

FCC Radio Test Report

FCC ID: BEJNT-11TC50Q

: BTL-FCCP-1-2212T065 Report No. Equipment : Notebook Computer

Model Name : 11TC50Q **Brand Name** : LG

: LG Electronics USA Applicant

: 111 Sylvan Avenue, North Building, Englewood Cliffs, New Jersey 07632, Address

United States

Radio Function : Bluetooth EDR

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247) : ANSI C63.10-2013

Measurement

Procedure(s)

Date of Receipt

: 2022/12/15

Date of Test : 2022/12/15 ~ 2023/1/18

Issued Date : 2023/2/4

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Eric Lee, Engineer

Approved by

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2212T065 Page 2 of 72 Report Version: R01

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 8 1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 9 2 **GENERAL INFORMATION** 10 **DESCRIPTION OF EUT** 2.1 10 2.2 **TEST MODES** 12 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 13 2.4 SUPPORT UNITS 14 3 AC POWER LINE CONDUCTED EMISSIONS TEST 15 3.1 LIMIT 15 **TEST PROCEDURE** 3.2 15 3.3 **DEVIATION FROM TEST STANDARD** 15 3.4 **TEST SETUP** 16 3.5 **TEST RESULT** 16 4 RADIATED EMISSIONS TEST 17 4.1 LIMIT 17 4.2 **TEST PROCEDURE** 18 4.3 **DEVIATION FROM TEST STANDARD** 18 4.4 **TEST SETUP** 18 **EUT OPERATING CONDITIONS** 4.5 19 4.6 TEST RESULT - BELOW 30 MHZ 20 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 20 4.8 TEST RESULT – ABOVE 1 GHZ 20 5 NUMBER OF HOPPING CHANNEL 21 APPLIED PROCEDURES 5.1 21 5.2 **TEST PROCEDURE** 21 5.3 **DEVIATION FROM STANDARD** 21 **TEST SETUP** 5.4 21 5.5 **EUT OPERATION CONDITIONS** 21 5.6 **TEST RESULTS** 21 AVERAGE TIME OF OCCUPANCY 6 22 6.1 APPLIED PROCEDURES / LIMIT 22 **TEST PROCEDURE** 6.2 22 **DEVIATION FROM STANDARD** 6.3 22 6.4 **TEST SETUP** 22 **EUT OPERATION CONDITIONS** 6.5 22 **TEST RESULTS** 22 6.6 HOPPING CHANNEL SEPARATION MEASUREMENT 23 7 APPLIED PROCEDURES / LIMIT 7.1 23 7.2 **TEST PROCEDURE** 23 **DEVIATION FROM STANDARD** 7.3 23 7.4 **TEST SETUP** 23 7.5 **TEST RESULTS** 23

8	BANDWI	DTH TEST	24
8.1	APPLI	ED PROCEDURES	24
8.2	TEST	PROCEDURE	24
8.3	DEVIA	ATION FROM STANDARD	24
8.4	TEST	SETUP	24
8.5	EUT C	PERATION CONDITIONS	24
8.6	TEST	RESULTS	24
9	OUTPUT	POWER TEST	25
9.1	APPLI	ED PROCEDURES / LIMIT	25
9.2	TEST	PROCEDURE	25
9.3	DEVIA	ATION FROM STANDARD	25
9.4	TEST	SETUP	25
9.5	EUT C	PERATION CONDITIONS	25
9.6	TEST	RESULTS	25
10	ANTENN	IA CONDUCTED SPURIOUS EMISSION	26
10.1	APPLI	ED PROCEDURES / LIMIT	26
10.2	TEST	PROCEDURE	26
10.3	DEVIA	ATION FROM STANDARD	26
10.4	TEST	SETUP	26
10.5	EUT C	PERATION CONDITIONS	26
10.6	TEST	RESULTS	26
11	LIST OF	MEASURING EQUIPMENTS	27
12		ST PHOTO	29
13	EUT PHO	DTOS	29
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	30
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	35
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	38
APPEND	IX D	NUMBER OF HOPPING CHANNEL	55
APPEND	IX E	AVERAGE TIME OF OCCUPANCY	57
APPEND	IX F	HOPPING CHANNEL SEPARATION MEASUREMENT	60
APPEND	IX G	BANDWIDTH	63
APPEND	IX H	OUTPUT POWER	66
APPEND	IX I	ANTENNA CONDUCTED SPURIOUS EMISSION	68

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2212T065	R00	Original Report.	2023/2/3	Invalid
BTL-FCCP-1-2212T065	R01	Revise Typo.	2023/2/4	Valid

Project No.: 2212T065 Page 5 of 72 Report Version: R01

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX D	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX E	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX F	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX G	Pass	
15.247 (b)(1)	Output Power	APPENDIX H	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2212T065 Page 6 of 72 Report Version: R01

1.1 TEST FACILITY

The test locations s	tated be	low are und	der the TAF	- Accreditati	ion Numbe	r 0659.		
The test location(s)	used to	collect the	test data ir	n this report	are:			
No. 68-1, Ln. 169, S	Sec. 2, D	atong Rd.,	Xizhi Dist.	, New Taipe	ei City 221,	Taiwan		
(FCC DN: TW0659)								
		CB08		CB11		SR10	\boxtimes	SR11
No. 72, Ln. 169, Se	c. 2, Dat	ong Rd., X	izhi Dist., N	New Taipei (City 221, Ta	aiwan		
(FCC DN: TW0659)		_						
□ C06	\boxtimes	CB21		CB22				

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}$ %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test:

Thiodichio toot i						
Test Site	Measurement Frequency Range	U (dB)				
	0.03 GHz ~ 0.2 GHz	4.17				
	0.2 GHz ~ 1 GHz	4.72				
CB21	1 GHz ~ 6 GHz	5.21				
CBZ1	6 GHz ~ 18 GHz	5.51				
	18 GHz ~ 26 GHz	3.69				
	26 GHz ~ 40 GHz	4.23				

C. Conducted test:

teot :					
Test Item	U (dB)				
Occupied Bandwidth	0.5338				
Output power	0.3659				
Conducted Spurious emissions	0.5416				
Conducted Band edges	0.5348				
Dwell time	0.6606				
Channel separation	0.6606				
Channel numbers	0.6606				

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

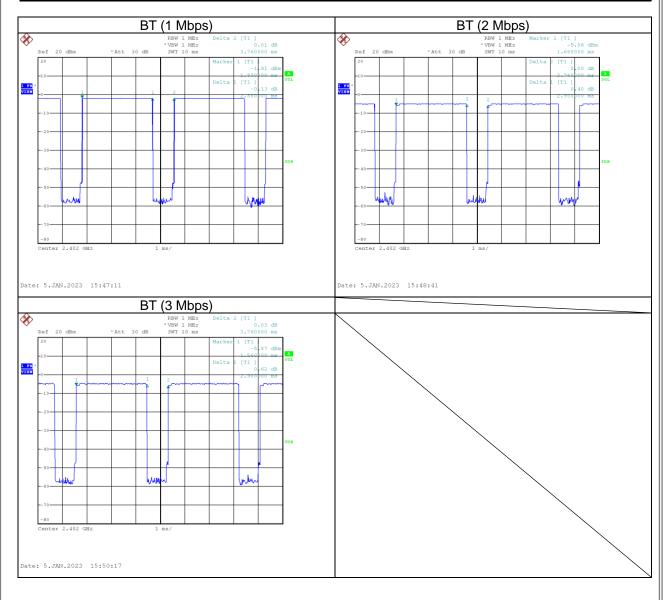
Project No.: 2212T065 Page 7 of 72 Report Version: R01

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	21 °C, 65 %	AC 120V	Jay Tien
Radiated emissions below 1 GHz	Refer to data	AC 120V	Mark Wang
Radiated emissions above 1 GHz	Refer to data	AC 120V	Mark Wang
Number of Hopping Frequency	23.7 °C, 52 %	AC 120V	Paul Shen
Average Time of Occupancy	23.7 °C, 52 %	AC 120V	Paul Shen
Hopping Channel Separation	23.7 °C, 52 %	AC 120V	Paul Shen
Bandwidth	23.7 °C, 52 %	AC 120V	Paul Shen
Output Power	23.7 °C, 52 %	AC 120V	Paul Shen
Antenna conducted Spurious Emission	23.7 °C, 52 %	AC 120V	Paul Shen

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	DRTU_00234_22_100.0					
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate		
GFSK	10	10	8	1 Mbps		
π/4-DQPSK	5	5	5	2 Mbps		
8DPSK	5	5	5	3 Mbps		


Project No.: 2212T065 Page 8 of 72 Report Version: R01

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Wode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.880	1	2.880	3.760	76.60%	1.16
BT (2 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (3 Mbps)	2.900	1	2.900	3.760	77.13%	1.13

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Notebook Computer
Model Name	11TC50Q
Brand Name	LG
Model Difference	N/A
Power Source	DC voltage supplied from AC/DC Adapter.
Power Rating	20.0V2.25A
Power Adapter Power Rating	I/P: 100-240V~1.3A 50-60Hz
Fower Adapter Fower Rating	O/P:5.0V==3.0A,9.0V==3.0A,12.0V==3.0A,15.0V==3.0A,20.0V==2.25A
Power Adapter	Lite-On / PA-1450-50XX(The "X" Can be 0-9, A-Z or blank)
Battery	(1) CosMX / QTA-CB1
Dattery	(2) Simplo / SQU-2101
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps
	1 Mbps: 10.02 dBm (0.0100 W)
Output Power Max.	2 Mbps: 7.47 dBm (0.0056 W)
	3 Mbps: 7.65 dBm (0.0058 W)
Test Model	11TC50Q
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

Project No.: 2212T065 Page 10 of 72 Report Version: R01

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

Ant.	Brand	Part number	Туре	Frequency Range (MHz)	Gain (dBi)
		DQ6615GA100		2400-2500	3.03
Ausz	WNC		PIFA	5150-5350	1.26
Aux W	VVINC		FIFA	5470-5725	0.82
				5725-5850	0.05

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

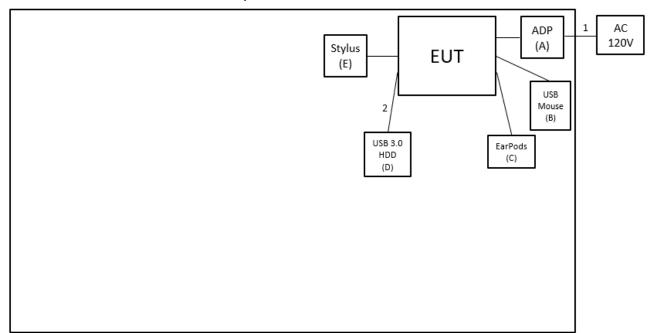
Project No.: 2212T065 Page 11 of 72 Report Version: R01

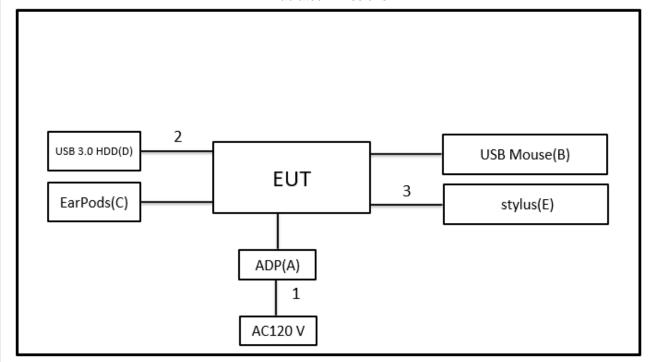
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	78	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.


Project No.: 2212T065 Page 12 of 72 Report Version: R01


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	LITEON	PA-1450-50	LECAG20022B25213 3405HS	Supplied by test requester
В	USB Mouse	DELL	MOCZUL	CN-049TWY-PRC00- 79E-01HA	Furnished by test lab.
С	EarPods	Apple	A1472	N/A	Furnished by test lab.
D	USB 3.0 HDD	WD	WDBC3C0010BSL-0B	WX81A88ALJUC	Furnished by test lab.
Е	Stylus	N/A	CNY 21F1 PV	N/A	Supplied by test requester

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	No	No	1.5m	Power Cable	Supplied by test requester
2	No	No	0.18m	Type C to Type C Cable	Furnished by test lab.
3	No	No	0.18m	USB-C to USB-A cable	Supplied by test requester

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

(3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

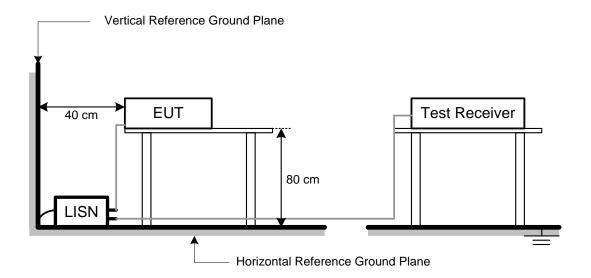
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2212T065 Page 15 of 72 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	=	24.08

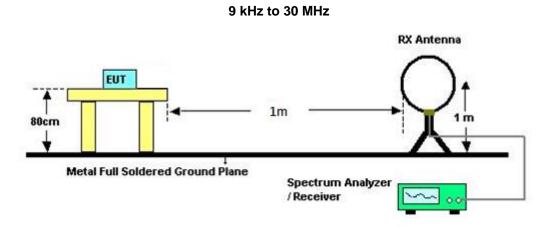
Measurement Value		Limit Value		Margin Level
24.08	-	40	=	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Mode	VBW(Hz)
BT (1M)	360
BT (2M)	360
BT (3M)	360

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2212T065 Page 17 of 72 Report Version: R01

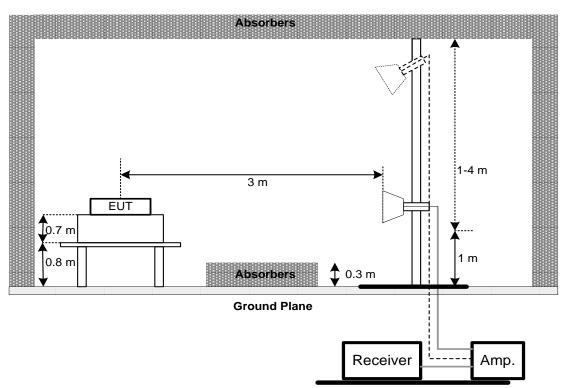

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP


Absorbers

3 m

Ground Plane

Receiver Amp.

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2212T065 Page 20 of 72 Report Version: R01

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2212T065 Page 21 of 72 Report Version: R01

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse.

A Period Time = (channel number)*0.4

For Normal Mode (79 Channel):

DH1 Time Solt: Reading * (1600/2)*31.6/(channel number)

DH3 Time Solt: Reading * (1600/2)*31.6/(channel number)

DH5 Time Solt: Reading * (1600/2)*31.6/(channel number)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (1600/2)*8/(channel number)

DH3 Time Solt: Reading * (1600/4)*8/(channel number)

DH5 Time Solt: Reading * (1600/6)*8/(channel number)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

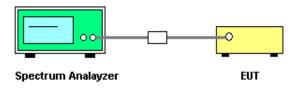
Project No.: 2212T065 Page 22 of 72 Report Version: R01

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2212T065 Page 23 of 72 Report Version: R01

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)	
15.247(a)(2)	Bandwidth	2400-2483.5	

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)	
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

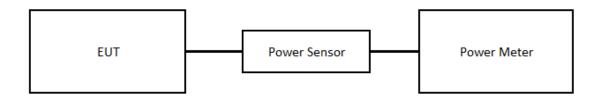
Please refer to the APPENDIX G.

Project No.: 2212T065 Page 24 of 72 Report Version: R01

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

EUT SPECTRUM ANALYZER

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

Project No.: 2212T065 Page 26 of 72 Report Version: R01

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	TWO-LINE V-NETWORK	R&S	ENV216	101521	2022/9/28	2023/9/27					
2	Test Cable	EMCI	EMCCFD300-BM -BMR-5000	220331	2022/3/31	2023/3/30					
3	EMI Test Receiver	R&S	ESR 7	101433	2022/11/16	2023/11/15					
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A					

	Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18			
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7			
3	Preamplifier	EMCI	EMC184045SE	980882	2022/2/9	2023/2/8			
4	Preamplifier	EMCI	EMC001340	980579	2022/9/30	2023/9/29			
5	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2022/3/15	2023/3/14			
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2022/3/15	2023/3/14			
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2022/3/15	2023/3/14			
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2022/3/7	2023/3/6			
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2022/9/19	2023/9/18			
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17			
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17			
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19			
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19			
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

	Number of Hopping Frequency								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1			

	Average Time of Occupancy								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1			

	Hopping Channel Separation									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1				

	Bandwidth								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1			

	Output Power								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Power Meter	Anritsu	ML2495A	1128008	2022/6/1	2023/5/31			
2	Power Sensor	Anritsu	MA2411B	1126001	2022/6/1	2023/5/31			

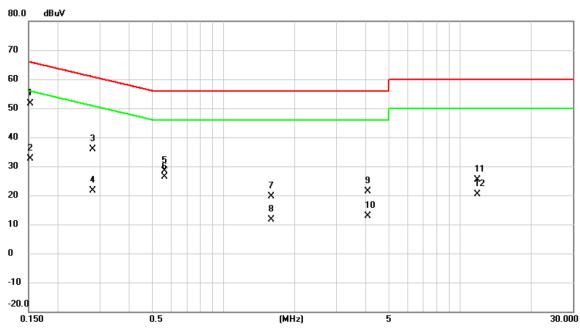
	Antenna conducted Spurious Emission									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1				

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2212T065 Page 28 of 72 Report Version: R01

12 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2212T065-FCCP-1 (APPENDIX-TEST PHOTOS).
13 EUT PHOTOS
Please refer to document Appendix No.: EP-2212T065-1 (APPENDIX-EUT PHOTOS).
Ticase refer to document Appendix 146 El 22121000 i (Al 1 ENDIX EU 1 110100).

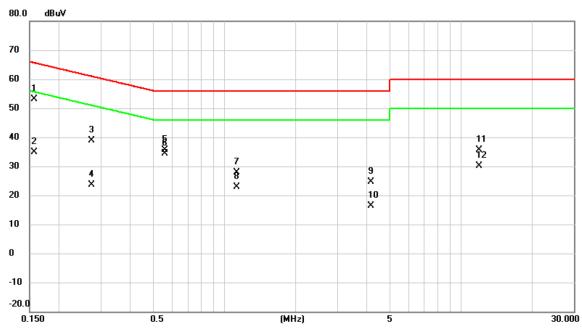
Project No.: 2212T065 Page 29 of 72 Report Version: R01



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2212T065 Page 30 of 72 Report Version: R01

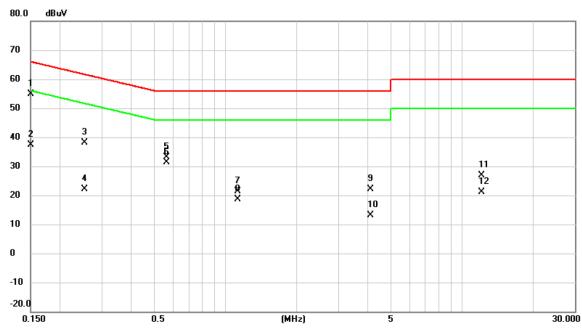
Test Mode	Normal	Tested Date	2023/1/11
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1522	42.09	9.64	51.73	65.88	-14.15	QP	
2		0.1522	22.98	9.64	32.62	55.88	-23.26	AVG	
3		0.2805	26.33	9.63	35.96	60.80	-24.84	QP	
4		0.2805	12.09	9.63	21.72	50.80	-29.08	AVG	
5		0.5640	18.78	9.63	28.41	56.00	-27.59	QP	
6		0.5640	16.81	9.63	26.44	46.00	-19.56	AVG	
7		1.5968	10.04	9.69	19.73	56.00	-36.27	QP	
8		1.5968	1.93	9.69	11.62	46.00	-34.38	AVG	
9		4.0650	11.69	9.75	21.44	56.00	-34.56	QP	
10		4.0650	3.01	9.75	12.76	46.00	-33.24	AVG	
11		11.8793	15.48	9.89	25.37	60.00	-34.63	QP	
12		11.8793	10.41	9.89	20.30	50.00	-29.70	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

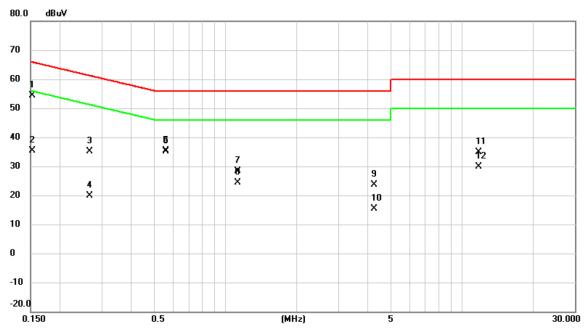
Test Mode	Normal	Tested Date	2023/1/11
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1573	43.36	9.65	53.01	65.61	-12.60	QP	
2		0.1573	25.14	9.65	34.79	55.61	-20.82	AVG	
3		0.2744	29.14	9.64	38.78	60.98	-22.20	QP	
4		0.2744	13.97	9.64	23.61	50.98	-27.37	AVG	
5		0.5617	25.99	9.64	35.63	56.00	-20.37	QP	
6	*	0.5617	24.73	9.64	34.37	46.00	-11.63	AVG	
7		1.1286	18.17	9.68	27.85	56.00	-28.15	QP	
8		1.1286	13.26	9.68	22.94	46.00	-23.06	AVG	
9		4.1685	14.91	9.76	24.67	56.00	-31.33	QP	
10		4.1685	6.64	9.76	16.40	46.00	-29.60	AVG	
11		11.9445	25.60	9.94	35.54	60.00	-24.46	QP	
12		11.9445	20.30	9.94	30.24	50.00	-19.76	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/1/11
Test Frequency	-	Phase	Line

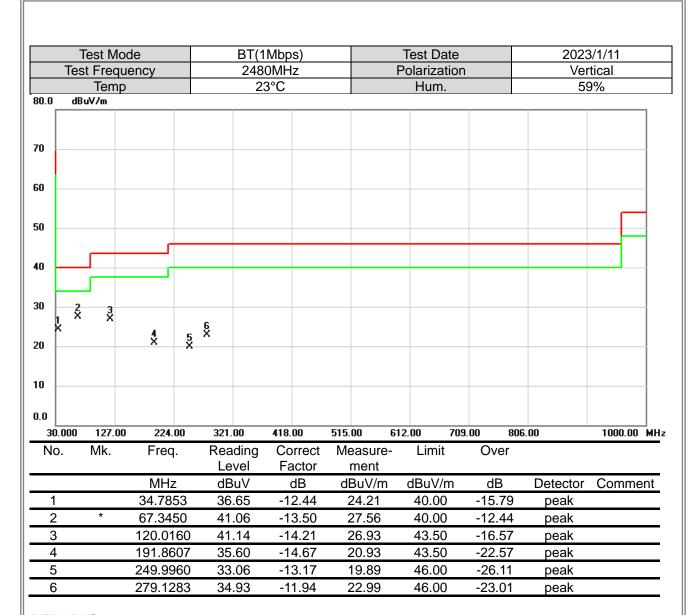


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	45.22	9.64	54.86	66.00	-11.14	QP	
2		0.1500	27.66	9.64	37.30	56.00	-18.70	AVG	
3		0.2535	28.60	9.63	38.23	61.64	-23.41	QP	
4		0.2535	12.45	9.63	22.08	51.64	-29.56	AVG	
5		0.5640	23.38	9.63	33.01	56.00	-22.99	QP	
6		0.5640	21.77	9.63	31.40	46.00	-14.60	AVG	
7		1.1265	11.60	9.67	21.27	56.00	-34.73	QP	
8		1.1265	8.92	9.67	18.59	46.00	-27.41	AVG	
9		4.1168	12.30	9.75	22.05	56.00	-33.95	QP	
10		4.1168	3.33	9.75	13.08	46.00	-32.92	AVG	
11		12.1290	17.07	9.89	26.96	60.00	-33.04	QP	
12		12.1290	11.29	9.89	21.18	50.00	-28.82	AVG	

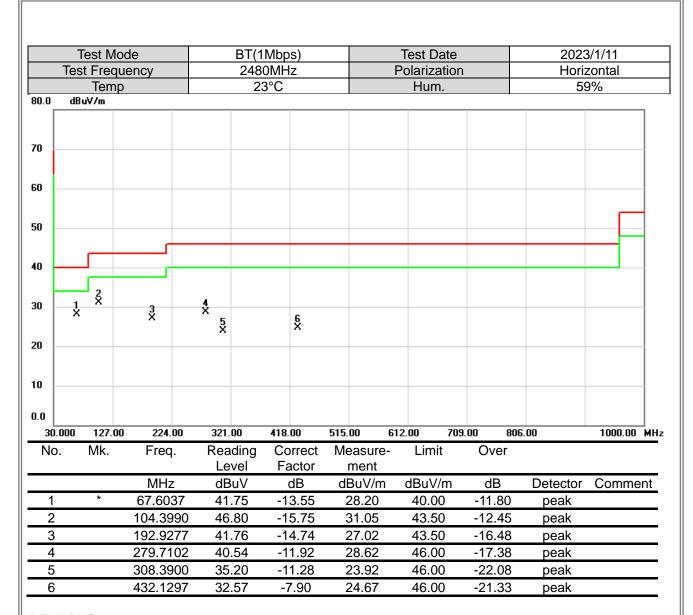
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2023/1/11
Test Frequenc	y -	Phase	Neutral

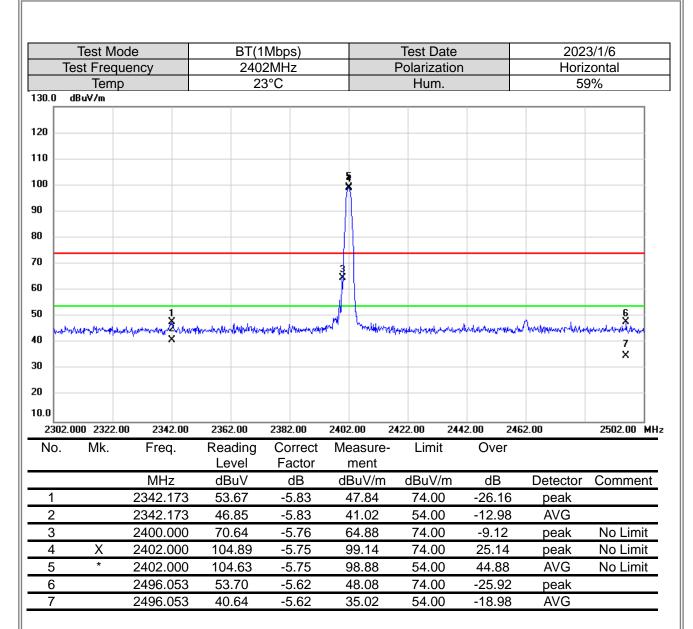
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1522	44.69	9.65	54.34	65.88	-11.54	QP	
2		0.1522	25.77	9.65	35.42	55.88	-20.46	AVG	
3		0.2670	25.60	9.64	35.24	61.21	-25.97	QP	
4		0.2670	10.30	9.64	19.94	51.21	-31.27	AVG	
5		0.5617	25.76	9.64	35.40	56.00	-20.60	QP	
6	*	0.5617	25.52	9.64	35.16	46.00	-10.84	AVG	
7		1.1242	18.66	9.68	28.34	56.00	-27.66	QP	
8		1.1242	14.61	9.68	24.29	46.00	-21.71	AVG	
9		4.2518	13.92	9.76	23.68	56.00	-32.32	QP	
10		4.2518	5.72	9.76	15.48	46.00	-30.52	AVG	
11		11.7488	24.86	9.94	34.80	60.00	-25.20	QP	
12		11.7488	19.83	9.94	29.77	50.00	-20.23	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2212T065 Page 35 of 72 Report Version: R01

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2212T065 Page 38 of 72 Report Version: R01

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

•	Test Mo	de		1Mbps)		Test Date			3/1/6
Tes	st Frequ	ency		30MHz		Polarization	ı	Hori	zontal
	Temp		2	23°C		Hum.		59	9%
130.0 dE	BuV/m								
120									
20									
10									
00									
-									
0									
o									
。									
u									
0									
0					5				
- Market	handrand	was reflected with	m proprieta de la companya della companya de la companya della com	ment and abaneous de	which the	and popularion which	distribution of the party	housement	way and water where
0 3	2				×				
o	`								
o 🗀									
2200.00	0 2400.0	0 2420.00	2440.00	2460.00	2480.00 2	2500.00 25	20.00 25 4	0.00	2580.00 MF
No.	Mk.	Freq.	Reading	Correct	Measure-		Over	0.00	2300.00 MI
110.	IVIIX.	1 104.	Level	Factor	ment		0 701		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2388.780	53.82	-5.77	48.05	74.00	-25.95	peak	
2		2388.780	40.86	-5.77	35.09	54.00	-18.91	AVG	
3	Χ	2480.000		-5.65	101.13	74.00	27.13	peak	No Limit
4	*	2480.000		-5.65	100.84	54.00	46.84	AVG	No Limit
5		2486.367		-5.63	48.97	74.00	-25.03	peak	
6		2486.367	44.51	-5.63	38.88	54.00	-15.12	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	est Mod				T(3M				Test Date			3/1/6
les	t Freque	ncy		2	4021			<u> </u>	Polarizatio	on		zontal
30.0 dBu	Temp uV/m				23°	C			Hum.		59	9%
30.0 GBC	47111											
120												
10												
00							\$					
							Щ					
0												
80							*					
'o 💳												
_							- / [
io												
							$-J + \Lambda$					
50						, Xw	and the	Marie L				6
50	pholymore Voyers	apply or support from	المارية/موالو	hanagaya, Manad	fort prompte	1 1 1 1 1 1 1 1 1	and h	brushigh	Hillywalkyaku	وراعا والمساورة والم	Mondayan	
	potrody,	astella, way was ka di waa	well-god by About	lmaneagolpre, Alabah	fentljver spl i	2 ×	grade A.	the work	Hoperone	endrede eglesserten er detre	Mangangan	
	potrologicamente (harplan)	NH yang saysin ta biran	well-gody, odd	lmanagatipe, Alabah	for ^l lyw yd i	2 ×	gette ¹	Mary Mary h	Milityerrodenspillergeer	mereka familia ar ing sebba	o de la constanta de la consta	7
50 40 30	get till frammark franskrike til	1844 way waysay a faran	nodbyr/k _e vik/	humane for the state of the sta	fortprompte	2 ×	gelild b	the way to	Mayorakeyakeyee	and the state of t	Marywaningha	7
80	potratificani de l'argine d	as Arizon, superior de l'en	odbor/k _e vik/	han procedy tyres of the state of	to trusti	**************************************	period to	Maria Mary M.	hilityevi vada, qaalii qaa, x	ontrologia de la coltra	Municipality	7
0.0 0.0	0 2322.00	2342.1		2362.00		2 ×	2402.00				Maryan Manyan Manyan Manyan Manyan Manyan Manyan Manyan Manyan Manyan Ma	7
80 20 0.0				2362.00 Readin	ıg (×		1 24				×
20 0.0 2302.000	0 2322.00	2342.t Freq.		2362.00 Readin Level	ıg (x 2382.00 Correct Factor	2402.00 Meas me	ı 24 sure-	122.00 2 Limit	442.00 246 Over	2.00	2502.00 M
0.0 0.0 2302.000 No.	0 2322.00 Mk.	2342.0 Freq.	00	2362.00 Readin Level dBuV	ıg (2382.00 Correct Factor dB	2402.00 Meas me dBu\	u 24 sure- ent V/m	122.00 2 Limit	442.00 246 Over dB	2.00 Detector	×
0.0 0.0 2302.000 No.	0 2322.00 Mk.	2342.1 Freq. MHz 2389.08	00	2362.00 Readin Level dBuV 56.06	ig g	2382.00 Correct Factor dB -5.77	2402.00 Meas me dBu\ 50.:	ure- ent V/m 29	22.00 2 Limit dBuV/m 74.00	442.00 246 Over dB -23.71	Detector peak	2502.00 M
00 0.0 2302.000 No.	0 2322.00 Mk.	2342.1 Freq. MHz 2389.08 2389.08	30	2362.00 Readin Level dBuV 56.06 42.36	ig (2382.00 Correct Factor dB -5.77 -5.77	2402.000 Meas me dBu\ 50.3	24 sure- ent V/m 29	dBuV/m 74.00 54.00	442.00 246 Over dB -23.71 -17.41	Detector peak AVG	2502.00 M
0 0.0 2302.000 No.	0 2322.00 Mk.	2342.0 Freq. MHz 2389.08 2389.08 2400.00	30 30	2362.00 Readin Level dBuV 56.06 42.36 85.88		2382.00 Correct Factor dB -5.77 -5.77	2402.00 Meas me dBu\ 50.: 36.4	24 sure- ent V/m 29 59	dBuV/m 74.00 54.00 74.00	442.00 246 Over dB -23.71 -17.41 6.12	Detector peak AVG peak	2502.00 MI
0.0 0.0 2302.000 No.	0 2322.00 Mk.	2342.0 Freq. MHz 2389.08 2389.08 2400.00 2402.00	30 30 00	2362.00 Readin Level dBuV 56.06 42.36 85.88 107.38	2019 (1)	2382.00 Correct Factor dB -5.77 -5.77 -5.76 -5.75	2402.00 Meas me dBu\ 50.: 36.: 80.	24 sure- ent V/m 29 59 12	22.00 2 Limit dBuV/m 74.00 54.00 74.00 74.00	dB -23.71 -17.41 6.12 27.63	Detector peak AVG peak peak	2502.00 MI Comment No Limit No Limit
2302.000 No.	0 2322.00 Mk.	2342.0 Freq. MHz 2389.08 2389.08 2400.00	80 80 80 90 90	2362.00 Readin Level dBuV 56.06 42.36 85.88	2 19 6 6 8	2382.00 Correct Factor dB -5.77 -5.77	2402.00 Meas me dBu\ 50.: 36.4	24 sure- ent V/m 29 59 12 .63	dBuV/m 74.00 54.00 74.00	442.00 246 Over dB -23.71 -17.41 6.12	Detector peak AVG peak	2502.00 MI

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	BT(3Mbps)		Test Date		202	3/1/6
Te	est Frequ	iency	248	30MHz		Polarizatior	า	Horiz	zontal
	Temp		2	23°C		Hum.		59	9%
130.0	dBuV/m								
120									
120									
110 -									
100					8				
					\mathbb{A}				
30									
BO									
70									
60 —					/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
50 =	1								
www.	Proprovidenteda	mana Anglanda Angland	when the water	Madelphonestratelphilips	6 ×	4.000 mg 4.004 mg 4.00 mg	~v#hradzenhadd~dilgw	of section and sec	erikaja, etaj ferena manageja med
40 — 2	2								
30 /	×								
20									
20									
10.0	000 2400.0	0 2420.00	2440.00	2460.00	2480.00 2	500.00 25	20.00 254	10.00	2580.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	20.00 254 Over	10.00	2380.00 MH
140.	IVIIX.	1104.	Level	Factor	ment	Liiiii	OVCI		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2386.580	53.33	-5.77	47.56	74.00	-26.44	peak	
2		2386.580	40.89	-5.77	35.12	54.00	-18.88	AVG	
3	Χ	2480.000	107.67	-5.65	102.02	74.00	28.02	peak	No Limit
	*	0.400.000	405.00	-5.65	99.38	54.00	45.38	AVG	No Limit
4	^	2480.000	105.03	-5.65	99.30	54.00	45.56	AVG	NO LITTIL
4 5 6	^	2480.000 2483.807 2483.807	62.70	-5.65 -5.65	57.05 43.91	74.00 54.00	-16.95 -10.09	peak AVG	NO LITTIL

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)					Test Da				023/1/7
Te	est Freq					2MHz				Р	olariza			\	'ertical
	Temp)			23	3°C					Hum				59%
130.0	dBuV/m														
120															
110															
100															
90															
80															
70															
60 —															
50															
40		1 ×													
30		2 X													
20															
10.0															
	000 3550.			8650		11200.0		1375			00.00	1885		21400.00	26500.00 MH
No.	Mk.	Freq		Rea Le		Corre Facto			asure nent) –	Limit		Over		
		MHz	<u>.</u>	dB	uV	dB			3uV/m)	dBuV/	m	dB	Detecto	or Comment
1		4804.0	00	38.	04	0.65	<u> </u>	3	8.69		74.00)	-35.31	peak	
2	*	4804.0	000	26.	12	0.65	;	2	6.77		54.00)	-27.23	B AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)					Test Da					3/1/7
Te	est Frequ					2MHz				P	olariza			ŀ		ontal
	Temp)			23	3°C					Hum				59	9%
130.0	dBuV/m															
120																
110																
100																
90																
80																
70																
60																
50																
40		1 ×														
30		2 X														
20		×														
10.0																
	000 3550.0	00 6100	0.00	8650	.00	11200.0	0	1375	0.00	163	00.00	18850	0.00 2	21400.00		26500.00 MH
No.	Mk.	Freq		Read		Corre Facto			asure)-	Limit		Over			
		MHz	<u> </u>	dBı		dB	<i>,</i> ,		BuV/m)	dBuV/	m	dB	Detec	ctor	Comment
1		4804.0		37.		0.65	5		8.46		74.00		-35.54			
2	*	4804.0	000	26.	29	0.65	5	2	6.94		54.00)	-27.06	AV(G	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				(Mbps)		Test Date			3/1/7
Te	est Frequ				1MHz		Polarization	n		tical
	Temp)		2	3°C		Hum.		59	9%
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50										
40		1 X								
30		2 X								
20		^								
10.0										
1000.0	000 3550.0	00 6100.	00	8650.00	11200.00	13750.00		850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.00	00	38.30	0.92	39.22	74.00	-34.78	peak	
2	*	4882.00	00	26.43	0.92	27.35	54.00	-26.65	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)			Test Da			23/1/7
Te	est Frequ				1MHz			Polariza			izontal
	Temp)		2	3°C			Hum		5	9%
130.0	dBuV/m										
120											
110											
100											
90											
80											
<u> </u>											
70											
60											
50											
40		1 X									
30		2 X									
20		×									
10.0											
	000 3550.0	00 6100.0	00 865	0.00	11200.00	13750.	00 1	6300.00	18850.00	21400.00	26500.00 MHz
No.	Mk.	Freq.		ading evel	Correct Factor		sure- ent	Limit	: Ove	er	
		MHz		3uV	dB		ıV/m	dBuV/	m dE	B Detector	Comment
1		4884.00	0 38	3.32	0.93	39	.25	74.00	-34.	75 peak	
2	*	4884.00	0 26	5.38	0.93	27	.31	54.00	-26.	69 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode			BT(1	Mbps)			-	Test Dat	te		202	3/1/7
Te	st Frequ					0MHz			Р	olarizati	ion			tical
	Temp)			23	3°C				Hum.			59	9%
130.0 d	BuV/m													
120														
110														
100														
90														
30														
'o 🗀														
0														
io														
ю 📙		1 X												
:0		2												
20		×												
0.0														
1000.0	00 3550.0	00 6100.	.00	8650.	.00	11200.00	13	750.00	163		18850.00	214	00.00	26500.00 MH
No.	Mk.	Freq.		Read Lev		Correct Facto		leasure ment)-	Limit	Ov	er		
		MHz		dBı		dB		BuV/m)	dBuV/n	n d	В	Detector	Comment
1		4960.0	00	39.		1.18		40.56		74.00	-33	.44	peak	
2	*	4960.0	00	26.	90	1.18		28.08		54.00	-25	.92	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Te	Test Mest Fred		CV				Mbps 0MHz				F	Test D					3/1/7 zontal	
	Ten		<u>- </u>				3°C					Hun		<u>'</u>			9%	
130.0 d	BuV/m	T													-			
120																		
110																		-
100																		-
90																		-
80																		-
70																		-
60																		4
50																		-
40			1 ×															4
30			2 X															_
20																		4
10.0																		
	000 3550).00	6100		8650		1120			0.00		300.00		50.00		00.00	26500.0	00 MHz
No.	Mk.		Freq			ding vel		rect ctor		easur ment		Lim	it	Ove	er			
			MHz	<u>'</u>	dB	uV	d	ΙB	dl	3uV/r	n	dBuV	//m	dE	3	Detector	Comm	ent
1			960.0		39	.16	1.	18	4	10.34		74.0	0	-33.	66	peak		
2	*	49	960.0	000	26	.89	1.	18	2	28.07		54.0	0	-25.	93	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test N	1ode				BT(3	Mbp	s)			7	Test Da	ate			202	3/1/7	
Te	est Fre	quenc	У			240	2MH				P	olariza	tion			Ver	tical	
	Ten	ηp				2	3°C					Hum				59	9%	
30.0	dBuV/m																	7
20																		-
10																		-
00																		$\frac{1}{2}$
0																		-
0																		$\frac{1}{2}$
0																		1
0																		$\frac{1}{2}$
0																		1
0		1 X																+
0		2																$\frac{1}{2}$
0		2 X																-
0.0																		
	000 3550		6100 _		8650			00.00		50.00		00.00		50.00		00.00	26500.0	O MI
No.	Mk.		Freq			ding vel		rrect actor		easure ment	9-	Limit	t 	Ove	er			
			MHz		dB	luV	(dB	dl	3uV/m	1	dBuV/	m	dB	}	Detector	Comme	ent
1			04.0			.83		.65		39.48		74.00		-34.		peak		
2	*	48	04.0	00	22	.18	0	.65	2	22.83		54.00)	-31.	17	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M	ode			BT(3	Mbps)				Test Da	ite		202	3/1/7
Te	est Freq					2MHz			F	Polarizat				zontal
	Tem	р			2	3°C				Hum.			59	9%
130.0 d	BuV/m													
120														
110														
100														
30														
30														
50														
70														
50														
50														
40 L		1 X												
30		2 X												
20														
10.0														
1000.0	000 3550.	00 6100).00	8650	.00	11200.00	13	750.00	16		18850.00	214	100.00	26500.00 MH
No.	Mk.	Freq		Rea Le		Correct Facto		leasur ment	e-	Limit	O	ver		
		MHz	7	dB		dB		dBuV/r	n	dBuV/r	n c	dΒ	Detector	Comment
1		4804.0	000	37.	92	0.65		38.57		74.00	-3	5.43	peak	
2	*	4804.0	000	26.	16	0.65		26.81		54.00	-27	7.19	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode			BT(3	3Mbps)			1	est Da	ate			202	3/1/7	
Te	est Freq	uency				1MHz				Po	olariza	tion				tical	
	Tem	р			2	3°C					Hum				59	9%	
30.0	BuV/m																_
20																	-
10																	-
00 -																	$\frac{1}{2}$
0																	-
0																	+
0																	1
0																	$\frac{1}{1}$
0																	1
o		1 X															\parallel
o		2 X															-
o																	-
0.0																	
)00 3 550.			8650		11200		1375			00.00		50.00		00.00	26500.0	O MI
No.	Mk.	Fred	-	Rea Le	ding vel	Cor Fac			easure ment)-	Limit		Ove	er			
		MHz	<u> </u>	dB	uV	d	В	d	3uV/m)	dBuV/	m	dE	}	Detector	Comme	ent
1		4882.0		38.		0.9			39.78		74.00		-34.2		peak		
2	*	4882.0	000	26.	53	0.9	92	2	27.45		54.00)	-26.	55	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				BMbps)		Test Dat			3/1/7	
Te	est Frequ				1MHz	Polarization			Horizontal		
	Temp)		2	3°C		Hum.		59	9%	
130.0	dBuV/m										
120											
110											
100											
90											
80											
70											
60											
50											
40		1 X									
30		2 X									
20		· ·									
10.0											
1000.	000 3550.0	00 6100.	00 86	50.00	11200.00	13750.00		18850.00 21	400.00	26500.00 MHz	
No.	Mk.	Freq.		ading evel	Correct Factor	Measure ment	e- Limit	Over		_	
		MHz	d	BuV	dB	dBuV/m	n dBuV/n	n dB	Detector	Comment	
1		4882.00	0 3	7.98	0.92	38.90	74.00	-35.10	peak		
2	*	4882.00	0 2	6.41	0.92	27.33	54.00	-26.67	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

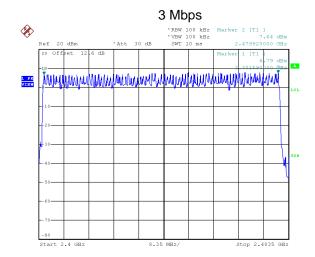
	Test Mo	ode			BT(3	3Mbps)			1	Test Da	ate			202	3/1/7	
Test Frequency			2480MHz				Polarization					Vertical					
	Temp)			2	3°C				Hum.					59	9%	
30.0 d	BuV/m																7
20																	-
10																	-
00 -																	$\frac{1}{1}$
0 —																	-
0 -																	$\frac{1}{1}$
0																	1
0																	$\frac{1}{2}$
0																	
o		1 ×															-
o		2 X															-
o																	-
0.0																	
	00 3550.0	00 6100	.00	8650		11200		1375			00.00		50.00		00.00	26500.0	O MI
No.	Mk.	Freq		Read Lev		Cor Fac			easure ment)-	Limit		Ove	er			
		MHz		dBı		d			3uV/m)	dBuV/	m	dB	3	Detector	Comme	ent
1		4960.0	00	39.	08	1.	18	۷	0.26		74.00)	-33.	74	peak		
2	*	4960.0	00	26.	69	1.	18	2	27.87		54.00)	-26.	13	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				BMbps)		Test Da			3/1/7	
Test Frequency				0MHz	Polarization				Horizontal		
	Temp)		2	3°C		Hum		5	9%	
130.0	dBuV/m										
120											
110											
100											
90											
80											
70											
60											
50											
40		1 ×									
30		2 X									
20		^									
10.0											
	000 3550.0	00 6100.0	00 86!	50.00	11200.00	13750.00	16300.00	18850.00	21400.00	26500.00 MHz	
No.	Mk.	Freq.		ading evel	Correct Factor	Measure ment	e- Limit	t Over			
		MHz		3uV	dB	dBuV/n	n dBuV/	m dB	Detector	Comment	
1		4960.00	0 38	3.29	1.18	39.47		34.5	3 peak		
2	*	4960.00	0 20	5.73	1.18	27.91	54.00	-26.09	9 AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

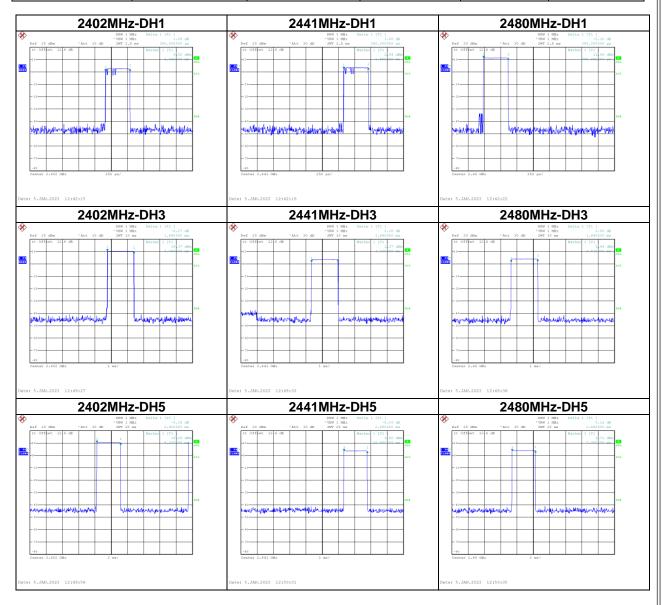

APPENDIX D NUMBER OF HOPPING CHANNEL


Project No.: 2212T065 Page 55 of 72 Report Version: R01

Test Mode 1	1/3Mbps
-------------	---------

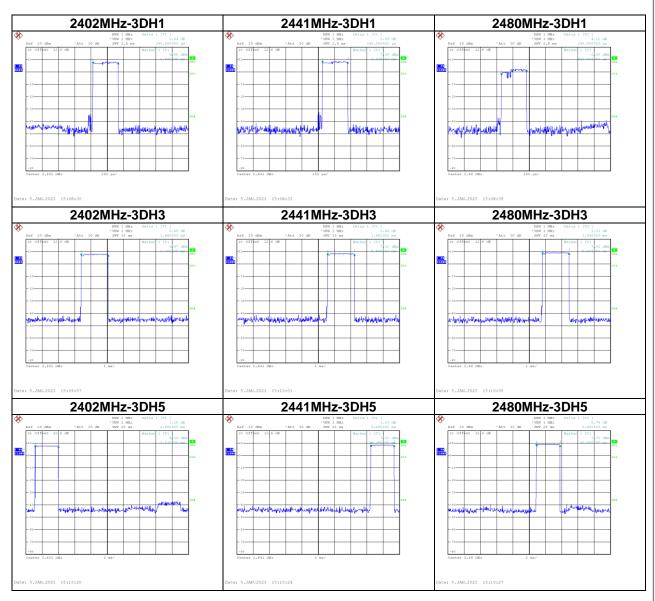
Test Mode	Number of Hopping Channel	≥ Limit	Test Result
1 Mbps	79	15	Pass
3 Mbps	79	15	Pass

Date: 5.JAN.2023 12:47:27 Date: 5.JAN.2023 15:08:28


APPENDIX E AVERAGE TIME OF OCCUPANCY

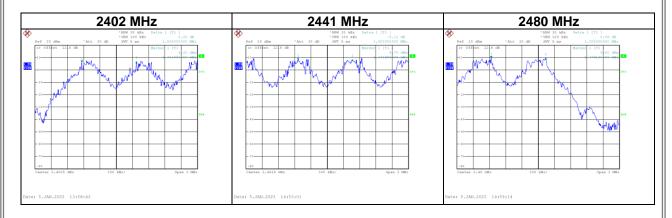
Project No.: 2212T065 Page 57 of 72 Report Version: R01

Test Mode: 1Mbps


Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.9200	0.3115	0.4000	Pass
DH3	2402	1.6400	0.2624	0.4000	Pass
DH1	2402	0.3800	0.1216	0.4000	Pass
DH5	2441	2.8800	0.3072	0.4000	Pass
DH3	2441	1.6400	0.2624	0.4000	Pass
DH1	2441	0.3800	0.1216	0.4000	Pass
DH5	2480	2.8800	0.3072	0.4000	Pass
DH3	2480	1.6400	0.2624	0.4000	Pass
DH1	2480	0.3800	0.1216	0.4000	Pass

Test Mode: 3Mbps

Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	2.8800	0.3072	0.4000	Pass
3DH3	2402	1.6600	0.2656	0.4000	Pass
3DH1	2402	0.3900	0.1248	0.4000	Pass
3DH5	2441	2.8800	0.3072	0.4000	Pass
3DH3	2441	1.6600	0.2656	0.4000	Pass
3DH1	2441	0.3900	0.1248	0.4000	Pass
3DH5	2480	2.9200	0.3115	0.4000	Pass
3DH3	2480	1.6400	0.2624	0.4000	Pass
3DH1	2480	0.3900	0.1248	0.4000	Pass


APPENDIX F	HOPPING CHANNEL SEPARATION MEASUREMENT
Project No. (2212T065	

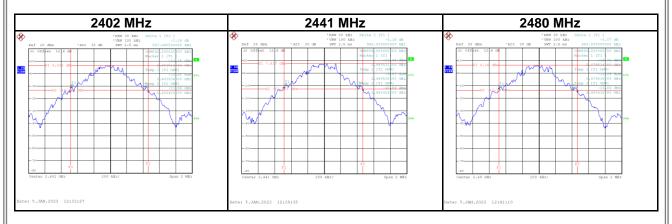
Project No.: 2212T065 Page 60 of 72 Report Version: R01

Test Mode :	Hopping on _	1Mbps
TOOL WIOGO .	li iobbilig oli –	_1101000

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.008	0.632	Pass
2441	1.003	0.637	Pass
2480	1.008	0.633	Pass

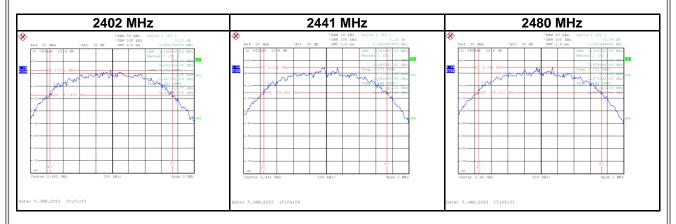
Test Mode: Hopping on _3Mbps

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.002	1.002	Pass
2441	1.008	0.995	Pass
2480	1.002	0.989	Pass


Report No.: BTL-FCCP-1-2212T065 APPENDIX G BANDWIDTH

Project No.: 2212T065 Page 63 of 72 Report Version: R01

<u> </u>	
Test Mode :	1Mbps


Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	0.948	0.892	Pass
2441	0.956	0.888	Pass
2480	0.950	0.880	Pass

Test Mode :	3Mbps

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.503	1.368	Pass
2441	1.493	1.364	Pass
2480	1.484	1.368	Pass

	Report No.: BTL-FCCP-1-2212T065
APPENDIX H	OUTPUT POWER

Project No.: 2212T065 Page 66 of 72 Report Version: R01

Report No.: BTL-FCCP-1-2212T065

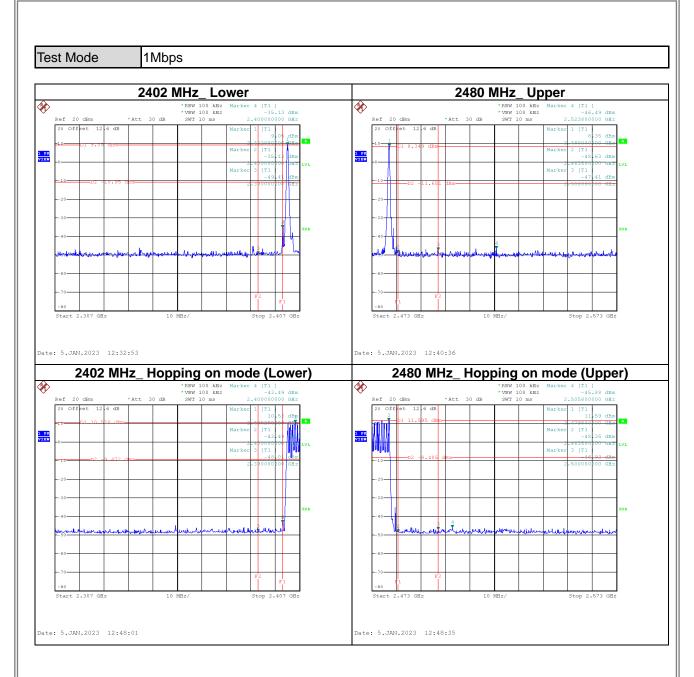
Test Mode :	1Mbps -		Tested	d Date 2	2023/1/5	
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result	
2402	9.57	0.0091	21.00	0.1259	Pass	
2441	10.02	0.0100	21.00	0.1259	Pass	
2480	8.88	0.0077	21.00	0.1259	Pass	

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	7.08	0.0051	21.00	0.1259	Pass
2441	7.47	0.0056	21.00	0.1259	Pass
2480	7.16	0.0052	21.00	0.1259	Pass

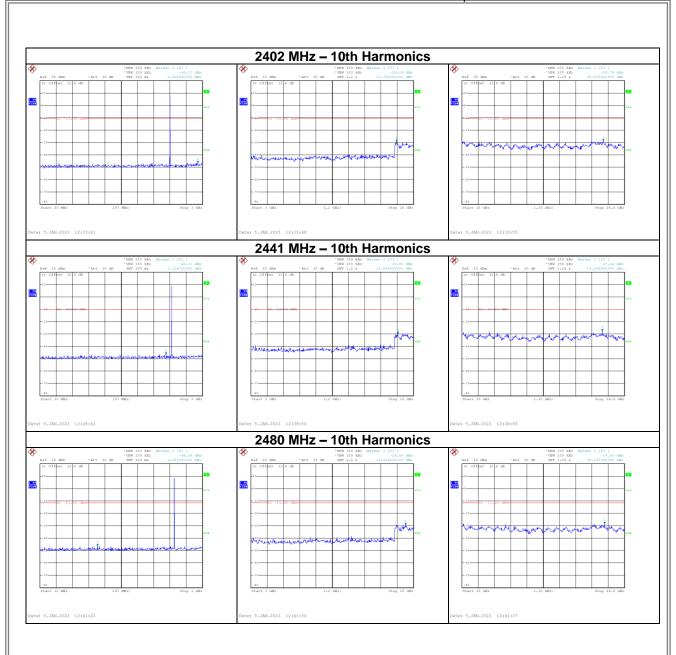
Test Mode: 3Mbps	Tested Date	2023/1/5	
------------------	-------------	----------	--

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	7.26	0.0053	21.00	0.1259	Pass
2441	7.65	0.0058	21.00	0.1259	Pass
2480	7.38	0.0055	21.00	0.1259	Pass

Project No.: 2212T065 Page 67 of 72 Report Version: R01



APPENDIX I	ANTENNA CONDUCTED SPURIOUS EMISSION


Project No.: 2212T065 Page 68 of 72 Report Version: R01

