

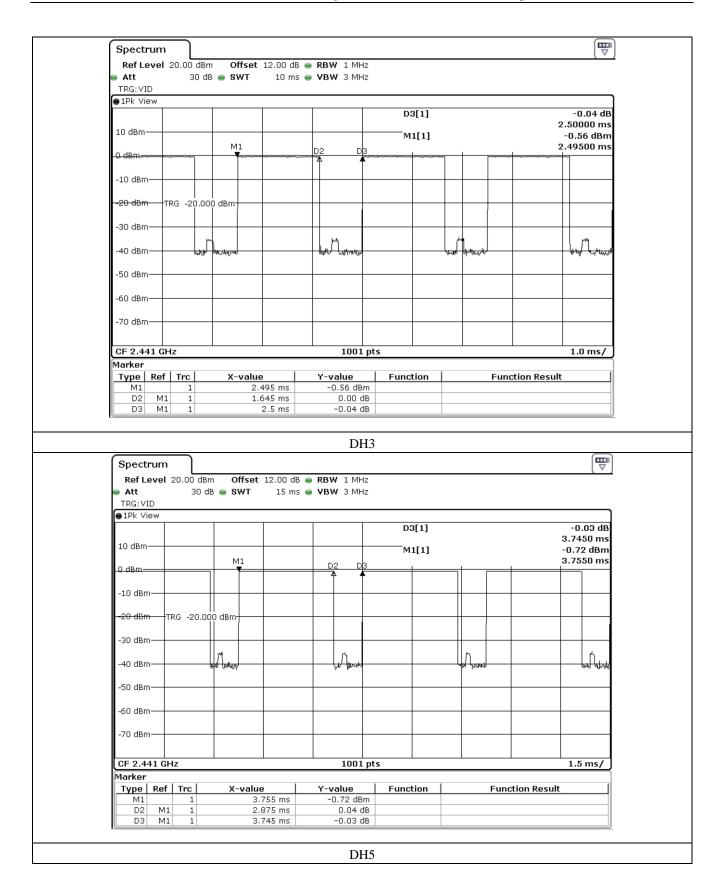
10.5 Test Data for Right Side

10.5.1 Test data for 1 Mbps

The system makes worst case 1 600 hops per second or 1 time slot has a length of 625 µs with 79 channels.

For DH1 packet type, the EUT needs 1 time slot for transmitting and 1 time slot for receiving and for DH3 packet type, the EUT needs 3 times slots for transmitting and 1 time slot for receiving, and DH5 packet needs 5 times slots for transmitting and 1 time slot for receiving. So The EUT has each channel for 10.13 times per second (= 1 600/2/79) for DH1, and 5.06 times (= 1 600/4/79) for DH3, and 3.38 times (= 1 600/6/79) for DH5.

Packet Type	Pulse Time (ms)	Hops per second with channels	Period Time (ms)	Total Dwell Time (ms)	Limit (ms)	Test Result
DH1	0.385	10.13	31.60	123.24	400	
DH3	1.645	5.06	31.60	263.03	400	PASS
DH5	2.875	3.38	31.60	307.07	400	


Total dwell time is calculated as following.

Total Dwell Time = Pulse time * Hops per second with channels * period time

Remark: See next page for an overview sweep performed with peak detector.

	el 20.00 dBr			RBW 1 MHz					
Att TRG: VID	30 d	B 👄 SWT	5 ms	🔵 VBW 3 MHz					
IRG: VID IPk View									
DIPK VIEW					50[1	1			ar oo a
					D3[1	1			-0.02 dB 1.25000 ms
10 dBm					M1[1	1			-0.54 dBm
		M1				.1		1	L.24500 ms
-0.dBm			D2 4					+	
			ΙT	I I					
-10 dBm		+ +	++						
-20 dBm	TRG -20.00	iộ dBm	++-						
-30 dBm-									
1	1 Annaly			and a		men .		- m	Ж
-40 dBm 😽	ripaped Uitstadi	and the second sec	herbensetor	husteralizatilitie	Www.	biconstitution	adalataroold	Woh-dogel	hand handle handle
50.15									
-50 dBm—									
-60 dBm—									
-00 ubiii									
-70 dBm									
-70 ubiii									
CF 2.441	GHz			1001 pt	s				500.0 µs/
Marker									
	ef Trc	X-valu		Y-value	Function	<u>1</u>	Fur	nction Result	t
M1	1		245 ms	-0.54 dBm					
	M1 1 M1 1		85.0 µs	0.02 dB -0.02 dB					
			1.25 ms	-0.02 dB					

10.5.2 Test data for 2 Mbps

The system makes worst case 1 600 hops per second or 1 time slot has a length of 625 µs with 79 channels.

For DH1 packet type, the EUT needs 1 time slot for transmitting and 1 time slot for receiving and for DH3 packet type, the EUT needs 3 times slots for transmitting and 1 time slot for receiving, and DH5 packet needs 5 times slots for transmitting and 1 time slot for receiving. So The EUT has each channel for 10.13 times per second (= 1 600/2/79) for DH1, and 5.06 times (= 1 600/4/79) for DH3, and 3.38 times (= 1 600/6/79) for DH5.

Packet Type	Pulse Time (ms)	Hops per second with channels	Period Time (ms)	Total Dwell Time (ms)	Limit (ms)	Test Result
DH1	0.395	10.13	31.60	126.44	400	
DH3	1.645	5.06	31.60	263.03	400	PASS
DH5	2.890	3.38	31.60	308.68	400	

Total dwell time is calculated as following.

Total Dwell Time = Pulse time * Hops per second with channels * period time

Remark: See next page for an overview sweep performed with peak detector.

Spectrum					
Ref Level 20.00 dB	m Offset 12.00 dB	B 👄 RBW 1 MHz			(' '
		5 👄 VBW 3 MHz			
TRG: VID					
Pk View					
			D3[1]		0.01 dB
			50[1]		1.25000 ms
10 dBm			M1[1]		0.25 dBm
	M1	DB			1.25000 ms
-O-diBmin-			- American		hi
-10 dBm					
-20 dBm T RG -20.0	00 dBm				
-30 dBm					
Juny		prove	pring		land
-40 dBm անտեմ՝ անտ	ntransit here	J Withthe off the set	- հետերթող թ	with the second s	boorder boorder
-50 dBm					
-60 dBm					
-70 dBm					
CF 2.441 GHz		1001 pt	s	•	500.0 μs/
Marker					
Type Ref Trc	X-value	Y-value	Function	Fund	tion Result
M1 1	1.25 ms	0.25 dBm			
D2 M1 1	395.0 µs	-1.44 dB			
D3 M1 1	1.25 ms	0.01 dB			
		DH1			

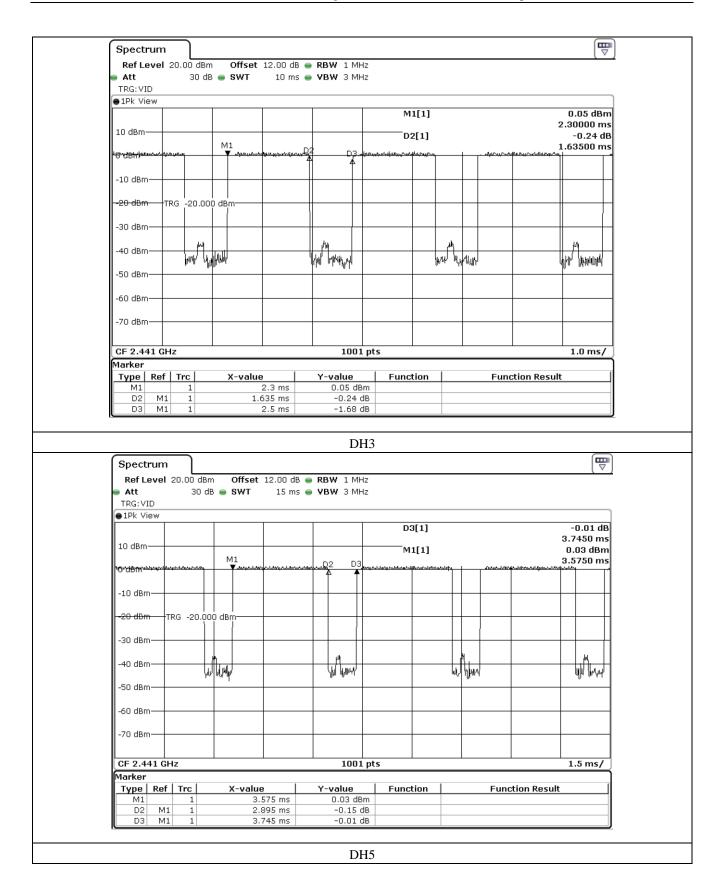
Spectrun										
5 . f I aua		O		12 00 JB						
Ref Leve Att		18m O dB 👄 S			BRBW 1 MHz					
TRG: VID		ub 🚽 J	W	10 112 4	YOW JUNE					
●1Pk View										
						D3[1	1			0.00 dB
to in-										2.50000 ms
10 dBm		│.				M1[1	L]			0.16 dBm
0'dBm		IV.	11 V . observationer		<u></u> 2 D3	mala manda allefandi	a selle sty		na Ouktoria Constanta Cons	2.50000 ms
0.090										
-10 dBm										
-10 05.0										
-20 dBm	TRG -20	ו 000 dBm [.]								
		Ī								
-30 dBm—			+		++					
		m			ll m			-		II т
-40 dBm—	 	m how			- the words		boo	htreeliged		here proved
-50 dBm—										
50 d9m										
-60 dBm										
-70 dBm										
/ = ===::										
25 2 441 (1001 pt	_				1.0 mc/
CF 2.441 (Marker	JHZ				1001 pt	s				1.0 ms/
	f	x	value	1	Y-value	Functio	n	FI	unction Re	cult
M1	1			2.5 ms	0.16 dBm	T unocio.	<u> </u>			suic
D2 M	11 1		1.6	45 ms	-0.14 dB					
D3 N	11 1		2	2.5 ms	-0.00 dB					
			-		DH3					
					D115					
o .										
Spectrur	n]									
Spectrur Ref Leve		dBm C)ffset :	12.00 dB (RBW 1 MHz					
Ref Leve Att	el 20.00	dBm () dB 👄 S			BRBW 1 MHz BWBW 3 MHz					
Ref Leve Att TRG: VID	el 20.00									
Ref Leve Att	el 20.00					20[1				
Ref Leve Att TRG: VID	el 20.00					D3[1]			0.00 dB
Ref Leve Att TRG: VID	el 20.00									0.00 dB 3.7600 ms
Ref Leve Att TRG: VID 1Pk View	el 20.00) dB 🕳 S			• VBW 3 MHz	D3[1				0.00 dB
Ref Leve Att TRG: VID 1Pk View	el 20.00) dB 🕳 S	SWT						restficturations	0.00 dB 3.7600 ms 0.10 dBm
Ref Leve Att TRG: VID 1Pk View 10 dBm	el 20.00) dB 🕳 S	SWT		• VBW 3 MHz					0.00 dB 3.7600 ms 0.10 dBm
Ref Leve Att TRG: VID 1Pk View	el 20.00) dB 🕳 S	SWT		• VBW 3 MHz					0.00 dB 3.7600 ms 0.10 dBm
Ref Leve Att TRG: VID 1Pk View 10 dBm -10 dBm	20.00 0 30) dB 👄 S	₩T		• VBW 3 MHz				heisikoluostoosto	0.00 dB 3.7600 ms 0.10 dBm
Ref Leve Att TRG: VID 1Pk View 10 dBm	20.00 0 30) dB 🕳 S	₩T		• VBW 3 MHz					0.00 dB 3.7600 ms 0.10 dBm
Ref Leve Att TRG:VID 1Pk View 10 dBm -10 dBm -20 dBm	20.00 0 30) dB 👄 S	₩T		• VBW 3 MHz					0.00 dB 3.7600 ms 0.10 dBm
Ref Leve Att TRG: VID 1Pk View 10 dBm -10 dBm	20.00 0 30) dB 👄 S	₩T				.] 			0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG:VID 1Pk View 10 dBm -10 dBm -20 dBm	20.00 0 30	0 dB • S	11 1				.] 			0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG:VID ● 1Pk View 10 dBm ● dBm -10 dBm -20 dBm -30 dBm	20.00 0 30) dB 👄 S	11 1		• VBW 3 MHz		.] 	L Control Cont		0.00 dB 3.7600 ms 0.10 dBm
Ref Leve Att TRG:VID ● 1Pk View 10 dBm ● dBm -10 dBm -20 dBm -30 dBm	20.00 0 30	0 dB • S	11 1				.] 	No Loves		0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG:VID ● 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 0 30	0 dB • S	11 1				.] 			0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG: VID 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 0 30	0 dB • S	11 1				.] 			0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG:VID ● 1Pk View 10 dBm ● dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 0 30	0 dB • S	11 1				.] 			0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG:VID ● 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 0 30	0 dB • S	11 1				.] 			0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG:VID ● 1Pk View 10 dBm ● dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 0 30	0 dB • S	11 1			M1[1	.] 			0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG:VID ● 1Pk View 10 dBm ● dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 30 30	0 dB • S	11 1			M1[1	.] 			0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG: VID 1Pk View 10 dBm 0'dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	20.00 30 30	0 dB • S	11 1			M1[1	.]			0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG:VID 1Pk View 10 dBm •1Pk View •0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 Marker Type	-TRG -20 GHz	0 dB • S		15 ms (VBW 3 MHz	M1[1	.]		nction Res	0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG:VID 1Pk View 10 dBm • 0 dBm • 10 dBm • -10 dBm • -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Type Re Marker Type	el 20.00 o 30 	0 dB • S	-value 3.7	15 ms (VBW 3 MHz	M1[1	.]		nction Res	0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG: VID 1Pk View 10 dBm *0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm CF 2.441 Marker Type M1 D2	-TRG -20 GHz	0 dB • S	41 -value 3.7 2.	15 ms (VBW 3 MHz	M1[1	.]		nction Res	0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG: VID 1Pk View 10 dBm *0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm CF 2.441 Marker Type M1 D2	20.000 30 30 TRG -20 GHz ef Trc 11 M1 1	0 dB • S	41 -value 3.7 2.	15 ms (VBW 3 MHz	M1[1	.]		inction Res	0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms
Ref Leve Att TRG: VID 1Pk View 10 dBm *0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm CF 2.441 Marker Type M1 D2	20.000 30 30 TRG -20 GHz ef Trc 11 M1 1	0 dB • S	41 -value 3.7 2.	15 ms (VBW 3 MHz	M1[1	.]			0.00 dB 3.7600 ms 0.10 dBm 3.7450 ms

10.5.3 Test data for 3 Mbps

The system makes worst case 1 600 hops per second or 1 time slot has a length of 625 µs with 79 channels.

For DH1 packet type, the EUT needs 1 time slot for transmitting and 1 time slot for receiving and for DH3 packet type, the EUT needs 3 times slots for transmitting and 1 time slot for receiving, and DH5 packet needs 5 times slots for transmitting and 1 time slot for receiving. So The EUT has each channel for 10.13 times per second (= 1 600/2/79) for DH1, and 5.06 times (= 1 600/4/79) for DH3, and 3.38 times (= 1 600/6/79) for DH5.

Packet Type	Pulse Time (ms)	Hops per second with channels	Period Time (ms)	Total Dwell Time (ms)	Limit (ms)	Test Result
DH1	0.385	10.13	31.60	123.24	400	
DH3	1.635	5.06	31.60	261.43	400	PASS
DH5	2.895	3.38	31.60	309.21	400	


Total dwell time is calculated as following.

Total Dwell Time = Pulse time * Hops per second with channels * period time

Remark: See next page for an overview sweep performed with peak detector.

Spect	rum									
			0//	10.00 -0 -						(~
er Lo	ever 2	20.00 dBm	i Uπset		RBW 1 MH					
		30 GE	s 🖷 swi	5 ms 🖷	УВЖ З МН	Z				
TRG: VI										
●1Pk Vi	ew			1						
						D	3[1]			0.04 dB
10 dBm										1.25000 ms
1.0 0000			M1				1[1]			0.14 dBm
-0-d8/w				D2	D	3		/ · · · ·		1.25000 ms
C CLONIC				T	1		1			
-10 dBm										
-10 000	'						1			
-20 dBm		G -20.00								_
20 0.011	1 1"	.0 -20,00	j abiii)		1 1		1			1 1
-30 dBm										
-00 001	'						1			
-40 dBm		Hull 1		ليعام ا			րոր			,hu
-40 000	՝ երթերը	ի՝ հեհեր	a du Madal	հետի/	Այավակություն	Ma	ատ և	n han han han han h	ի իրելի	HANNAM
-50 dBm	0~ 199) New N	Ուծւմա	պու	n was half had	լի	int .	www.h.h.	ւտովար	All a souddlyd
	.						1			
-60 dBm										
	·						1			
-70 dBm)						<u> </u>			
/ 0 0.011	·						1			
CF 2.4	41 GH	z			1001	pts				500.0 µs/
Marker										
Туре	Ref		X-value		Y-value	Func	tion	F	unction Resu	lt
M1		1		25 ms	0.14 dB					
D2	M1	1		35.0 µs	0.65 c					
D3	M1	1	1	25 ms	0.04 c	IB				
					וח	T1				
					DH	11				

11. MAXIMUM PEAK OUTPUT POWER

11.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	45 % R.H.

11.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer.

The resolution bandwidth is set to \geq DTS Bandwidth, the video bandwidth is set to 3 times the resolution bandwidth.

11.3 Test Date

January 07, 2021 ~ January 28, 2021

11.4 Test Data for Left Side

11.4.1 Test data for 1 Mbps

Test Result	: Pass			
Channel	Frequency	Measured Value	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2 402.00	-0.33	21.00	21.33
Middle	2 441.00	0.44	21.00	20.56
High	2 480.00	0.70	21.00	20.30

Remark. Margin = Limit – Measured Value (=Receiver Reading + Cable Loss)

Spectrum			
Ref Level 20.00 dBm Att 30 dB	Offset 12.00 dB ● RBW SWT 928.7 ns ● VBW		
●1Pk View			
		M1[1]	-0.33 dBm 2.40186510 GHz
10 dBm			
0 dBm		M1	
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
CF 2.402 GHz		1001 pts	Span 5.0 MHz
	Lo	ow Channel	

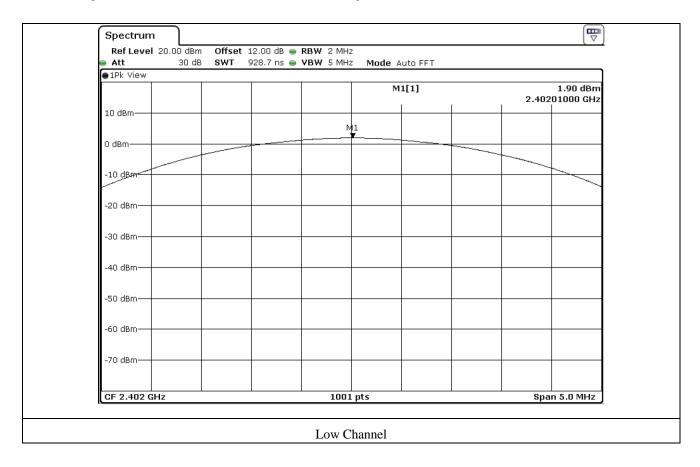
Ref Level 2				• RBW 2 MH;					
● Att ●1Pk View	30 dB	SWT	928.7 ns 🧉	• VBW 5 MH:	2 Mode	Auto FFT			
IFK VIEW					N	41[1]			0.44 dBm
							1	2.441	16980 GHz
10 dBm									
					М1				
0 dBm						+			
-10 dBm									
-20 dBm									
-30 dBm									
-30 ubiii									
-40 dBm									
io abiii									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.441 GHz	,			1001	nts			Sna	n 5.0 MHz
Spectrum				Middle	Channel				Ū
Spectrum Ref Level 2 Att	:0.00 dBm 30 dB			Middle RBW 2 MH: VBW 5 MH:	2				
Ref Level 2				• RBW 2 MH:	z 2 Mode	Auto FFT			,
Ref Level 2 Att				• RBW 2 MH:	z 2 Mode			2.479	0.70 dBm 90010 GHz
Ref Level 2 Att				• RBW 2 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View				• RBW 2 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm -10 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm -10 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm				RBW 2 MH: VBW 5 MH:	z 2 Mode	Auto FFT		2.479	0.70 dBm
Ref Level 2 Att 1Pk View 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm				RBW 2 MH: VBW 5 MH:	Z Mode	Auto FFT			0.70 dBm

11.4.2 Test data for 2 Mbps

Test Result	: Pass			
Channel	Frequency	Measured Value	Limit	Margin
Channer	(MHz)	(dBm)	(dBm)	(dB)
Low	2 402.00	1.33	21.00	19.67
Middle	2 441.00	2.40	21.00	18.60
High	2 480.00	2.76	21.00	18.24

Remark. Margin = Limit – Measured Value (=Receiver Reading + Cable Loss)

RefLevel 20.00 dBm Offset Att 30 dB SWT	12.00 dB 🖷 RBW 2 MHz 928.7 ns 🖷 VBW 5 MHz 🛛 Mode Auto FFT	
●1Pk View		
	M1[1]	1.33 dBm 2.40212990 GHz
10 dBm	M1	
0 dBm	M1	
-10 dBm		
-20 dBm		
-30 dBm		
-40 dBm		
-50 dBm		
-60 dBm		
-70 dBm		
CF 2.402 GHz	1001 pts	Span 5.0 MHz
01 21102 0112	1001 pts	5pan 5.0 MHz


● Att ●1Pk View							 	
					M1[1]		2.40 dBm 8510 GHz	
10 dBm						+		
0 dBm			M1					
-10 d8m								
-20 dBm								
-20 0811								
-30 dBm								
40 d8m								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.441 GHz								
Spectrum Ref Level 20.	OO dBm Off	set 12.00			Channel		<u> </u>	
	00 dBm Off 30 dB SW			Iiddle (• 2 MHz	Channel	Auto FFT	 S	pan 5.0 MHz
RefLevel 20. Att			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode	Auto FFT	 	
RefLevel 20. Att			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode		 	2.76 dBn
Ref Level 20. Att 1Pk View			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn
Ref Level 20. Att 1Pk View			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 eBm			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 0 dBm -10.dBm -20 dBm -20 dBm			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 eBm -20 dBm -30 dBm			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm			dB 👄 RBV	Iiddle (• 2 MHz	Channel Mode			2.76 dBn

11.4.3 Test data for 3 Mbps

Test Result	: Pass			
Channel	Frequency	Measured Value	Limit	Margin
Channer	(MHz)	(dBm)	(dBm)	(dB)
Low	2 402.00	1.90	21.00	19.10
Middle	2 441.00	2.92	21.00	18.08
High	2 480.00	3.30	21.00	17.70

Remark. Margin = Limit – Measured Value (=Receiver Reading + Cable Loss)

Rei Levei 20.0	0 dBm Offset	12.00 dB 👄 F	RBW 2 MHz				
🗕 Att	30 dB SWT	928.7 ns 🖷 🕻			O FFT		
●1Pk View				M1[1]		2.92 dBm
					-1	2.440	97000 GHz
10 dBm							
			M1				
0 dBm						 ****	
	_						
-10.d8m							
-20 dBm							
20 dbiii							
-30 dBm		_					
-40 dBm						 	
-50 dBm							
-60 dBm							
70 dBm							
-70 dBm							
CF 2.441 GHz			1001	pts		Spa	n 5.0 MHz
Spectrum)		Middle (Channel			
Ref Level 20.0 Att) D0 dBm Offset 30 dB SWT	12.00 dB 👄 🖡 928.7 ns 👄 🕅	RBW 2 MHz		:o FFT	 	
Ref Level 20.0			RBW 2 MHz	Mode Aut			, ,
Ref Level 20.0 Att			RBW 2 MHz			2.479	(⊽ 3.30 dBm 97000 GHz
Ref Level 20.0 Att			RBW 2 MHz VBW 5 MHz	Mode Aut		 2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View			RBW 2 MHz	Mode Aut		2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View			RBW 2 MHz VBW 5 MHz	Mode Aut		 2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		 2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		 2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm -10 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		 2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm -10 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		 2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut		2.479	3.30 dBm
Ref Level 20.0 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm			RBW 2 MHz VBW 5 MHz	Mode Aut			3.30 dBm

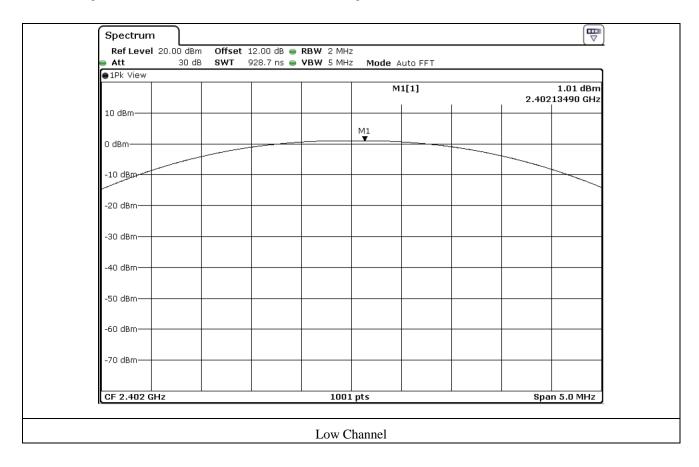
11.5 Test Data for Right Side

11.5.1 Test data for 1 Mbps

Test Result	: Pass			
Channel	Frequency	Measured Value	Limit	Margin
Channel	(MHz)	(dBm)	(dBm)	(dB)
Low	2 402.00	-0.73	21.00	21.73
Middle	2 441.00	-0.80	21.00	21.80
High	2 480.00	-0.71	21.00	21.71

Remark. Margin = Limit – Measured Value (=Receiver Reading + Cable Loss)

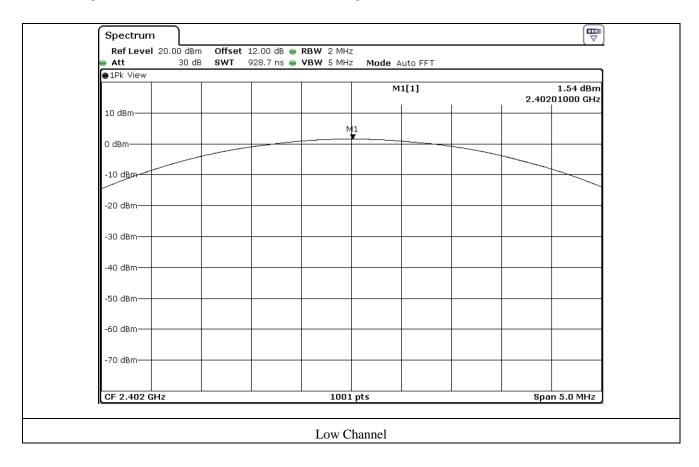
Spectrum Ref Level 3		Offcat	12.00 dB 👄		1-7		
Att	30 dB		928.7 ns 👄				
●1Pk View							
					M1[1]	2.4	-0.73 dBm 0208990 GHz
10 dBm							
0 dBm					M1		
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.402 GH	z			100	1 pts	S	pan 5.0 MHz
				Low	Channel		


● Att ●1Pk View	30 dB								
JIFK VIEW					N	M1[1]		0.80 dBm 6010 GHz	
10 dBm									
0 dBm			+	M1				 	
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.441 GHz					1001 p			Sr	oan 5.0 MHz
•						11.5			Juli 0.0 1.1112
	_			M	iddle C				
Spectrum Ref Level 20 Att		Offset 1 SWT 9		e RBW	iddle C		uto FFT		
Ref Level 20				e RBW	iddle C	hannel Mode A	uto FFT		-0.71 dBm
RefLevel 20 Att				e RBW	iddle C	hannel Mode A		 	
RefLevel 20 Att P1Pk View				e RBW	iddle C	hannel Mode A			-0.71 dBm
Ref Level 20 Att 1Pk View 10 dBm				e RBW	iddle C	hannel Mode A			-0.71 dBm
Ref Level 20 Att 1Pk View 10 dBm 0 dBm				e RBW	iddle C	hannel Mode A			-0.71 dBm
Ref Level 20 Att 1Pk View 10 dBm 0 dBm -10 dBm				e RBW	iddle C	hannel Mode A			-0.71 dBm
Ref Level 20 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm				e RBW	iddle C	hannel Mode A			-0.71 dBm
Ref Level 20 Att 1Pk View 10 dBm 0 dBm -10 dBm -30 dBm				e RBW	iddle C	hannel Mode A			-0.71 dBm
Ref Level 20 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm				e RBW	iddle C	hannel Mode A			-0.71 dBm
Ref Level 20 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm				e RBW	iddle C	hannel Mode A			-0.71 dBm

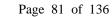
11.5.2 Test data for 2 Mbps

Test Result	: Pass			
Channel	Frequency	Measured Value	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2 402.00	1.01	21.00	19.99
Middle	2 441.00	1.30	21.00	19.70
High	2 480.00	1.31	21.00	19.69

Remark. Margin = Limit – Measured Value (=Receiver Reading + Cable Loss)


Ref Level 20.		12.00 dB 👄					
● Att ●1Pk View	30 dB SWT	928.7 ns 👄	VBW 5 MHz	z Mode A	uto FFT		
				м	1[1]		1.30 dBn
10 d8m						2.440	87010 GH:
10 dBm							
0 dBm			M1				
o ubiii						 	
-10 dBm							<u> </u>
-20 dBm							
-30 dBm							
-40 dBm							
-+0 u811							
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.441 GHz	•		1001	l pts		Spa	n 5.0 MHz
Spectrum	7			Channel			
RefLevel 20. Att	00 dBm Offset 30 dB SWT	12.00 dB 👄 928.7 ns 👄	RBW 2 MHz	z	Auto FFT		
Ref Level 20.		12.00 dB 👄 928.7 ns 👄	RBW 2 MHz	z z Mode A			1.31 dBn
Ref Level 20. Att 1Pk View		12.00 dB 👄 928.7 ns 👄	RBW 2 MHz	z z Mode A	Auto FFT 1[1]	 2.480	(1.31 dBn 12490 GH:
RefLevel 20. Att		12.00 dB ● 928.7 ns ●	RBW 2 MHz	z z Mode 4 M		 2.480	1.31 dBn
Ref Level 20. Att 10 dBm		12.00 dB 928.7 ns	RBW 2 MHz	z z Mode A		2.480	1.31 dBn
Ref Level 20. Att 1Pk View		12.00 dB ● 928.7 ns ●	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 10 dBm		12.00 dB ● 928.7 ns ●	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm		12.00 dB ● 928.7 ns ●	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm		12.00 dB ● 928.7 ns ●	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm		12.00 dB 928.7 ns	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm		12.00 dB • 928.7 ns •	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm		12.00 dB • 928.7 ns •	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm		12.00 dB 928.7 ns	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm		12.00 dB 928.7 ns	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm		12.00 dB • 928.7 ns •	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm		12.00 dB 928.7 ns	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm		12.00 dB • 928.7 ns •	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm		12.00 dB 928.7 ns 92	RBW 2 MHz	z z Mode 4 M		2.480	1.31 dBn
Ref Level 20. Att 1Pk View 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm		12.00 dB • 928.7 ns •	RBW 2 MHz	Z Mode A			1.31 dBn

11.5.3 Test data for 3 Mbps


Test Result	: Pass			
Channel	Frequency	Measured Value	Limit	Margin
Channer	(MHz)	(dBm)	(dBm)	(dB)
Low	2 402.00	1.54	21.00	19.46
Middle	2 441.00	1.66	21.00	19.34
High	2 480.00	1.84	21.00	19.16

Remark. Margin = Limit – Measured Value (=Receiver Reading + Cable Loss)

RefLevel 20.00	Jabm Offs 30 db SW		dB 👄 RBN ns 👄 VBN		Mode A	uto FFT			
●1Pk View									
					м	1[1]		2.44	1.66 dBm 097500 GHz
10 dBm									
				MI					
0 dBm						-			
-10 dBm									
-20 dBm									
-30 dBm									
55 dbiii									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.441 GHz				1001 p	ots			Spa	an 5.0 MHz
Spectrum Ref Level 20.0		set 12.00	dB 👄 RBN						
Ref Level 20.0) dBm Off 30 dB SW		dB 👄 RBN	₩ 2 MHz ₩ 5 MHz	Mode A	uto FFT		04 d0m	⊽
Ref Level 20.0			dB 👄 RBN	₩ 2 MHz ₩ 5 MHz		uto FFT	1 2.47997	.84 dBm 500 GHz	
Ref Level 20.0			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View			dB 👄 RBN	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.0			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			(₩
Ref Level 20.00 Att 1Pk View			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm -10 dBm			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm -10 dBm1			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A				₹
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm -10 dBm			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT			
Ref Level 20.00 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm			dB e RB\ ns e VB\	W 2 MHz W 5 MHz	Mode A	uto FFT		500 GHz	(₩ ▼

12. 100 kHz BANDWIDTH OUTSIDE THE FREQUENCY BAND

12.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	45 % R.H.

12.2 Test set-up for conducted measurement

The antenna output of the EUT was connected to the spectrum analyzer. The resolution and video bandwidth is set to 100 kHz, and peak detection was used.

12.3 Test set-up for radiated measurement

The radiated emissions measurements were performed on the 3 m semi anechoic chamber. The EUT was placed on turntable approximately 1.5 m above the ground plane.

The frequency spectrum from 30 MHz to 26.5 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

12.4 Test Date

January 07, 2021 ~ January 28, 2021

12.5 Test data for conducted emission (Left Side)

12.5.1 Test data for 1 Mbps

Spectrum		ectrum 2		pect <mark>r</mark> um 3		pectrum -	4 🗴		
Ref Level Att	l 10.00 dBm 20 dB	Offset : SWT	12.00 dB 👄 37.9 ⊔s 👄	RBW 100 k VBW 300 k		Auto FFT			
●1Pk View	20 00		po 🦉	. 211 000 K	_				
					м	1[1]			57.39 dBm 00000 GHz
0 dBm	D1 -1.590 di	300							
		2							
-10 dBm				/					
-20 dBm	D2 -21.	590 dBm		Í					
-30 dBm									
40 dBm					4				
-40 dBm									
-50 dBm			M	11					
ᡁᡋ᠌᠌ᡗᢦᠿ᠍᠍ᢄᠹᠯᢙᡪᠬ	-	mmu	haman	rl	<u>س</u>	Vunna Maray	howamon	- Winnelling	www.
-70 dBm									
-80 dBm									
So dom									
CF 2.402 G	Hz			1001	. pts			Span	20.0 MHz
Spectrum Ref Level		offset		Low C	× 5	pectrum -	4 🕅		
Ref Level Att	n Spe I 10.00 dBm 20 dB	Offset :	12.00 dB 😑	pectrum 3	K S	Spectrum - Auto FFT	4 🛛		
Ref Level	10.00 dBm	Offset :	12.00 dB 😑	pectrum 3 RBW 100 k	X S Hz Hz Mode		4 🗷		-0.94 dBm
Ref Level Att 1Pk View	10.00 dBm 20 dB	Offset : SWT	12.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode M	Auto FFT	4 🛞	2.44	,
Ref Level Att 1Pk View	10.00 dBm	Offset : SWT	12.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto FFT	4 8	2.44	-0.94 dBm
Ref Level Att 1Pk View	10.00 dBm 20 dB	Offset : SWT	12.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto FFT	4 8	2.44	-0.94 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm 20 dB	Offset : SWT	12.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto FFT	4 8	2.44	-0.94 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	1 10.00 dBm 20 dB	Offset : SWT	12.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto FFT	4 8	2.44	-0.94 dBm
Ref Level Att 1Pk View 1Pk Order -10 dBm -20 dBm -30 dBm	1 10.00 dBm 20 dB	Offset : SWT	12.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto FFT	4 8	2.44	-0.94 dBm
Ref Level Att 1Pk View 1dBm -10 dBm -20 dBm	1 10.00 dBm 20 dB	Offset : SWT	12.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto FFT	4 8	2.44	-0.94 dBm
Ref Level Att 1Pk View 1Pk Order -10 dBm -20 dBm -30 dBm	1 10.00 dBm 20 dB	Offset : SWT	12.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto FFT	4 8	2.44	-0.94 dBm
Ref Level ▲ Att ● 1Pk View ● 1Pk View - 10 dBm - 20 dBm - 30 dBm - 40 dBm	D1 -0.940 dl	Offset : SWT	12.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto FFT			-0.94 dBm
Ref Level Att 1Pk View 1Pk View -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	D1 -0.940 dl	Offset : SWT Bm 940 dBm	12.00 dB • 37.9 µs •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto FFT			-0.94 dBm 09600 GHz
Ref Level ▲ Att ● 1Pk View ● 1Pk View - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm - 50 dBm - 70 dBm	D1 -0.940 dl	Offset : SWT Bm 940 dBm	12.00 dB • 37.9 µs •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto FFT			-0.94 dBm 09600 GHz
Ref Level Att ● 1Pk View ● 1Pk View -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	D1 -0.940 dl	Offset : SWT Bm 940 dBm	12.00 dB • 37.9 µs •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto FFT			-0.94 dBm 09600 GHz
Ref Level ▲ Att ● 1Pk View ● 1Pk View - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm - 50 dBm - 70 dBm	D1 -0.940 di	Offset : SWT Bm 940 dBm	12.00 dB • 37.9 µs •	Pectrum 3 RBW 100 k VBW 300 k	X S	Auto FFT		htter and the second	-0.94 dBm 09600 GHz

	Spectrum 2	🔍 🗶 🎽 S	pectrum 3	🛛 🗶 S	pectrum	4 🗶		
Ref Level 10.00			RBW 100 kH					
Att 20 1Pk View	O dB SWT	37.9 µs 👄	VBW 300 kH	z Mode	Auto FFT			
JIFK VIEW				M1[1]		-59	.58 dBm	
							000 GHz	
0 dBm-D1 -0.24(0 dBm							
-10 dBm								
			11					
-20 dBm	20.240 dBm							
D2 -2	20.240 UBIII							
-30 dBm			$\{ \mid \}$					
-30 0611			$7 \times$					
			$ \rangle$					
-40 dBm								
		- 17	1					
-50 dBm		-+						
		a water		14 M1				
mblendBally	of a free har when the	MAN		We way	γ	monorther	ᠶᡄᠰᡪᢘᢇᠲ	
-70 dBm	+ +							
-80 dBm	+							
CF 2.48 GHz			1001	pts			span	20.0 MHz
			High Cl	nannel				
Spectrum	Spectrum 2	×s	Spectrum 3	×s	pectrum	4 🛛		
Spectrum Ref Level 10.00	Spectrum 2 dBm Offset		pectrum 3 RBW 100 kH		pectrum	4 🛛		
Ref Level 10.00 Att 20	dBm Offset	12.00 dB 🔵		z	pectrum	4 🛛		
Ref Level 10.00	dBm Offset	12.00 dB 🔵	RBW 100 kH	z z Mode	Auto FFT	4 🕱		
Ref Level 10.00 Att 20	dBm Offset	12.00 dB 🔵	RBW 100 kH	z z Mode		4 🕱	2.4	0.02 dBm
Ref Level 10.00 Att 20	dBm Offset : 0 dB SWT :	12.00 dB 🔵	RBW 100 kH	z z Mode	Auto FFT	4 🛛		
Ref Level 10.00 Att 20 1Pk View 0 0 dBm D1 0.02	dBm Offset : 0 dB SWT :	12.00 dB 🔵	RBW 100 kH	z z Mode	Auto FFT	4 🛛		0.02 dBm 75970 GHz
Ref Level 10.00 Att 20 1Pk View	dBm Offset : 0 dB SWT :	12.00 dB 🔵	RBW 100 kH	z z Mode	Auto FFT	4 8		0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View 0 0 dBm D1 0.02 -10 dBm 0 0	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 🔵	RBW 100 kH	z z Mode	Auto FFT	4 8		0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View 0 0 dBm D1 0.02 -10 dBm 0 0	dBm Offset : 0 dB SWT :	12.00 dB 🔵	RBW 100 kH	z z Mode	Auto FFT	4 8		0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View 0 0 dBm D1 0.02 -10 dBm 0 0	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 🔵	RBW 100 kH	z z Mode	Auto FFT	4 8		0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 21 1Pk View D1 0.02 -10 dBm D1 0.02 -20 dBm D2 D2 -30 dBm D2 D2	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 🔵	RBW 100 kH	z z Mode	Auto FFT	4 8		0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View D1 0.02 -10 dBm D2	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 🔵	RBW 100 kH	z z Mode	Auto FFT			0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View 01 0.02 -10 dBm D1 0.02 -20 dBm D2 -30 dBm -40 dBm -40 dBm -40 dBm	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 🔵	RBW 100 kH	z z Mode	Auto FFT			0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 21 1Pk View D1 0.02 -10 dBm D1 0.02 -20 dBm D2 D2 -30 dBm D2 D2	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 227.5 μs 100 μs	RBW 100 kH	z z Mode	Auto FFT			0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View 01 0.02 -10 dBm D1 0.02 -20 dBm D2 -30 dBm -40 dBm -40 dBm -40 dBm	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 227.5 μs 100 μs	RBW 100 kH	z z Mode	Auto FFT			0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View D1 0.02 -10 dBm D1 0.02 -20 dBm D2 D2 -30 dBm D2 D3 D4 -50 dBm D2 D3 D4 D4	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 227.5 μs 100 μs	RBW 100 kH	z z Mode	Auto FFT		2.4	0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View D1 0.02 -10 dBm D2 D2 -30 dBm D2 D2 -50 dBm D2 D3	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 227.5 μs 100 μs	RBW 100 kH	z z Mode	Auto FFT		2.4	0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View 0 dBm D1 0.02 -10 dBm D2 -30 dBm D2 -30 dBm D2 -50 dBm D2 -70 dBm D2 -70 dBm D2	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 227.5 μs 100 μs	RBW 100 kH	z z Mode	Auto FFT		2.4	0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View D1 0.02 -10 dBm D1 0.02 -20 dBm D2 D2 -30 dBm D2 D3 D4 -50 dBm D2 D3 D4 D4	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 227.5 μs 100 μs	RBW 100 kH	z z Mode	Auto FFT		2.4	0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View 0 dBm 0.10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -80 dBm	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 227.5 μs 100 μs	RBW 100 kH		Auto FFT			0.02 dBm +75970 GHz 60.10 dBm +00000 GHz
Ref Level 10.00 Att 20 1Pk View D1 0.02 -10 dBm D1 0.02 -20 dBm D2 -30 dBm D2 -50 dBm D2 -70 dBm -80 dBm -80 dBm -80 dBm	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB 227.5 μs 100 μs	RBW 100 kH		Auto FFT			0.02 dBm 75970 GHz 60.10 dBm
Ref Level 10.00 Att 20 1Pk View 0 0 dBm D1 0.02 -10 dBm D2 -30 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB • 227.5 µs •	RBW 100 kH	z Mode Ma	Auto FFT	M2 ••••••••••••••••••••••••••••••••••••	Span 2	0.02 dBm F75970 GHz
Ref Level 10.00 Att 20 1Pk View 0 dBm D1 0.02 -10 dBm D2 -20 dBm D2 -30 dBm D2 -30 dBm D2 -30 dBm D2 -30 dBm -02 -80 dBm -02 -80 dBm -02 -80 dBm -02 -80 dBm -02 -70 dBm -10 -80 dBm -10 -90 dBm -10 <	dBm Offset : 0 dB SWT : 20 dBm	12.00 dB • 227.5 μs •	RBW 100 kH VBW 300 kH	z Mode Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	Auto FFT	M2 ••••••••••••••••••••••••••••••••••••		0.02 dBm F75970 GHz
Ref Level 10.00 Att 20 1Pk View D1 0.02 -10 dBm D1 0.02 -20 dBm D2 D1 0.02 -30 dBm D2 D1 0.02 -30 dBm -02 D1 0.02 -30 dBm -02 D1 0.02 -30 dBm -02 D1 0.02 -70 dBm -02 -03 D1 0.02 -70 dBm -02 -03 D2 -04 D2 -04 -70 dBm -02 -03 D2 -04 D3 D4 -04 D4 D4	dBm Offset : 0 dB SWT : 20 dBm 	12.00 dB 227.5 μs 227.5 μs 10.00 μs	RBW 100 kH VBW 300 kH 100 kH	z z Mode M3 1111 1117 M3 1117 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	Auto FFT	M2 ••••••••••••••••••••••••••••••••••••	Span 2	0.02 dBm F75970 GHz
Ref Level 10.00 Att 20 1Pk View 0 dBm D1 0.02 -10 dBm D2 -30 dBm D2 -70 dBm D2 -80 dBm D2 -90 Ref Trc M1 1	dBm Offset : 0 dB SWT : 20 dBm 	12.00 dB • 227.5 μs • 1111 • 1111 • 1111 • • • • • • • • •	RBW 100 kH VBW 300 kH	z z Mode M3 1111 1117 M3 1117 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	Auto FFT	M2 ••••••••••••••••••••••••••••••••••••	Span 2	0.02 dBm F75970 GHz

Page 84 of 136

Low Channel Spectrum 2 S Spectrum 3 S Spectrum 4 S Ref Level 10.00 dBm Offset 13.00 dB RBW 100 kHz Att 20 dB SWT 240 ms VBW 300 kHz Mode Auto Sweep • IPk View M1[1] -50.51 d	20 dB SWT 24.7 ms 👄 '	VBW 300 kHz Mode	•	
			•	
0 dBm 1.00240 GHz -10 dBm -10 dBm -20 dBm D1 -21.590 dBm -30 dBm -10 dBm -40 dBm -10 dBm -50 dBm -10 dBm -60 dBm -10 dBm -70 dBm -10 dBm		M1[1]		
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -10				
-20 dBm 01 -21.590 dBm -30 dBm -30 dBm -40 dBm -30 dBm -50 dBm -30 dBm -70 dBm -30 dBm -80 dBm -30 dBm -90 dBm -30 dBm -90 dBm -30 dBm -90 dBm -30 dB -10 dBm -30 dBm -20 dBm -10 -21.590 dBm				
-20 dBm 01 -21.590 dBm -30 dBm -30 dBm -40 dBm -30 dBm -50 dBm -30 dBm -70 dBm -30 dBm -80 dBm -30 dBm -80 dBm -30 dBm -80 dBm -30 dBm -80 dBm -30 dBm -90 dBm -30 dBm -10 dBm -30 dBm -10 dBm -30 dBm -20 dBm -12 .590 dBm				
-30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -90				
-30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -90	D1 -21 590 dBm			
-40 dBm				
-50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10				
-50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10				
M1 M1 M1 -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm Start 30.0 MHz Stop 2.5 G Low Channel -70 dBm -70 dBm -70 dBm -70 dBm 0 dBm -10 dBm -70 dBm -20 dBm 01 -21.590 dBm				
1000 month and the production of the top of				
-70 dBm -80 dBm -10	M1			
-70 dBm -80 dBm -10	กระหรับคุณหนูโรงกระโญโรมระมงระจากจะสาวสะหรับสาวสะราย	Hulling hundred and the advantation	Multhematerstermetallereration	hate we have be had the free
Start 30.0 MHz 1001 pts Stop 2.5 G Low Channel Low Channel Spectrum 2 (X) Spectrum 3 (X) Spectrum 4 (X) Ref Level 10.00 dBm Offset 13.00 dB RBW 100 kHz Mode Auto Sweep Att 20 dB SWT 240 ms VBW 300 kHz Mode Auto Sweep 15.7950 (X) 15.7950 (X) 0 dBm 0 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
Start 30.0 MHz 1001 pts Stop 2.5 G Low Channel Low Channel Spectrum 2 (x) Spectrum 3 (x) Spectrum 4 (x) Ref Level 10.00 dBm Offset 13.00 dB RBW 100 kHz Att 20 dB SWT 240 ms VBW 300 kHz Mode Auto Sweep • 1Pk View • 1Pk View • 10 dBm • 11 -21.590 dBm • 11 -21.590 dBm • 11 -21.590 dBm • 11 - 21.590 dBm				
Low Channel Spectrum Spectrum 3 Spectrum 4 Spect				
Low Channel Spectrum Spectrum 3 Spectrum 4 Spect				
Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Spectrum	I.O MHz	1001 pts		Stop 2.5 GHz
Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Spectrum		Low Channel		
Ref Level 10.00 dBm Offset 13.00 dB RBW 100 kHz Att 20 dB SWT 240 ms YBW 300 kHz Mode Auto Sweep • 1Pk View • 1Pk View • 111 1 • 50.51 d • 15.7950 d • 0 dBm -10 dBm • 0 dBm -20 dBm • 01 -21.590 dBm • 0 dBm • 0 dBm • 0 dBm • 0 dBm				
Att 20 dB SWT 240 ms VBW 300 kHz Mode Auto Sweep • 1Pk View • 1Pk View • 10 dBm • 1			pectrum 4 💌	(\
0 dBm .10 dBm	20 dB SWT 240 ms 👄 '		Auto Sweep	
0 dBm 10 dBm	w	M1	[1]	-50.51 dBn
-10 dBm [1 -21.590 dBm [2 -20 dBm [2 -21.590 dBm] [2 -21.590 dBm [2 -21.590 dBm] [2 -21.590 dBm [2 -21.590 dBm] [2 -21.590 dBm] [2 -21.590 dBm]]			I	15.7950 GH
-20 dBm D1 -21.590 dBm D1 -21.590 dBm				
D1 -21.590 dBm				
D1 -21.590 dBm				
-30 dBm	D1 -21.590 dBm	+ + +		
-40 dBm		+ +		
M1		м1		
-50 dBm M1		المربعالها بالمستاد ومعقو المعلوم المعالي المعارية المحالين	alterne	
ular warden faller a second character and the second of th	Winderform	Wheeline with a little and the second s	· · · · · · · · · · · · · · · · · · ·	AN LANDON Journ of the ord and the ord
-70 dBm		1 1 1		
		++		
-80 dBm-				
Start 2.5 GHz 1001 pts Stop 26.5 G				
Low Channel		1001 pts		Stop 26.5 GHz

Spectru	n st	ectrum 2	: ∞[s	pectrum 3	X s	pectrum -	4 🛛		
Ref Leve Att	el 10.00 dBr 20 d			RBW 100 k VBW 300 k					
● 1Pk View		5 3141	24.7 ms 🥃	4044 300 K	nz Mode	Auto Swee	þ		
-					М	1[1]			-57.77 dBm
						I	I	1	939.30 MHz
0 dBm——									
10 10-									
-10 dBm—									
-20 dBm									
-20 0611	D1 -20.940) dBm							
-30 dBm—									
00 0.0									
-40 dBm—									
-50 dBm—	<u> </u>								
			M1						
ungelinger	hteretry	WWW.WWWW	where we are the	erthally all all all all all all all all all	Juditer	10 margaret strand	ngolanthandhaith	hot when the second	warmaniterran tillikk
		ľ							
-70 dBm—	+								
-80 dBm—	+								
Start 30.0) MHz			1001	pts			St	op 2.5 GHz
Spectru		ectrum 2		Middle Spectrum 3	× s	Spectrum -	4 🕱		
Ref Leve Att	el 10.00 dBr 20 d	m Offset	13.00 dB 😑		N S				
Ref Leve	el 10.00 dBr 20 d	m Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode		p	20 d0 m	
Ref Leve Att	el 10.00 dBr 20 d	m Offset	13.00 dB 😑	pectrum 3 RBW 100 k	N S		p -50	.38 dBm 910 GHz	
Ref Leve Att	el 10.00 dBr 20 d	m Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode		p -50		
Ref Leve Att 1Pk View	el 10.00 dBr 20 d	m Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode		p -50		
Ref Leve Att 1Pk View	el 10.00 dBr 20 d	m Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode		p -50		
Ref Leve Att 1Pk View 0 dBm -10 dBm	el 10.00 dBr 20 d	m Offset B SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode		p -50		
Ref Leve Att 1Pk View 0 dBm -10 dBm	el 10.00 dBr 20 d	m Offset B SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode		p -50		
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm	el 10.00 dBr 20 d	m Offset B SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode		p -50		
Ref Leve Att 1Pk View 0 dBm -10 dBm	el 10.00 dBr 20 d	m Offset B SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode		p -50		
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	el 10.00 dBr 20 d	m Offset B SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode		p -50		
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm	el 10.00 dBr 20 d	m Offset B SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode		p -50		
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D1 -20.940	m Offset B SWT	13.00 dB • 240 ms •	Spectrum 3 RBW 100 k VBW 300 k	8 S	Auto Swee	-50 15.8	910 GHz	
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D1 -20.940	m Offset B SWT	13.00 dB • 240 ms •	Spectrum 3 RBW 100 k VBW 300 k	8 S	Auto Swee	-50 15.8	910 GHz	
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	D1 -20.940	m Offset B SWT	13.00 dB • 240 ms •	Spectrum 3 RBW 100 k VBW 300 k	8 S	Auto Swee	-50 15.8	910 GHz	
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D1 -20.940	m Offset B SWT	13.00 dB • 240 ms •	Spectrum 3 RBW 100 k VBW 300 k	8 S	Auto Swee	-50 15.8	910 GHz	
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	D1 -20.940	m Offset B SWT	13.00 dB • 240 ms •	Spectrum 3 RBW 100 k VBW 300 k	8 S	Auto Swee	-50 15.8	910 GHz	
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	D1 -20.940	m Offset B SWT	13.00 dB • 240 ms •	Spectrum 3 RBW 100 k VBW 300 k	8 S	Auto Swee	-50 15.8	910 GHz	
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	D1 -20.940	m Offset B SWT	13.00 dB • 240 ms •	Spectrum 3 RBW 100 k VBW 300 k	8 S	Auto Swee	-50 15.8	910 GHz	
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	D1 -20.940	m Offset B SWT	13.00 dB • 240 ms •	Spectrum 3 RBW 100 k VBW 300 k	8 S	Auto Swee	-50 15.8	910 GHz	
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -80 dBm	10.00 dBr 20 d 20 d 0	m Offset B SWT	13.00 dB • 240 ms •	Spectrum 3 RBW 100 k VBW 300 k		Auto Swee	-50 15.8	910 GHz	
Ref Leve Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	10.00 dBr 20 d 20 d 0	m Offset B SWT	13.00 dB • 240 ms •	Spectrum 3 RBW 100 k VBW 300 k		Auto Swee	-50 15.8	910 GHz	₽ 26.5 GHz

Spectrum		ectrum 2		Spectrur		Spectrum	4 🗶		
	10.00 dBm			RBW 10 VBW 30		- Auto Cures	_		
● Att ●1Pk View	20 dB	SWT	24.7 ms (VBW 30	JU KH2 M IOQ	e Auto Swee	p		
					r	41[1]			-58.65 dBm
						1	I	1	12930 GHz
0 dBm									
-10 dBm									
00 40									
-20 dBm	D1 -20.240	dBm =							
-30 dBm									
-50 abiii									
-40 dBm									
-50 dBm-									
				M1					
NEAR RADIE	nd part of the state of the sta	htter	Human Lations of the	howwww.		hours and	how the two Martin	phy-path, and plath	har white the second
material a state				ju ju	- Profile Contraction (1990)				
-70 dBm									
-80 dBm									
Start 30.0 i	MHz			1	001 pts			St	op 2.5 GHz
				Hig	h Channel				
Spectrum	Sp	ectrum 2	X		n 3 🗴	Spectrum	4 🛛		
Spectrum Ref Level	10.00 dBm	ectrum 2 Offset		Higi Spectrur RBW 10	n 3 🛞	Spectrum	4 🗴		
Ref Level Att		Offset	13.00 dB (Spectrur	n 3 🛞	Spectrum e Auto Swee			
Ref Level	10.00 dBm	Offset	13.00 dB (Spectrur	n 3 🛞 10 kHz 10 kHz Mode	-	p	39 dBm	
Ref Level Att	10.00 dBm	Offset	13.00 dB (Spectrur	n 3 🛞	-	p -50	.39 dBm 950 GHz	▽
Ref Level Att	10.00 dBm	Offset	13.00 dB (Spectrur	n 3 🛞 10 kHz 10 kHz Mode	-	p -50		₹
Ref Level Att 1Pk View	10.00 dBm	Offset	13.00 dB (Spectrur	n 3 🛞 10 kHz 10 kHz Mode	-	p -50		₹
Ref Level Att 1Pk View	10.00 dBm	Offset	13.00 dB (Spectrur	n 3 🛞 10 kHz 10 kHz Mode	-	p -50		
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB (Spectrur	n 3 🛞 10 kHz 10 kHz Mode	-	p -50		
Ref Level Att 1Pk View 0 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB (Spectrur	n 3 🛞 10 kHz 10 kHz Mode	-	p -50		
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB (Spectrur	n 3 🛞 10 kHz 10 kHz Mode	-	p -50		
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB (Spectrur	n 3 🛞 10 kHz 10 kHz Mode	-	p -50		
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB (Spectrur	n 3 🛞 10 kHz 10 kHz Mode	-	p -50		
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB (Spectrur	n 3 🛞 10 kHz 10 kHz Mode	-	p -50		
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Bm	13.00 dB 240 ms	Spectrur RBW 10 VBW 30	n 3 (X) 10 kHz Mode M1[1]	a Auto Swee	-50 15.7	950 GHz	
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Bm	13.00 dB 240 ms	Spectrur RBW 10 VBW 30	n 3 (X) 10 kHz Mode M1[1]	a Auto Swee	-50 15.7	950 GHz	
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	10.00 dBm 20 dB	Bm	13.00 dB 240 ms	Spectrur RBW 10 VBW 30	n 3 (X) 10 kHz Mode M1[1]	a Auto Swee	-50 15.7	950 GHz	
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Bm	13.00 dB 240 ms	Spectrur RBW 10 VBW 30	n 3 (X) 10 kHz Mode M1[1]	a Auto Swee	-50 15.7	950 GHz	
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm	10.00 dBm 20 dB	Bm	13.00 dB 240 ms	Spectrur RBW 10 VBW 30	n 3 (X) 10 kHz Mode M1[1]	a Auto Swee	-50 15.7	950 GHz	
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	10.00 dBm 20 dB	Bm	13.00 dB 240 ms	Spectrur RBW 10 VBW 30	n 3 (X) 10 kHz Mode M1[1]	a Auto Swee	-50 15.7	950 GHz	
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	10.00 dBm 20 dB	Bm	13.00 dB 240 ms	Spectrur RBW 10 VBW 30	n 3 (X) 10 kHz Mode M1[1]	a Auto Swee	-50 15.7	950 GHz	
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm	10.00 dBm 20 dB	Bm	13.00 dB 240 ms	Spectrur RBW 10 VBW 30	n 3 (X) 10 kHz Mode M1[1]	a Auto Swee	-50 15.7	950 GHz	
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -80 dBm	10.00 dBm 20 dB 1 -20.240 d	Bm	13.00 dB 240 ms	Spectrun RBW 10 VBW 30 	M1	a Auto Swee	-50 15.7	950 GHz	
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	10.00 dBm 20 dB 1 -20.240 d	Bm	13.00 dB 240 ms	Spectrun RBW 10 VBW 30 	n 3 (X) 10 kHz Mode M1[1]	a Auto Swee	-50 15.7	950 GHz	₩ ▼ 9 26.5 GHz

Spectrum		ectrum 2		Spectrum 3		Spectrum 4	4 🗙		
	10.00 dBm			RBW 100 k					
● Att ●1Pk View	20 dB	SWT	24.7 ms 🦷	VBW 300 k	Hz Mode	Auto Sweep	0		
JIFK VIGW					м	1[1]		-	53.86 dBn
									72150 GH
0 dBm									- Marken (
									• vii
-10 dBm									
-20 dBm	D1 -19.980	i dBm							
-30 dBm									
-40 dBm									
-50 dBm						MI			
						T T			
	with	لماجير البرويين والإيران		Haddamada Probabi	A PLANUAR OF	La Marine Mar		turnun hallen wer	million and
10-00-00				0100404	A we like word of the	- Marrieller	A month		
-70 dBm									
-80 dBm									
So dom									
Start 30.0	MHz			1001	l pts			Sto	p 2.5 GHz
Spectrum		ectrum 2	x s		g Mode	Spectrum 4	4 🛞		
Att 🛛	Sp 1 10.00 dBm 20 dB		13.00 dB 🥃	Hoppin Spectrum 3 RBW 100 k VBW 300 k	Hz	Spectrum 4 Auto Sweep			
Ref Level	10.00 dBm	Offset :	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Sweep			
Ref Level Att	10.00 dBm	Offset :	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	-			49.69 dBn
Ref Level Att 1Pk View	10.00 dBm	Offset :	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Sweep			
Ref Level Att	10.00 dBm	Offset :	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Sweep			49.69 dBn
Ref Level Att 1Pk View	10.00 dBm	Offset :	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Sweep			49.69 dBn
Ref Level Att 1Pk View 0 dBm	10.00 dBm	Offset :	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Sweep			49.69 dBn
Ref Level Att 1Pk View 0 dBm	10.00 dBm	Offset : SWT	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Sweep			49.69 dBn
Ref Level Att 1Pk View 0 dBm	1 10.00 dBm 20 dB	Offset : SWT	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Sweep			49.69 dBn
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	1 10.00 dBm 20 dB	Offset : SWT	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Sweep			49.69 dBn
Ref Level Att 1Pk View 0 dBm	1 10.00 dBm 20 dB	Offset : SWT	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Sweep			49.69 dBn
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	1 10.00 dBm 20 dB	Offset : SWT	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Sweep			49.69 dBn
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	1 10.00 dBm 20 dB	Offset : SWT	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Mode	Auto Sweep			49.69 dBn
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	D1 -19.980	dBm	13.00 dB 🥃	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweep			49.69 dBn 5.8190 GH;
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	D1 -19.980	dBm	13.00 dB 🥃	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweep			49.69 dBn 5.8190 GH;
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	D1 -19.980	dBm	13.00 dB 🥃	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweep			49.69 dBn 5.8190 GH;
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	D1 -19.980	dBm	13.00 dB 🥃	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweep			49.69 dBn 5.8190 GH;
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	D1 -19.980	dBm	13.00 dB 🥃	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweep			49.69 dBn 5.8190 GH;
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	D1 -19.980	dBm	13.00 dB 🥃	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweep			49.69 dBn 5.8190 GH;
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	D1 -19.980	dBm	13.00 dB 🥃	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweep			49.69 dBn 5.8190 GH;
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	D1 -19.980	dBm	13.00 dB 🥃	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweep			49.69 dBn 5.8190 GH;
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	D1 -19.980	dBm	13.00 dB 🥃	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweep			49.69 dBn 5.8190 GH;
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	D1 -19.980	dBm	13.00 dB 🥃	Spectrum 3 RBW 100 k VBW 300 k	M1	Auto Sweep		1.	49.69 dBn 5.8190 GH;

12.5.2 Test data for 2 Mbps

Spectrun	n Spe	ctrum 2	🔍 🔊 SI	pect <mark>r</mark> um 3	3 X) s	pectrum 4	4 🗶		
Ref Leve Att	10.00 dBm 20 dB	Offset 1 SWT		RBW 100 k VBW 300 k		od-				
● 1Pk View	20 00	3111	57.9 µз 🚽	V D VY 300 K		oue	Auto FFT			
						M1	l[1]			58.79 dBm
0 dBm									2.40	00000 GHz
o abiii	D1 -1.910 dB	m		/	W.					
-10 dBm										
-20 dBm	D2 -21.9	210 dBm								
		910 GBII								
-30 dBm					++	\rightarrow				
10.15				4	A.					
-40 dBm					1 1					
-50 dBm				2	۰ ۱	m				
SS upm	Ι Τ	_	N			} [
LEQUER BUT ANY	www.	ᢣᡅᠻᢦᢦᡡᠵᠵ	n nangarini	in .		- \v\	w. Maybarac	why how	www	ᡔᡳᠣ ^ᠰ ᢦᡃᠺᡶᠬᢧᢦᢧᠼ
	· · · · · · ·	.40								
-70 dBm										
-80 dBm	++									
CF 2.402 (GHz			1001	1 pts				Span	20.0 MHz
Co.o. atmus			<u> </u>	Low C						Ē
	10.00 dBm		.2.00 dB 😑	pectrum 3 RBW 100 k	B X	S	pectrum 4	4 🗴		
-		Offset 1	.2.00 dB 😑	pectrum 3	B X	S	pectrum 4 Auto FFT	4 🛞		
Ref Leve Att	10.00 dBm	Offset 1	.2.00 dB 😑	pectrum 3 RBW 100 k	KHz) SI		4 🛞	2 44	-0.84 dBm
Ref Leve Att	10.00 dBm 20 dB	Offset 1 SWT	.2.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	KHz) SI	Auto FFT	4 (8)	2.44	
Ref Leve Att	10.00 dBm	Offset 1 SWT	.2.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ MA) SI	Auto FFT	4 8	2.44	-0.84 dBm
Ref Leve Att	10.00 dBm 20 dB	Offset 1 SWT	.2.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ MA) SI	Auto FFT	4 8	2.44	-0.84 dBm
Ref Leve Att 1Pk View	1 10.00 dBm 20 dB	Offset 1 SWT	.2.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ MA) SI	Auto FFT	4 8	2.44	-0.84 dBm
Ref Leve Att 1Pk View	10.00 dBm 20 dB	Offset 1 SWT	.2.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ MA) SI	Auto FFT	4 8	2.44	-0.84 dBm
Ref Leve ▲ Att ● 1Pk View ∩ dBm -10 dBm -20 dBm	1 10.00 dBm 20 dB	Offset 1 SWT	.2.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ MA) SI	Auto FFT	4 (8)	2.44	-0.84 dBm
Ref Leve Att 1Pk View	1 10.00 dBm 20 dB	Offset 1 SWT	.2.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	M1) SI	Auto FFT	4 8	2.44	-0.84 dBm
Ref Leve ▲ Att ● 1Pk View ∩ dBm -10 dBm -20 dBm	1 10.00 dBm 20 dB	Offset 1 SWT	.2.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ MA) SI	Auto FFT	4 8	2.44	-0.84 dBm
Ref Leve ▲ Att ● 1Pk View 1 dBm -10 dBm -20 dBm -30 dBm	1 10.00 dBm 20 dB	Offset 1 SWT	.2.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k) SI	Auto FFT	4 8	2.44	-0.84 dBm
Ref Leve ▲ Att ● 1Pk View 1 dBm -10 dBm -20 dBm -30 dBm	1 10.00 dBm 20 dB	Offset 1 SWT	.2.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k		M1	Auto FFT	4 (8)	2.44	-0.84 dBm
Ref Leve Att ● 1Pk View -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	D1 -0.840 dB	Offset 1 SWT	2.00 dB • 37.9 μs •	Pectrum 3 RBW 100 k VBW 300 k		M1	Auto FFT			-0.84 dBm 11600 GHz
Ref Leve Att ● 1Pk View -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 10.00 dBm 20 dB	Offset 1 SWT	2.00 dB • 37.9 μs •	Pectrum 3 RBW 100 k VBW 300 k		M1	Auto FFT		2.44	-0.84 dBm 11600 GHz
Ref Leve Att ● 1Pk View □ dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm 50 dBm	D1 -0.840 dB	Offset 1 SWT	2.00 dB • 37.9 μs •	Pectrum 3 RBW 100 k VBW 300 k		M1	Auto FFT			-0.84 dBm 11600 GHz
Ref Leve Att ● 1Pk View -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	D1 -0.840 dB	Offset 1 SWT	2.00 dB • 37.9 μs •	Pectrum 3 RBW 100 k VBW 300 k		M1	Auto FFT			-0.84 dBm 11600 GHz
Ref Leve Att ● 1Pk View □ 1Pk View -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	D1 -0.840 dB	Offset 1 SWT	2.00 dB • 37.9 μs •	Pectrum 3 RBW 100 k VBW 300 k		M1	Auto FFT			-0.84 dBm 11600 GHz
Ref Leve Att ● 1Pk View □ dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm 50 dBm	D1 -0.840 dB	Offset 1 SWT	2.00 dB • 37.9 μs •	Pectrum 3 RBW 100 k VBW 300 k		M1	Auto FFT			-0.84 dBm 11600 GHz
Ref Leve Att ● 1Pk View ● 1Pk View □ dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -80 dBm	D1 -0.840 de	Offset 1 SWT	2.00 dB • 37.9 μs •	Pectrum 3 RBW 100 k VBW 300 k		M1	Auto FFT			-0.84 dBm 11600 GHz
Ref Leve Att ● 1Pk View □ 1Pk View -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	D1 -0.840 de	Offset 1 SWT	2.00 dB • 37.9 μs •	Pectrum 3 RBW 100 k VBW 300 k		M1	Auto FFT			-0.84 dBm 11600 GHz

Spectrum Ref Level 1	Spe	ectrum 2	× i	Spectrum 3	🔍 🔍 S	pectrum 4	4 🕱		
	10.00 dBm	Offset 1	.2.00 dB 🧉	RBW 100 ki	Hz				(*
● Att ●1Pk View	20 dB	SWT	37.9 µs 🧉	• VBW 300 ki	Hz Mode	Auto FFT			
FIR HER					м	1[1]		-	60.37 dBm
							I	2.48	35000 GHz
0 dBm D1	1 -0.520 d	Bm 		- and	٧_				
10 -10				ſ	}				
-10 dBm									
-20 dBm		 							
		1.520 dBm 							
-30 dBm									
					L .				
-40 dBm					۹ 				
					h				
-50 dBm				+					
			بر _ ا	ا لامل	_	~~~			
-BQ.dBmp-~~~	man	programmer.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			www.	ᢣᢛ᠋ᢤᠬᢞᠬᢧᢇᡇ᠊	www.	work have
-70 dBm									
-90 dem-									
-80 dBm									
CF 2.48 GHz				1001	pts			Span	20.0 MHz
					1 1				
				High C					
Spectrum		ectrum 2		Spectrum 3		pectrum 4	4 🗙		
Ref Level 1 Att	10.00 dBm 20 dB			 RBW 100 kł VBW 300 kł 		Auto FFT			
●1Pk View			- crio po	- 1011 000 1.	nouc	Autonn			
					M	3[1] M3			0.18 dBm
0 dBm D 1	1 0.180 de	Bm	talti filmilar	udaatu ka Li Ji Ki ka ninini	Difficturate/M	ALADUIN DU			76160 GHz 60.70 dBm
			A HUUUN						00.70 ubm
-10 dBm							1	2.4	00000 GHz
-10 dBm			^{ra} rry Navau	րիայունակությո	un na la la contra da contra d			2.4	
-10 dBm	—D2 -19	.820 dBm-		17100 p. 11.00 (1000 (1000)		n de la constante de la constan La constante de la constante de		2.4	
-20 dBm	—D2 -19	.820 dBm		77900 pr.000 cl.000 treat				2.4	
	—D2 -19	.820 dBm—						2.4	
-20 dBm	—D2 -19	.820 dBm—						2.4	
-20 dBm	—D2 -19	.820 dBm—						2.4	
- 20 dBm	—D2 -19						M2		
-20 dBm		.820 dBm					M2	2.4	
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm							M2		00000 GHz
-20 dBm -30 dBm -40 dBm -50 dBm			1 ¹¹ 1710 				12 M2 Malayfranan		00000 GHz
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm			1 ¹¹ 171-1111.1111.11111111111111111111111				M2 M2		00000 GHz
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm							M2 M2	uiper gament and	00000 GHz
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -80 dBm -80 dBm -6F 2.441 GH:	www.y wob		1 ¹¹ 171 () () () () () () () () () () () () ()		pts		M2 M2	uiper gament and	00000 GHz
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -80 dBm CF 2.441 GH: Marker	where yout	mered med for the second					¥j.	ر بینی روینیوی Span 2	00000 GHz مىربىلېمىلىغامارىچ 200.0 MHz
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -80 dBm -80 dBm CF 2.441 GH: Marker Type Ref	\/ ///////////////////////////////////	M հայտվիծեստ X-value 2	e	Y-value -60.70 dB	Func m		¥j.	uiper gament and	00000 GHz مىربىلېمىلىغامارىچ 200.0 MHz
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -80 dBm -80 dBm CF 2.441 GH: Marker Type Ref M1 M2	#+#∿⊷	سطرائی مریا بسطرائی ک−value 2 2.48	.4 GHz 35 GHz	Y-value -60.70 dB -60.06 dB	Func m m		¥j.	ر بینی روینیوی Span 2	00000 GHz مىربىلېمىلىغامارىچ 200.0 MHz
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -80 dBm -80 dBm CF 2.441 GH: Marker Type Ref	\/ ///////////////////////////////////	سطرائی مریا بسطرائی ک−value 2 2.48	e	Y-value -60.70 dB	Func m m		¥j.	ر بینی روینیوی Span 2	00000 GHz مىربىلېمىلىغامارىچ 200.0 MHz

Spectrum		ectrum 2		pectrum 3		Spectrum ·	4 🗶		
Ref Level Att	10.00 dBm 20 dB			RBW 100 k VBW 300 k		Auto Swee	р		
●1Pk View									
					м	1[1]			58.25 dBm 39.30 MHz
0 dBm									
-10 dBm-									
-20 dBm	D1 -21.910	dBm							
	01 -21,910	abiii							
-30 dBm									
-40 dBm									
-50 dBm									
-30 UBIII			M1						
				h when we have			and and the star wall we		
WE CALLAND WITH	արորվություններ	«Իսփիվը ա իսխավի		o corrections and the first of the second se	antaninan kantordh	here the the termination of terminatio of termination of termination of te		worderferentieteren	n menterer an andre
-70 dBm									
-80 dBm									
Start 30.0	MHz			1001	l pts			Sta	p 2.5 GHz
				Low C	hannel				
Spectrum	Spe	ectrum 2	x			Spectrum	4 X		
Spectrum Ref Level	10.00 dBm	ectrum 2 Offset		Low C pectrum 3 RBW 100 k	: X 5	Spectrum	4 🗴		
Ref Level Att			13.00 dB 😑	pectrum 3	Hz S	Spectrum - Auto Swee			⊽
Ref Level	10.00 dBm	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode				(▼ 50.77 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			
Ref Level Att	10.00 dBm	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			50.77 dBm
Ref Level Att 1Pk View 0 dBm	10.00 dBm	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			50.77 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			50.77 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			50.77 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm	Offset SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			50.77 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			50.77 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			50.77 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			50.77 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 240 ms 	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.77 dBm 7.8810 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 240 ms 	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.77 dBm 7.8810 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 240 ms 	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.77 dBm 7.8810 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 240 ms 	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			50.77 dBm 7.8810 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 240 ms 	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.77 dBm 7.8810 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 240 ms 	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.77 dBm 7.8810 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 240 ms 	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.77 dBm 7.8810 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 240 ms 	Spectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.77 dBm 7.8810 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 240 ms 	ipectrum 3 RBW 100 k vBW 300 k	EX S	Auto Swee		1	50.77 dBm 7.8810 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	10.00 dBm 20 dB	Offset SWT	13.00 dB 240 ms 	Spectrum 3 RBW 100 k VBW 300 k	EX S	Auto Swee		1	50.77 dBm 7.8810 GHz

Spectrum	ר ז Sp	ectrum 2	🗴 SI	pectrum 3	× × 5	Spectrum -	4 🗶		
	10.00 dBm			RBW 100 k					
● Att ●1Pk View	20 dB	SWT	24.7 ms 👄	VBW 300 k	Hz Mode	Auto Swee	0		
					м	1[1]		-	58.15 dBm
								9	59.00 MHz
0 dBm									
-10 dBm									
-20 dBm—	D1 -20.840	l dBm =====							
-30 dBm									
-40 dBm									
-50 dBm									
			M1						
69 ස් ඩ හාසංස්	. Maluadicate United and La	Matelonia	Marter Lines Ward	www.	l la Mali la Mali II.	a	h. Mahilukana kil	ki Antika malaa ana ana	the hard barren to a
o/t.//with.no.utt.o.1	bill or her and most second	1			adadha n-denfin annea	three firth . John o . one	ի մ առձերիստով	lo I to of one in othero.	in a state of the second s
-70 dBm									
-80 dBm									
Start 30.0	MHz			1001	l pts			Sto	p 2.5 GHz
					Channel				Ē
	10.00 dBm		13.00 dB 😑	pectrum 3 RBW 100 k	Hz S	Spectrum			
Ref Level Att		Offset 1	13.00 dB 😑	pectrum 3	Hz S	pectrum - Auto Swee			⊽
Ref Level	10.00 dBm	Offset 1	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode				(⊽ 50.35 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset 1	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			, ,
Ref Level Att	10.00 dBm	Offset 1	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.35 dBm
Ref Level Att 1Pk View 0 dBm	10.00 dBm	Offset 1	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.35 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset 1	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.35 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	1 10.00 dBm 20 dB	Offset 1 SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.35 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm	Offset 1 SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.35 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	1 10.00 dBm 20 dB	Offset 1 SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.35 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	1 10.00 dBm 20 dB	Offset 1 SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.35 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	1 10.00 dBm 20 dB	Offset 1 SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.35 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	1 10.00 dBm 20 dB	Offset 1 SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.35 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	1 10.00 dBm 20 dB	Offset 1 SWT	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.35 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.35 dBm 7.8570 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.35 dBm 7.8570 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			50.35 dBm 7.8570 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.35 dBm 7.8570 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.35 dBm 7.8570 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.35 dBm 7.8570 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.35 dBm 7.8570 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			50.35 dBm 7.8570 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	10.00 dBm 20 dB 20 dB	dBm	13.00 dB • 240 ms •	ABW 100 k VBW 300 k	EX S	Auto Swee		17	50.35 dBm 7.8570 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	10.00 dBm 20 dB 20 dB	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	EX S	Auto Swee		17	50.35 dBm 7.8570 GHz

Spectrum	٦ Sp	ectrum 2	×s	pectrum 3	× × 5	Spectrum 4	4 🗶		
	10.00 dBm			RBW 100 k					
● Att ●1Pk View	20 dB	SWT	24.7 ms 😑	VBW 300 k	Hz Mode	Auto Sweep)		
JIFK VICW					м	1[1]		-	57.95 dBm
							1		09230 GHz
0 dBm									
-10 dBm-									
-20 dBm	D1 -20.520	dBm=====							
-30 dBm									
-40 dBm									
50 db									
-50 dBm				M1					
eo do de lu	10 Water water	n an I Anatania a di	مى مەربىيە يەر يەر يەر يەر يەر يەر يەر يەر يەر ي	ahungana mulan		المعادية المعالية	الما سيس أيقل مؤسس		ا بر میلاند.
1967 All Albelle Annaber	w	alle all alle and and		Window Waldy	and the second	and the second	www.hympypypypypypy	eohondolitika antara	1. Aldano, clinational .
-70 dBm									
, o ubiii—									
-80 dBm									
00 0.0									
Start 30.0	MHz			1001	l pts			Sto	p 2.5 GHz
Spectrum	n Sp	ectrum 2	a s		Channel	Spectrum 4	4 (8)		
Att	n Sp I 10.00 dBm 20 dB		L3.00 dB 😑	High C pectrum 3 RBW 100 k VBW 300 k	Hz S	Auto Sweep			
Ref Level	10.00 dBm	Offset 1	L3.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Sweep			
Ref Level Att	10.00 dBm	Offset 1	L3.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	-			(▼ 49.18 dBm 5.7950 GHz
Ref Level Att	10.00 dBm	Offset 1	L3.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset 1	L3.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset 1	L3.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	1 10.00 dBm 20 dB	Offset 1	L3.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm	Offset 1	L3.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att IPk View O dBm -10 dBm -20 dBm	1 10.00 dBm 20 dB	Offset 1	L3.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	1 10.00 dBm 20 dB	Offset 1	L3.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	1 10.00 dBm 20 dB	Offset 1	L3.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att IPk View O dBm -10 dBm -20 dBm	1 10.00 dBm 20 dB	Offset 1	L3.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 10.00 dBm 20 dB	Offset 1	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 10.00 dBm 20 dB	Offset 1	13.00 dB • 240 ms •	pectrum 3 RBW 100 k	Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 10.00 dBm 20 dB	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Mode	Auto Sweep			49.18 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -80 dBm	D1 -20.520	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	M1	Auto Sweep		1.	49.18 dBm 5.7950 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	D1 -20.520	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	M1	Auto Sweep		1.	49.18 dBm

Spectrum		ectrum 2		pectrum 3		Spectrum 4	4 🗙		
	10.00 dBm			RBW 100 k					
● Att ●1Pk View	20 dB	SWT	24.7 ms 🖷	VBW 300 k	Hz Mode	Auto Sweep	p		
					M	1[1]		-	51.18 dBm
						I	I	1.	72150 GHz
0 dBm									ին Մ
-10 dBm-									
00.15									
-20 dBm	D1 -19.820	dBm							
00 d0									
-30 dBm									
-40 dBm									
-40 00111									
-50 dBm-						M1			
So abili						I I			
15th Guad Betrack	Independent of the street from		har with the open	1	wh M. astance to be to	the rest of the second se		Hiphingenal Walter	hup-lifet-sur
- 40 - 40 - W	vi H. Mode. (h	and the best of the		(AUG and Unit	and the sound of the			International and	
-70 dBm-									
-80 dBm-									
Start 30.0	MH2			1001	 nts				p 2.5 GHz
30010 30.0	1112			1001	r prs			510	p 2.0 driz
Spectrum		ectrum 2		pectrum 3		Spectrum 4	4 8		
Ref Level Att	1 Spo 10.00 dBm 20 dB	Offset	13.00 dB 😑		Hz	Spectrum « Auto Sweej			
Ref Level	10.00 dBm	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			
Ref Level Att	10.00 dBm	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	-			49.81 dBm 5.7470 GHz
Ref Level Att	10.00 dBm	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.81 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.81 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.81 dBm
Ref Level Att 1Pk View 0 dBm	10.00 dBm 20 dB	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.81 dBm
Ref Level Att 1Pk View 0 dBm	10.00 dBm	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	10.00 dBm 20 dB	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.81 dBm
Ref Level Att 1Pk View 0 dBm	10.00 dBm 20 dB	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBm 20 dB	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	10.00 dBm 20 dB	Offset	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D1 -19.820	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweej			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D1 -19.820	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweej			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D1 -19.820	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Swee			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D1 -19.820	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweej			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	D1 -19.820	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweej			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D1 -19.820	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweej			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	D1 -19.820	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweej			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	D1 -19.820	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweej			49.81 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -80 dBm	D1 -19.820	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweej		1.	49.81 dBm 5.7470 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	D1 -19.820	dBm	13.00 dB • 240 ms •	Pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweej		1.	49.81 dBm

12.5.3 Test data for 3 Mbps

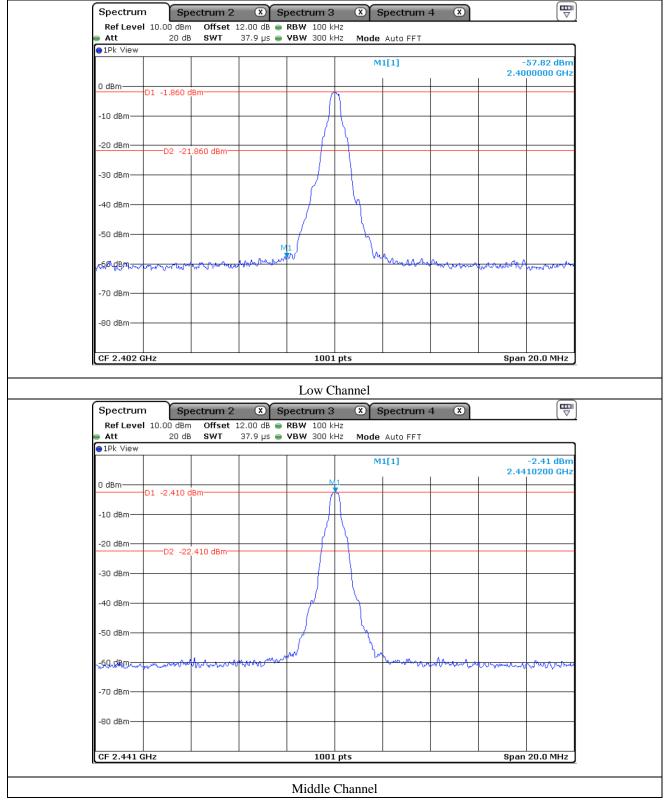
Spectrum		ctrum 2		pectrum 3		Spectrum	4 🗴		
Ref Level Att	10.00 dBm 20 dB	Offset 1 SWT		RBW 100 k VBW 300 k		e Auto FFT			
● 1Pk View	20 00		сно µз 🖷		-				
					l I	M1[1]			55.80 dBm 00000 GHz
0 dBm	D1 -1.490 dB							2.40	
	DI -1.490 UB	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		phr -	14				
-10 dBm				+ - (-	$\left \right $				
-20 dBm									
-20 ubiii	D2 -21.4	490 dBm							
-30 dBm				$\left \right $	$\left \right $				
-40 dBm				1/					
-50 dBm				N	L W				
oo abiii			N.	41 X (}				
~dp,dBrA ^Q ~~	www.www	ᠵᢣ᠆ᡙᠵᡟᠰ	N Vananda	/W		Www.www.w	howwww	www.	man
-70 dBm									
-80 dBm									
CF 2.402 G	Hz		I	100	l pts		I	Span	20.0 MHz
				Low C	Channel				_
Spectrum		ctrum 2		pectrum 3	3 X	Spectrum	4 X		
Ref Level	10.00 dBm		L2.00 dB 😑	pectrum 3 RBW 100 k	KHz		4 X		
-		Offset 1	L2.00 dB 😑	pectrum 3	KHz KHZ KHZ Mode	e Auto FFT	4 🗷		,
Ref Level Att	10.00 dBm	Offset 1	L2.00 dB 😑	pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ Mod		4 🗷	2.44	-0.72 dBm 11600 GHz
Ref Level Att 1Pk View	10.00 dBm	Offset 1 SWT	L2.00 dB 😑	pectrum 3 RBW 100 k VBW 300 k	KHz KHZ KHZ Mode	e Auto FFT	4 🗷	2.44	-0.72 dBm
Ref Level Att 1Pk View O dBm	10.00 dBm 20 dB	Offset 1 SWT	L2.00 dB 😑	pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ Mod	e Auto FFT	4 8	2.44	-0.72 dBm
Ref Level Att 1Pk View	10.00 dBm 20 dB	Offset 1 SWT	L2.00 dB 😑	pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ Mod	e Auto FFT	4 8	2.44	-0.72 dBm
Ref Level Att IPk View	10.00 dBm 20 dB	Offset 1 SWT	L2.00 dB 😑	pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ Mod	e Auto FFT	4 8	2.44	-0.72 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	10.00 dBm 20 dB	Offset 1 SWT	L2.00 dB 😑	pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ Mod	e Auto FFT	4 8	2.44	-0.72 dBm
Ref Level Att IPk View	10.00 dBm 20 dB	Offset 1 SWT	L2.00 dB 😑	pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ Mod	e Auto FFT	4 8	2.44	-0.72 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBm 20 dB	Offset 1 SWT	L2.00 dB 😑	pectrum 3 RBW 100 k VBW 300 k	KHZ KHZ Mod	e Auto FFT	4 8	2.44	-0.72 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	10.00 dBm 20 dB	Offset 1 SWT	L2.00 dB 😑	pectrum 3 RBW 100 k VBW 300 k	Hz Mod	e Auto FFT	4 8	2.44	-0.72 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBm 20 dB	Offset 1 SWT	L2.00 dB 😑	pectrum 3 RBW 100 k VBW 300 k	Hz Mod	e Auto FFT	4 8	2.44	-0.72 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Offset 1 SWT	12.00 dB 37.9 μs 37.9	Pectrum 3 RBW 100 k VBW 300 k	Hz Mod	e Auto FFT	4 8	2.44	-0.72 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Offset 1 SWT	L2.00 dB 😑	Pectrum 3 RBW 100 k VBW 300 k	Hz Mod	e Auto FFT	4 (X)	2.44	-0.72 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm	10.00 dBm 20 dB	Offset 1 SWT	12.00 dB 37.9 μs 37.9	Pectrum 3 RBW 100 k VBW 300 k	Hz Mod	e Auto FFT		2.44	-0.72 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Offset 1 SWT	12.00 dB 37.9 μs 37.9	Pectrum 3 RBW 100 k VBW 300 k	Hz Mod	e Auto FFT		2.44	-0.72 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm	10.00 dBm 20 dB	Offset 1 SWT	12.00 dB 37.9 μs 37.9	Pectrum 3 RBW 100 k VBW 300 k	Hz Mod	e Auto FFT		2.44	-0.72 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	10.00 dBm 20 dB	Offset 1 SWT	12.00 dB 37.9 μs 37.9	Pectrum 3 RBW 100 k VBW 300 k	Hz Mod	e Auto FFT		2.44	-0.72 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	D1 -0.720 dB	Offset 1 SWT	12.00 dB 37.9 μs 37.9	Pectrum 3 RBW 100 k VBW 300 k	Hz Mod	e Auto FFT			-0.72 dBm

Spectrum	Í Sn	ectrum 2	× s	pectrum 3	X S	Spectrum -	4 🗴		
Ref Level 1			_	RBW 100 k		pectrum	- U		(v
Att	20 dB			VBW 300 k		Auto FFT			
●1Pk View				1		1[1]			59.97 dBm
					191	1[1]			39.97 uBm 35000 GHz
	L -0.750 d	Bm			<u>м</u>				
				h n	μ μ				
-10 dBm				+	\square				
-20 dBm	—D2 -20	 .750 dBm==		+					
-30 dBm									
-40 dBm									
				IN	W				
-50 dBm					\vdash				
				part	\	M1			
c\$Q/dBarowerd	ՠՠՠՠ	ᢞᠾᢦᢏᡘᡁ^ᢍ᠋᠋ᢦᠱᠣᢪ	Նոփն ուտ շր			- when the first	ᠰᠣᢦ᠊ᡃᡟᡊᡌᡃᡰᡥᡆ	www.	hand the form
70 40-									
-70 dBm									
en dere									
-80 dBm									
CF 2.48 GHz				1001	pts			Span	20.0 MHz
Spectrum		ectrum 2		pectrum 3	× 5	Spectrum -	4 🗶]		
Ref Level 1 Att	10.00 dBm. 20 dB			RBW 100 k VBW 300 k		Auto FFT			('
					Hz Mode	Auto FFT			
Att					Hz Mode	Auto FFT 3[1] M	3	2.4	0.13 dBm
Att 1Pk View		SWT 2			Hz Mode	3[1]	3		0.13 dBm 79960 GHz 59.66 dBm
Att 1Pk View 0 dBm D1	20 dB	SWT 2			Hz Mode	3[1]	3		0.13 dBm 79960 GHz
Att 1Pk View	20 dB	SWT 2			Hz Mode	3[1]	3		0.13 dBm 79960 GHz 59.66 dBm
Att 1Pk View 0 dBm D1	20 dB	SWT 2			Hz Mode	3[1]	3		0.13 dBm 79960 GHz 59.66 dBm
• Att • 1Pk View • dBm	20 dB	Bm-			Hz Mode	3[1]	3		0.13 dBm 79960 GHz 59.66 dBm
Att 1Pk View 0 dBm 0 D1 -10 dBm	20 dB	Bm-			Hz Mode	3[1]	3		0.13 dBm 79960 GHz 59.66 dBm
• Att • 1Pk View • dBm	20 dB	Bm-			Hz Mode	3[1]	3		0.13 dBm 79960 GHz 59.66 dBm
Att IPk View 0 dBm D1 -10 dBm	20 dB	Bm-			Hz Mode	3[1]	3,		0.13 dBm 79960 GHz 59.66 dBm
Att IPk View D48m D1 O d8m D1 O d8m O d8m O O d8m O O d8m O	20 dB	3 SWT 2	27.5 µs ●		Hz Mode	3[1]		2.4	0.13 dBm 79960 GHz 59.66 dBm 00000 GHz
Att IPk View 0 dBm D1 -10 dBm	20 dB	Bm-	27.5 µs ●		Hz Mode	3[1]	3 , , , , , , , , , , , , , , , , , , ,		0.13 dBm 79960 GHz 59.66 dBm 00000 GHz
Att 1Pk View 0 d8m -10 d8m -20 d8m -30 d8m -40 d8m	20 dB	3 SWT 2	27.5 µs ●		Hz Mode	3[1]		2.4	0.13 dBm 79960 GHz 59.66 dBm 00000 GHz
 Att IPk View 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm 	20 dB	3 SWT 2	27.5 µs ●		Hz Mode	3[1]		2.4	0.13 dBm 79960 GHz 59.66 dBm 00000 GHz
Att 1Pk View 0 d8m -10 d8m -20 d8m -30 d8m -40 d8m	20 dB	3 SWT 2	27.5 µs ●		Hz Mode	3[1]		2.4	0.13 dBm 79960 GHz 59.66 dBm 00000 GHz
Att 1Pk View 0 dBm D1 -10 dBm D1 -20 dBm	20 dB	3 SWT 2	27.5 µs ●		Hz Mode	3[1]		2.4	0.13 dBm 79960 GHz 59.66 dBm 00000 GHz
Att 1Pk View 0 dBm D1 -10 dBm D1 -20 dBm	20 dB ۱ 0.130 dt – D2 -19	3 SWT 2	27.5 µs ●		HZ Mode M	3[1]		- 2.4	0.13 dBm 79960 GHz 59.66 dBm 00000 GHz
Att 1Pk View 0 dBm D1 -10 dBm D1 -20 dBm	20 dB L 0.130 df D2 -19	3m	227.5 μs •	VBW 300 k	HZ Mode M		M2 M2	Span 2	0.13 dBm 79960 GHz
Att IPk View 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm -50 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -80 dBm -70 dBm	20 dB ۱ 0.130 df – D2 -19 , محمد برایاس z Trc	swt 2 Bm		VBW 300 k	HZ Mode M		M2 M2	- 2.4	0.13 dBm 79960 GHz
Att 1Pk View 0 dBm D1 -10 dBm D1 -20 dBm	20 dB 	swt 2 Bm	227.5 µs ●	VBW 300 k	Hz Mode M M M M M M M M M M M M M M M M M M M		M2 M2	Span 2	0.13 dBm 79960 GHz
Att IPk View 0 dBm D1 -10 dBm D1 -20 dBm - -30 dBm - -40 dBm - -50 dBm - -60 vdBm - -70 dBm - -80 dBm - -70 dBm - -70 dBm - -70 dBm - -80 dBm - -70 dBm - <	20 dB ل 0.130 db D2 -19 ریویسرپایاید z <u>Trc </u> 1	swt 2 Bm	227.5 μs	VBW 300 k	Hz Mode M M M M M M M M M M M M M M M M M M M		M2 M2	Span 2	0.13 dBm 79960 GHz
Att 1Pk View 0 dBm D1 -10 dBm D1 -20 dBm	20 dB 	swt 2 Bm	227.5 µs ●	VBW 300 k	Hz Mode M 		M2 M2	Span 2	0.13 dBm 79960 GHz

Spectrum	spe	ectrum 2	× [:	Spectrum 3	x (*)	Spectrum -	4 🗶		
	10.00 dBm			RBW 100 k					
● Att ●1Pk View	20 dB	SWT	24.7 ms 🖷	VBW 300 k	Hz Mode	Auto Swee	p		
					M	1[1]			57.50 dBm
						1	1	1.	.09970 GHz
0 dBm									
-10 dBm									
00 d0									
-20 dBm	D1 -21.490	dBm							
-30 dBm									
-30 UBIII									
-40 dBm									
10 abiii									
-50 dBm									
				M1					
mEQ.01819100000	ht-mathender	Hillimonationality	للمتهمية والمتعاد والمرجع	Had a share with the state of t	at at the Ad Artic as	t. A Plan Lar Hallbody	the states	Hitmpohrandhard	approximation and the second
MM. Roward	A constitution in]	warner	difference - norm and at	wy point in]		
-70 dBm									
-80 dBm									
Start 30.0 i	MHz			1001	l pts			Sto	p 2.5 GHz
				Low C	Channel				
Spectrum	Snd	sctrum 2			Thannel	Spectrum	4 8		Ē
Spectrum Ref Level		ectrum 2 Offset		Spectrum 3	: X :	Spectrum	4 🗴		
Ref Level Att	10.00 dBm 20 dB	Offset	13.00 dB 🥃		Hz X	Spectrum - Auto Swee			
Ref Level	10.00 dBm	Offset	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			
Ref Level Att	10.00 dBm	Offset	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	-			50.16 dBm 5.8670 GHz
Ref Level Att	10.00 dBm	Offset	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.16 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.16 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.16 dBm
Ref Level Att 1Pk View 0 dBm	10.00 dBm	Offset	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm	Offset : SWT	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB 🥃	Spectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB 240 ms	3pectrum 3 RBW 100 k VBW 300 k	X E	Auto Swee 1[1]			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB 240 ms	3pectrum 3 RBW 100 k VBW 300 k	X E	Auto Swee 1[1]			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB D1 -21.490	Offset : SWT	13.00 dB 240 ms	3pectrum 3 RBW 100 k VBW 300 k	X E	Auto Swee 1[1]			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB D1 -21.490	Offset : SWT	13.00 dB 240 ms	Spectrum 3 RBW 100 k	X E	Auto Swee 1[1]			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB D1 -21.490	Offset : SWT	13.00 dB 240 ms	3pectrum 3 RBW 100 k VBW 300 k	X E	Auto Swee 1[1]			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	10.00 dBm 20 dB D1 -21.490	Offset : SWT	13.00 dB 240 ms	3pectrum 3 RBW 100 k VBW 300 k	X E	Auto Swee 1[1]			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB D1 -21.490	Offset : SWT	13.00 dB 240 ms	3pectrum 3 RBW 100 k VBW 300 k	X E	Auto Swee 1[1]			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	10.00 dBm 20 dB D1 -21.490	Offset : SWT	13.00 dB 240 ms	3pectrum 3 RBW 100 k VBW 300 k	X E	Auto Swee 1[1]			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	10.00 dBm 20 dB D1 -21.490	Offset : SWT	13.00 dB 240 ms	3pectrum 3 RBW 100 k VBW 300 k	X E	Auto Swee 1[1]			50.16 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	10.00 dBm 20 dB D1 -21.490	Offset : SWT	13.00 dB 240 ms	Spectrum 3 RBW 100 k VBW 300 k	M1	Auto Swee 1[1]		1.	50.16 dBm 5.8670 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	10.00 dBm 20 dB D1 -21.490	Offset : SWT	13.00 dB 240 ms	3pectrum 3 RBW 100 k VBW 300 k	M1	Auto Swee 1[1]		1.	50.16 dBm

Spectrum	Spe	ectrum 2	×s	pectrum 3	× ×	Spectrum -	4 🗙		
	10.00 dBm			RBW 100 k					
● Att ●1Pk View	20 dB	SWT	24.7 ms 🖷	VBW 300 k	HZ Mode	Auto Sweej	2		
					м	1[1]			57.14 dBm
0 dBm								<u>ç</u>	909.70 MHz
o abiii									
-10 dBm									
-20 dBm-	D1 -20.720	dBm=====							
-30 dBm									
-40 dBm									
-40 0811									
-50 dBm									
			M1						
16Qvd&mart	www.	r.hlevalletrevelyabeth	phatater William	ullenii-seniuluu	Millethanner	1. Alphan and the second	www.	with man of the	www.
]				
-70 dBm									
-80 dBm									
-oo ubiii									
Start 30.0 M	MUN			1001					p 2.5 GHz
51.dFL 30.0 P	MHZ			100.	i pis			511	р 2.5 GHZ
					C1 1				
				Middle	Channel				
Charteum	Server Server	Acteurs 9		Middle	\sim	Pooteum	1		Ē
Spectrum Ref Level	10.00 dBm	ectrum 2 Offset 1		pectrum 3	: X :	Spectrum -	4 🗴		
Ref Level Att		Offset 1	13.00 dB 😑		Hz S	Gpectrum - Auto Swee			
Ref Level	10.00 dBm	Offset 1	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.85 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset 1	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	-			,
Ref Level Att	10.00 dBm	Offset 1	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.85 dBrr
Ref Level Att 1Pk View 0 dBm	10.00 dBm	Offset 1	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.85 dBrr
Ref Level Att 1Pk View	10.00 dBm	Offset 1	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.85 dBrr
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm	Offset 3	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.85 dBrr
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm 20 dB	Offset 3	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.85 dBrr
Ref Level Att 1Pk View 0 dBm -10 dBm	10.00 dBm 20 dB	Offset 3	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.85 dBrr
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBm 20 dB	Offset 3	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.85 dBrr
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	10.00 dBm 20 dB	Offset 3	13.00 dB 😑	pectrum 3 RBW 100 k	Hz Hz Hz Mode	Auto Swee			49.85 dBrr
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB D1 -20.720	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	HZ HZ Mode M	Auto Swee			49.85 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB D1 -20.720	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	HZ HZ Mode M	Auto Swee			49.85 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB D1 -20.720	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k	HZ HZ Mode M	Auto Swee			49.85 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB D1 -20.720	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	HZ HZ Mode M	Auto Swee			49.85 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB D1 -20.720	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	HZ HZ Mode M	Auto Swee			49.85 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	10.00 dBm 20 dB D1 -20.720	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	HZ HZ Mode M	Auto Swee			49.85 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	10.00 dBm 20 dB D1 -20.720	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	HZ HZ Mode M	Auto Swee			49.85 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	10.00 dBm 20 dB D1 -20.720	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	HZ HZ Mode M	Auto Swee			49.85 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	10.00 dBm 20 dB D1 -20.720	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	M1	Auto Swee		1:	49.85 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	10.00 dBm 20 dB D1 -20.720	dBm	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	M1	Auto Swee		1:	49.85 dBm 5.7710 GHz

Spectrum		ectrum 2		pectrum 3		pectrum -	4 🗙		
	10.00 dBm			RBW 100 k VBW 300 k		Auto Curen	_		
● Att ●1Pk View	20 dB	SWT	24.7 ms 🔳	VBW 300 K	H2 MODE	Auto Sweej)		
					м	1[1]			58.11 dBm
						I	1	9	83.70 MHz
0 dBm									
-10 dBm									
00 40									
-20 aBm	D1 -20.750	dBm							
-30 dBm									
-30 abm									
-40 dBm									
-40 ubiii									
-50 dBm									
-30 0611			M:	1					
.,dg.Quciβ.condunad			المرابطة المرابط	÷ aluellehulden hileleeret			6. I I	1	
All Charles And All Andrews	or all and a local thread of the second of the second second second second second second second second second s	hurrad Andreana	po	T. C. O. O. O. O. D. D. D. D. O.	and the second second second	a-di-frontation into	. ooolaan foodooraa	the least and draw as	adhoaran fiich
-70 dBm									
-yo abiii									
-80 dBm									
00 00.00									
Start 30.0	MHz			1001	pts			Sto	p 2.5 GHz
Spectrum	n Spe	ectrum 2	×s	High C pectrum 3		spectrum 4	4 ×		
Att 🗧	n Spe I 10.00 dBm 20 dB		13.00 dB 👄		K) E	opectrum « Auto Sweej			
Ref Level	10.00 dBm	Offset 1	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			
Ref Level Att	10.00 dBm	Offset 1	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	-			49.32 dBm
Ref Level Att	10.00 dBm	Offset 1	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			
Ref Level Att 1Pk View	10.00 dBm	Offset 1	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			49.32 dBm
Ref Level Att 1Pk View	10.00 dBm	Offset 1	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			49.32 dBm
Ref Level Att 1Pk View 0 dBm-	10.00 dBm	Offset 1	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			49.32 dBm
Ref Level Att 1Pk View 0 dBm	1 10.00 dBm 20 dB	Offset 3 SWT	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			49.32 dBm
Ref Level Att 1Pk View 0 dBm	10.00 dBm	Offset 3 SWT	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			49.32 dBm
Ref Level Att 1Pk View 0 dBm	1 10.00 dBm 20 dB	Offset 3 SWT	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			49.32 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	1 10.00 dBm 20 dB	Offset 3 SWT	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			49.32 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm	1 10.00 dBm 20 dB	Offset 3 SWT	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			49.32 dBm
Ref Level Att ● 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm	1 10.00 dBm 20 dB	Offset 3 SWT	13.00 dB 👄	pectrum 3 RBW 100 k	Hz Hz Mode	Auto Swee			49.32 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Offset 3 SWT	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweer			49.32 dBm 5.8430 GHz
Ref Level Att ● Att ● 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	10.00 dBm 20 dB	Offset 3 SWT	13.00 dB • 240 ms •	pectrum 3 RBW 100 k	Hz Hz Mode M	Auto Sweer			49.32 dBm
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweer			49.32 dBm 5.8430 GHz
Ref Level Att ● 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweer			49.32 dBm 5.8430 GHz
Ref Level Att ● Att ● 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweer			49.32 dBm 5.8430 GHz
Ref Level Att ● 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweer			49.32 dBm 5.8430 GHz
Ref Level Att ● 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweer			49.32 dBm 5.8430 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	Hz Hz Mode M	Auto Sweer			49.32 dBm 5.8430 GHz
Ref Level Att 1Pk View 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	10.00 dBm 20 dB	Offset : SWT	13.00 dB • 240 ms •	pectrum 3 RBW 100 k VBW 300 k	M1	Auto Sweer		1.	49.32 dBm 5.8430 GHz



	Spectrun			rum 3	_ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ	pectrum	4 🗶		
RefLevel 10.00 Att 2	dBm Offs 20 dB SW1	et 11.00 (F 24.7 r		/ 100 kHz / 300 kHz	Mode /	Auto Swee	a		
●1Pk View			_						_
				м	1[1]			2.58 di 2400 G	
0 dBm							+		
								h	վես,թ
-10 dBm									
-20 dBm D1 -19.8	370 dBm								
-30 dBm									
-30 0.611									
-40 dBm									
-50 dBm					M1				
	~ <mark>{}</mark>	and the second	the second s	rongainchaile	auna-huirettille	₩₩₩₩₩₩₩₩₩₩₩₩₩	annany tangkala ta	idunini(Juw)	v
-70 dBm									
-, o dbin									
-80 dBm									
Start 30.0 MHz				1001 pt	l ts				 Stop 2.5 Gł
			Н	lopping l	Mode				
Spectrum	Spectrun	n 2 🔇	Const	0					(
opeculuiti j	opecului	nz 🗠	J Speci	rum 3	🗴 Sp	pectrum	4 🗶		
Ref Level 10.00	dBm Offs	et 13.00	dB 👄 RBV	/ 100 kHz					(
RefLevel 10.00 Att 2		et 13.00	dB 👄 RBV			oectrum Auto Swee			l
Ref Level 10.00	dBm Offs	et 13.00	dB 👄 RBV	/ 100 kHz / 300 kHz			-5	0.07 di	Bm
Ref Level 10.00 Att 2 1Pk View	dBm Offs	et 13.00	dB 👄 RBV	/ 100 kHz / 300 kHz	Mode /		-5	0.07 di 2500 G	Bm
RefLevel 10.00 Att 2	dBm Offs	et 13.00	dB 👄 RBV	/ 100 kHz / 300 kHz	Mode /		-5	0.07 di 2500 G	Bm
Ref Level 10.00 Att 2 1Pk View	dBm Offs	et 13.00	dB 👄 RBV	/ 100 kHz / 300 kHz	Mode /		-5	0.07 di 2500 G	Bm
Ref Level 10.00 Att 2 1Pk View 0	dBm Offs	et 13.00	dB 👄 RBV	/ 100 kHz / 300 kHz	Mode /		-5	0.07 df	Bm
Ref Level 10.00 Att 2 1Pk View 0	dBm Offs 20 dB SW1	et 13.00	dB 👄 RBV	/ 100 kHz / 300 kHz	Mode /		-5	0.07 df 2500 G	Bm
Ref Level 10.00 Att 2 1Pk View 2 0 dBm - -10 dBm - -20 dBm D1 -19.8	dBm Offs 20 dB SW1	et 13.00	dB 👄 RBV	/ 100 kHz / 300 kHz	Mode /		-5	0.07 df	Bm
Ref Level 10.00 Att 2 1Pk View 0 0 dBm -10 dBm	dBm Offs 20 dB SW1	et 13.00	dB 👄 RBV	/ 100 kHz / 300 kHz	Mode /		-5	0.07 df	Bm
Ref Level 10.00 Att 2 1Pk View 0 0 dBm - -10 dBm - -20 dBm D1 - 19.8 -30 dBm -	dBm Offs 20 dB SW1	et 13.00	dB 👄 RBV	/ 100 kHz / 300 kHz	Mode /		-5	0.07 dt	Bm
Ref Level 10.00 Att 2 1Pk View 2 0 dBm - -10 dBm - -20 dBm D1 -19.8	dBm Offs 20 dB SW1	et 13.00	dB 👄 RBV	/ 100 kHz / 300 kHz //	Mode /		-5	0.07 dl 2500 G	Bm
Ref Level 10.00 Att 2 1Pk View 0 0 dBm	dBm Offs 20 dB SW1	et 13.00 r Γ 240 r	dB e RBV	V 100 kHz V 300 kHz	Mode /	Auto Swee	-5 16.	2500 G	Bm Hz
Ref Level 10.00 Att 2 1Pk View 0 dBm	dBm Offs 20 dB SW1	et 13.00 r Γ 240 r	dB e RBV	V 100 kHz V 300 kHz	Mode /	Auto Swee	-5 16.	2500 G	Bm Hz
Ref Level 10.00 Att 2 1Pk View 0 0 dBm	dBm Offs 20 dB SW1	et 13.00 r Γ 240 r	dB e RBV	V 100 kHz V 300 kHz	Mode /	Auto Swee	-5 16.	2500 G	Bm Hz
Ref Level 10.00 Att 2 1Pk View 0 dBm -10 dBm -20 dBm 01 -19.8 -30 dBm -40 dBm -50 dBm	dBm Offs 20 dB SW1	et 13.00 r Γ 240 r	dB e RBV	V 100 kHz V 300 kHz	Mode /	Auto Swee	-5 16.	2500 G	Bm Hz
Ref Level 10.00 Att 2 1Pk View 0 dBm -10 dBm -20 dBm 01 -19.8 -30 dBm -40 dBm -50 dBm	dBm Offs 20 dB SW1	et 13.00 r Γ 240 r	dB e RBV	V 100 kHz V 300 kHz	Mode /	Auto Swee	-5 16.	2500 G	Bm Hz
Ref Level 10.00 Att 2 1Pk View 0 dBm -10 dBm -10 dBm -20 dBm D1 -19.8 -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offs 20 dB SW1	et 13.00 r Γ 240 r	dB e RBV	V 100 kHz V 300 kHz	Mode /	Auto Swee	-5 16.	2500 G	Bm Hz
Ref Level 10.00 Att 2 1Pk View 0 dBm -10 dBm -10 dBm -20 dBm D1 -19.8 -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offs 20 dB SW1	et 13.00 r Γ 240 r	dB e RBV	V 100 kHz V 300 kHz	Mode /	Auto Swee	-5 16.	2500 G	Bm Hz
Ref Level 10.00 Att 2 1Pk View 0 0 dBm	dBm Offs 20 dB SW1	et 13.00 r Γ 240 r	dB e RBV	V 100 kHz V 300 kHz	Mode /	Auto Swee	-5 16.	2500 G	Bm Hz
Ref Level 10.00 Att 2 1Pk View 0 0 dBm	dBm Offs 20 dB SW1	et 13.00 r Γ 240 r	dB e RBV	V 100 kHz V 300 kHz	Mode /	Auto Swee	-5 16.	2500 G	Bm Hz
Ref Level 10.00 Att 2 1Pk View 0 dBm -10 dBm -20 dBm 01 -19.8 -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -80 dBm	dBm Offs 20 dB SW1	et 13.00 r Γ 240 r	dB e RBV	V 100 kHz V 300 kHz М	Mode /	Auto Swee	-5 16.	2500 G	Bm Hz

12.6 Test data for conducted emission (Right Side)

12.6.1 Test data for 1 Mbps

