

FCC Radio Test Report

FCC ID: BEJNT-15U70P

Report No. Equipment Model Name	 BTL-FCCP-1-2012T054 Notebook Computers 15U70P, 15UD70P, 15UG70P, 15UB70P, 15U70P* ("*" can be "0-9" or "A-Z")
Brand Name	: LG
Applicant	: LG Electronics USA 111 Sulvan Avanua, North Building, Englowand Cliffa, Now, Jaroov 07622
Address	: 111 Sylvan Avenue, North Building, Englewood Cliffs, New Jersey 07632, United States
Radio Function	: Bluetooth EDR
FCC Rule Part(s)	: FCC Part15, Subpart C (15.247)
Measurement Procedure(s)	: ANSI C63.10-2013
Date of Receipt	: 2020/12/21
Date of Test	: 2020/12/21 ~ 2021/2/8
Issued Date	: 2021/2/17

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

her Prepared by Peter Chen, Engineer **ac-MRA** Testing Labor 0659 Approved by Scott Hsu , Manager BTL Inc. No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

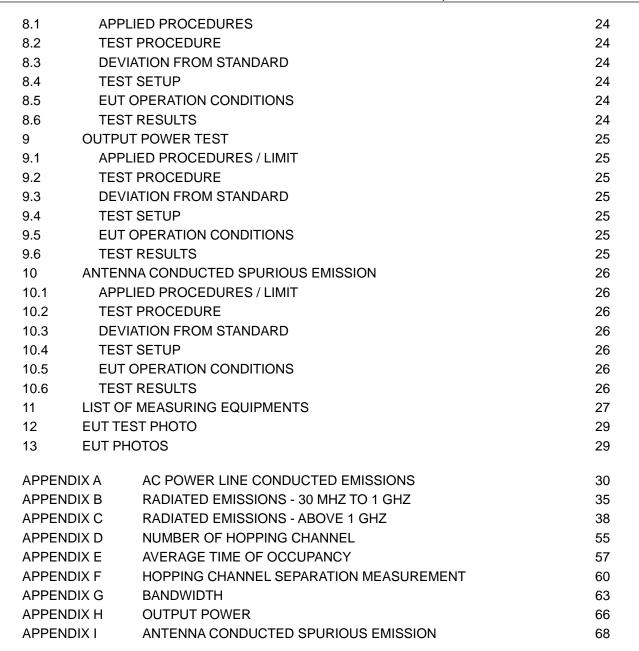
This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation


For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

RE	PORT ISSUED HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	8
1.4	TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	8
1.5	DUTY CYCLE	9
2	GENERAL INFORMATION	10
2.1	DESCRIPTION OF EUT	10
2.2	TEST MODES	12
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13
2.4	SUPPORT UNITS	14
3	AC POWER LINE CONDUCTED EMISSIONS TEST	15
3.1	LIMIT	15
3.2	TEST PROCEDURE	15
3.3	DEVIATION FROM TEST STANDARD	15
3.4	TEST SETUP	16
3.5	TEST RESULT	16
4	RADIATED EMISSIONS TEST	17
4.1	LIMIT	17
4.2		18
4.3	DEVIATION FROM TEST STANDARD	18
4.4		18
4.5		19
4.6		20
4.7		20
5	NUMBER OF HOPPING CHANNEL	21
5.1		21
5.2		21
5.3		21
5.4		21
5.5		21
5.6		21
6		22
6.1		22 22
6.2 6.3		22 22
6.4		22
6.5		22
6.6		22
7	HOPPING CHANNEL SEPARATION MEASUREMENT	22
, 7.1		23
7.2		23
7.3		23
7.4		23
7.5		23
8	BANDWIDTH TEST	24

BTL

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	2021/1/27
R01	Revised report to address TCB's comments.	2021/2/17
oject No.: 2012T054	Page 5 of 72	Report Version: R01

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

	FCC Part 15, Subpart C (15.247)							
Standard(s) Section	Description	Description Test Result		Remark				
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass					
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass					
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX D	Pass					
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX E	Pass					
15.247 (a)(1)	Hopping Channel Separation	APPENDIX F	Pass					
15.247 (a)(1)	Bandwidth	APPENDIX G	Pass					
15.247 (b)(1)	Output Power	APPENDIX H	Pass					
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass					
15.203	Antenna Requirement		Pass					

NOTE:

"N/A" denotes test is not applicable in this Test Report.
 The report format version is TP.1.1.1.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

\boxtimes	C05	CB08	CB11	\boxtimes	CB15	CB16
\boxtimes	SR05					

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95** %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test :

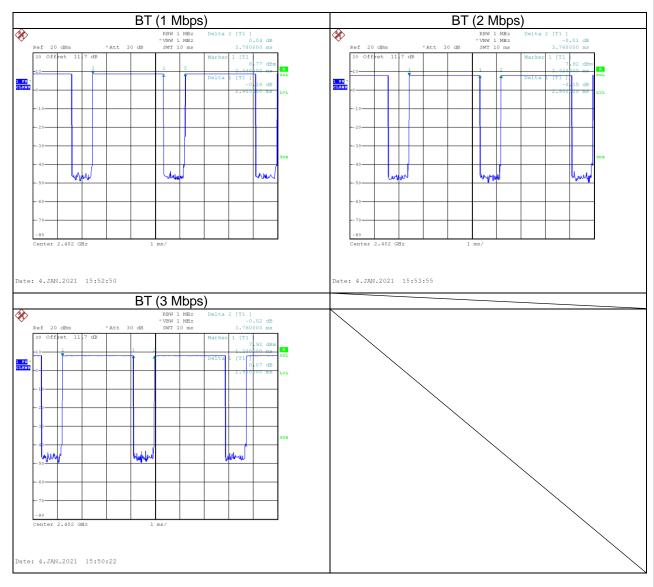
Test Item	U,(dB)
Number of Hopping Frequency	0.00
Average Time of Occupancy	1.20
Hopping Channel Separation	1.20
Bandwidth	1.13
Peak Output Power	1.06
Antenna conducted Spurious Emission	1.14
Conducted Band edges	1.13

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	18 °C, 73 %	AC 120V	Nero Hsieh
Radiated emissions below 1 GHz	23 °C, 67 %	AC 120V	Jerry Chuang
Radiated emissions above 1 GHz	21 °C, 70 %	AC 120V	Jerry Chuang
Number of Hopping Frequency	24.2 °C, 62 %	AC 120V	Nero Hsieh
Average Time of Occupancy	24.2 °C, 62 %	AC 120V	Nero Hsieh
Hopping Channel Separation	24.2 °C, 62 %	AC 120V	Nero Hsieh
Bandwidth	24.2 °C, 62 %	AC 120V	Nero Hsieh
Output Power	24.2 °C, 62 %	AC 120V	Nero Hsieh
Antenna conducted Spurious Emission	24.2 °C, 62 %	AC 120V	Nero Hsieh


1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	DRTU V11.1941.0-10270				
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate	
GFSK	16	16	14	1 Mbps	
π/4-DQPSK	16	16	16	2 Mbps	
8DPSK	16	16	16	3 Mbps	

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Wode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.900	1	2.900	3.780	76.72%	1.15
BT (2 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (3 Mbps)	2.900	1	2.900	3.760	77.13%	1.13

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Notebook Computers		
Model Name	15U70P, 15UD70P, 15UG70P, 15UB70P, 15U70P* ("*" can be "0-9" or "A-Z")		
Brand Name	LG		
Model Difference	The model is only differ in model name for just marketing use only.		
Power Source	DC voltage supplied from AC/DC Adapter.		
Power Rating	19.5V6.32A		
Power Adapter Power Rating	I/P: 100-240V~3.5A 50-60Hz		
Fower Adapter Fower Rating	O/P: 19.5V===11.8A 230W		
Power Adapter	Chicony / A17-230P1A		
Operation Band	2400 MHz ~ 2483.5 MHz		
Operation Frequency	2402 MHz ~ 2480 MHz		
Modulation Type	GFSK, π/4-DQPSK, 8DPSK		
Modulation Technology	FHSS		
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps		
	1 Mbps: 10.16 dBm (0.0104 W)		
Output Power Max.	2 Mbps: 9.88 dBm (0.0097 W)		
	3 Mbps: 9.88 dBm (0.0097 W)		
Test Model	15U70P		
Sample Status	Engineering Sample		
EUT Modification(s)	N/Ă		

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

BIL

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

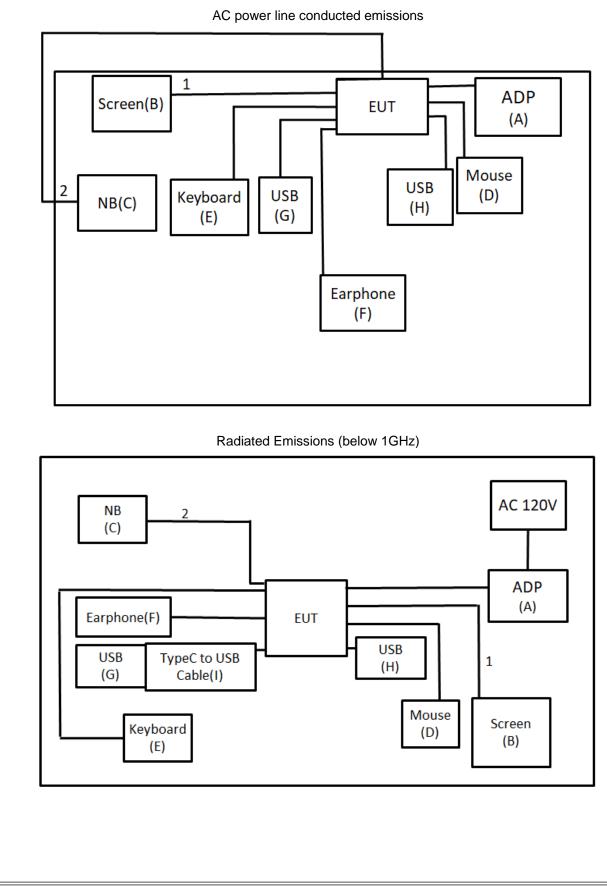
(3) Table for Filed Antenna:

Ant.	Brand	Part number	Туре	Frequency Range (MHz)	Gain (dBi)		
				2400-2500	-1.23		
				5150-5250	2.46		
Main	Main High-Tek	DQ60ACQD044	PIFA	5250-5350	1.70		
				5740-5725	0.22		
				5725-5850	-0.07		
		Tek DQ60ACQD044		2400-2500	-1.01		
						5150-5250	-0.95
Aux	Aux High-Tek		PIFA	5250-5350	1.13		
				5740-5725	0.54		
				5725-5850	1.65		

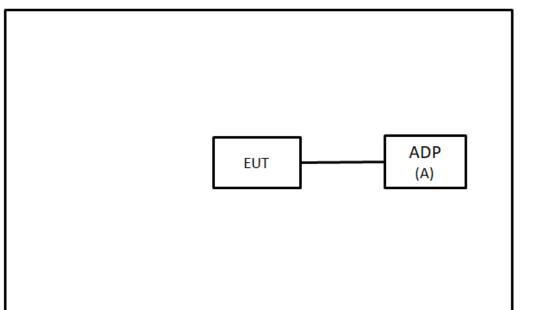
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	3 Mbps	78	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:


(1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.

- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.
- (4) There were no emissions found below 30 MHz within 20 dB of the limit.


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

Radiated Emissions (above 1GHz)

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	Chicony	A17-230P1A	N/A	Supplied by test requester
В	Screen	ASUS	MX27U	N/A	Furnished by test lab.
С	NB	hp	TPN-I119	N/A	Furnished by test lab.
D	Mouse	DELL	MOCZUL	N/A	Furnished by test lab.
E	Keyboard	DELL	KB216t	N/A	Furnished by test lab.
F	Earphone	Sony	MDR-E9LP	N/A	Furnished by test lab.
G	USB	Kingston	C7052-322.AOO LF	N/A	Furnished by test lab.
Н	USB	Transcend	TS16GJF700	N/A	Furnished by test lab.
Ι	Type C to USB	UGREEN	US154	N/A	Furnished by test lab.
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.8m	HDMI	Furnished by test lab.
2	N/A	N/A	2m	RJ45	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	Ш	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	Ι	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

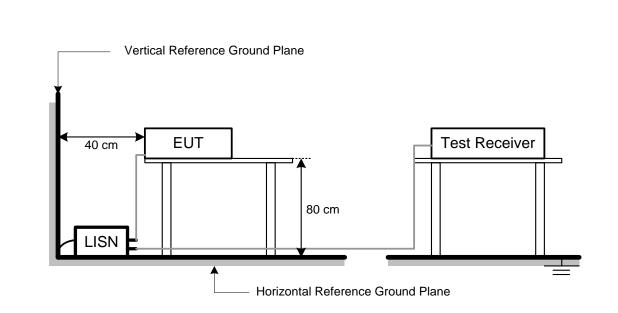
a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 All other support equipment were powered from an additional LISN(s).

The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated I (dBu	Measurement Distance	
	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

(1) The limit for radiated test was performed according to FCC Part 15, Subpart C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

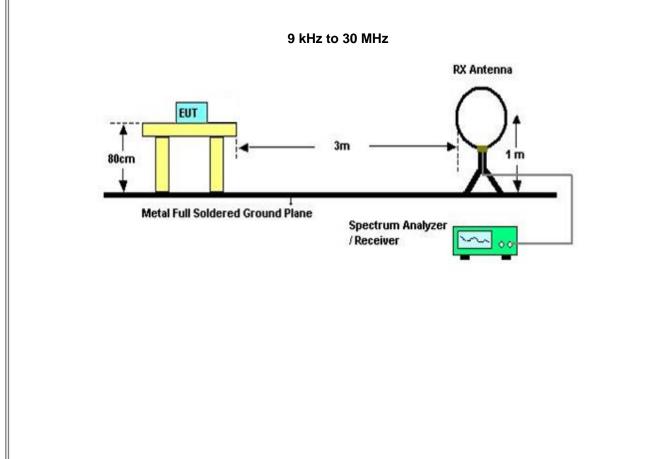
Margin Level = Measurement Value - Limit Value

Calculation example:

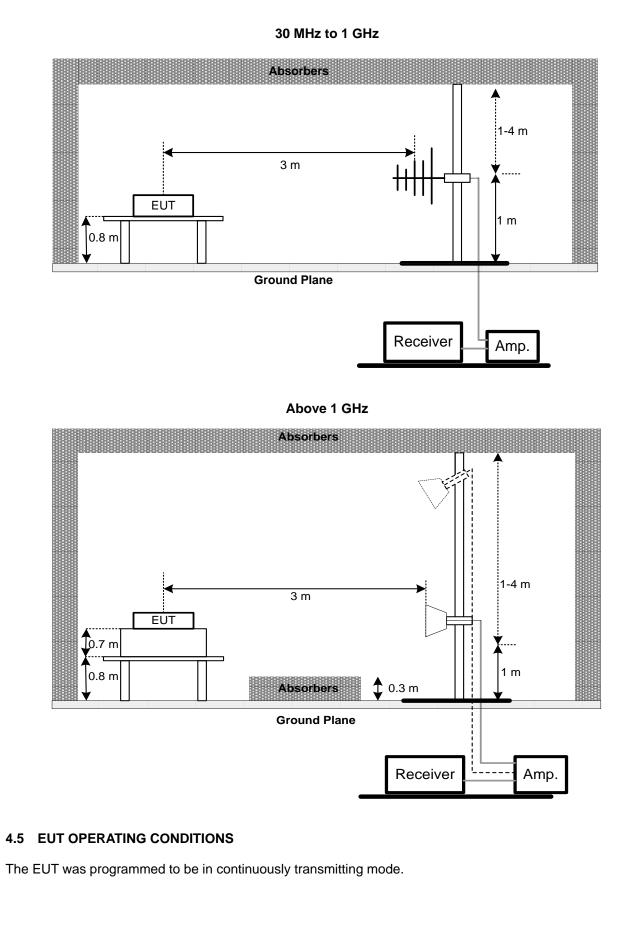
35.45 + -11.37 =	24.08

Measurement Value		Limit Value		Margin Level
24.08	1	40	Π	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average
Mode	VBW(Hz)
BT (1M)	360
BT (2M)	360
BT (3M)	360
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.6 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C						
Section	Result					
15.247(a)(1)(iii) Number of Hopping Channel		2400-2483.5	PASS			

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM		
	ANALYZER		

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247) , Subpart C						
Section Test Item Limit Frequency Range (MHz) Res							
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS			

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse. A Period Time = (channel number) $^{*}0.4$

For Normal Mode (79 Channel): DH1 Time Solt: Reading * (1600/2)*31.6/(channel number) DH3 Time Solt: Reading * (1600/2)*31.6/(channel number) DH5 Time Solt: Reading * (1600/2)*31.6/(channel number)

For AFH Mode (20 Channel): DH1 Time Solt: Reading * (1600/2)*8/(channel number) DH3 Time Solt: Reading * (1600/4)*8/(channel number) DH5 Time Solt: Reading * (1600/6)*8/(channel number)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

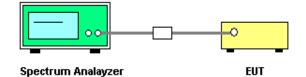
Please refer to the APPENDIX E.

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX F.

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Frequency Range (MHz)			
15.247(a)(2)	Bandwidth	2400-2483.5			

Spectrum Parameter	Setting			
Attenuation	Auto			
Span Frequency	> Measurement Bandwidth or Channel Separation			
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)			
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

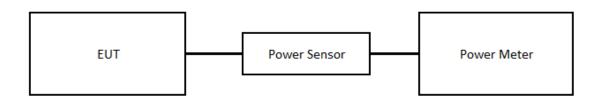
8.6 TEST RESULTS

Please refer to the APPENDIX G.

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section Test Item Limit Frequency Range (MHz)					
15.247(b)(1) Peak Output Power 0.125Watt or 21dBm 2400-2483.5 PA					


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

		AC Pow	er Line Conducted	d Emissions		
tem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2020/6/11	2021/6/10
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7
3	EMI Test Receiver	R&S	ESCI	100080	2020/6/15	2021/6/14
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A
			Radiated Emissio			
	Kind of		Radiated Emissio	ons	Calibrated	Calibrated
tem	Equipment	Manufacturer	Type No.	Serial No.	Date	Until
1	Preamplifier	EMCI	EMC02325B	980217	2020/4/10	2021/4/9
2	Preamplifier	EMCI	EMC012645B	980267	2020/4/10	2021/4/9
3	Preamplifier	EMCI	EMC184045SE	980512	2020/6/1	2021/5/3
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2020/4/10	2021/4/9
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2020/4/10	2021/4/9
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2020/4/10	2021/4/9
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2020/6/10	2021/6/9
8	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24
9	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2020/6/12	2021/6/1
10	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2020/7/9	2021/7/8
11	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/2
12	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/2
13	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A
		Num	ber of Hopping Fr	equency		
tem	Kind of	Manufacturer	Type No.	Serial No.	Calibrated	Calibrate
1	Equipment Spectrum	R&S	FSP 40	100129	Date 2020/6/15	Until 2021/6/14
1	Analyzer	Nao	10140	100123	2020/0/13	2021/0/1-
		Ave	erage Time of Occ	upancy		
tem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrate Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14
		Lon	ping Channel Ser	aration		
	Kind of	пор	ping channel sec		Calibrated	Calibrate
tem	Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14

	Bandwidth						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14	

Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2020/6/11	2021/6/10
2	Power Sensor	Anritsu	MA2411B	1126001	2020/6/11	2021/6/10

	Antenna conducted Spurious Emission										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14					

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

12 EUT TEST PHOTO

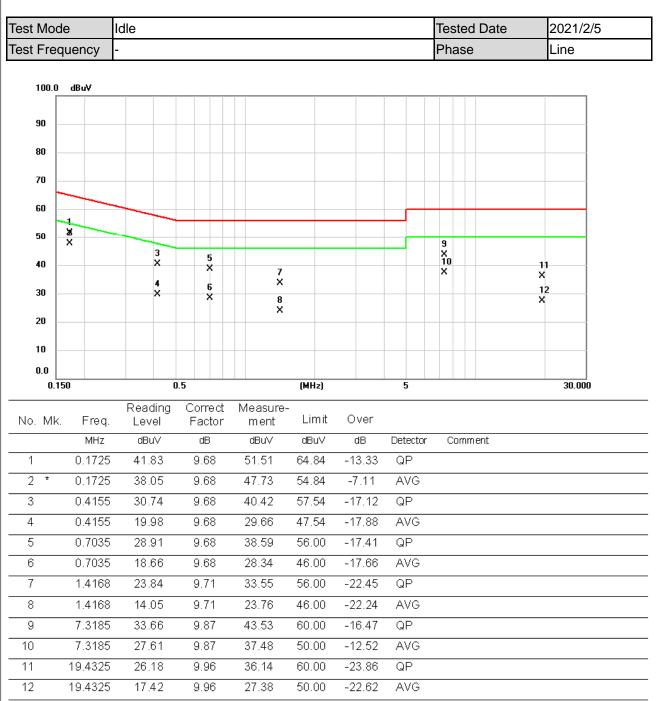
Please refer to document Appendix No.: TP-2012T054-FCCP-1 (APPENDIX-TEST PHOTOS).

13 EUT PHOTOS

Please refer to document Appendix No.: EP-2012T054-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

t Mo	de	Normal						Tested Date	2021/2/5
t Fre	quency	-						Phase	Line
100.0	0 dBu¥								
90									
50									
80									
70									
60									
50	1 3								
	×	3 X						9 X 10	11
40		4	5 X	7 X				×	×
30		×	6 X	8					12 X
20			^	×					
10									
0.0									
	150		0.5		(MHz)		5		30.000
		Reading	Correct	Measure		0			
o. Mł	<. Freq. MHz	Level dBuV	Factor dB	ment dBu∨	Limit dBu∨	Over dB	Detector	Comment	
1	0.1748	43.75	9.68	53.43	64.73	-11.30	QP	Comment	
2 *	0.1748	38.10	9.68	47.78	54.73	-6.95	AVG		
3	0.3390	31.66	9.68	41.34	59.23	-17.89	QP		
4	0.3390	22.73	9.68	32.41	49.23	-16.82	AVG		
5	0.5482	25.55	9.68	35.23	56.00	-20.77	QP		
6	0.5482	15.74	9.68	25.42	46.00	-20.58	AVG		
7	1.0162	24.17	9.69	33.86	56.00	-22.14	QP		
3	1.0162	14.60	9.69	24.29	46.00	-21.71	AVG		
9	7.3680	34.27	9.87	44.14	60.00	-15.86	QP		
0 1	7.3680	27.90	9.87	37.77	50.00	-12.23	AVG		
	19.9590	28.02	9.96	37.98	60.00	-22.02	QP		


Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

t Mo	de	Vormal						Tested Date	2021/2/5
t Fre	equency -							Phase	Neutral
100.	0 dBu¥								
90									
80									
70									
60									
00	1								
50	×	3						9	
40		4 4	5 X	7				× 10 ×	
30		×	6	× 8					11 ×
			×	×					12 X
20									
10									
0.0	150								
U.	150).5		(MHz)		5		30.000
o. Mi	k. Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.1725	42.23	9.68	51.91	64.84	-12.93	QP		
2 *	0.1725	38.09	9.68	47.77	54.84	-7.07	AVG		
3	0.3502	33.38	9.68	43.06	58.96	-15.90	QP		
4	0.3502	25.65	9.68	35.33	48.96	-13.63	AVG		
5	0.5955	27.54	9.68	37.22	56.00	-18.78	QP		
	0.5955	18.33	9.68	28.01	46.00	-17.99	AVG		
6		24.91	9.69	34.60	56.00	-21.40	QP		
7	1.0455					-19.54	AVG		
7 8	1.0455	16.77	9.69	26.46	46.00				
7 8 9	1.0455 7.3185	16.77 33.88	9.87	43.75	60.00	-16.25	QP		
7 8	1.0455	16.77							

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

t Mo	de l	dle						Tested Date	2021/2/5
t Fre	equency -							Phase	Neutral
100.0 90 80 70 60	D dBu¥								
50 50 40	x	3 × 4	5 ×					9 X0 10	
30 20		×	6 X	7 X 8 X				×	11 X 12 X
10									
0.0									
	150	().5		(MHz)		5		30.000
o. Mi	k. Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.1725	41.91	9.68	51.59	64.84	-13.25	QP		
2 *	0.1725	38.05	9.68	47.73	54.84	-7.11	AVG		
3 4	0.3502	33.46 25.29	9.68 9.68	43.14	58.96 48.96	-15.82 -13.99	QP AVG		
+ 5	0.5302	23.29	9.68	37.72	56.00	-18.28	 		
6	0.5887	19.14	9.68	28.82	46.00	-17.18	AVG		
7	1.0455	23.80	9.69	33.49	56.00	-22.51	QP		
3	1.0455	15.81	9.69	25.50	46.00	-20.50	AVG		
9	7.3185	33.71	9.87	43.58	60.00	-16.42	QP		
0	7.3185	27.65	9.87	37.52	50.00	-12.48	AVG		
1	19.4325	19.82	9.96	29.78	60.00	-30.22	QP		
	19.4325	11.93	9.96	21.89	50.00	-28.11	AVG		

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

BIL

Test Mode			BT	(3Mbps)		Test Date	1	2021/2/8		
Tes	st Frequ	iency	24	80MHz		Polarizatio	n	Vertical		
	Temp			23°C		Hum.	67%			
80.0 dB	uV/m									
70										
60										
50										
40				2	ž	4 ×	5 X		<u></u>	
30 <mark>×</mark>						^				
20										
10										
0.0										
30.000	127.00	224.00	321.00	418.00	515.00 6	12.00 70	9.00 806	.00	1000.00 MH;	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	34.9470	43.74	-9.03	34.71	40.00	-5.29	QP		
2		445.5157	42.81	-3.79	39.02	46.00	-6.98	peak		
3		530.9403	39.57	-2.15	37.42	46.00	-8.58	peak		
4		594.0550	36.43	-0.77	35.66	46.00	-10.34	peak		
5		712.9770	35.34	1.10	36.44	46.00	-9.56	peak		
6		960.0360	34.00	5.20	39.20	54.00	-14.80	peak		

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

Tc	Test Mo est Frequ				(3Mbp 80MF				Test Da Polariza				1/2/8 zontal	
10	Temp			2-	23°C	IZ	-		Hum				7%	
30.0 d	IBuV/m				23 0				TIUIII			0	//0	
														٦
70														
:0														
													Г	
0		_												-
o					3	4		5 X						
	1 X		2 X			¥		x					6 X	
0	^													
0														
o														
.0														
30.000	127.00	224.0	00	321.00	418.	.00	515.0	D 61	2.00	709.	00 806	5.00	1000.00	МН
No.	Mk.	Freq	•	Readino Level		orrect actor		asure- nent	Limit	t	Over			
		MHz		dBuV		dB		uV/m	dBuV/	m	dB	Detector	Comm	ent
1		78.112		44.65		2.33		2.32	40.00		-7.68	QP		
2		250.02		45.04		9.27		5.77	46.00		-10.23	peak		
3	*	375.02		45.04		5.49		9.55	46.00		-6.45	peak		
4		445.51		41.14		3.79		7.35	46.00		-8.65	peak		
5		560.81		39.42		1.54		7.88	46.00		-8.12	peak		
6		947.78	16	30.52	5	5.04	3!	5.56	46.00)	-10.44	peak		

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

	Test Mo	de		BT(1Mbp	s)			Т	est Da	te		202	21/1/7
	Test Frequ				2MH					olarizat				rtical
	Temp			2	1°C					Hum.			7	0%
130.0	dBuV/m													
120														
110							1							
100 -														
90 -														
80														
70							+							
60	www.www.wheel	الرابية والمراجعة الم	1	un	بىللىتىنىيەل	مماسم	meth	hulling	and	Alexander	and carries	hadman and a star	- Anno - Marca - Martin	5
50			2 X											
40														6 X
30														
20														
10.0														
	2.000 2322.0				2382		2402		2422		2442.		52.00	2502.00 MHz
No.	Mk.	Freq.		ding vel		rrect actor		easure ment	-	Limit		Over		
		MHz		SuV		dΒ		3uV/m	C	dBuV/m	n	dB	Detector	Comment
1		2354.820		.20).65		56.85		74.00		-17.15	peak	
2		2354.820		.01).65		13.66		54.00		-10.34	AVG	
3	Х	2402.000		.33).84		08.17		74.00		34.17	peak	NoLimit
4	*	2402.000		.58).84		07.42		54.00		53.42	AVG	NoLimit
5		2485.220		.50		1.17		56.67		74.00		-17.33	peak	
6		2485.220) 3.	01	31	1.17		34.18		54.00		-19.82	AVG	

	Test Mo			1Mbps) 80MHz		Test Date Polarizatio			1/1/7	
Tes	st Frequ						n		rtical	
130.0 dB	Temp		Ζ	10		Hum.		//	0%	
	u v / m									
120										
10										
					4					
00					ă.					
30										
30										
70										
60 <u>1</u>								5 X		
50	- Mary Mary	and some second second	heady for the second sec	lana din yakhan sinakafan.	MUM Maynanthan	the comparation of the second	Bandwoodbandy	Marine and a start and	halingerannalikerelepter	
								6		
40 2 - X								×		
30 ^										
20										
10.0										
2380.00	0 2400.0	0 2420.00	2440.00	2460.00	2480.00 2	500.00 253	20.00 254	0.00	2580.00 M	4 H
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
		MHz		Factor dB	ment	dBuV/m	dB	Detector	Common	
1		2385.720	dBuV 24.77	30.77	dBuV/m 55.54	74.00	-18.46	Detector peak	Commen	<u></u>
2		2385.720	2.46	30.77	33.23	54.00	-20.77	AVG		_
3	Х	2480.000	69.75	31.15	100.90	74.00	26.90	peak	NoLimit	_
4	*	2480.000	69.34	31.15	100.49	54.00	46.49	AVG	NoLimit	
5		2559.893	26.66	31.48	58.14	74.00	-15.86	peak		
6		2559.893	8.69	31.48	40.17	54.00	-13.83	AVG		

-	Test Mo			BMbps)		Test Date			1/1/7	
	est Frequ			2MHz		Polarizatio	n		rtical	
130.0	Temp dBuV/m		2	1°C		Hum.		//	0%	
50.0	00017111									٦
120										
10										1
00										_
<u> </u>										1
30					-{}					-
70										-
					7λ					1
60				man and the	A Marine			laser sales was seen	5	-
50	Wandraham and		water in the second of the		· · · · · · · · · · · · · · · · · · ·	- martine and	velillenershilerentille	have shaked the second	www.www.www.	4
				2 X						
40									6	1
30 🗕									×	_
20										1
10.0										_
	000 2322.0 Mk.		2362.00	2382.00		422.00 24 Limit		2.00	2502.00	мн
No.	IVIK.	Freq.	Reading Level	Correct Factor	Measure- ment	LIIIII	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		2389.093	29.16	30.78	59.94	74.00	-14.06	peak	0011110	
2		2389.093	13.27	30.78	44.05	54.00	-9.95	AVG		
3	Х	2402.000	76.69	30.84	107.53	74.00	33.53	peak	NoLim	nit
4	*	2402.000	74.42	30.84	105.26	54.00	51.26	AVG	NoLim	
5		2498.107	26.57	31.22	57.79	74.00	-16.21	peak		
6		2498.107	3.30	31.22	34.52	54.00	-19.48	AVG		

	Test Mo st Frequ			3Mbps) 60MHz		Test Date Polarizatio	า		1/1/7 rtical	
10	Temp			1°C		Hum.			0%	
130.0 dE	BuV/m									
120]
110										
100										
90										
80										
70					5					
60	and an are the	-	here all provide a second second	manderstationalest	1 1	marsherewardsom	www.	molecument	manakaranta	
50				-	6 K					
40 2 30 X										
20										
10.0										
2380.00	0 2400.0	0 2420.00	2440.00	2460.00	2480.00 2	500.00 252	20.00 254	0.00	2580.00	мн
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		2387.407	24.67	30.78	55.45	74.00	-18.55	peak		
2		2387.407	2.46	30.78	33.24	54.00	-20.76	AVG		
3	Х	2480.000	69.35	31.15	100.50	74.00	26.50	peak	NoLim	nit
4	*	2480.000	67.11	31.15	98.26	54.00	44.26	AVG	NoLim	nit
5		2483.713	33.69	31.16	64.85	74.00	-9.15	peak		
6		2483.713	15.75	31.16	46.91	54.00	-7.09	AVG		

	Test Mo				1Mbps)		Test Date			1/1/7
Te	est Freq				02MHz		Polarizatio	n		rtical
	Tem	ρ			21°C		Hum.		7	0%
130.0 (dBu¥/m									
120										
10										
00										
io										
30 -										
'o 🗖										
io —										
50										
		1 X								
30		2 X								
20										
0.0										
	000 3550.			8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq	•	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	2	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0		53.50	-10.03	43.47	74.00	-30.53	peak	
2	*	4804.0	000	42.90	-10.03	32.87	54.00	-21.13	AVG	

	Test Mo	ode			1Mbps)		Test Date	•	202	1/1/7
Te	est Freq	uency)2MHz		Polarizatio	n		zontal
	Tem	C		2	1°C		Hum.		7	0%
130.0 d	lBu¥/m			1		1	Ì	1		
120										
10										
00										
90 -										
BO										
70 -										
50										
50										
		1 X								
30		2 X								
20										
10.0										
	000 3550.			8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0		54.06	-10.03	44.03	74.00	-29.97	peak	
2	*	4804.0	00	43.24	-10.03	33.21	54.00	-20.79	AVG	

	Test Mo				Mbps)		Test Date			1/1/7
Te	est Frequ				1MHz		Polarizatio	n		rtical
	Temp)		2	1°C		Hum.		7	0%
130.0 d	lBu¥/m									
120										
110										
90										
BO										
70										
50										
50										
40		1 X								
		2 X								
20										
10.0										
	00 3550.0			8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq	•	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	2	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.0		52.90	-9.76	43.14	74.00	-30.86	peak	
2	*	4882.0	00	41.89	-9.76	32.13	54.00	-21.87	AVG	

	Test Mo				1Mbps)		Test Date			1/1/7
Te	est Frequ				41MHz		Polarizatio	n		zontal
	Temp	2			21°C		Hum.		7	0%
130.0 d	lBuV/m				1		1	1	1	
120										
110										
90 -										
80										
70										
50										
50										
40		1 X								
30		2 X								
20										
10.0										
	00 3550.0			8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq	•	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.0		53.58	-9.76	43.82	74.00	-30.18	peak	
2	*	4882.0	00	42.78	-9.76	33.02	54.00	-20.98	AVG	

	Test Mo					Mbps)				Test Da				1/1/7
10	est Freq			2		MHz			P	olarizat				rtical
30.0	Temµ dBu∀/m	ρ			21	°C				Hum.			1	0%
	aBAA/W													
120														
10														
00														
90 -														
30														
0														
.0														
50		1												
		1 X												
		2 X												
30														
20 -														
10.0														
	000 3550.0			8650.00		11200.00	1375				18850.		400.00	26500.00 MH
No.	Mk.	Freq	•	Readir Leve		Correct Factor		easure- ment		Limit		Over		
		MHz		dBu√		dB		BuV/m		dBuV/r	n	dB	Detector	Comment
1		4960.0		54.47		-9.49		14.98		74.00		-29.02	peak	
2	*	4960.0	00	43.44	•	-9.49	3	33.95		54.00		-20.05	AVG	

	Test Mo st Frequ				IMbps) 0MHz		Test Date Polarizatio			1/1/7 zontal
10	Temp		-		1°C		Hum.			2011.ai 0%
130.0 d	3uV/m									
120										
10										
io										
0										
'0 										
io —										
io 📃		1 X								
0		2 X								
20										
0.0										
	0 3550.0		00	8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.00		54.33	-9.49	44.84	74.00	-29.16	peak	
2	*	4960.00)0	43.18	-9.49	33.69	54.00	-20.31	AVG	

	Test Mo				3Mbps)		Test Date			1/1/7
Ie	st Frequ				2MHz 1°C		Polarizatio Hum.	n		rtical 0%
130.0 dl	Temp 3uV/m)		2	I C		⊓um.		1	0%
20										
10										
00										
30										
'o 🗖										
50										
50		_								
		1 X								
		2 X								
30		^								
20										
10.0										
1000.00	0 3550.0	00 6100.	.00	8650.00	11200.00	13750.00 1	6300.00 18	850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.		Reading	Correct	Measure-	Limit	Over		
		-		Level	Factor	ment				
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0		53.22	-10.03	43.19	74.00	-30.81	peak	
2	*	4804.0	00	42.94	-10.03	32.91	54.00	-21.09	AVG	

	Test Mo				3Mbps)		Test Date			1/1/7
Te	est Freq				2MHz		Polarizatio	n		zontal
	Temp	C		2	1°C		Hum.		7	0%
130.0 d	lBu¥/m			1	1	1	1	1	1	
120										
10										
00										
30										
0										
50										
i0		1 X								
10		2 X								
10 <u> </u>		×								
20										
10.0										
	100 3550.1 Mk.			8650.00	11200.00				00.00	26500.00 MH
No.	IVIK.	Freq		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0		54.89	-10.03	44.86	74.00	-29.14	peak	
2	*	4804.0	00	43.92	-10.03	33.89	54.00	-20.11	AVG	

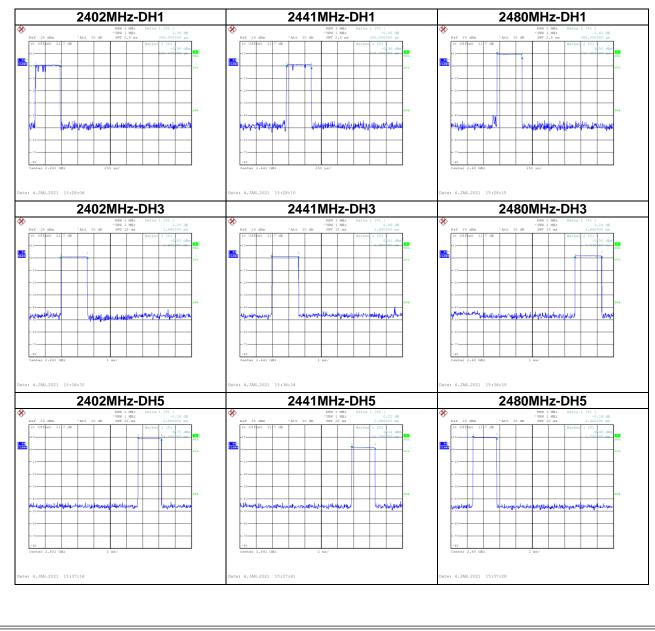
	Test M					lbps)				Test Da				21/1/7
16	est Freq Tem		_	2	441N 21°				Ρ	olarizat Hum.				rtical 0%
130.0 d	ierri 1Bu¥/m	ρ			21	C				Hum.	•		1	0%
130.0 (10477111													
120														
10														
100														
30														
50														
BO														
70 🗖														
60														
50		-												
40		1 X												
		2 X												
30														
20														
10.0														
1000.0	00 3550.	00 6100	0.00	8650.00	1	1200.00	1375	50.00	163	00.00	18850	0.00 21	400.00	26500.00 MH
No.	Mk.	Freq		Readin	g	Correct	Me	easure	-	Limit		Over		
		-		Level		Factor		ment						
		MHz		dBuV		dB		BuV/m		dBuV/r		dB	Detector	Comment
1		4882.0		53.36		-9.76		43.60		74.00		-30.40	peak	
2	*	4882.0	00	43.21		-9.76		33.45		54.00		-20.55	AVG	

	Test Mo				3Mbps)		Test Date			1/1/7
10	est Freq				1MHz 1°C		Polarizatio	n		zontal
130.0	Temj dBuV/m	þ		2	1.0		Hum.		1	0%
130.0										
120										
110										
100 🖳										
90										
80										
70 🗖										
60										
50		1 X								
40 -		2 2								
30		x								
20										
10.0						40750.00	0000.00.40	050.00.014		
	000 3550.			8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq	•	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	_	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.0		53.27	-9.76	43.51	74.00	-30.49	peak	
2	*	4882.0	00	42.94	-9.76	33.18	54.00	-20.82	AVG	

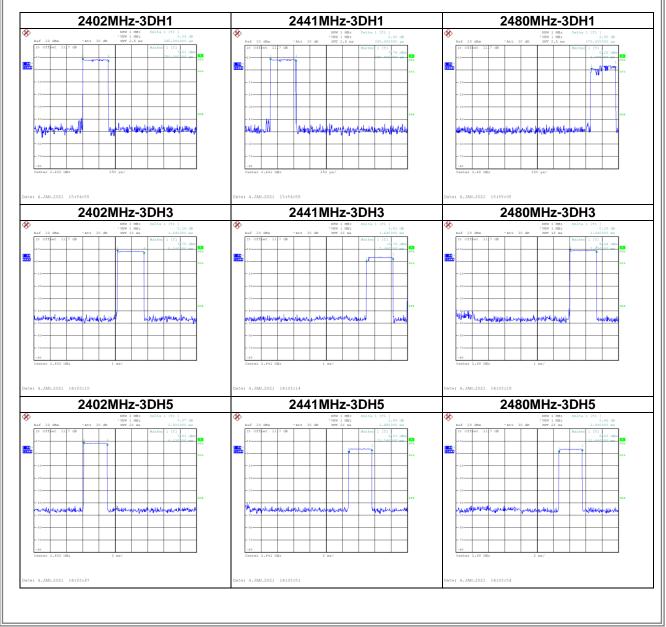
	Test Mo				3Mbps)		Test Date			1/1/7
le	est Frequ				80MHz		Polarizatio	n		rtical
	Temp)		2	1°C		Hum.		7	0%
130.0 d	lBuV/m								1	
120										
10										
00										
90 -										
BO										
70 -										
io —										
50		1 X								
40 -		2								
80 -		x								
20										
10.0										
	000 3550.0			8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.0	00	54.02	-9.49	44.53	74.00	-29.47	peak	
2	*	4960.0	00	43.56	-9.49	34.07	54.00	-19.93	AVG	

	Test Mo				3Mbps)		Test Date			1/1/7
Te	est Frequ				30MHz		Polarizatio	n		zontal
	Temp)		2	21°C		Hum.		7	0%
130.0 c	lBu¥/m									
120										
10										
00										
'0 —										
50										
50		1 X								
40		2								
30 -		×								
20										
10.0										
)00 3550.0			8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.0		54.20	-9.49	44.71	74.00	-29.29	peak	
2	*	4960.0	00	43.66	-9.49	34.17	54.00	-19.83	AVG	

APPENDIX D NUMBER OF HOPPING CHANNEL



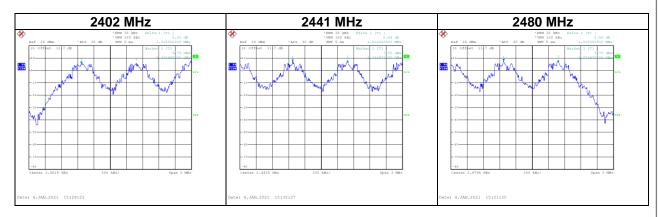
APPENDIX E AVERAGE TIME OF OCCUPANCY



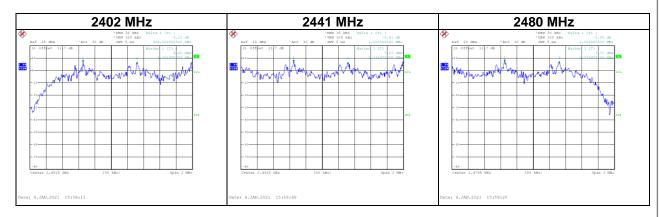
Test Mode :	1Mbps				
					1
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402 MHz	2.8800	0.3072	0.4000	Pass
DH3	2402 MHz	1.6400	0.2624	0.4000	Pass
DH1	2402 MHz	0.3800	0.1216	0.4000	Pass
DH5	2441 MHz	2.8800	0.3072	0.4000	Pass
DH3	2441 MHz	1.6400	0.2624	0.4000	Pass
DH1	2441 MHz	0.3850	0.1232	0.4000	Pass
DH5	2480 MHz	2.9200	0.3115	0.4000	Pass
DH3	2480 MHz	1.6400	0.2624	0.4000	Pass
DH1	2480 MHz	0.3850	0.1232	0.4000	Pass

Project No.: 2012T054

Test Mode :	3Mbps				
Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402 MHz	2.9200	0.3115	0.4000	Pass
3DH3	2402 MHz	1.6400	0.2624	0.4000	Pass
3DH1	2402 MHz	0.3950	0.1264	0.4000	Pass
3DH5	2441 MHz	2.8800	0.3072	0.4000	Pass
3DH3	2441 MHz	1.6400	0.2624	0.4000	Pass
3DH1	2441 MHz	0.3950	0.1264	0.4000	Pass
3DH5	2480 MHz	2.8800	0.3072	0.4000	Pass
3DH3	2480 MHz	1.6400	0.2624	0.4000	Pass
3DH1	2480 MHz	0.3700	0.1184	0.4000	Pass

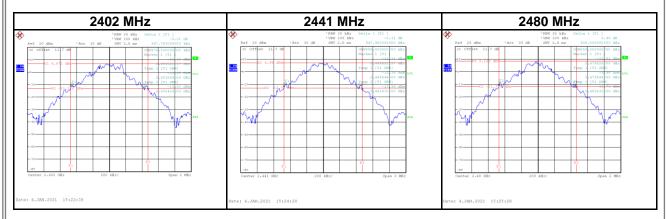

3

APPENDIX F HOPPING CHANNEL SEPARATION MEASUREMENT



Test Mode :	Test Mode : Hopping on _1Mbps								
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result						
2402	1.015	0.632	Pass						
2441	1.014	0.632	Pass						
2480	1.008	0.625	Pass						

Test Mode : Hopping on _3Mbps								
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result					
2402	0.999	0.941	Pass					
2441	1.005	0.956	Pass					
2480	1.008	0.947	Pass					



APPENDIX G BANDWIDTH

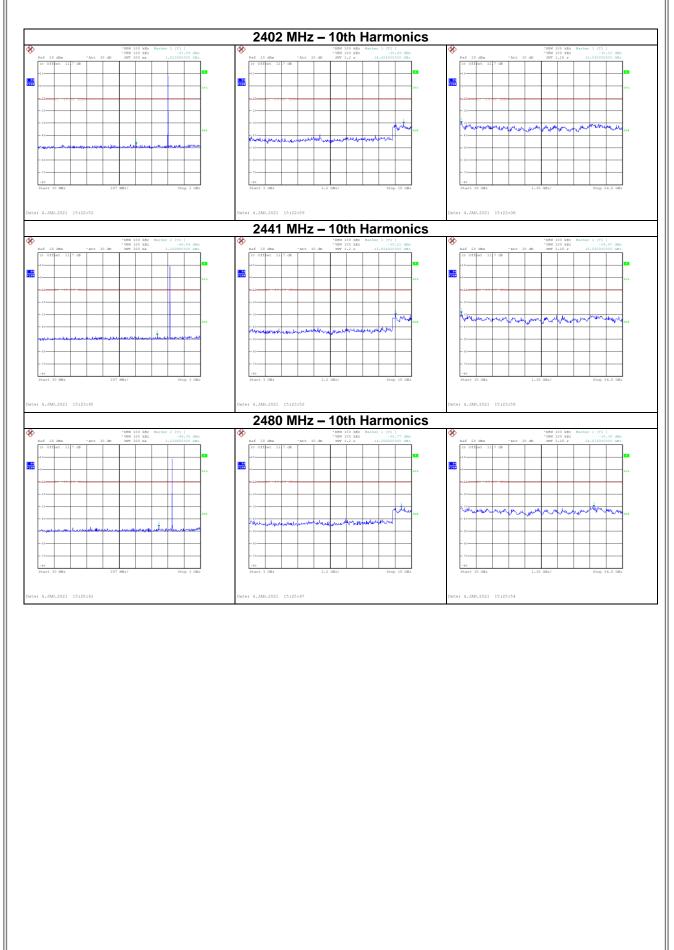
Test Mode :	Test Mode : 1Mbps								
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result						
2402	0.948	0.876	Pass						
2441	0.948	0.888	Pass						
2480	0.938	0.888	Pass						

Test Mode :	Test Mode : 3Mbps								
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result						
2402	1.412	1.360	Pass						
2441	1.434	1.344	Pass						
2480	1.420	1.344	Pass						

APPENDIX H OUTPUT POWER

BIL

Test Mode :	1Mbps		Testeo	d Date	2021/1/5
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	9.77	0.0095	21.00	0.1250	Pass
2441	10.05	0.0101	21.00	0.1250	Pass
2480	10.16	0.0104	21.00	0.1250	Pass
Test Mode :	2Mbps		Testeo	d Date	2021/1/5
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	9.44	0.0088	21.00	0.1250	Pass
2441	9.75	0.0094	21.00	0.1250	Pass
2480	9.88	0.0097	21.00	0.1250	Pass
Test Mode :	3Mbps		Testeo	d Date	2021/1/5
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	9.44	0.0088	21.00	0.1250	Pass
2441	9.76	0.0095	21.00	0.1250	Pass
2480	9.88	0.0097	21.00	0.1250	Pass



APPENDIX I ANTENNA CONDUCTED SPURIOUS EMISSION

