

FCC Radio Test Report

FCC ID: BEJNT-11TC50Q

Report No. : BTL-FCCP-2-2212T065 Equipment : Notebook Computer

Model Name : 11TC50Q Brand Name : LG

Applicant : LG Electronics USA

Address : 111 Sylvan Avenue, North Building, Englewood Cliffs, New Jersey 07632,

United States

Radio Function : Bluetooth Low Energy

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement

: ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2022/12/15

Date of Test : 2022/12/15 ~ 2023/1/18

Issued Date : 2023/2/4

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Eric Lee, Engineer

Approved by

Jerry Chuang, Supervisor

Testing Laboratory

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2212T065 Page 1 of 52 Report Version: R01

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2212T065 Page 2 of 52 Report Version: R01

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 8 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 8 2 **GENERAL INFORMATION** 9 **DESCRIPTION OF EUT** 9 2.1 2.2 **TEST MODES** 11 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 12 2.4 SUPPORT UNITS 13 3 AC POWER LINE CONDUCTED EMISSIONS TEST 14 3.1 LIMIT 14 **TEST PROCEDURE** 3.2 14 3.3 **DEVIATION FROM TEST STANDARD** 14 3.4 **TEST SETUP** 15 3.5 **TEST RESULT** 15 4 RADIATED EMISSIONS TEST 16 4.1 LIMIT 16 4.2 **TEST PROCEDURE** 17 4.3 **DEVIATION FROM TEST STANDARD** 17 4.4 **TEST SETUP** 17 **EUT OPERATING CONDITIONS** 4.5 19 TEST RESULT - BELOW 30 MHZ 19 4.6 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 19 4.8 TEST RESULT – ABOVE 1 GHZ 19 5 **BANDWIDTH TEST** 20 APPLIED PROCEDURES / LIMIT 5.1 20 5.2 **TEST PROCEDURE** 20 5.3 **DEVIATION FROM STANDARD** 20 **TEST SETUP** 5.4 20 5.5 **EUT OPERATION CONDITIONS** 20 5.6 **TEST RESULTS** 20 6 **OUTPUT POWER TEST** 21 6.1 APPLIED PROCEDURES / LIMIT 21 **TEST PROCEDURE** 6.2 21 6.3 **DEVIATION FROM STANDARD** 21 6.4 **TEST SETUP** 21 **EUT OPERATION CONDITIONS** 6.5 21 **TEST RESULTS** 21 6.6 POWER SPECTRAL DENSITY TEST 22 7 APPLIED PROCEDURES / LIMIT 7.1 22 7.2 **TEST PROCEDURE** 22 **DEVIATION FROM STANDARD** 7.3 22 7.4 **TEST SETUP** 22 7.5 **EUT OPERATION CONDITIONS** 22

7.6	TEST	RESULTS	22
8	ANTENN	IA CONDUCTED SPURIOUS EMISSION	23
8.1	APPLI	ED PROCEDURES / LIMIT	23
8.2	TEST	PROCEDURE	23
8.3	DEVIA	ATION FROM STANDARD	23
8.4	TEST	SETUP	23
8.5	EUT C	PERATION CONDITIONS	23
8.6	TEST	RESULTS	23
9	LIST OF	MEASURING EQUIPMENTS	24
10	EUT TES	ST PHOTO	26
11	EUT PHO	OTOS	26
ADDEND	137. 4	AO DOWED LINE CONDUCTED EMISSIONS	07
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	27
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	32
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	35
APPEND	IX D	BANDWIDTH	44
APPEND	IX E	OUTPUT POWER	46
APPEND	IX F	POWER SPECTRAL DENSITY TEST	48
APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSION	50

Project No.: 2212T065 Page 4 of 52 Report Version: R01

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-2-2212T065	R00	Original Report.	2023/2/3	Invalid
BTL-FCCP-2-2212T065	R01	Revise Typo.	2023/2/4	Valid

Project No.: 2212T065 Page 5 of 52 Report Version: R01

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Section Description		Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247(a)(2)	Bandwidth	APPENDIX D	Pass	
15.247(b)(3)	Output Power	APPENDIX E	Pass	
15.247(e)	Power Spectral Density	APPENDIX F	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX G	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2212T065 Page 6 of 52 Report Version: R01 □ C06

Report No.: BTL-FCCP-2-2212T065

1.1 TEST FACILITY

The test locations sta	ated below are unde	er the TAF Accreditatio	n Number 0659.		
The test location(s) u	used to collect the te	est data in this report a	re:		
No. 68-1, Ln. 169, S	ec. 2, Datong Rd., X	(izhi Dist., New Taipei	City 221, Taiwan		
(FCC DN: TW0659)		•	•		
⊠ C05	□ CB08	□ CB11	□ SR10	\boxtimes	SR11
No. 72, Ln. 169, Sec	c. 2, Datong Rd., Xiz	hi Dist., New Taipei Ci	ty 221, Taiwan		
(FCC DN: TW0659)	, ,	,			

□ CB22

1.2 MEASUREMENT UNCERTAINTY

□ CB21

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 $\mathbf{U}_{\text{cispr}}$ requirement.

A. AC power line conducted emissions test:

	Test Site	Method	Measurement Frequency Range	U (dB)		
	C05	CISPR	150 kHz ~ 30MHz	3.44		

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CDZT	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

d test .					
Test Item	U (dB)				
Occupied Bandwidth	0.5334				
Output power	0.3669				
Power Spectral Density	0.6591				
Conducted Spurious emissions	0.5416				
Conducted Band edges	0.5348				

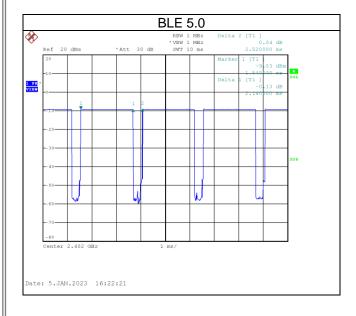
NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

Project No.: 2212T065 Page 7 of 52 Report Version: R01

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	21 °C, 65 %	AC 120V	Jay Tien
Radiated emissions below 1 GHz	Refer to data	AC 120V	Mark Wang
Radiated emissions above 1 GHz	Refer to data	AC 120V	Mark Wang
Bandwidth	23.7 °C, 52 %	AC 120V	Paul Shen
Output Power	23.7 °C, 52 %	AC 120V	Paul Shen
Power Spectral Density	23.7 °C, 52 %	AC 120V	Paul Shen
Antenna conducted Spurious Emission	23.7 °C, 52 %	AC 120V	Paul Shen


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software				
Modulation Mode	2402 MHz	2440 MHz	2480 MHz	Data Rate
BLE 5.0	-6	-7	-7	1 Mbps

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Mode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BLE 5.0	2.140	1	2.140	2.520	84.92%	0.71

Project No.: 2212T065 Page 8 of 52 Report Version: R01

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Carria ma a nat	Natahasik Computer
Equipment	Notebook Computer
Model Name	11TC50Q
Brand Name	LG
Model Difference	N/A
Power Source	DC voltage supplied from AC/DC Adapter.
Power Rating	20.0V===2.25A
Power Adapter Power Rating	I/P: 100-240V~1.3A 50-60Hz O/P:5.0V==-3.0A,9.0V==-3.0A,12.0V==-3.0A,15.0V==-3.0A,20.0V==-2.25A
Power Adapter	Lite-On / PA-1450-50XX(The "X" Can be 0-9, A-Z or blank)
Battery	(1) CosMX / QTA-CB1 (2) Simplo / SQU-2101
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Technology	GFSK
Transfer Rate	1 Mbps
Output Power Max.	4.92 dBm (0.0031 W)
Test Model	11TC50Q
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Project No.: 2212T065 Page 9 of 52 Report Version: R01

(3) Table for Filed Antenna:

Ant.	Brand	Part number	Туре	Frequency Range (MHz)	Gain (dBi)
		DQ6615GA100		2400-2500	3.03
Aux	WNC		PIFA	5150-5350	1.26
	VVINC			5470-5725	0.82
				5725-5850	0.05

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

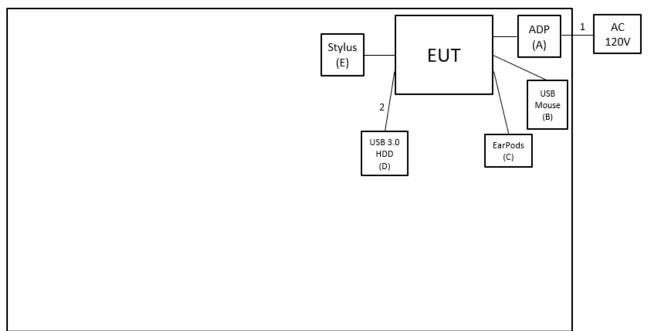
Project No.: 2212T065 Page 10 of 52 Report Version: R01

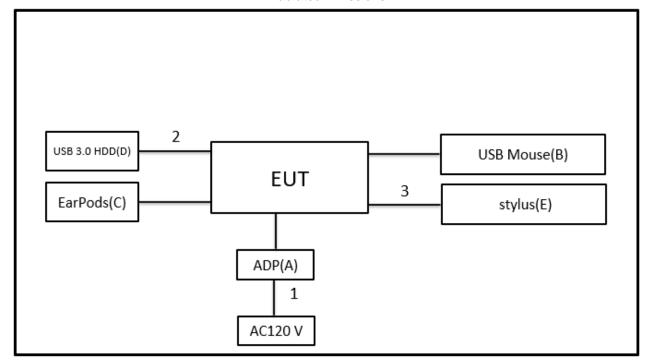
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	BLE 5.0 / 1 Mbps	39	-
Transmitter Radiated Emissions	BLE 5.0 / 1 Mbps	00/39	Bandedge
(above 1GHz)	BLE 5.0 / 1 Mbps	00/19/39	Harmonic
Bandwidth	BLE 5.0 / 1 Mbps	00/19/39	-
Output Power	BLE 5.0 / 1 Mbps	00/19/39	-
Power Spectral Density	BLE 5.0 / 1 Mbps	00/19/39	-
Antenna conducted Spurious Emission	BLE 5.0 / 1 Mbps	00/19/39	-

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.
- (3) The EUT supports both BLE 4.0 and 5.0, we will pick BLE 5.0 for testing.


Project No.: 2212T065 Page 11 of 52 Report Version: R01


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

ŀ	tem	Equipment	Brand	Model No.	Series No.	Remarks
	Α	ADP	LITEON	PA-1450-50	LECAG20022B25213 3405HS	Supplied by test requester
	В	USB Mouse	DELL	MOCZUL	CN-049TWY-PRC00- 79E-01HA	Furnished by test lab.
	С	EarPods	Apple	A1472	N/A	Furnished by test lab.
	D	USB 3.0 HDD	WD	WDBC3C0010BSL-0B	WX81A88ALJUC	Furnished by test lab.
	Е	Stylus	N/A	CNY 21F1 PV	N/A	Supplied by test requester

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	No	No	1.5m	Power Cable	Supplied by test requester
2	No	No	0.18m	Type C to Type C Cable	Furnished by test lab.
3	No	No	0.18m	USB-C to USB-A cable	Supplied by test requester

Project No.: 2212T065 Page 13 of 52 Report Version: R01

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBμV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

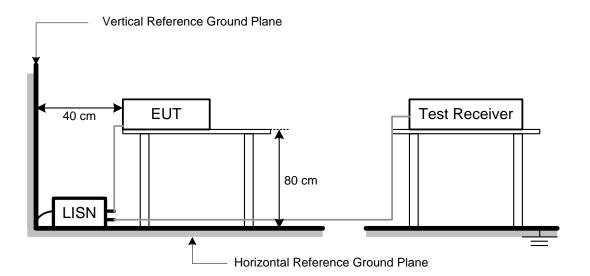
Receiver Parameter	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 KHz		

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2212T065 Page 14 of 52 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

	(-	,
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	П	33.55

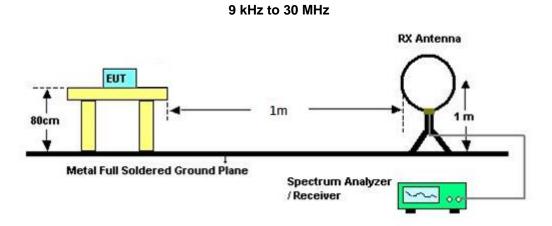
Measurement Value		Limit Value		Margin Level
33.55	-	43.50	II	-9.95

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

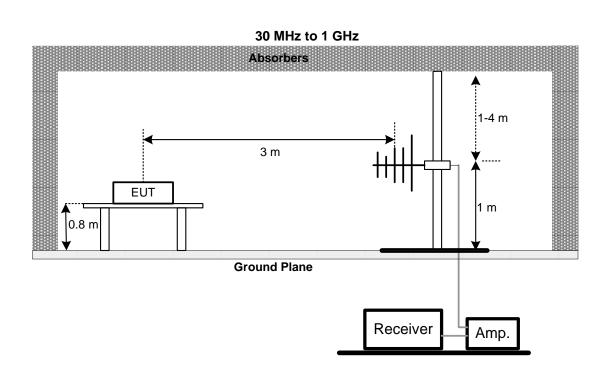
Mode	VBW(Hz)
BLE (1M)	470

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

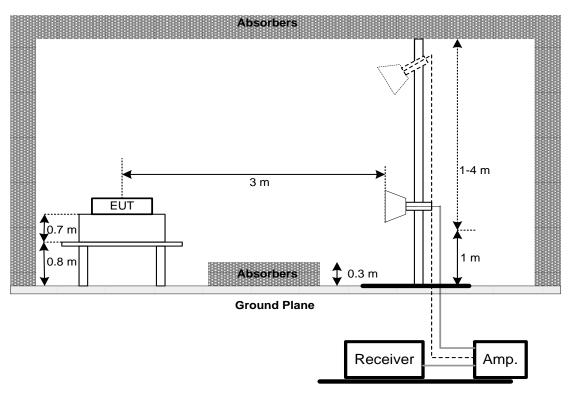
Project No.: 2212T065 Page 16 of 52 Report Version: R01


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.


4.4 TEST SETUP

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2212T065 Page 19 of 52 Report Version: R01

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz	2400-2483.5	PASS	
15.247 (4)(2)	Danawiatii	(6dB bandwidth)	2400 2400.0		

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

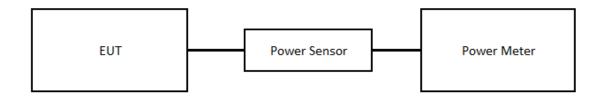
Please refer to the APPENDIX D.

Project No.: 2212T065 Page 20 of 52 Report Version: R01

6 OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit Frequency Range (MHz)		Result
15.247(b)(3)	15.247(b)(3) Maximum Output Power 1 watt or 30d		2400-2483.5	PASS


6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2212T065 Page 21 of 52 Report Version: R01

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2212T065 Page 22 of 52 Report Version: R01

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

EUT SPECTRUM ANALYZER

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

Project No.: 2212T065 Page 23 of 52 Report Version: R01

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2022/9/28	2023/9/27	
2	Test Cable	EMCI	EMCCFD300-BM -BMR-5000	220331	2022/3/31	2023/3/30	
3	EMI Test Receiver	R&S	ESR 7	101433	2022/11/16	2023/11/15	
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

	Radiated Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18	
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7	
3	Preamplifier	EMCI	EMC184045SE	980882	2022/2/9	2023/2/8	
4	Preamplifier	EMCI	EMC001340	980579	2022/9/30	2023/9/29	
5	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2022/3/15	2023/3/14	
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2022/3/15	2023/3/14	
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2022/3/15	2023/3/14	
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2022/3/7	2023/3/6	
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2022/9/19	2023/9/18	
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17	
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17	
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19	
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19	
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

	Bandwidth						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1	

	Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Power Meter	Anritsu	ML2495A	1128008	2022/6/1	2023/5/31	
2	Power Sensor	Anritsu	MA2411B	1126001	2022/6/1	2023/5/31	

Project No.: 2212T065 Page 24 of 52 Report Version: R01

Power Spectral Density						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1

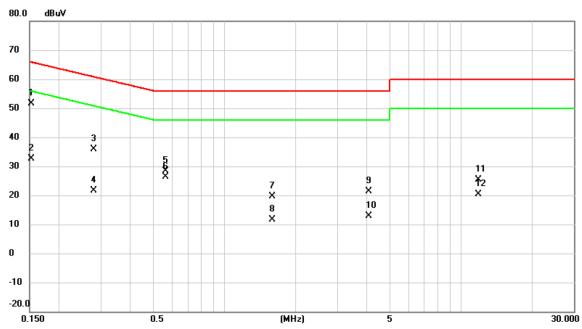
	Antenna conducted Spurious Emission							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1		

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2212T065 Page 25 of 52 Report Version: R01

10 EUT TEST PHOTO					
Please refer to document Appendix No.: TP-2212T065-FCCP-1 (APPENDIX-TEST PHOTOS).					
11 EUT PHOTOS					
Please refer to document Appendix No.: EP-2212T065-1 (APPENDIX-EUT PHOTOS).					

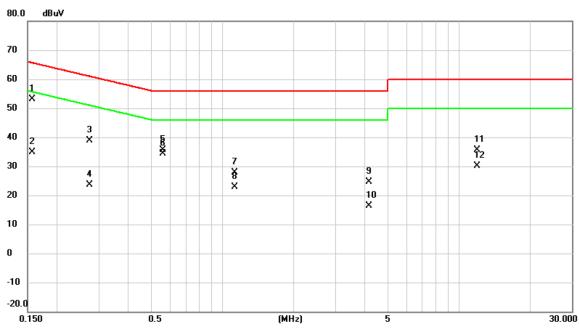
Project No.: 2212T065 Page 26 of 52 Report Version: R01



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2212T065 Page 27 of 52 Report Version: R01

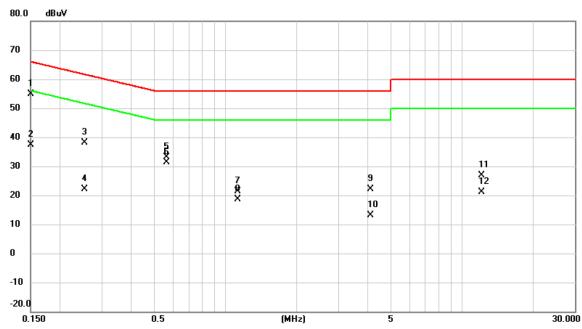
Test Mode	Normal	Tested Date	2023/1/11
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1522	42.09	9.64	51.73	65.88	-14.15	QP	
2		0.1522	22.98	9.64	32.62	55.88	-23.26	AVG	
3		0.2805	26.33	9.63	35.96	60.80	-24.84	QP	
4		0.2805	12.09	9.63	21.72	50.80	-29.08	AVG	
5		0.5640	18.78	9.63	28.41	56.00	-27.59	QP	
6		0.5640	16.81	9.63	26.44	46.00	-19.56	AVG	
7		1.5968	10.04	9.69	19.73	56.00	-36.27	QP	
8		1.5968	1.93	9.69	11.62	46.00	-34.38	AVG	
9		4.0650	11.69	9.75	21.44	56.00	-34.56	QP	
10		4.0650	3.01	9.75	12.76	46.00	-33.24	AVG	
11		11.8793	15.48	9.89	25.37	60.00	-34.63	QP	
12		11.8793	10.41	9.89	20.30	50.00	-29.70	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

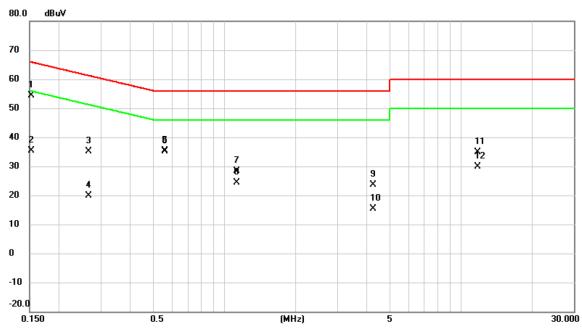
Test Mode	Normal	Tested Date	2023/1/11
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1573	43.36	9.65	53.01	65.61	-12.60	QP	
2		0.1573	25.14	9.65	34.79	55.61	-20.82	AVG	
3		0.2744	29.14	9.64	38.78	60.98	-22.20	QP	
4		0.2744	13.97	9.64	23.61	50.98	-27.37	AVG	
5		0.5617	25.99	9.64	35.63	56.00	-20.37	QP	
6	*	0.5617	24.73	9.64	34.37	46.00	-11.63	AVG	
7		1.1286	18.17	9.68	27.85	56.00	-28.15	QP	
8		1.1286	13.26	9.68	22.94	46.00	-23.06	AVG	
9		4.1685	14.91	9.76	24.67	56.00	-31.33	QP	
10		4.1685	6.64	9.76	16.40	46.00	-29.60	AVG	
11		11.9445	25.60	9.94	35.54	60.00	-24.46	QP	
12		11.9445	20.30	9.94	30.24	50.00	-19.76	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/1/11
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	45.22	9.64	54.86	66.00	-11.14	QP	
2		0.1500	27.66	9.64	37.30	56.00	-18.70	AVG	
3		0.2535	28.60	9.63	38.23	61.64	-23.41	QP	
4		0.2535	12.45	9.63	22.08	51.64	-29.56	AVG	
5		0.5640	23.38	9.63	33.01	56.00	-22.99	QP	
6		0.5640	21.77	9.63	31.40	46.00	-14.60	AVG	
7		1.1265	11.60	9.67	21.27	56.00	-34.73	QP	
8		1.1265	8.92	9.67	18.59	46.00	-27.41	AVG	
9		4.1168	12.30	9.75	22.05	56.00	-33.95	QP	
10		4.1168	3.33	9.75	13.08	46.00	-32.92	AVG	
11		12.1290	17.07	9.89	26.96	60.00	-33.04	QP	
12		12.1290	11.29	9.89	21.18	50.00	-28.82	AVG	

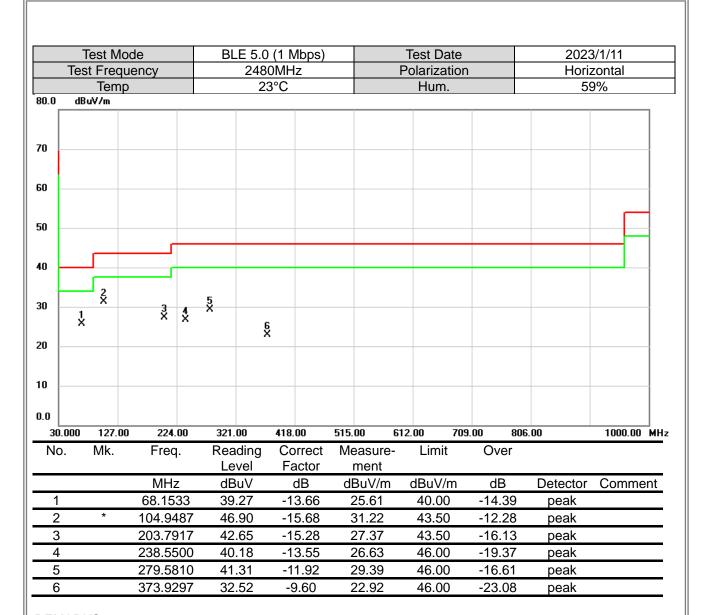
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/1/11
Test Frequency	-	Phase	Neutral

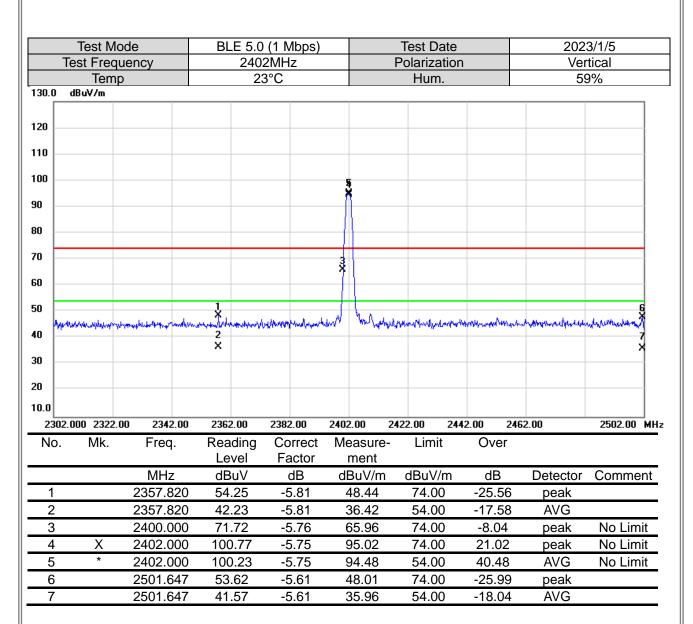
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1522	44.69	9.65	54.34	65.88	-11.54	QP	
2		0.1522	25.77	9.65	35.42	55.88	-20.46	AVG	
3		0.2670	25.60	9.64	35.24	61.21	-25.97	QP	
4		0.2670	10.30	9.64	19.94	51.21	-31.27	AVG	
5		0.5617	25.76	9.64	35.40	56.00	-20.60	QP	
6	*	0.5617	25.52	9.64	35.16	46.00	-10.84	AVG	
7		1.1242	18.66	9.68	28.34	56.00	-27.66	QP	
8		1.1242	14.61	9.68	24.29	46.00	-21.71	AVG	
9		4.2518	13.92	9.76	23.68	56.00	-32.32	QP	
10		4.2518	5.72	9.76	15.48	46.00	-30.52	AVG	
11		11.7488	24.86	9.94	34.80	60.00	-25.20	QP	
12		11.7488	19.83	9.94	29.77	50.00	-20.23	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2212T065 Page 32 of 52 Report Version: R01

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2212T065 Page 35 of 52 Report Version: R01

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

٦	Test Mo	de	BLE 5.	0 (1 Mbps)		Test Date		2023	3/1/5
Tes	t Frequ	ency		80MHz		Polarization	ı		tical
	Temp			23°C		Hum.		59	9%
130.0 dB	uV/m								
120									
110									
100					3				
90									
					Д				
80									
70									
					- ///				
60									i
50 _{1.}					general marketing				
40 2	والمأربان فالمورد والإسلام	mananahan	www.maraharaharaharaharaharaharaharaharahara	بالإسافاط ويعارف المراجع والمعارف المراجع والمعارف والمراجع والمراجع والمراجع والمراجع والمعارف المراجع والمعارف والمراجع والمراع	Mar Louis	ashirallarichtedusch	فعلمت بالمارك الإسلام بالمارك	phylocological production	and a supplementation of the second
** ×					×				
30									
20									
2200 00	0 2400.00	0 2420.00	0 2440.00	2460.00	2480.00 2	500.00 25	20.00 254	10.00	2580.00 MH
No.	Mk.	Freq.	Reading		Measure-	Limit	Over	0.00	2300.00 MII
140.	IVIIX.	r roq.	Level	Factor	ment	Liiiit	OVCI		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2380.900		-5.78	46.60	74.00	-27.40	peak	
2		2380.900		-5.78	35.85	54.00	-18.15	AVG	
3	Х	2480.000		-5.65	96.45	74.00	22.45	peak	No Limit
4	*	2480.000		-5.65	95.91	54.00	41.91	AVG	No Limit
5		2487.873	3 55.17	-5.63	49.54	74.00	-24.46	peak	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test N	/lode		BL	E 5.0	(1 Mbps)			T	est Da	te		202	3/1/7	
Т	est Fre	quency				2MHz			Po	larizat	ion			tical	
	Ten	np			2	3°C				Hum.			59	9%	
30.0	dBuV/m														1
20															
10															
00															
0 -															
0															l
															1
0															l
0 🗀															1
o		1 X													l
o -		2 X													l
0		••													
0.0															
	000 3550		00.00	8650		11200.00					18850.0		400.00	26500.00	М
No.	Mk.	Fre	q.	Rea Le		Correct Factor		easure- ment	•	Limit	(Over			
		MH	z	dB	uV	dB	dl	3uV/m	(dBuV/n	n	dB	Detector	Comme	nt
1		4804.	000	38.	16	0.65	3	38.81		74.00	-3	35.19	peak		
2	*	4804.	000	25.	91	0.65	2	26.56		54.00	-2	27.44	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test	Mo	de		BL	E 5.0						est Da					3/1/7	
Т	est Fr		ency				2MH	Z			Po	olariza					zontal	
		emp				2	3°C					Hum.				59	9%	
30.0	dBuV/n	n																_
20																		-
10																		-
00																		\parallel
0																		\parallel
0																		+
0																		7
0																		+
0 🗀																		
o			1 ×															\parallel
0			2 X															+
o _																		4
0.0																		
	.000 35				8650		1120			50.00		00.00		50.00	2140	0.00	26500.0	10 MI
No.	MI	k.	Fred	• 		ding vel		rrect ctor		easure ment	-	Limit	:	Ove	er 			
			MHz		dB	luV	(dΒ	dl	3uV/m		dBuV/ı	m	dB		Detector	Comm	ent
1			4804.0	000		.38	0	.65	4	10.03		74.00)	-33.9		peak		
2	*		4804.0	000	26	.02	0	.65	2	26.67		54.00)	-27.3	33	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_	Test Mo				(1 Mbps)		Test Date			3/1/7
10	est Frequ				0MHz		Polarizatio	n		tical
130.0	Temp)		23	3°C		Hum.		58	9%
130.0	ubuy/III									
120										
110										
100										
90										
80										
70										
60										
50										
40		1 ×								
30		2 X								
20		^								
10.0										
	000 3550.0			3650.00	11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	F	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.00		38.35	0.92	39.27	74.00	-34.73	peak	
2	*	4880.00		26.35	0.92	27.27	54.00	-26.73	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)				st Dat				3/1/7
Te	est Frequ			2440N					arizati	on			zontal
100.0	Temp)		23°(2				Hum.			59	9%
130.0	dBuV/m												
120													
110													
100													
90													
80													
70													
60													
50													
40		1 X											
30		2 X											
20		×											
10.0													
	000 3550.0	00 6100.0	0 8650.0	00 1	1200.00	1375	0.00	16300).00 1	18850.00	2140	0.00	26500.00 MH:
No.	Mk.	Freq.	Read Lev		Correct Factor		asure nent	-	Limit	Ove	er		
		MHz	dBu		dB		BuV/m	d	BuV/m	n dE	3	Detector	Comment
1		4880.00			0.92		1.09		74.00	-32.		peak	
2	*	4880.00	0 27.2	:9	0.92	2	8.21		54.00	-25.	79	AVG	

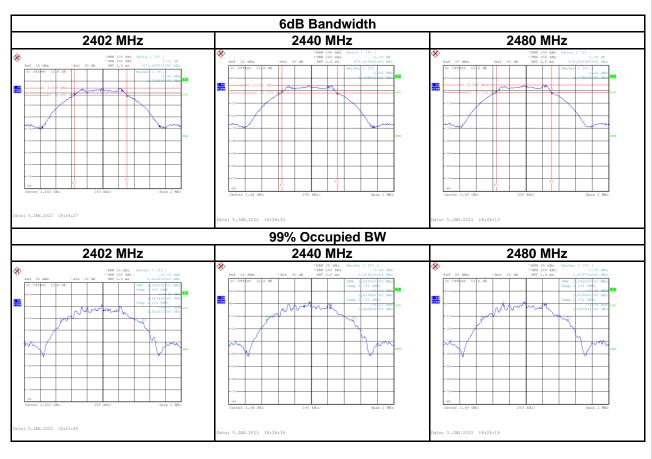
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode		BLE	5.0	(1 Mbps)			Tes	st Dat	e		202	3/1/7
Te	est Frequ	uency		2		OMHz			Pola	ırizati	on			tical
	Temp)			23	3°C			H	lum.			59	9%
130.0 d	BuV/m													
120														
110 -														
100														
30														
BO														
70 <u> </u>														
io														
50														
10 <u> </u>		1 X												
30		2 X												
20														
10.0														
	000 3550.0			8650.0		11200.00	1375		16300.		18850.00		00.00	26500.00 MH
No.	Mk.	Freq.	ı	Readi Leve		Correct Factor		asure- nent	. [₋imit	Ov	er		
		MHz		dBu\	/	dB	dE	BuV/m	dE	BuV/m	n dE	3	Detector	Comment
1		4960.0	00	38.5	8	1.18	3	9.76	7	4.00	-34.	24	peak	
2	*	4960.0	00	26.9	1	1.18	2	8.09	5	4.00	-25.	91	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			0 (1 Mbps)		Test Date			3/1/7
Т	est Frequ			80MHz		Polarization	1		zontal
130.0	Temp)]	23°C		Hum.		59	9%
130.0	aguv/m								
120									
110									
100									
90									
80									
70									
60									
50									
40		1 ×							
30		2 X							
20									
10.0									
	000 3550.0			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000		1.18	40.38	74.00	-33.62	peak	
2	*	4960.000		1.18	29.21	54.00	-24.79	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


3 T L		Report No.: BTL-FCCP-2-2212T06	85
		Report No.: BTL-PCCP-2-2212100	<u> </u>
	APPENDIX D	BANDWIDTH	

Project No.: 2212T065 Page 44 of 52 Report Version: R01

Test Mode: BLE 5.0

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2402	0.67	1.05	500	Pass
2440	0.67	1.05	500	Pass
2480	0.68	1.04	500	Pass

APPENDIX E OUTPUT POWER

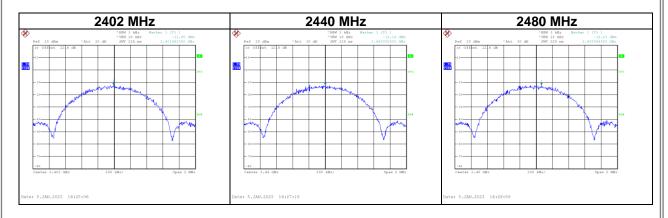
Project No.: 2212T065 Page 46 of 52 Report Version: R01

Report No.: BTL-FCCP-2-2212T065

Test Mode :	BLE 5.0	Tested Date	2023/1/5
-------------	---------	-------------	----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	4.68	0.0029	30.00	1.0000	Pass
2440	4.73	0.0030	30.00	1.0000	Pass
2480	4.92	0.0031	30.00	1.0000	Pass

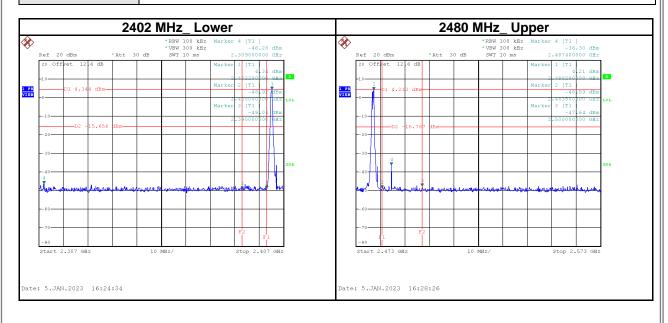
Project No.: 2212T065 Page 47 of 52 Report Version: R01


APPENDIX F POWER SPECTRAL DENSITY TEST

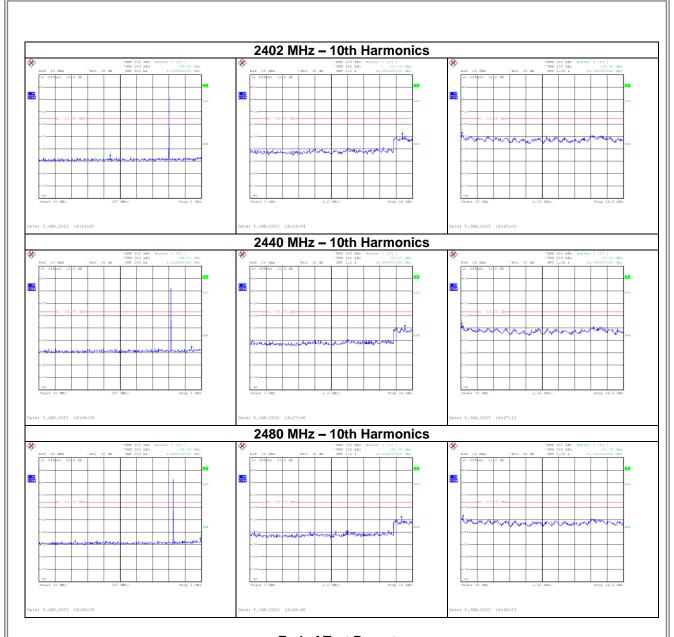
Project No.: 2212T065 Page 48 of 52 Report Version: R01

Test Mode : BLE 5.0

Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-11.90	8	Pass
2440	-12.14	8	Pass
2480	-12.21	8	Pass



APPENDIX G	ANTENNA CONDUCTED SPURIOUS EMISSION


Project No.: 2212T065 Page 50 of 52 Report Version: R01

Test Mode: BLE 5.0

End of Test Report