### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Audix-TW (Auden)

Certificate No: D6.5GHzV2-1051 Nov21

# CALIBRATION CERTIFICATE

Object D6.5GHzV2 - SN:1051

Calibration procedure(s) QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: November 01, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards                | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP                  | SN: 104778         | 09-Apr-21 (No. 217-03291/03292)   | Apr-22                 |
| Power sensor NRP-Z91             | SN: 103244         | 09-Apr-21 (No. 217-03291)         | Apr-22                 |
| Power sensor NRP-Z91             | SN: 103245         | 09-Apr-21 (No. 217-03292)         | Apr-22                 |
| Power sensor R&S NRP33T          | SN: 100967         | 08-Apr-21 (No. 217-03293)         | Apr-22                 |
| Reference 20 dB Attenuator       | SN: BH9394 (20k)   | 09-Apr-21 (No. 217-03343)         | Apr-22                 |
| Type-N mismatch combination      | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344)         | Apr-22                 |
| Reference Probe EX3DV4           | SN: 7405           | 30-Dec-20 (No. EX3-7405_Dec20)    | Dec-21                 |
| DAE4                             | SN: 908            | 24-Jun-21 (No. DAE4-908_Jun21)    | Jun-22                 |
| Secondary Standards              | ID#                | Check Date (in house)             | Scheduled Check        |
| RF generator Anapico APSIN20G    | SN: 669            | 28-Mar-17 (in house check Dec-18) | In house check: Dec-21 |
| Network Analyzer Keysight E5063A | SN:MY54504221      | 31-Oct-19 (in house check Oct-19) | In house check: Oct-22 |
|                                  |                    |                                   |                        |

Name Function Signature
Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: November 2, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D6.5GHzV2-1051\_Nov21 Page 1 of 6

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### **Glossary:**

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

#### **Additional Documentation:**

b) DASY System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1051 Nov21

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY6                          | V16.0                            |
|------------------------------|--------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation         |                                  |
| Phantom                      | Modular Flat Phantom           |                                  |
| Distance Dipole Center - TSL | 5 mm                           | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 3.4  mm, dz = 1.4  mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 6500 MHz ± 1 MHz               |                                  |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 34.5         | 6.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 32.7 ± 6 %   | 6.03 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                         |
|-------------------------------------------------------|--------------------|-------------------------|
| SAR measured                                          | 100 mW input power | 29.1 W/kg               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 288 W/kg ± 24.7 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 5.43 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 53.6 W/kg ± 24.4 % (k=2) |

Certificate No: D6.5GHzV2-1051\_Nov21 Page 3 of 6

#### **Appendix**

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 50.7 Ω - 2.4 jΩ |  |  |
|--------------------------------------|-----------------|--|--|
| Return Loss                          | - 32.0 dB       |  |  |

# **APD (Absorbed Power Density)**

| APD averaged over 1 cm <sup>2</sup> | Condition          |                                      |
|-------------------------------------|--------------------|--------------------------------------|
| APD measured                        | 100 mW input power | 287 W/m <sup>2</sup>                 |
| APD measured                        | normalized to 1W   | 2870 W/m <sup>2</sup> ± 29.2 % (k=2) |

| APD averaged over 4 cm <sup>2</sup> | condition          |                                      |
|-------------------------------------|--------------------|--------------------------------------|
| APD measured                        | 100 mW input power | 133 W/m²                             |
| APD measured                        | normalized to 1W   | 1330 W/m <sup>2</sup> ± 28.9 % (k=2) |

### **General Antenna Parameters and Design**

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by  | SDEAC |
|------------------|-------|
| mariarastarea by | SPEAG |
|                  |       |

# **DASY6 Validation Report for Head TSL**

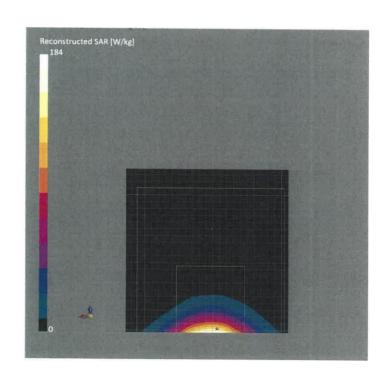
Measurement Report for D6.5GHz-1051, UID 0 -, Channel 6500 (6500.0MHz)

**Device under Test Properties** 

| Name, Manufacturer | Dimensions [mm]    | <b>IMEI</b> | DUT Type |
|--------------------|--------------------|-------------|----------|
| D6.5GHz            | 16.0 x 6.0 x 300.0 | SN: 1051    | -        |

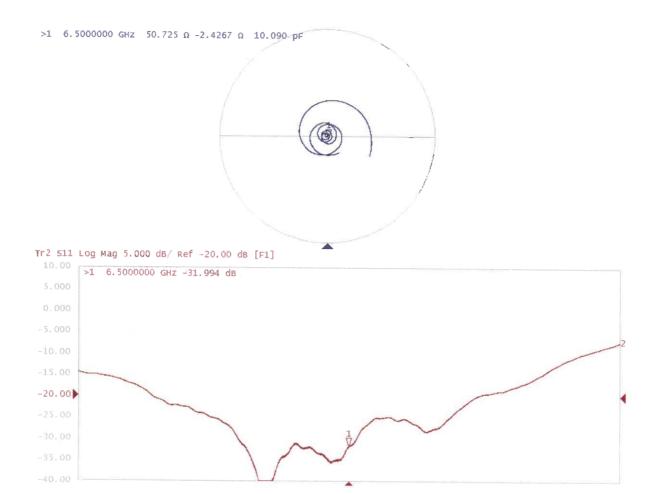
**Exposure Conditions** 

| Phantom<br>Section, TSL | Position, Test<br>Distance<br>[mm] | Band | Group,<br>UID | Frequency<br>[MHz] | Conversion<br>Factor | TSL Cond.<br>[S/m] | TSL<br>Permittivity |
|-------------------------|------------------------------------|------|---------------|--------------------|----------------------|--------------------|---------------------|
| Flat, HSL               | 5.00                               | Band | CW,           | 6500               | 5.75                 | 6.03               | 32.7                |


**Hardware Setup** 

| Phantom                | TSL             | Probe, Calibration Date     | DAE, Calibration Date  |
|------------------------|-----------------|-----------------------------|------------------------|
| MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2020-12-30 | DAE4 Sn908, 2021-06-24 |

**Measurement Results** 


#### **Scan Setup**

|                     | Zoom Scan          |                     | Zoom Scan         |
|---------------------|--------------------|---------------------|-------------------|
| Grid Extents [mm]   | 22.0 x 22.0 x 22.0 | Date                | 2021-11-01, 12:59 |
| Grid Steps [mm]     | 3.4 x 3.4 x 1.4    | psSAR1g [W/Kg]      | 29.1              |
| Sensor Surface [mm] | 1.4                | psSAR10g [W/Kg]     | 5.43              |
| Graded Grid         | Yes                | Power Drift [dB]    | -0.01             |
| Grading Ratio       | 1.4                | Power Scaling       | Disabled          |
| MAIA                | N/A                | Scaling Factor [dB] | Disabled          |
| Surface Detection   | VMS + 6p           | TSL Correction      | No correction     |
| Scan Method         | Measured           | M2/M1 [%]           | 51.1              |
|                     |                    | Dist 3dB Peak [mm]  | 4.6               |



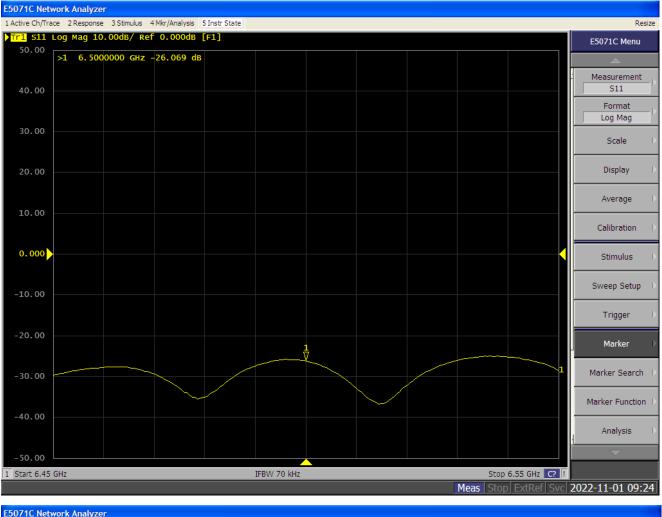
Certificate No: D6.5GHzV2-1051\_Nov21 Page 5 of 6

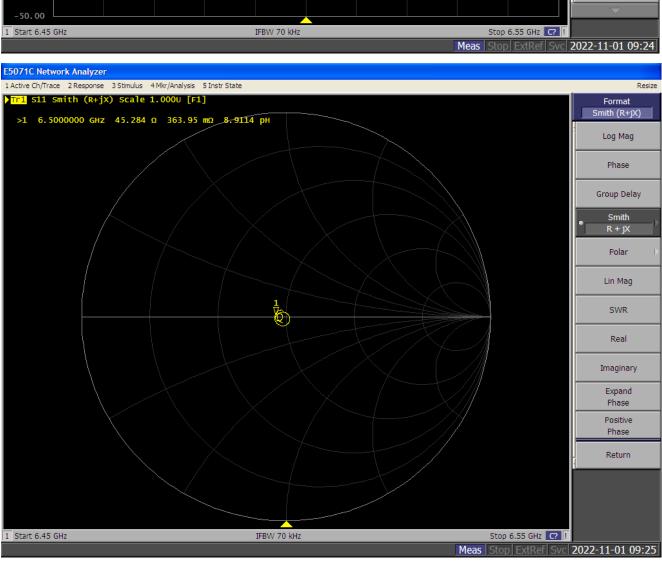
# Impedance Measurement Plot for Head TSL



# **Dipole Verified Data**

Model Name: D6.5GHzV2


SN:1051


Pursuant to KDB 865664 D01 V01r04 section 3.2.2 that the reference dipole calibration can be extended to 3 years if Lab. does a confirmation on return loss and impedance annually, and compliance with following conditions,

- 1. Return loss deviates by less than 20% from the previous measurement and have 20 dB minimum return-loss requirement
- 2. The real or imaginary parts of the impedance, measured at least annually, deviates by less than 5  $\Omega$  from the previous measurement.

### **Antenna Parameters with Head Tissue 6500 MHz**

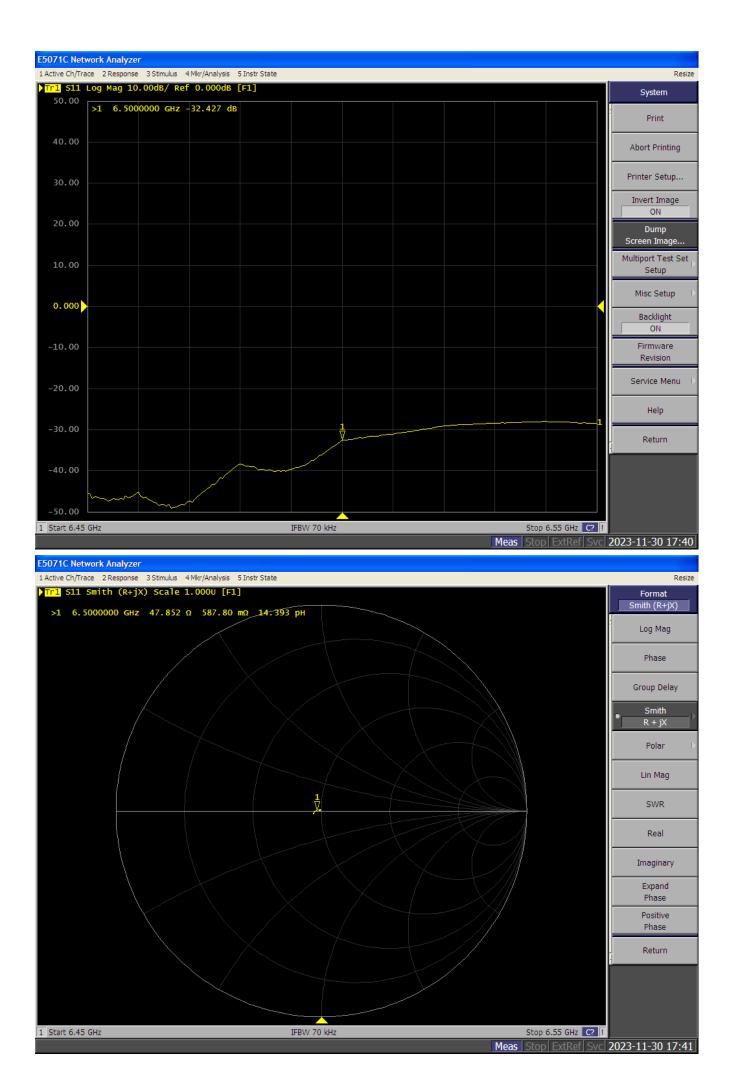
| Item                                       | Verified on 11/01, 2022          | Original Cal. Result          | Deviation |
|--------------------------------------------|----------------------------------|-------------------------------|-----------|
| Impedance,<br>transformed to feed<br>point | 45.284 $\Omega$ -363.95 $\Omega$ | <b>50.7</b> Ω <b>-2.4</b> j Ω | < 5 Ω     |
| Return Loss                                | -26.069 dB                       | -32.0 dB                      | -18.534%  |





# **Dipole Verified Data**

Model Name: D6.5GHzV2


SN:1051

Pursuant to KDB 865664 D01 V01r04 section 3.2.2 that the reference dipole calibration can be extended to 3 years if Lab. does a confirmation on return loss and impedance annually, and compliance with following conditions,

- 1. Return loss deviates by less than 20% from the previous measurement and have 20 dB minimum return-loss requirement
- 2. The real or imaginary parts of the impedance, measured at least annually, deviates by less than 5  $\Omega$  from the previous measurement.

### **Antenna Parameters with Head Tissue 6500 MHz**

| Item                                       | Verified on 11/30, 2023          | Original Cal. Result           | Deviation |
|--------------------------------------------|----------------------------------|--------------------------------|-----------|
| Impedance,<br>transformed to feed<br>point | 47.852 $\Omega$ +587.80 $\Omega$ | <b>50.7</b> Ω - <b>2.4</b> j Ω | < 5 Ω     |
| Return Loss                                | -32.427 dB                       | -32.0 dB                       | -0.9868%  |

