

Page 1 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

FCC 2.1093 (Permissive Change) SAR Test Report

for

LG Electronics Inc.

222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea

Product Name	:	Notebook PC
Model Name	:	(1)15Z90ST (2)15ZB90ST (3)15ZD90ST (4)15ZG90ST
Brand		LG
FCC ID	:	BEJNT-15Z90RT

Prepared by: : AUDIX Technology Corporation, EMC Department

The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

File Number: C1M2311127

Report Number: EM-SR230109

Page 2 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

TABLE OF CONTENTS

De	escrip	tion	Page
TE	ST RE	EPORT	3
1.	REV	ISION RECORD OF TEST REPORT	4
2.	SUM	IMARY OF TEST RESULTS	5
3.	GEN	ERAL INFORMATION	6
	3.1.	Description of Application	6
	3.2.	Description of EUT	
	3.3.	Reference Test Guidance	
	3.4.	Information for Permissive Change	8
	3.5.	Antenna Information	9
	3.6.	EUT Specifications Assessed in Current Report	
	3.7.	Description of Key Components	11
	3.8.	Test Environment	13
	3.9.	Description of Test Facility	13
	3.10.	Measurement Uncertainty	14
4.	MEA	ASUREMENT EQUIPMENTLIST	16
5.	SAR	MEASUREMENT SYSTEM	17
	5.1.	Definition of Specific Absorption Rate (SAR)	
	5.2.	SPEAG DASY System	
	5.3.	SAR System Verification	
	5.4.	SAR Measurement Procedure	
6.	SAR	MEASUREMENT EVALUATION	31
	6.1.	Test Configuration and EUT setting	
	6.2.	EUT Testing Position	
	6.3.	Tissue Calibration Result	
	6.4.	SAR Exposure Limits	
	6.5.	Conducted Power Measurement	
	6.6.	SAR Test Result	

APPENDIX A TEST DATA AND PLOTS APPENDIX B TESTPHOTOGRAPHS

File Number: C1M2311127

Report Number: EM-SR230109

Page 3 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

TEST REPORT (Permissive Change)

Applicant		:	LG Electronics Inc.
Manufactur	rer	:	LG Electronics Inc.
Factory		:	LG Electronics Nanjing New Technology Co., Ltd.
EUT Descr	iption		
(1)) Product	:	Notebook PC
(2)) Model	:	(1)15Z90ST (2)15ZB90ST (3)15ZD90ST (4)15ZG90ST
(3)) Brand	:	LG
(4)) Power Suppl	y:	DC 20V, 3.25A

Applicable Standards:

47 CFR FCC Part 2(§2.1093)

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. *Audix Technology Corp.* does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Report: 2023. 12. 08

Reviewed by:

Approved by:

(Annie Yu/Administrator)

(Johnny Hsueh/Section Manager)

Report Number: EM-SR230109

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Date	Revision Summary	Report Number
0	2023. 12. 08	Original Report	EM-SR230109

File Number: C1M2311127

Report Number: EM-SR230109

Page 5 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

2. SUMMARY OF TEST RESULTS

Highest Transmission SAR	Reported Body SAR _{1g}	Limit
WLAN 5G Band 4	0.183 W/kg	1.6 W/kg

File Number: C1M2311127

Report Number: EM-SR230109

3. GENERAL INFORMATION

Applicant	LG Electronics Inc. 222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea
Manufacturer	LG Electronics Inc. 222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea
Factory	LG Electronics Nanjing New Technology Co., Ltd. No.346,Yaoxin Road, Economic & Technical Development Zone, Nanjing, China.
Product	Notebook PC
Model	(1)15Z90ST (2)15ZB90ST (3)15ZD90ST (4)15ZG90ST The difference between all models is different in the sales customers.
Brand	LG

Report Number: EM-SR230109

Page 7 of 39

3.2. Description of EUT

Test Model	15Z90ST					
Serial Number	N/A	N/A				
Power Rating	DC 20V, 3.25A					
Software Version	XY (X, Y can be 0 parameter)	XY (X, Y can be 0 to 9 for different SW version not influence RF parameter)				
RF Features		WLAN:802.11 a/b/g/n/ac/ax Bluetooth: BT and BLE (BT 5.1)				
		2.4 GHz				
	802.11b		1T1R			
	802.11g		1T1R			
	802.11n-HT20		2T2R			
	802.11n-HT40		2T2R			
	802.11ax-HE20		2T2R			
	802.11ax-HE40		2T2R			
	BT/BLE		1T1R			
Transmit Type		U-NII Bands				
	802.11a	U-IVII Dailds	1T1R			
		802.11n-HT20/802.11ac-VHT20/802.11ax-HE20				
		802.11n-HT40/802.11ac-VHT40/802.11ax-HE40				
	802.11ac-VHT80	802.11ac-VHT80/802.11ax-HE80				
	802.11ac-VHT16	802.11ac-VHT160/802.11ax-HE160 2				
	The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).					
Software Version	N/A					
Sample Status	Trial sample					
Teat Comple	Sample No.	Test Item	Firmware			
Test Sample	01	SAR	N/A			
Date of Receipt	2023. 11. 09					
Date of Test	2023. 11. 15	2023. 11. 15				
Interface Ports of EUT	Three USB Type	e C Port				
Interface Forts of EUT	One Earphone P					
	AC Adapter					
Accessories Supplied	• USB C Cable					
	LAN Gender					

File Number: C1M2311127

Report Number: EM-SR230109

Page 8 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

3.3. Reference Test Guidance

IEEE 1528-2013 IEC/IEEE 62209-1528:2020 KDB 447498 D04 Interim General RF Exposure Guidance v01 KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04 KDB 616217 D04 SAR for laptop and tablets v01r02 KDB 248227 D01 802 11 Wi-Fi SAR v02r02

3.4. Information for Permissive Change

- The EUT is an addition version with original FCC ID: BEJNT-15Z90RT is as following.
 - (a) To add new models 15Z90ST, 15ZB90ST, 15ZD90ST and 15ZG90ST, the difference with original are in Main board, WLAN Sub board and CPU.
 - (b) Based on original 15Z90RT MAIN B/D PCB main board, the difference between 15Z90RT MAIN B/D PCB main board and 15Z90ST MAIN B/D PCB main board is refer to next table. The 15Z90ST MAIN B/D PCB main board is for new models.
 - (c) Based on original 15Z90RT SUB B/D WLAN Sub board, the difference between 15Z90RT SUB B/D WLAN Sub board and 15Z90ST SUB B/D WLAN Sub board is refer to next table. The 15Z90ST SUB B/D WLAN sub board is for new models.
 - (d) To add new CPUs for 15Z90ST MAIN B/D PCB main board.
 - (e) To add new Type C cable (3A).
 - (f) To modify panel model from ATNA56YX08-0to ATNA56YX09.6.
- The differences between this application and original's ID as clarify in following list.

	Difference	Main Board	WLAN Sub Board	CPU	
Model					
	15Z90RT			Intel, i7-1360P	
0 1	15ZB90RT	15Z90RT MAIN B/D PCB	15Z90RT SUB B/D	,	
Original	15ZD90RT			Intel, i5-1340P Intel, i3-1315U	
	15ZG90RT			inter, 15-15150	
	15Z90ST				
TI • T •	15ZB90ST		15Z90ST SUB B/D	Intel, Ultra 7 155H	
This Time	15ZD90ST	15Z90ST MAIN B/D PCB		Intel, Ultra 5 125H	
	15ZG90ST				

File Number: C1M2311127

Report Number: EM-SR230109

Page 9 of 39

3.5. Antenna Information

No. Antenna Part	Manufacture	Antenna	Frequency	Gain(dBi)		
140.	Number	Wanutacture	Туре	(MHz)	Main	AUX
				2400	3.20	3.70
				2450	3.60	3.90
				2500	3.30	4.20
				5150	1.90	2.40
1. WA-P-LELE-04	INPAQ	Mono-Pole	5470	2.70	1.10	
	-044		-	5850	1.30	1.10
				5925	1.60	1.60
				6525	-0.50	0.30
				7125	3.90	3.00
According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then						
Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + + 10^{GN/10})/N_{ANT}] dBi$						

Note: WLAN 5G: Directional gain =

5850MHz: Directional gain = $10 \log[(10^{1.3/10} + 10^{1.1/10})/2] = 1.20$ dBi

We chose the antenna gain corresponding to the frequency listed on the table which is closer to center frequency of WLAN/BT.

Report Number: EM-SR230109

Page 10 of 39

3.6. EUT Specifications Assessed in Current Report

Mode	U-NII Band	Fundamental Range (MHz)	Channel Number
802.11a	4	5850-5895	3
802.11n-HT20/ 802.11ac-VHT20 802.11ax-HE20	4	5850-5895	3
802.11n-HT40/ 802.11ac-VHT40 802.11ax-HE40	4	5850-5895	2
802.11ac-VHT80 802.11ax-HE80	4	5855	1
802.11ac-VHT160 802.11ax-HE160	4	5815	1

Mode	Modulation	Data Rate (Mbps)
802.11a	OFDM (BPSK/QPSK/16QAM/64QAM)	Up to 54
802.11n-HT20	OEDM (DDSV ODSV 1160 AM/640 AM)	Up to 144.4
802.11n-HT40	OFDM (BPSK/QPSK/16QAM/64QAM)	Up to 300
802.11ac-VHT20		Up to 173.3
802.11ac-VHT40	OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)	Up to 400
802.11ac-VHT80		Up to 866.7
802.11ac-VHT160		Up to 1733.3
802.11ax-HE20	OFDMA (BPSK/ QPSK/ 16QAM/ 64QAM/	Up to 287
802.11ax-HE40		Up to 574
802.11ax-HE80		Up to 1201
802.11ax-HE160		Up to 2402

File Number: C1M2311127

Report Number: EM-SR230109

3.7. Description of Key Components

3.7.1. For the All Component Lists

Item	Supplier	Model / Type	Character
с. <i>(</i>	Microsoft	Win 11	
System		Non-OS	
Main David	LG	15Z90RT MAIN B/D PCB	Manufacturer: #1 Hannstar Board Tech (Jiang Yin) Corp.,Ltd. #2 Elec&Eltek Company (MCO) Limited.
Main Board	LG	15Z90ST MAIN B/D PCB*	Manufacturer: #1 Hannstar Board Tech (Jiang Yin) Corp.,Ltd. #2 Elec&Eltek Company (MCO) Limited.
WLAN SUB Board	LG	15Z90RT SUB B/D	Manufacturer: #1 Hannstar Board Tech (Jiang Yin)Corp.,Ltd. #2 Elec&Eltek Company (MCO) Limited.
WLAIN SOB Board	LG	15Z90ST SUB B/D*	Manufacturer: #1 Hannstar Board Tech (Jiang Yin)Corp.,Ltd. #2 Elec&Eltek Company (MCO) Limited.
CDU	Intel	i7-1360P	2.2GHz
CPU (Socket: BGA1744)	Intel	i5-1340P	1.9GHz
(SOCKEL DUAL 744)	Intel	i3-1315U	1.2GHz
CPU	Intel	Ultra 7 155H*	3.8GHz
(Socket: BGA2049)	Intel	Ultra 5 125H*	3.6GHz
15.6" LCD Panel	Samsung	ATNA56YX09-0	Resolution: 1920x1080@60Hz (OLED,FHD)
Storage (SSD)	SK hynix		256GB/512GB/1TB/2TB
Storage (SSD)	Samsung		128GB/256GB/512GB/1TB/2TB
	Samsung		8GB/16GB32GB LPDDR5X 7500MHz (On Board)
Memory (RAM)	SK Hynix		8GB/16GB32GB LPDDR5X 7500MHz (On Board)
Battery Pack	LG	LB2122LM	DC15.52V, 60Wh Typ 3866 mAh
WLAN Combo Card	Intel	AX211D2W	WLAN and BT, 2x2 PCle M.2 1216 SD adapter card FCC ID: PD9AX211D2 IC: 1000M-AX211D2
WLAN Combo Antenna	LG (INPAQ)	WA-P-LELE-04-044	PCB, Mono-pole Type Main: Black, Aux: Gray
Th Dl	Lite on	SP8000(SG-A0620-00A)	
Touch Pad	Elan	SB068D-26H0	
Keyboard	TIC	KT0122L2	
Web Camera	Luxvisions	2BG204N3(2Mic)	

Report Number: EM-SR230109

New Taipei City244, Taiwan

Page 12 of 39

Tel: +886 2 26099301 *Fax:* +886 2 26099303

Item	Supplier	Model / Type	Character			
	SUZHOU MEC	80-5946-111	(White) 10/100Megabit Ethernet			
	ELECTRONICS	80-5946-101	(Black) 10/100 Megabit Ethernet			
		GD-08MF-36-WH-LP10	(White) 10/100Megabit Ethernet			
LAN Gender	ARIN TECH CO. LTD	GD-08MF-36-BK-LP11	(Black) 10/100 Megabit Ethernet			
(Type C to LAN)	HUIZHOU DEHONG	370-50713	(White) 10/100Megabit Ethernet			
	TECHNOLOGY CO.,LTD.	370-50714	(Black) 10/100 Megabit Ethernet			
	Type C to LAN: Shielde	d, Undetached, 0.12m				
	LG (PI ELECTRONICS)	LP65WFC20P-NJ W	(White) I/P: AC 100-240V, 1.6A, 50-60Hz O/P: (PDO) DC5V, 3A (15W) or DC9V, 3A (27W) or DC 15V,3A (45W) or DC 20V, 3.25A (65W) O/P: (PPS) DC5V- 20V, 3.25A, Max 65W Wall-Mounted: (2C)			
AC Adapter	LG (PI ELECTRONICS)	LP65WFC20P-NJ B	 (Black) I/P: AC 100-240V, 1.6A, 50-60Hz O/P: (PDO) DC5V, 3A (15W) or DC9V, 3A (27W) or DC 15V,3A (45W) or DC 20V, 3.25A (65W) O/P: (PPS) DC5V- 20V, 3.25A, Max 65W Wall-Mounted: (2C) 			
	#1 Type C Cable, Shield	#1 Type C Cable, Shielded, Undetached, 2.0m (5A)				
	#2 Type C Cable, Shiel	ded, Undetached, 1.8m (3A)*	٠			

Remark: For more detailed features description, please refer to the manufacturer's specifications or the user manual.

3.7.2. The EUT collocates with following worst components, which are used to establish a basic configuration of system during test:

SKU (Mo	de) 1	
Main Board		LG, 15Z90ST MAIN B/D PCB
WLAN SU	U B Board	LG, 15Z90ST SUB B/D
CPU		Intel, Ultra 7 155H
Memory (I	RAM)	32GB
15.6" LCD	Panel	Samsung, ATNA56YX09-0
Storage (SSD)		SK hynix, 256GB
		Samsung,2TB
Battery Pack		LG, LB2122LM, 60Wh
Touch Pad		Lite on, SP8000(SG-A0620-00A)
WLAN Co	ombo Card	Intel, AX211D2W
WLAN Co	ombo Antenna	LG (INPAQ), WA-P-LELE-04-044
AC Adapter		LG(PI ELECTRONICS), LP65WFC20P-NJ W
Туре С	Link to LAN Gender	10/100Mbps
	Link to USB HUB	

File Number: C1M2311127

Report Number: EM-SR230109

3.8. Test Environment

Ambient conditions in the laboratory:

Item	Require	Actual
Temperature (°C)	18-25	22 ± 2
Humidity (%RH)	30-70	48 ± 2

3.9. Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 491, Zhongfu Rd., Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website : www.audixtech.com Contact e-mail: attemc_report@audixtech.com
Accreditations	The laboratory is accredited by following organizations under ISO/IEC 17025:2017 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724
Test Facilities	FCC OET Designation Number under APEC MRA by NCC is : TW1724 (1) SAR Room

Report Number: EM-SR230109

3.10.Measurement Uncertainty

DASY5 Uncertainty According to IEEE 1528-2013 and IEC 62209-1/2016 (0.3 - 6 GHz range)								
Error Description	Uncert. value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(Vi) Veff
Measurement System								
Probe Calibration	±6.0%	Ν	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	Ν	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related			•			•		
Device Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	Ν	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	$\pm 1.8\%$	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	Ν	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	Ν	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncertainty						±11%	±10.8%	387
Expanded STD Uncertainty						±22%	±21.5%	

File Number: C1M2311127

Report Number: EM-SR230109

Page 15 of 39

DASY5 Uncertainty According to IEC 62209-2/2010 (30 MHz - 6 GHz range)								
Error Description	Uncert. value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(Vi) Veff
Measurement System								
Probe Calibration	±6.0%	Ν	1	1	1	±6.0%	±6.0%	8
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	8
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	8
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	x
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	x
Readout Electronic	±0.3%	Ν	1	1	1	±0.3%	±0.3%	8
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	8
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	x
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	8
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	8
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	8
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	8
Modulation Response	±2.5%	R	√3	1	1	±1.45 %	±1.45 %	8
Post-processing	±3.8%	R	$\sqrt{3}$	1	1	±2.2%	±2.2%	8
Test Sample Related		1	1	1				
Test Sample Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	x
Power Scaling	±0.0%	R	$\sqrt{3}$	1	1	±0.0%	±0.0%	8
Phantom and Setup				-				
Phantom Uncertainty	$\pm 4.5\%$	R	$\sqrt{3}$	1	1	±2.4%	±2.4%	×
SAR correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.9%	±1.9%	x
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	8
Liquid Conductivity (mea.)DAK	±2.5%	R	$\sqrt{3}$	0.64	0.43	±0.9%	±0.6%	8
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	8
Liquid Permittivity(mea.)DAK	±2.5%	R	$\sqrt{3}$	0.6	0.49	±0.9%	±0.7%	8
Combined Std. Uncertainty						±11.0%	±10.9%	387
Expanded STD Uncertainty						±22.1%	±21.8%	

File Number: C1M2311127

Report Number: EM-SR230109

4. MEASUREMENT EQUIPMENTLIST

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Stäubli Robot TX90 XL	Stäubli	TX90	F12/5K9SA1/A101	N/A	N/A
2.	Controller	SPEAG	CS8c	N/A	N/A	N/A
3.	SAM Twin Phantom	SPEAG	N/A	1706	N/A	N/A
4.	ELI5 Phantom	SPEAG	N/A	1170	N/A	N/A
5.	Device Holder	SPEAG	N/A	N/A	N/A	N/A
6.	Data Acquisition Electronic	SPEAG	DAE4	1337	2023. 03. 31	1 Year
7.	E-Field Probe	SPEAG	EX3DV4	3855	2023. 09. 20	1 Year
8.	SAR Software	SPEAG	DASY52	V.52.8.8.1222	N/A	N/A
9.	ENA Network Analyzer	Agilent	E5071C-480	MY46214331	2023. 09. 27	1 Year
10.	Signal Generator	Aglient	N5181A	MY50143917	2023. 08. 29	1 Year
11.	Power Meter	Aglient	ML2487A	MY52180007	2023. 08. 29	1 Year
12.	Power Sensor	Aglient	N8481	MY52080006	2023. 08. 29	1 Year
13.	Dipole Antenna	SPEAG	D5GHzV2	1124	2021. 09. 27	3 Years

Report Number: EM-SR230109

5. SAR MEASUREMENT SYSTEM

5.1. Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

5.2. SPEAG DASY System

DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

File Number: C1M2311127

Report Number: EM-SR230109

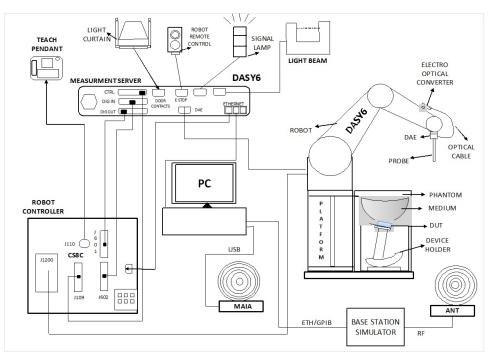


Fig-3.1 DASY6 System Setup

5.2.1. Robot

The DASY6 system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

File Number: C1M2311127

Report Number: EM-SR230109

Page 19 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

5.2.2. Probes

Model	EX3DV4	
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB	/
Directivity	\pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	$ \begin{array}{c} 10 \ \mu W/g \ to \ 100 \ m W/g \\ Linearity: \pm \ 0.2 \ dB \ (noise: typically < 1 \ \mu W/g) \end{array} $	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

5.2.3. Data Acquisition Electronics (DAE)

Model	DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)	
Input Offset Voltage	$< 5\mu V$ (with auto zero)	
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

File Number: C1M2311127

Report Number: EM-SR230109

5.2.4. Phantom

Model	Twin SAM	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	$2 \pm 0.2 \text{ mm} (6 \pm 0.2 \text{ mm at ear point})$	
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	

Model	ELI	
Construction	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	$2.0 \pm 0.2 \text{ mm}$ (bottom plate)	
Dimensions	Major axis: 600 mm Minor axis: 400 mm	
Filling Volume	approx. 30 liters	

File Number: C1M2311127

Report Number: EM-SR230109

5.2.5. Device Holder

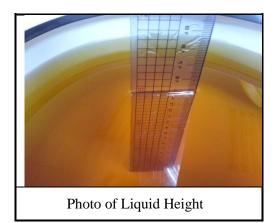
Model	Mounting Device	
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).	
Material	POM	

Model	Laptop Extensions Kit	
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.	
Material	POM, Acrylic glass, Foam	

5.2.6. Reference Dipole

Model	System Validation Dipoles	
Construction	Symmetrical dipole with 1/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	750 MHz to 5800 MHz	
Return Loss	> 20 dB	
Power Capability	> 100 W (f < 1GHz), > 40 W (f > 1GHz)	

File Number: C1M2311127


Report Number: EM-SR230109

Page 22 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

5.2.7. Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-5.1.

The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528 and FCC OET 65 Supplement C Appendix C. For the body tissue simulating liquids, the dielectric properties are defined in FCC OET 65 Supplement C Appendix C. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Report Number: EM-SR230109

Page 23 of 39

Table-5.1 Targets of Tissue Simulating Liquid									
Target Frequency [MHz]	Target Permittivity (ɛr)	Range of ± 5%	Target Conductivity σ[s/m]	Range of ± 5%					
750	41.9	39.805 ~ 43.995	0.89	0.846 ~ 0.935					
835	41.5	39.425 ~ 43.575	0.90	0.855 ~ 0.945					
900	41.5	39.425 ~ 43.575	0.97	0.922 ~ 1.019					
1450	40.5	38.475 ~ 42.525	1.20	1.140 ~ 1.260					
1640	40.3	38.285 ~ 42.315	1.29	1.226 ~ 1.355					
1750	40.1	38.095 ~ 42.105	1.37	1.302 ~ 1.439					
1800	40.0	38.000 ~ 42.000	1.40	1.330 ~ 1.470					
1900	40.0	38.000 ~ 42.000	1.40	1.330 ~ 1.470					
2000	40.0	38.000 ~ 42.000	1.40	1.330 ~ 1.470					
2300	39.5	37.525 ~ 41.475	1.67	1.587 ~ 1.754					
2450	39.2	37.240 ~ 41.160	1.80	1.710 ~ 1.890					
2600	39.0	37.050 ~ 40.950	1.96	1.862 ~ 2.058					
3500	37.9	36.005 ~ 39.795	2.91	2.765 ~ 3.056					
5200	36.0	34.2.00 ~ 37.800	4.66	4.427 ~ 4.893					
5300	35.9	34.105 ~ 37.695	4.76	4.522 ~ 4.998					
5500	35.6	33.820 ~ 37.380	4.96	4.712 ~ 5.208					
5600	35.5	33.725 ~ 37.275	5.07	4.817 ~ 5.324					
5800	35.3	33.535 ~ 37.065	5.27	5.007 ~ 5.534					
6000	35.1	33.345~ 36.855	5.48	5.206 ~ 5.754					
6500	34.5	32.775 ~ 36.225	6.07	5.767 ~ 6.374					
7000	33.9	32.205 ~ 35.595	6.65	6.318 ~ 6.983					

Table-5.1 Targets of Tissue Simulating Liquid

Report Number: EM-SR230109

Page 24 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

Frequency (MHz)	30	5	0	14	44	4	50	835	90	0
Recipe source number	3	3	2	2	3	2	4	2	2	4
Ingredients (% by	weight)								•	
De-ionized water	48,30	48,30	53,53	55,12	48,30	48,53	56	50,36	50,31	56
Tween 20			44,70	43,31		49,51		48,39	48,34	
Oxidized mineral oil							44			44
Diethylenglycol monohexylether										
Triton X-100										
Diacetin	50,00	50,00			50,00					
DGBE										
NaCI	1,60	1,60	1,77	1,57	1,60	1,96		1,25	1,35	
Additives and salt	0,10	0,10			0,10					
Measured tempera	ture dep	endence		•	•					
Temp. (°C)			21	21		21	20	21	21	20
^ɛ liquid temp. unc. (%)	0,8	0,1			0,1	0,1		0,04	0,04	
$\sigma_{ m liquid temp. unc.}$ (%)	2,8	2,8			2,6	4,2		1,6	1,6	

Table-5.2-1 Recipes of Tissue Simulating Liquid, 30MHz to 900MHz

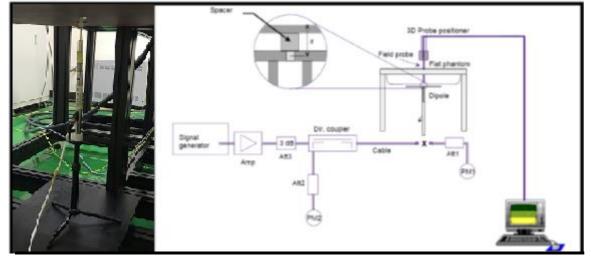
Table-5.2-2 Recipes of Tissue Simulating Liquid, 1800MHz to 10000MHz

Frequency (MHz)	1 8	00	2 450	4 000	5 000	5 200	5 800	6 000	8 000	10 000
Recipe source number	2	4	4	4	4	1	1	4	5	5
Ingredients (% by weigh	t)						•			
De-ionized water	54,23	56	56	56	56	65,53	65,53	56	67,8	66,0
Tween	45,27								31,1	33,0
Oxidized mineral oil		44	44	44	44			44		
Diethylenglycol monohexylether						17,24	17,24			
Triton X-100						17,24	17,24			
Diacetin										
DGBE										
NaCl	0,50									
Additives and salt										
Measured temperature d	ependenc	e			•				•	•
Temp. (°C)	21	20	20	20	20	22	22	20	20	20
ε _{liquid temp. unc.} (%)	0,4					1,7	1,8			
$\sigma_{ m liquid\ temp.\ unc.}$ (%)	2,3					2,7	2,6			

NOTE 2 Recipe source numbers: 1 verified by different labs, 2 Reference [59], 3 developed by IT'IS Foundation, 4 developed by IT'IS Foundation, 5 Reference [60].

NOTE 3 The values of $\varepsilon_{\text{liguid temp. unc.}}$ and $\sigma_{\text{liguid temp. unc.}}$ are liquid temperature uncertainties described in 0.9.6, based on measurements of the applicable liquid recipes given above. These are not part of the original publications but have been subsequently developed by the project team.

NOTE 4 The recipes at 8 000 MHz and 10 000 MHz are sufficiently broadband that they cover the frequency range of 6 000 MHz to 10 000 MHz within a tolerance of \pm 10 % for permittivity and conductivity.


File Number: C1M2311127

Report Number: EM-SR230109

5.3. SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the loation of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Report Number: EM-SR230109

5.3.1. SAR System Verification Result

Dipole Kit: D5GHzV2									
Test Date: 2023. 11. 15 Liquid Temp. [°C]: 20.0									
Frequency [MHz]		1g S	AR	10g SAR					
5800MHz	Zoom Scan to 100mW	Normalize to 1W	Target Value Reference result ± 10% window	Zoom Scan to 100mW	Normalize to 1W	Target Value Reference result ± 10% window			
	8.76	87.6	81.8 73.62 to 89.98	2.42	24.2	22.9 20.61 to 25.19			

File Number: C1M2311127

Report Number: EM-SR230109

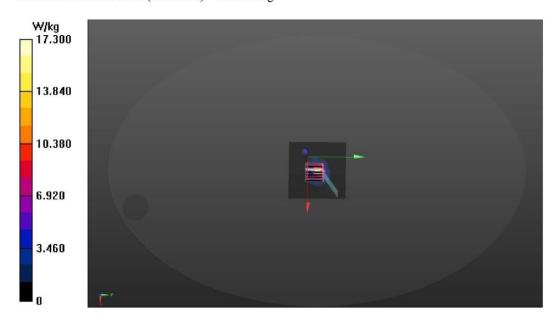
5.3.2. SAR System Check Data

Date: 11/15/2023

Test Laboratory: Audix_SAR Lab

System Check_H5800

DUT: D5GHzV2 - SN1124


Communication System: UID 0, CW (0); Frequency: 5800 MHz;Duty Cycle:1:1 Medium parameters used: f = 5800 MHz; $\sigma = 5.354$ S/m; $\epsilon_r = 35.061$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(4.69, 5.04, 5.24) @ 5800 MHz; Calibrated: 9/20/2023
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 3/31/2023
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1170
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Area Scan (9x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 17.8 W/kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 42.05 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 39.6 W/kg **SAR(1 g) = 8.76 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 51.4\% Maximum value of SAR (measured) = 17.8 W/kg**

file:///C:/Users/USER/Desktop/report%20data/System%20Check_H5800-59/System%20Check_...

File Number: C1M2311127Report Number: EM-SR230109This test report may be reproduced in full only. The document may only be updated by Audix Technology
Corp. personnel. Any changes will be noted in the Document History section of the report.

Page 28 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

5.4. SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan

(d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the DASY system
- (e) Record the SAR value

5.4.1. Area & Zoom Scan Procedure

According to IEC/IEEE 62209-1528, the resolution for Area and Zoom scan is specified in the table below.

Items	$\leq 2 \text{ GHz}$	2-3 GHz	3-4 GHz	4-5 GHz	5-6 GHz
Area Scan $(\Delta x, \Delta y)$	≤ 15 mm	≤ 12mm	≤ 12mm	≤ 10mm	≤ 10mm
Zoom Scan $(\Delta x, \Delta y)$	≤ 8mm	≤ 5 mm	≤ 5mm	≤ 4 mm	≤ 4 mm
Zoom Scan (Δz)	≤ 5 mm	≤ 5 mm	≤ 4 mm	≤ 3mm	$\leq 2mm$
Zoom Scan Volume	≥30mm	≥30mm	≥28mm	≥25mm	≥22mm

Note:

When zoom scan is required and report SAR is ≤ 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: ≤ 8 mm, 3-4GHz: ≤ 7 mm, 4-6GHz: ≤ 5 mm) may be applied.

According to IEC/IEEE 62209-1528, if the zoom scan measured as specified in the preceding paragraphs complies with both of the following items, or if the peak spatial-average SAR is below 0.1 W/kg, no additional measurements are needed:

- (1) The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal gird steps in both x and y directions (Δx , Δy). This shall be checked for the measured zoom scan plane conformal to the phantom at the distance z_{M1} .
- (2) The ratio of the SAR at the second measured point (M2) to the SAR at the closest measured point (M1) at the x, y location of the measured mazimum SAR value shall be at least 30%.

Report Number: EM-SR230109

Page 29 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

5.4.2. Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

5.4.3. Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

5.4.4. Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

File Number: C1M2311127

Report Number: EM-SR230109

Page 30 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

5.4.5. SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

Report Number: EM-SR230109

6. SAR MEASUREMENT EVALUATION

6.1. Test Configuration and EUT setting

The standalone SAR test exclusion shall be refer to FCC § 1.1307 (b)(3)(i)(B) SAR-Based exemption which device determined the distance from antenna to user/bystander. The formula is

$P_{th} (mW) = ERP_{20cm} (d / 20)^{x}$ $P_{th} (mW) = ERP_{20cm}$	for distance $d \le 20$ cm for distance 20 cm $< d \le 40$ cm
ERP _{20cm} (mW)	x= - log10 ($\frac{60}{ERP20cm\sqrt{f}}$) 0.3 GHz \leq f \leq 1.5 GHz: 2040f 1.5 GHz \leq f \leq 6 GHz: 3060

F = GHz

 $P_{th}(mW)$ = available maximum time-average power or effective radiated power, whichever is greater. D = the separation distance (cm)

From KDB 616217 D04 section 4.2 to 4.3, The SAR exclusion threshold can be applied to KDB 447498 to determine if SAR necessary test.

Test program "DRTU" is used for enabling EUT BT or WLAN function under continues transmitting and choosing data rate/ channel and supported stable power rating.

Report Number: EM-SR230109

Page 32 of 39

6.2. EUT Testing Position

SAR-Based exemption table

	iption their					
Centre Frequency (MHz)	5	10	15	20	25	Distance(mm)
2450	3.000	10.000	22.000	38.000	59.000	
5200	2.000	6.000	15.000	26.000	42.000	
5500	1.000	6.000	14.000	26.000	41.000	Power(mW)
5800	1.000	6.000	14.000	25.000	40.000	-
	30	35	40	45	50	Distance(mm)
2450	83.000	111.000	143.000	179.000	219.000	
5200	61.000	84.000	110.000	110.000	110.000	
5500	59.000	82.000	108.000	108.000	108.000	Power(mW)
5800	58.000	80.000	106.000	106.000	106.000	-
	7	10	15	20	25	Distance(cm)
2450	415.000	819.000	1770.000	3060.000	3060.000	
5200	350.000	731.000	1689.000	3060.000	3060.000	
5500	345.000	725.000	1683.000	3060.000	3060.000	Power(mW)
5800	341.000	719.000	1678.000	3060.000	3060.000	-
	30	33	35	37	40	Distance(cm
2450	3060.000	3060.000	3060.000	3060.000	3060.000	
5200	3060.000	3060.000	3060.000	3060.000	3060.000	D owor(mW)
5500	3060.000	3060.000	3060.000	3060.000	3060.000	Power(mW)
5800	3060.000	3060.000	3060.000	3060.000	3060.000	

The SAR testing required mode is listed as below.

Antenna	Front Face	Rear Face	Top Side	Bottom Side	Left Side	Right Side	Screen Side
WLAN							

According to SAR-Based exemption table, the laptop only need evaluate bottom side and screen side.

File Number: C1M2311127

Report Number: EM-SR230109

6.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using Agilent Dielectric Probe Kit and Agilent E5071C Vector Network Analyzer.

Body Tissue Simulate Measurement								
Frequency	Description	Dielectric I	Liquid Temp.					
[MHz]	Description	ε _r	σ[s/m]	[°C]				
	Reference result	35.3	5.27	N/A				
5800MHz	\pm 5% window	33.535 to 37.065	5.007 to 5.534	1V/ F X				
	2023. 11. 15	35.061	5.354	20.0				

6.4. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

Report Number: EM-SR230109

6.5. Conducted Power Measurement

Note:

1. Per KDB 447498 D04 the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scale Factor = tune-up limit power (mW)/EUT Conducted power (mW), where tune-up limit is the maximum rated power among all production units.

Scale SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor

- 2. Per KDB 447498 D04 for each exposure position, if the highest output channel reported SAR ≤0.8W/kg, other channels SAR testing is not necessary.
- 3. Per KDB 248227 D01, for OFDM transmission configuration in the 2.4G and 5G bands. An initial test configuration is determined by the highest maximum output power including tune-up tolerance. When multiple transmission modes(802.11a/g/n/ac/ax) have same maximum power, largest channel bandwidth , lowest order modulation and lowest data rate, lowest order 802.11 mode is selected.(i.e. a, g, n, ac then ax)
- 4. Per KDB 248227 D01, when the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 5. Per KDB 248227 D01,U-NII-1 and U-NII-2A bands have the same specified maximum output and tolerance; SAR is measured for U-NII-2A band first. Adjusted SAR of U-NII-2A band is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.
- 6. Per KDB 248227 D01, When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested.
- 7. Pursuant section 2.8.1(2) KDB 865664 D01, when the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Pursuant section 2.8.1(3) KDB 865664 D01, perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit)

Report Number: EM-SR230109

Page 35 of 39 Tel: +886 2 26099301 Fax: +886 2 26099303

Type	Type of Network				0	utput Po	wer (dBm)		
• -			Frequency	A	NT AUX		A	NT Main		
	U-NII Band	Channel	(MHz)	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	SAR Test
		CH 169	5845	19.02	20.00		18.74	20.00		No ^{NOTE2 · 3}
802.11a	4	CH 173	5865	18.85	19.30		18.33	19.30		No ^{NOTE2 · 3}
		CH 177	5885	17.18	18.00		16.94	18.00		1.0

Type	Type of Network				Output Power (dBm)						
• -			Frequency	ANT AUX			A	NT Main			
	U-NII Band	Channel	(MHz)	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	SAR Test	
		CH 169	5845	15.59	17.00		15.73	16.50		No ^{NOTE2 · 3}	
802.11n- HT20	4	CH 173	5865	15.89	17.00		15.64	17.00		No ^{NOTE2 · 3}	
11120		CH 177	5885	13.92	14.50		13.92	14.50		No ^{NOTE2 · 3}	

Type	Type of				0	utput Po	wer (dBm)		
Netwo	•		Frequency	A	NT AUX		A	NT Main		
	U-NII Band	Channel (MHz)		Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	SAR Test
802.11n-	4	CH 167	5835	19.55	20.30		19.65	20.30		No ^{NOTE2 · 3}
HT40	4	CH 175	5875	17.20	18.00		17.23	18.00		No ^{NOTE2 · 3}

Туре	of				0	utput Po	wer (dBm))		
Netwo			Frequency	ANT AUX			A			
	U-NII Band	Channel	(MHz)	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	SAR Test
802.11ac -VHT80	4	CH 171	5855	17.89	19.00		17.86	18.50		No ^{NOTE2 · 3}

File Number: C1M2311127

Report Number: EM-SR230109

Page 36 of 39

Type	Type of				O	utput Po	wer (dBm))		
Netwo	-		Frequency	ANT AUX			ANT Main			
	U-NII Band	Channel	(MHz)	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	SAR Test
802.11ac -VHT160	4	CH 163	5815	14.94	16.30		14.74	16.00		No ^{NOTE2 · 3}

Type	Type of Network				0	utput Po	wer (dBm)		
• -			Frequency		ANT AUX			ANT Main		
1,000	U-NII Band		(MHz)	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	SAR Test
		CH 169	5845	15.90	17.00		15.90	17.00		No ^{NOTE2 · 3}
802.11ax -HE20	4	CH 173	5865	16.16	17.00		16.16	17.00		No ^{NOTE2 · 3}
-11220		CH 177	5885	13.64	15.00		13.64	15.00		No ^{NOTE2 · 3}

Type	e of				0	utput Po	wer (dBm)		
Netwo			Frequency	A	NT AUX		A	NT Main		
1,000	U-NII Band	Channel	(MHz)	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	SAR Test
802.11ax	4	CH 167	5835	19.34	20.00		19.31	20.30		No ^{NOTE2 · 3}
-HE40	4	CH 175	5875	16.83	18.00		16.97	18.00		No ^{NOTE2 · 3}

Туре	of				O	utput Po	wer (dBm))		
Netwo			Frequency	A	NT AUX		A			
	U-NII Band	Channel	(MHz)	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	SAR Test
802.11ax -HE80	4	CH 171	5855	17.31	18.50		17.13	18.30		No ^{NOTE2 · 3}

Type	Type of				O	utput Po	wer (dBm))		
Netwo		Frequency		ANT AUX			ANT Main			
	U-NII Band	Channel	(MHz)	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	SAR Test
802.11ax -HE160	4	CH 163	5815	14.96	16.30		14.79	16.00		No ^{NOTE2 · 3}

File Number: C1M2311127

Report Number: EM-SR230109

Page 37 of 39

T	. (Ou	tput Po	wer (dBm)	I		
Type Netwo			Frequency	RU	A	NT AUX		A	NT Main		SAR
Tietwe	U-NII Band	Channel	(MHz)	Config	Average Power	Tune-Up Limit	Scale Factor	Average Power	Tune-Up Limit	Scale Factor	Test
				26/0	5.23	6.00		5.04	6.00		
		CH 169	5845	52/37	14.93	16.00		15.26	16.00		
802.11ax	4			106/53	17.25	18.30		17.10	18.30		No ^{NOTE}
-HE20	4			26/8	4.68	5.30		4.32	5.30		4 · 3
		CH 177	5885	52/40	6.80	8.00		6.42	7.50		
				106/54	11.11	12.30		10.93	12.00		
802.11ax		<mark>CH 167</mark>	<mark>5835</mark>	<mark>242/61</mark>	<mark>19.61</mark>	21.00	1.377	<mark>19.70</mark>	21.00	<mark>1.349</mark>	Yes
-HE40	4	CH 175	5875	242/62	13.74	15.00		13.85	15.00		$No^{NOTE}_{4 \cdot 3}$
802.11ax	4	CU 171	5005	484/65	19.02	20.00		19.18	20.00		No ^{NOTE}
-HE80	4	CH 171	5885	484/66	16.87	18.00		17.05	18.00		4 · 3
802.11ax	4	CII 162	5915	996/67	18.17	20.00		18.47	20.00		No ^{NOTE}
-HE160	4	CH 163	5815	996/S67	18.72	20.00		18.72	20.00		4 • 3

File Number: C1M2311127

Report Number: EM-SR230109

6.6. SAR Test Result

Test Date	2023. 11. 15	Temp./Hum.	21°C/67%
Test Voltage	AC 120V, 60Hz (with AC Adapter)	Tested by	Brian Hsieh

Liquic	l Temperatu	re : 20.0°C		Depth of Liquid: >15cm							
Test Mode: 5GHz											
Plot No.	Test Position: Body	Antenna Position	Separation Distance (cm)	Frequency	Conducted Power (dBm)	Maximum Tune-up (dBm)	SAR 1g (W/kg)	Scale Factor	Reported SAR	Limit (W/kg)	
802.11ax-HE40 (UNII Band 4, RU Config 242/61)											
Antenna: ANT 1-AUX											
7	Screen	Fixed	0.5	5835	19.61	21.00	0.080	1.377	0.110	1.60	
	Antenna:ANT 2-Main										
8	Screen	Fixed	0.5	5835	19.70	21.00	0.136	1.349	0.183	1.60	

Note: For SAR testing, we will conduct testing on SAR modes for laptops with SAR values greater than 0.8 W/kg, as specified in the original SAR report in KDB 178919 D01v06 section VI.

Report Number: EM-SR230109

This test report may be reproduced in full only. The document may only be updated by Audix Technology Corp. personnel. Any changes will be noted in the Document History section of the report.

6.6.1. Highest Simultaneous Transmission SAR

Highest Simultaneous Transmission SAR	Reported Body SAR1g						
WLAN 5G (5835MHz) ANT Main+ WLAN 5 (5835MHz) ANT AUX	0.293 (W/kg)						
Note: 1. The SAR limit (SAR1g 1.6 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093).							
2. It is calculated from scale SAR.							
3. It is larger than the limit 1.6(W/kg), SAR test exclusion is determined by the SAR to peak location separation ratio.							
 According to KDB 178919 D01v06, BT does not require testing with SAR < 0.8 W/kg, as specified in the original SAR report. 							

Report Number: EM-SR230109

APPENDIX A Tel: +886 2 26099301

Fax: +886 2 26099303

APPENDIX A

GRAPH RESULT

(Model: 15Z90ST)

File Number: C1M2311127Report Number: EM-SR230109This test report may be reproduced in full only. The document may only be updated by Audix Technology
Corp. personnel. Any changes will be noted in the Document History section of the report.

APPENDIX A Page 1 of 2

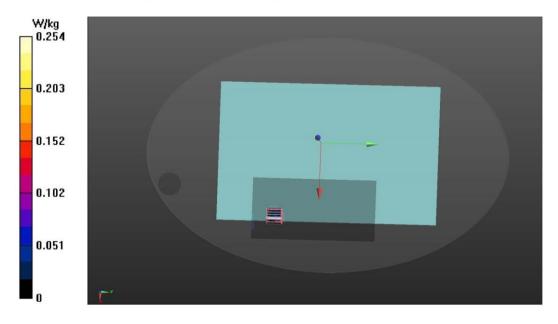
Tel: +886 2 26099301 *Fax:* +886 2 26099303

Date: 11/15/2023

Test Laboratory: Audix_SAR Lab

P7 802.11a CH167 5835MHz Screen Aux

DUT: 15Z90RT


Communication System: UID 0, WIFI 5G 802.11VHT_40 (0); Frequency: 5835 MHz;Duty Cycle:1:1 Medium parameters used: f = 5835 MHz; $\sigma = 5.564$ S/m; $\varepsilon_r = 35.725$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(4.69, 5.04, 5.24) @ 5835 MHz; Calibrated: 9/20/2023
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 3/31/2023
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1170
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Area Scan (11x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.0498 W/kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 0.5150 V/m; Power Drift = 0.55 dB Peak SAR (extrapolated) = 0.489 W/kg **SAR(1 g) = 0.080 W/kg; SAR(10 g) = 0.016 W/kg Smallest distance from peaks to all points 3 dB below = 4.1 mm Ratio of SAR at M2 to SAR at M1 = 48.2\% Maximum value of SAR (measured) = 0.254 W/kg**

file:///C:/Users/USER/Desktop/report%20data/P7%20802.11a%20CH167%205835MHz%20Scre...

File Number: C1M2311127

Report Number: EM-SR230109

APPENDIX A Page 2 of 2

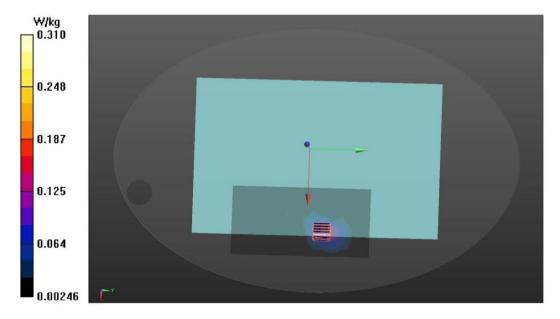
Tel: +886 2 26099301 *Fax:* +886 2 26099303

Date: 11/15/2023

Test Laboratory: Audix_SAR Lab

P8 802.11a CH167 5835MHz Screen Main

DUT: 15Z90RT


Communication System: UID 0, WIFI 5G 802.11VHT_40 (0); Frequency: 5835 MHz;Duty Cycle:1:1 Medium parameters used: f = 5835 MHz; $\sigma = 5.564$ S/m; $\varepsilon_r = 35.725$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3855; ConvF(4.69, 5.04, 5.24) @ 5835 MHz; Calibrated: 9/20/2023
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1337; Calibrated: 3/31/2023
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1170
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Area Scan (11x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.198 W/kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 0.9570 V/m; Power Drift = 1.37 dB Peak SAR (extrapolated) = 0.592 W/kg **SAR(1 g) = 0.136 W/kg; SAR(10 g) = 0.052 W/kg Smallest distance from peaks to all points 3 dB below = 4.5 mm Ratio of SAR at M2 to SAR at M1 = 51.9\% Maximum value of SAR (measured) = 0.310 W/kg**

file:///C:/Users/USER/Desktop/report%20data/P8%20802.11a%20CH167%205835MHz%20Scre...

File Number: C1M2311127

Report Number: EM-SR230109

APPENDIX B

Tel: +886 2 26099301 *Fax:* +886 2 26099303

APPENDIX B

TEST PHOTOGRAPHS

(Model: 15Z90ST)

APPENDIX C

Tel: +886 2 26099301 *Fax:* +886 2 26099303

APPENDIX C

Test Equipment Calibration Data

File Number: C1M2311127Report Number: EM-SR230109This test report may be reproduced in full only. The document may only be updated by Audix TechnologyCorp. personnel. Any changes will be noted in the Document History section of the report.