monitor U-NII device.

7.1.2. Test Setup Operation

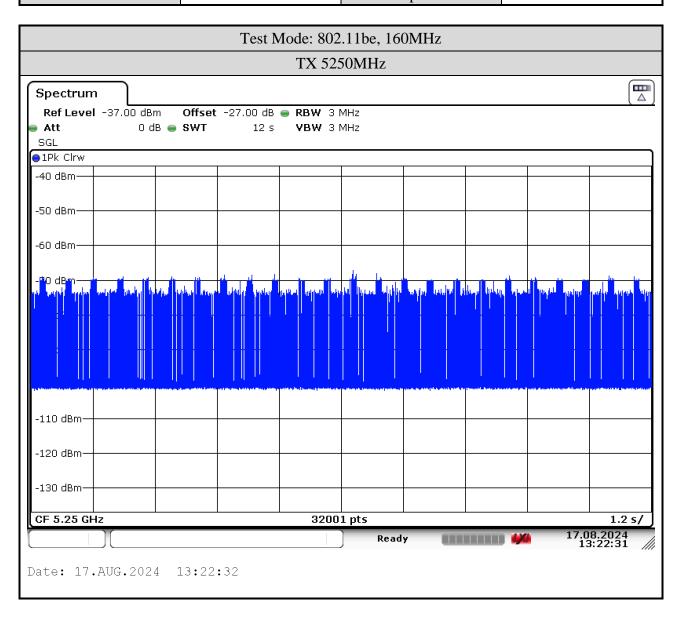
System testing was performed with the designated MPEG test file that streams full motion video from the Access Point to Client in full motion video mode using the media player with the V2.61 Codec package. This file is used by IP and Frame based systems for loading the test channel during the in-service compliance testing of the U-NII device.

The waveform parameters from within the bounds of the signal type are selected randomly using uniform distribution.

A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move. It is also used to monitor EUT transmissions during the Channel Availability Check Time.

File Number: C1M2407254

Report Number: EM-F240353


7.1.3. Test Setup for Data Traffic Plot

2024/08/17

Temp./Hum.

24°C/58%

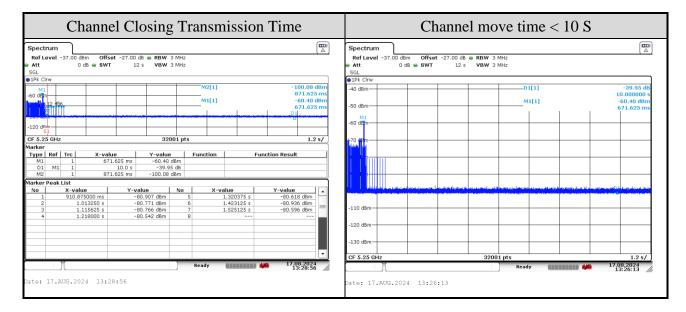
File Number: C1M2407254

Report Number: EM-F240353

7.2. Channel Move Time, Channel Closing Transmission Time,

Non-Occupancy Period, Non-Associated Client Beacon Measurement

7.2.1. Limit


Parameter	Value			
Channel Move Time	10 seconds			
	See Note 1.			
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.			
Non-Occupancy Period	Non-Occupancy Period time is 30 minute during which a Channel will not be utilized after a Radar Waveform is detected on that Channel			
Non-Associated Client Beacon	The non-associated Client Beacon Test is during the 30 minutes observation time. The EUT should not make any transmissions in the DFS band after EUT power up.			

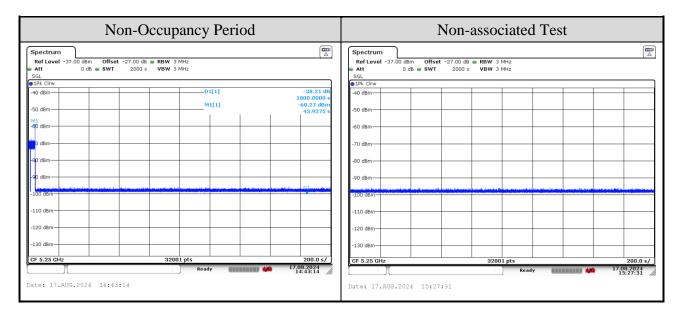
Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- a. For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- b. For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- c. For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.
- Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
 - 7.2.2. Test Procedures
 - When a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the operating channel of the U-NII device. A U-NII device operating as a Client Device will associate with the Master of channel. Stream the MPEG test file from the Master Device to the Client Device on the selected channel for entire period of the test. At time to the radar waveform generator sends a Burst of pulses for each of the radar types at Detection Threshold + 1dB.
 - Observe the transmissions of the EUT at the end of the radar Burst on the Operating channel. Measure and record the transmissions from the EUT during the observation time [Channel Move Time, Channel closing Time]. One 12 Second plot need to be reported for short Pulse Radar Types 0.
 - Measure the EUT for more than 30 minutes following the channel close/move time to verify that the EUT does not resume only transmissions on this channel.

7.2.3. Test Result for Channel Closing Transmission Time& Channel Move Time

Test Date	2024/08/17	Temp./Hum.	24°C/58%
Test Mode	802.11 has 160 MHz	Frequency	TX 5250MHz
Test Mode	802.11be, 160MHz	Tested By	Harry Huang

Channel Closing Transmission Time Calculated					
Sweep Time(S) sec	7				
Sweep points (P)	32001				
Number of Sweep points in 10 sec (N)	1				
Channel Closing Time (C) ms	0.22				


Channel closing time is calculated from $C=N^*$ dwell; where dwell is the occupancy time per sweep point calculated by the formula: dwell=S/P. N is the number of sweep points indicating transmission after S1; where S1 is the radar signal detected

File Number: C1M2407254

Report Number: EM-F240353

7.2.4.	Test Result	for Non-Occu	pancy Period,	Non-associated Test
--------	-------------	--------------	---------------	---------------------

Test Date	2024/08/17	Temp./Hum.	24°C/58%	
Test Mede	902 11ha 160MUz	Frequency	TX 5250MHz	
Test Mode	802.11be, 160MHz	Tested By	Harry Huang	

File Number: C1M2407254

APPENDIX A

Tel: +886 2 26099301 Fax: +886 2 26099303

APPENDIX A

TEST PHOTOGRAPHS

(Model: 16Z90TS)

File Number: C1M2407254

Report Number: EM-F240353