

Page 1 of 28 Tel: +886 2 26099301 Fax: +886 2 26099303

FCC 15.407 U-NII DFS Test Report

for

LG Electronics Inc.

222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea

Product Name	:	Notebook Computer
Model Name	:	(1)14ZB90Q (2)14ZG90Q
Brand		LG
FCC ID	:	BEJNT-14ZB90Q

Prepared by: : AUDIX Technology Corporation, EMC Department

The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo.

File Number: C1M2207001

Report Number: EM-F220533

Page 2 of 28 Tel: +886 2 26099301 Fax: +886 2 26099303

TABLE OF CONTENTS

De	scrip	tion	Page
TE	ST RE	EPORT	
1.	REV	ISION RECORD OF TEST REPORT	
2.		IMARY OF TEST RESULTS	
<u> </u>		VERAL INFORMATION	
	3.1.	Description of Application	
	3.2.	Description of Application	
	3.3.	Reference Test Guidance	
	3.4.	Antenna Information	
	3.5.	EUT Specifications Assessed in Current Report	
	3.6.	Descriptions of Key Components	11
	3.7.	Test Configuration	
	3.8.	Tested Supporting System List	
	3.9.	Description of Test Facility	
		Measurement Uncertainty	
4.	MEA	ASUREMENT EQUIPMENTLIST	14
5.	WO	RKING MODES AND REQUIREMENT TEST ITEM	15
	5.1.	Applicability of DFS Requirements Prior to Use of a Channel	15
	5.2.	Applicability of DFS Requirements during Normal Operation	15
6.	DFS	DETECTION THRESHOLOS AND RADAR TEST WAVEFORMS	16
	6.1.	Interference Threshold Value, Master or Client Incorporating In-Service Monitoring	16
	6.2.	Radar Test Waveform Minimum Step	
	6.3.	Short Pulse Radar Test Waveforms	17
	6.4.	Long Pulse Radar Test Waveforms	
	6.5.	Frequency Hopping Pulse Radar Test Waveforms	
	6.6.	Conducted Calibration Setup	
	6.7.	Radar Waveform Calibration Procedure	
	6.8.	Calibration Deviation	
	6.9.	Radar Waveform Calibration Result	
7.	TES	T SETUP AND TEST RESULT	24
	7.1.	Test Setup	24
	7.2.	Channel Move Time, Channel Closing Transmission Time, Non-Occupancy Period,	
	Non-	Associated Client Beacon Measurement	26

APPENDIX A TEST PHOTOGRAPHS

File Number: C1M2207001

Report Number: EM-F220533

Page 3 of 28 Tel: +886 2 26099301 Fax: +886 2 26099303

TEST REPORT

Applicant	:	LG Electronics Inc.
Manufacturer	:	LG Electronics Inc.
Factory	:	LG Electronics Nanjing New Technology Co., Ltd.
EUT Description		
(1) Product	:	Notebook Computer
(2) Model	:	(1)14ZB90Q (2)14ZG90Q
(3) Brand	:	LG
(4) Power Supply	y:	DC 20V, 3.25A

Applicable Standards:

47 CFR FCC Part 15 Subpart E

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. *Audix Technology Corp.* does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Report:	2022. 07. 22
Reviewed by:	This I drong
Approved by:	Johnny Heiren

(Tina Huang/Section Manager)

(Johnny Hsueh/Section Manager)

File Number: C1M2207001

Report Number: EM-F220533

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Date	Revision Summary	Report Number
0	2022. 07. 22	Original Report	EM-F220533

File Number: C1M2207001

Report Number: EM-F220533

2. SUMMARY OF TEST RESULTS

Description	Results		
Channel Availability Check Time	N/A		
Channel Move Time	PASS		
Non-Occupancy Period	PASS		
Non-Associated Client Beacon	PASS		
Channel Closing Transmission Time	PASS		
U-NII Detection Bandwidth	N/A		
N/A is an abbreviation for Not Applicable, sine the product is client without radar detection function Note: The uncertainties value is not used in determining the result.			

Report Number: EM-F220533

3. GENERAL INFORMATION

Applicant	LG Electronics Inc. 222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea
Manufacturer	LG Electronics Inc. 222, LG-ro, Jinwi-myeon Pyeongtaek-Si, Gyeonggi-Do, 17709 Republic of Korea
Factory	LG Electronics Nanjing New Technology Co., Ltd. No.346,Yaoxin Road, Economic & Technical Development Zone, Nanjing, China.
Product	Notebook Computer
Model	(1)14ZB90Q (2)14ZG90Q The difference between all models is different in the sales customers and color difference.
Brand	LG

Report Number: EM-F220533

Page 7 of 28

3.2. Description of EUT

Test Model	14ZB90Q				
Serial Number	N/A				
Power Rating	DC 20V, 3.25A				
Software Version	XY (X, Y can be 0 to 9 for different SW version not in parameter)	fluence RF			
RF Features	WLAN:802.11 a/b/g/n/ac/ax Bluetooth: BT and BLE (BT 5.1)				
	2.4 GHz				
	802.11b	1T1R			
	802.11g	1T1R			
	802.11n-HT20	2T2R			
	802.11n-HT40	2T2R			
	802.11ax-HE20	2T2R			
	802.11ax-HE40	2T2R			
Transmit Type	BT/BLE	1T1R			
Transmit Type					
	U-NII Bands	17710			
	802.11a 802.11n-HT20/802.11ac-VHT20/802.11ax-HE20	1T1R 2T2R			
	802.11n-HT20/802.11ac-VHT20/802.11ax-HE20 802.11n-HT40/802.11ac-VHT40/802.11ax-HE40	212R 2T2R			
	802.11ac-VHT40/802.11ac-VH140/802.11ax-HE40	2T2R 2T2R			
	802.11ac-VHT160/802.11ax-HE80	2T2R 2T2R			
	The MIMO is uncorrelated and supported SDM mode				
		omy.			
	Outdoor Access Point				
Device Category	Fixed point-to-point Access Point				
Device Eulegory	Indoor Access Point				
	Mobile and Portable client device				
	Sample No. Test Item	Firmware			
Test Sample	03 DFS	N/A			
Sample Status	Trial sample				
Date of Receipt	2022. 06. 30				
Date of Test	2022. 07. 05 ~ 06				

File Number: C1M2207001

Report Number: EM-F220533

Interface Ports of EUT	 One HDMI Port Two USB Type C Port One Earphone Port One Micro SD Card Slot Two USB 3.0 Ports
Accessories Supplied	AC AdapterLAN Gender

3.3. Reference Test Guidance

KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02 KDB 905462 D03 U-NII Clients Without Radar Detection New Rules v01r02

File Number: C1M2207001

Report Number: EM-F220533

Page 9 of 28

3.4. Antenna Information

No.	Antenna Part	Manufacture	Antenna Type	Frequency	Gain(dBi)		Directional	
110.	Number			(MHz)	Main	AUX	Gain Note1 & 2	
				2400	3.9	2.8	3.38	
				2425	4.2	3.2	3.73	
				2450	3.9	2.8	3.38	
				2475	4.4	4.0	4.20	
				2500	4.6	4.4	4.50	
	WA-P-LELE-04			5150	3.7	3.7	3.70	
1.	-025	INPAQ	Mono-Pole	5250	3.8	3.8	3.80	
				5350	3.4	3.4	3.40	
				5725	4.0	4.0	4.00	
				5825	4.7	4.7	4.70	
				5925	2.2	1.7	1.96	
				6525	2.1	1.5	1.81	
				7125	1.9	1.4	1.66	
	ling to KDB 662911				uncorrela	ted, then		
	onal gain = 10 log[(1 WLAN 2.4GHz: Direc		$+ + 10^{610/10}$	°)/N _{ANT}] dB1				
	2400MHz: Directional	$gain = 10 \log[(10)]$	$\frac{3.9/10}{4.2/10} + 10^{2.8/10})/2$	2]= 3.38dBi				
	2425MHz: Directional 2450MHz: Directional	$gain = 10 \log[(10)]$	$\frac{4.2}{10} + 10^{4.2} / 10 / 2$	2] = 3.73 dBi				
	2475MHz: Directional	$gain = 10 \log[(10)]$	$^{+10}_{4.4/10}$ $^{+10^{4.0/10}})/2$	2] = 3.38 dB1 2] = 4.20 dB1				
	2500MHz: Directional	$gain = 10 \log[(10)]$	$(4.6/10 + 10^{4.4/10})/2$	2]= 4.50dBi				
Note 2.	Note 2. WLAN 5G/6GHz: Directional gain =							
	5150MHz: Directional gain = $10 \log[(10^{3.7/10} + 10^{3.7/10})/2] = 3.70$ dBi 5250MHz: Directional gain = $10 \log[(10^{3.8/10} + 10^{3.8/10})/2] = 3.80$ dBi							
	5250MHz: Directional gain = $10 \log[(10^{-3.4/10} + 10^{-3.4/10})/2] = 3.80dBi$ 5350MHz: Directional gain = $10 \log[(10^{-3.4/10} + 10^{-3.4/10})/2] = 3.40dBi$							
	5725MHz: Directional gain = $10 \log[(10^{4.0/10} + 10^{4.0/10})/2] = 4.00$ dBi							
	5825MHz: Directional gain = $10 \log[(10^{4.7/10} + 10^{4.7/10})/2] = 4.70$ dBi							
	5925MHz: Directional gain = $10 \log[(10^{2.2/10} + 10^{1.7/10})/2] = 1.96$ dBi							
	6525MHz: Directional gain = $10 \log[(10^{2.1/10} + 10^{1.5/10})/2] = 1.81$ dBi							
7125MHz: Directional gain = $10 \log[(10^{1.9/10} + 10^{1.4/10})/2] = 1.66dBi$								
	We chose the antenna gain corresponding to the frequency listed on the table which is closer to center frequency of WLAN.							

Report Number: EM-F220533

Page 10 of 28

Mode	U-NII Band	Fundamental Range (MHz)	Channel Number		
902 11 ₀	2A	5260-5320	4		
802.11a	2C	5500-5720	12		
802.11n-HT20/	2A	5260-5320	4		
802.11ac-VHT20 802.11ax-HE20	2C	5500-5720	12		
802.11n-HT40/	2A	5270-5310	2		
802.11ac-VHT40 802.11ax-HE40	2C	5510-5710	6		
802.11ac-VHT80	2A	5290	1		
802.11ax-HE80	2C	5530-5690	3		
802.11ac-VHT160	2A	5250	1		
802.11ax-HE160	2C	5570	1		
Remark: 1. U-NII Band 2A and 2C (DFS Function, Slave/no In service monitor, no Ad-Hoc mode)					

3.5. EUT Specifications Assessed in Current Report

2. 802.11ax channel puncturing is not implemented.

Mode	Modulation	Data Rate (Mbps)
802.11a	OFDM (BPSK/QPSK/16QAM/64QAM)	Up to 54
802.11n-HT20	OFDM (DDSV/ODSV/160AM/640AM)	Up to 144.4
802.11n-HT40	OFDM (BPSK/QPSK/16QAM/64QAM)	Up to 300
802.11ac-VHT20		Up to 173.3
802.11ac-VHT40	OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)	Up to 400
802.11ac-VHT80		Up to 866.7
802.11ac-VHT160		Up to 1733.3
802.11ax-HE20		Up to 287
802.11ax-HE40		Up to 574
802.11ax-HE80		Up to 1201
802.11ax-HE160		Up to 2402

File Number: C1M2207001

Report Number: EM-F220533

3.6. Descriptions of Key Components

3.6.1. For the All Component Lists

Item	Supplier	Model / Type	Character
		Win 10	
System	Microsoft	Win 10 Pro	
		Win11	
Main Board	LG	Queen LP4X MAIN B/D PCB	Main Board (GM) Manufacturer: #1 Hannstar Board Tech(Jiang Yin) Corp.,Ltd. #2 Elec & Eltek Company (MCO) Limited.
WLAN SUB Board	LG	14Z90Q B2B SUB B/D	Manufacturer: #1 Hannstar Board Tech(Jiang Yin) Corp.,Ltd. #2 Elec & Eltek Company (MCO) Limited. #3 JiangSu HuaShen Electronic co.,ltd (HXF)
		i7-1260P	2.5GHz
		i7-1255U	2.5GHz
CPU		i5-1240P	2.1GHz
(Socket: BGA1744)	Intel	i5-1235U	2.1GHz
		i3-1220P	1.5GHz
		i3-1215U	1.5GHz
14" LCD Panel	LG Display	LP140WU1(SP)(F1)	Resolution: 1920*1200, 60Hz WQXGA IPS
	SK hynix		1TB
			512GB
Stamore (SSD)			256GB
Storage (SSD)			1TB
	Samsung		512GB
			256GB
			32GB LPDDR4x(On Board)
	Samsung		16GB LPDDR4x(On Board)
			8GB LPDDR4x(On Board)
Memory (RAM)			32GB LPDDR4x(On Board)
	SK Hynix		16GB LPDDR4x(On Board)
			8GB LPDDR4x(On Board)
Battery Pack	LG	LBZ722DM	DC7.76V, 72Wh Typ9279mAh
WLAN Combo Card	Intel	AX211D2W	WLAN and BT, 2x2 PCle M.2 1216 SD adapter card FCC ID: PD9AX211D2 IC: 1000M-AX211D2
WLAN Combo Antenna	LG (INPAQ)	WA-P-LELE-04-025	PCB, Mono-pole Type Main: Black, Aux: Gray

File Number: C1M2207001

Report Number: EM-F220533

Item	Supplier	Model / Type	Character				
V 1 1	TIC	KT0120B7					
Keyboard	LITE ON	SN8100					
	LITE-ON	SP8000(SG-A0620-00A)					
Touch Pad	ELAN	SD068D-26H0					
W L C	Chicony	CKFKH33-0	EBP63421711				
Web Camera	Luxvisions	0BF108N3	EBP63421709				
	SUZHOU MEC	80-5946-111	(White) 10/100Megabit Ethernet				
	ELECTRONICS	80-5946-101	(Black) 10/100 Megabit Ethernet				
	Type C to LAN: Shie	Type C to LAN: Shielded, Undetached, 0.12m					
	ARIN TECH CO.	GD-08MF-36-WH-LP10	(White) 10/100Megabit Ethernet				
LAN Gender (Type C to LAN)	LTD	GD-08MF-36-BK-LP11	(Black) 10/100 Megabit Ethernet				
	Type C to LAN: Shielded, Undetached, 0.12m						
	HUIZHOU	370-50713	(White) 10/100Megabit Ethernet				
	DEHONG TECHNOLOGY	370-50714	(Black) 10/100 Megabit Ethernet				
	Type C to LAN: Shielded, Undetached, 0.12m						
	LG (HONOR)	ADT-65DSU-D03-2	I/P: AC 100-240V, 1.6A, 50-60Hz O/P: DC 20V, 3.25A				
AC Adapter (65W)	DC Power Cord: Non-Shielded, Undetached, 1.5m AC Power Cord: Non-Shielded, Detached, 1.0m (2C) (For Other Countries) AC Power Cord: Non-Shielded, Detached, 1.55m (2C) (For US, Canada, Mexico)						

Remark: For more detailed features description, please refer to the manufacturer's specifications or the user manual.

3.6.2. The EUT collocates with following worst components, which are used to establish a basic configuration of system during test:

SKU (Mode)		1
Main Board	LG, Queen LP4X MAIN B/D PCB	V
SUB Board	LG, 14Z90Q B2B SUB B/D	V
CPU	Intel, i7-1260P	V
14" LCD Panel	LG Display, LP140WU1(SP)(F1)	V
Storage (SSD)	Samsung, 1TB	V
Storage (SSD)	Samsung, 256GB	V
Memory (RAM)	32GB	V
Battery Pack	LG, 72Wh	V
Keyboard	TIC, KT0120B7	V
Touch Pad	LITE-ON, SP8000(SG-A0620-00A)	V
Web Camera	Chicony, CKFKH33-0	V
WLAN Combo Card	Intel, AX211D2W	V
WLAN Combo Antenna	LG (INPAQ), WA-P-LELE-04-025	V
Type C #1 AC Adapter	LG (HONOR), ADT-65DSU-D03-2	V
Type C #2Link to LAN Gender	MEC	V

File Number: C1M2207001

Report Number: EM-F220533

3.7. Test Configuration

Item	Bandwidth	Test Channel
Channel Move Time& Channel Closing Transmission Time	160MHz	50
Non-Occupancy Period & Non-associated Test	160MHz	50

3.8. Tested Supporting System List

Item	Manufacturer	Model	Remark
AP Server	ASUS	RT-AX88U	FCC ID: MSQ-RTAXHP00 IC: 3568A- RTAXHP00

3.9. Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 491, Zhongfu Rd., Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website : www.audixtech.com Contact e-mail: attemc_report@audixtech.com
Accreditations	 The laboratory is accredited by following organizations under ISO/IEC 17025:2017 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724
Test Facilities	FCC OET Designation Number under APEC MRA by NCC is : TW1724(1) RF Test Room

3.10.Measurement Uncertainty

Test Item	Uncertainty
DFS Measurement	±0.5ms
Threshold	±0.33dB

File Number: C1M2207001

Report Number: EM-F220533

Page 14 of 28 Tel: +886 2 26099301 Fax: +886 2 26099303

4. MEASUREMENT EQUIPMENTLIST

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Vector Signal Generation	R&S	SMU200A	104893	2022. 06. 07	1 Year
2.	Spectrum Analyzer	R&S	FSV30	101181	2022. 07. 11	1 Year
3.	Atteuator (10dB) X2	Worken	WK0602-10	0120A02208 001S	N.C.R	N.C.R
4.	Atteuator (30dB) X2	Worken	WK0602-30	0120A02208 002S	N.C.R	N.C.R
5.	Digital Thermo-Hygro Meter	iMax	HTC-1	RF-03	2022. 04. 14	1 Year

File Number: C1M2207001

Report Number: EM-F220533

5. WORKING MODES AND REQUIREMENT TEST ITEM

	Operational Mode			
Requirement	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

5.2. Applicability of DFS Requirements during Normal Operation

	Operational Mode		
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices	Operational Mode			
Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link		
All other tests	Any single BW mode	Not required		

File Number: C1M2207001

Report Number: EM-F220533

6. DFS DETECTION THRESHOLOS AND RADAR TEST

WAVEFORMS

6.1. Interference Threshold Value, Master or Client Incorporating

In-Service Monitoring

Maximum Transmit Power	Value (See Notes 1 and 2)
\geq 200 milliwatt	-64dBm
< 200 milliwatt	-62dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

The radar Detection Threshold, lowest antenna gain is the parameter of interference radar DFS detection threshold.

6.2. Radar Test Waveform Minimum Step

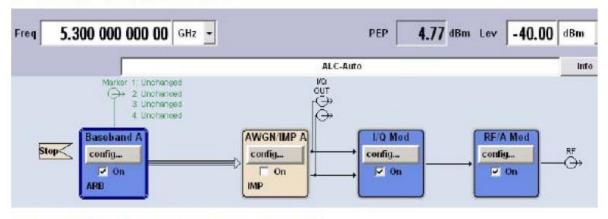
Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Report Number: EM-F220533

Page 17 of 28 Tel: +886 2 26099301 Fax: +886 2 26099303

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulse	Minimum Percentage of Successful Detection	Minimum number of Trials					
0	1	1428	18	See Note 1	See Note 1					
1A	1	15 unique PRI in KDB 905462 D02 Table 5a	$Roundup\left\{ \left(\frac{1}{360}\right) \times \left(\frac{19 \times 10^{6}}{PRI}\right) \right\}$	60%	15					
1B	1	15 unique PRI within 518-3066, Excluding 1A PRI		60%	15					
2	1-5	150-230	23-29	60%	30					
3	6-10	200-500	16-18	60%	30					
4	11-20	200-500	12-16	60%	30					
Aggregate	(Radar Types	1-4)		80%	120					
Note 1: Sh	Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel									

6.3. Short Pulse Radar Test Waveforms


te 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

Report Number: EM-F220533

FCC Radar Types (1~4) System Diagram

Used R&S SMU200A (Vector SG with two ARB)

B11: Base-band Generator with ARB (16M samples) and Digital Modulation

B13: Base-band Main Module

B106: frequency range (100 kHz to 6 GHz)

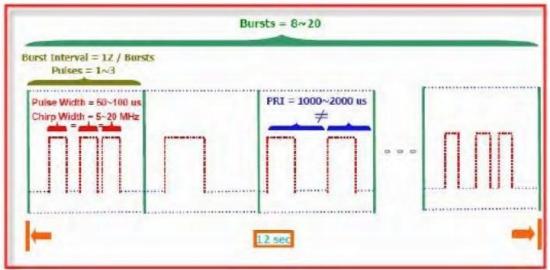
For selecting the waveform parameters from within the bounds of the signal type, system was random selection using uniform distribution.

6.4. Long Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulse Per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse radar test signal. If more 30 waveforms are used for the Long Pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms. Each waveform is defined as following:

- (1) The transmission period for the Long Pulse Radar test signal is 12 seconds.
- (2) There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst_Count.
- (3) Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- (4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the some pulse width. Pulses in different Bursts may have different pulse widths.

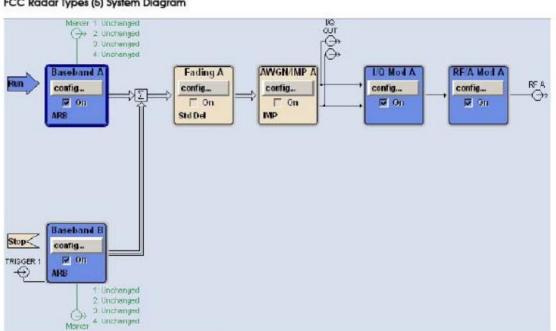

File Number: C1M2207001

Report Number: EM-F220533

- (5) Each pulse has a linear FM chirp between 5 and 20MHz, with the chirp width being randomly chosen. Each pulse within a Burst will have the same chirp width. Pulses in different Burst may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300MHz and a 20MHz chirped signal, the chirp starts at 5290MHz and ends at 5310MHz.
- (6) If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- (7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst_Count. Each interval is of length (12000000/Burst_Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12000000/Burst_Count)-(Total Burst length)+(One Random PRI interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

A representative example of a Long Pulse radar test waveform:

- (1) The total test signal length is 12 seconds.
- (2) 8 Bursts are randomly generated for the Burst_Count.
- (3) Burst 1 has 2 randomly generated pulses.
- (4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- (5) The PRI is randomly selected to be at 1213 microseconds.
- (6) Bursts 2 through 8 are generated using steps 3-5.
- (7) Each Burst is contained in even intervals of 1500000 microseconds. The starting location for Pulse 1. Burst 1 is randomly generated (1 to 1500000 minus the total Burst 1 length + 1 random PRI interval) at the 325001 microsecond step. Bursts 2 through 8 randomly fall in successive 1500000 microsecond intervals (i.e. Burst 2 falls in the 1500001-3000000 microsecond range).


File Number: C1M2207001

Report Number: EM-F220533

Audix Technology Corp. No. 491, Zhongfu Rd., Linkou Dist., New Taipei City244,Taiwan *Tel:* +886 2 26099301 *Fax:* +886 2 26099303

FCC Radar Types (5) System Diagram

Used R&S SMU200A (Vector SG with two ARB)

Path A/Path B Two B11: Base-band Generator with ARB (16M samples) and Digital Modulation

B13: Base-band Main Module

B106: frequency range (100 kHz to 6 GHz)

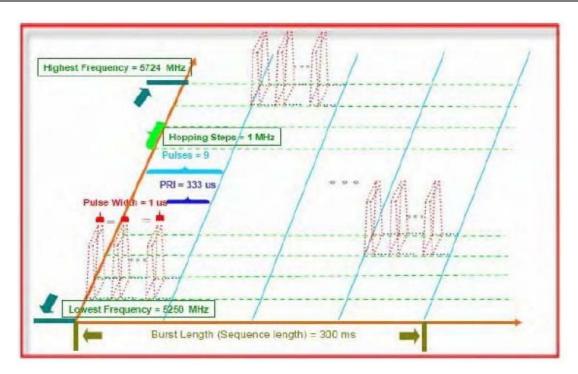
For selecting the waveform parameters from within the bounds of the signal type, system was random selection using uniform distribution.

6.5. Frequency Hopping Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses Per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies form 5250-5274MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of random frequency, the frequencies remaining within the group are always treated as equally likely.


File Number: C1M2207001

Report Number: EM-F220533

Page 21 of 28

Tel: +886 2 26099301 *Fax:* +886 2 26099303

FCC Radar Types (6) System Diagram

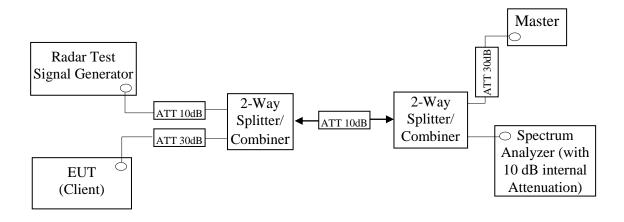
			ListMode	, ALC_Auto	
	T sun	chenged chenged chenged chenged	<u></u> \$		Inter Trag
Stor	Baseband A config V On ARE			VQ Mod config	RF/A Mod conflig I On
Edin	List Mode Data hop-174 Frequency / Hz	Power /		Liði. Morið Late	Ori
1		1302500	M	ode	Extern Step *
2	5 706 000 000.00	-58.90			and the second se
3	5 488 000 000.00	58.90		R	eset
	0 100 000 000100	-58.90	D	well Time	10.000 ms *
1	5 308 000 000.00				
<u> </u>	5 308 000 000.00 5 649 000 000.00	-58,90			
5			- 0	urrent Index	0
5 6	5 649 000 000.00	58.90		urrent Index Iank RF Output (Defaul	
5 6 7	5 649 000 000.00 5 435 000 000.00	-58.90 -58.90		lank RF Output (Defau	
5 6 7 8	5 649 000 000.00 5 435 000 000.00 5 559 000 000.00	-58.90 -58.90 -58.90			
5 6 7 8 9	5 649 000 000.00 5 435 000 000.00 5 559 000 000.00 5 598 000 000.00	.58.90 .58.90 .58.90 .58.90		lank RF Output (Defau	
5 6 7 8 9 10	5 649 000 000.00 5 435 000 000.00 5 559 000 000.00 5 508 000 000.00 5 651 000 000.00	.58.90 -58.90 -58.90 -58.90 -58.90	B	lank RF Output (Defaul Learn List Node Data List Mode Data	it ON) TOD
4 5 6 7 8 9 10 11 12	5 649 000 000.00 5 435 000 000.00 5 559 000 000.00 5 508 000 000.00 5 651 000 000.00 5 463 000 000.00	-58.90 -58.90 -58.90 -58.90 -58.90 -58.90	B	lank RF Output (Defau Learn List Mode Data	it ON) TOD

Used R&S SMU200A (Vector SG with two ARB)

B11: Base-band Generator with ARB (16M samples) and Digital Modulation

B13: Base-band Main Module

B106: frequency range (100 kHz to 6 GHz)


For selecting the waveform parameters from within the bounds of the signal type, system was random selection using uniform distribution.

File Number: C1M2207001

Report Number: EM-F220533

6.6. Conducted Calibration Setup

6.7. Radar Waveform Calibration Procedure

The measured frequency is 5250MHz. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The calibrated conducted detection threshold level is set to -62dBm. The tested level is lower than required level hence it provides margin to the limit.

6.8. Calibration Deviation

There is no deviation with the original standard.

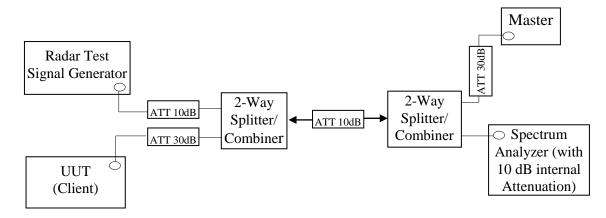
Report Number: EM-F220533

6.9. Radar Waveform Calibration Result

DFS detection threshold level and the burst of pulses on the Channel frequency

Test Date	•	2	2022/07/0)5	Temp./H	lum.	24°C/55%		
	160MHz								
Spectrum	Spectrum								
Ref Level -10.0		OULT 10	_	BW 3 MHz BW 3 MHz					
Att TRG: VID	U UB 💻	SWI IU	J ms 🔲 VI	BW 3 MH2					
●1Pk Clrw							Г	I	
-20 dBm									
-30 dBm									
-40 dBm				<u> </u>					
-50 dBm									
-50 ubm									
-60 dBm	52.000 dBn	n 		 					
-70 dBm		the day	Contra and the	in the little	distantion of the	dul famer in as	a subality and	- In a marked	na pranjeni koljela
իկվանությունը դերաներեր	and the product of the second s		-	a the standard of the standard	ala a tana di mbahangan da	in and the second	The section of the	hur and had a set	
-90 dBm									
-100 dBm				 			_		ļ
CF 5.25 GHz		L	I	3200)1 pts				10.0 ms/
					Wait for Tr	igger 🚺	•••••	05.0 14	17.2022 4:09:34 //
Date: 5.JUL.2	022 1/	4:09:34	Л						
Date: 0.001.2	VZZ I.	1.02.01	ī						

File Number: C1M2207001


Report Number: EM-F220533

7. TEST SETUP AND TEST RESULT

7.1. Test Setup

7.1.1. Test Setup Diagram

Following is the test setup for generated the radar waveforms and used to monitor U-NII device.

7.1.2. Test Setup Operation

System testing was performed with the designated MPEG test file that streams full motion video from the Access Point to Client in full motion video mode using the media player with the V2.61 Codec package. This file is used by IP and Frame based systems for loading the test channel during the in-service compliance testing of the U-NII device.

The waveform parameters from within the bounds of the signal type are selected randomly using uniform distribution.

A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move. It is also used to monitor EUT transmissions during the Channel Availability Check Time.

Report Number: EM-F220533

Page 25 of 28 Tel: +886 2 26099301 Fax: +886 2 26099303

7.1.3. Test Setup for Data Traffic Plot

Taat	Date
rest	Date

2022/07/05

Temp./Hum.

24°C/55%

Test Mode: 802.11ax, 160MHz								
TX 5250MHz	TX 5250MHz							
Spectrum	Spectrum							
Ref Level -40.50 dBm Offset -30.50 dB								
● Att 0 dB ● SWT 12 s ● VBW 3 MHz _SGL								
IPk Clrw								
-50 dBm								
-60 dBm								
-70 dBm								
	i i malen, koristikan Manadari Manadari							
-110 dBm								
-120 dBm								
-130 dBm								
CF 5.25 GHz 32001 pts	1.2 s/							
Ready 05.07. 19:2								
Date: 5.JUL.2022 19:24:09								

File Number: C1M2207001

Report Number: EM-F220533

7.2. Channel Move Time, Channel Closing Transmission Time,

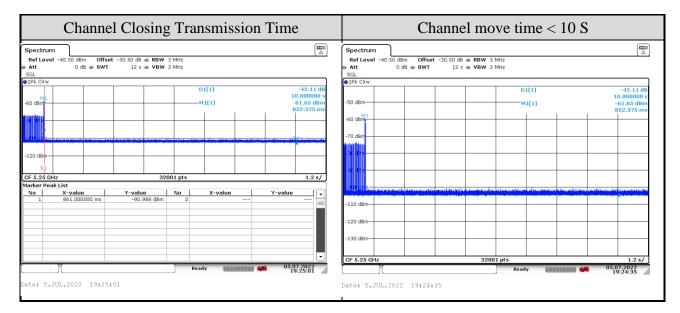
Non-Occupancy Period, Non-Associated Client Beacon Measurement

7.2.1. Limit

Parameter	Value		
Channel Move Time	10 seconds		
	See Note 1.		
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.		
Non-Occupancy Period	Non-Occupancy Period time is 30 minute during which a Channel will not be utilized after a Radar Waveform is detected on that Channel		
Non-Associated Client Beacon	The non-associated Client Beacon Test is during the 30 minutes observation time. The EUT should not make any transmissions in the DFS band after EUT power up.		

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- a. For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- b. For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- c. For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.
- Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.


7.2.2. Test Procedures

- When a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the operating channel of the U-NII device. A U-NII device operating as a Client Device will associate with the Master of channel. Stream the MPEG test file from the Master Device to the Client Device on the selected channel for entire period of the test. At time to the radar waveform generator sends a Burst of pulses for each of the radar types at Detection Threshold + 1dB.
- Observe the transmissions of the EUT at the end of the radar Burst on the Operating channel. Measure and record the transmissions from the EUT during the observation time [Channel Move Time, Channel closing Time]. One 12 Second plot need to be reported for short Pulse Radar Types 0.
- Measure the EUT for more than 30 minutes following the channel close/move time to verify that the EUT does not resume only transmissions on this channel.

Report Number: EM-F220533

7.2.3.	Test Result for	Channel	Closing '	Transmission	Time&	Channel Move	Time

Test Date	2022/07/05	Temp./Hum.	24°C/55%
Test Mode	202 11ox 160MHz	Frequency	TX 5250MHz
	802.11ax, 160MHz	Tested By	Sam Chang

Channel Closing Transmission Time Calculated		
Sweep Time(S) sec	12	
Sweep points (P)	32001	
Number of Sweep points in 10 sec (N)	1	
Channel Closing Time (C) ms	0.37	

Channel closing time is calculated from $C=N^*$ dwell; where dwell is the occupancy time per sweep point calculated by the formula: dwell=S/P. N is the number of sweep points indicating transmission after S1; where S1 is the radar signal detected

Report Number: EM-F220533

7.2.4. Te	est Result for	Non-Occupat	ncy Period, Non-	associated Test
-----------	----------------	-------------	------------------	-----------------

Test Date	2022/07/06	Temp./Hum.	23°C/56%
Test Mode	802.11ax, 160MHz	Frequency	TX 5250MHz
		Tested By	Sam Chang

Non-Occupancy Period			Non-associated Test		
Spectrum Ref Level -40.50 dBm Offset Att 0 dB SWT SGL IPF Cirw	-30.50 dB 👜 RBW 3 MHz 2000 s 🖶 VBW 3 MHz		Spectrum Ref Level -40.50 dBm Offset -30.50 dB RBW 3 MHz Att 0 dB SWT 2000 s VBW 3 MHz SGL Image: SGL Imag		
-50 dBm	D1[1] M1[1]	-37.60 dB 1800.0000 s -66.10 dBm 19.8125 s	-50 dBm		
-110 dBm			-110 dBm		
CF 5.25 GHz	32001 pts Ready	200.0 s/)	CF 5.25 GHz 32001 pts 200.0 s Ready 06.07.2022 13:16:38		

File Number: C1M2207001

Report Number: EM-F220533

APPENDIX A

Tel: +886 2 26099301 Fax: +886 2 26099303

APPDNDIX A

TEST PHOTOGRAPHS

(Model: 14ZB90Q)

File Number: C1M2207001

Report Number: EM-F220533