On your side

TEST REPORT

FCC/ISED BT LE Test for MR22GA Certification

APPLICANT LG Electronics Inc.

REPORT NO. HCT-RF-2106-FI013

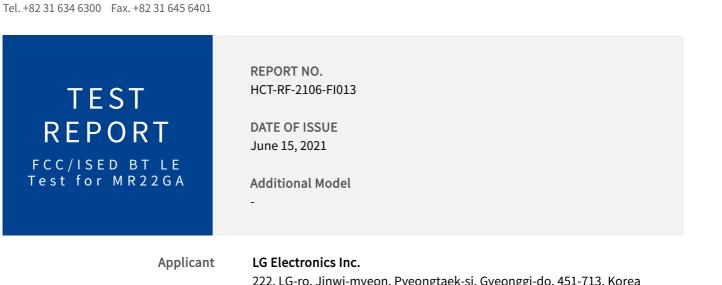
DATE OF ISSUE June 15, 2021

> Tested by Jin Gwan Lee

Mr By

Technical Manager Jong Seok Lee

Accredited by KOLAS, Republic of KOREA


HCT CO., LTD. Bongini Huh BongJai Huh / CEO

HCT CO., LTD.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 F ax. +82 31 645 6401

7		

HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA

	222, LG-10, Jillwi-Illyeoll, Fyeoligtaek-si, Gyeoliggi-do, 451-115, Kolea
Eut Type Model Name	Magic Remote MR22GA
FCC ID IC	BEJMR22GA 2703H-MR22GA
Max. RF Output Power	0.261 dBm (1.06 mW)
Modulation type	GFSK
FCC Classification	Digital Transmission System(DTS)
FCC Rule Part(s)	Part 15.247
ISED Rule Part(s)	RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5_Amendment 2 (February 2021)

The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test results were applied only to the test methods required by the standard.

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	June 15, 2021	Initial Release

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / ISED Rules under normal use and maintenance.

This laboratory is not accredited for the test results marked *.

The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 AND KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA.(HCT Accreditation No.: KT197)

* The report shall not be reproduced except in full(only partly) without approval of the laboratory.

CONTENTS

1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	6
GENERAL TEST PROCEDURES	6
DESCRIPTION OF TEST MODES	7
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS	7
FACILITIES	7
EQUIPMENT	7
5. ANTENNA REQUIREMENTS	8
6. MEASUREMENT UNCERTAINTY	8
7. DESCRIPTION OF TESTS	9
8. SUMMARY TEST OF RESULTS	29
9. TEST RESULT	31
9.1 DUTY CYCLE	31
9.2 DUTY CYCLE CORRECTION	31
9.3 6dB BANDWIDTH & 99 % BANDWIDTH	33
9.4 OUTPUT POWER	39
9.5 POWER SPECTRAL DENSITY	40
9.6 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	43
9.7 RADIATED SPURIOUS EMISSIONS	52
9.8 RADIATED RESTRICTED BAND EDGES	56
9.9 RECEIVER SPURIOUS EMISSIONS	58
10. LIST OF TEST EQUIPMENT	61
11. ANNEX A_ TEST SETUP PHOTO	63

1. EUT DESCRIPTION

Model	MR22GA		
Additional Model	-		
EUT Type	Magic Remote		
Power Supply	DC 3.0 V		
Frequency Range	2 402 MHz – 2 4	480 MHz	
	Peak 1M Bit/s : 0.261 dBm (1.06 mW)		
Max. RF Output Power	Average	1M Bit/s : -0.09 dBm (0.98 mW)	
Modulation Type	GFSK		
Bluetooth Version	4.2		
Number of Channels	40 Channels		
Antenna Specification	Antenna type: PCB Antenna Peak Gain : 2.72 dBi		
Date(s) of Tests	June 07, 2021	~ June 15, 2021	
PMN (Product Marketing Number)	Magic Remote		
HVIN (Hardware Version Identification Number)	MR22GA		
FVIN (Firmware Version Identification Number)	1.0.552.3		
HMN (Host Marketing Name)	N/A		
EUT serial numbers	Radiated: IH11		
Manufacurer	 Conducted :IH115D0440 1. Hansung Electronics Co., LTD Headquarters: 49-29, Cheomdangieop 4-ro, Sandong-myeon, Gumi-si, Gyeongsangbuk-do, Korea Indonesia : Kawasan Industri Batik Lippo Cikarang JI.Palemn 1Block Ds-6, Cibatu, Cikarang Selatan, Bekasi, Jawa Barat, Indonesia 2. OHSUNG Electronics CO.,LTD. Headquarters : 335-4, Sanho-daero, Gumi-si, Gyeongsangbuk-do, KOREA -China : No.188 Tunpu South Road, Qiushe Economic Development Zone, Tongli Town, Wujiang City, Jiangsu Province -Indonesia: JI. Selayar Blok D7 Kawasan Industri MM 2100, Mekarwangi, Cikarang Barat 17845 Jawa Barat, Indonesia -Mexico : CERRADA CENTINELA 1719, PARQUE INDUSTRIAL CACHANILLA, MEXICALI, BAJA CALIFORNIA, MEXICO 21394 		

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C. / RSS-Gen issue 5, RSS-247 issue 2.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

For ISED, test facility was accepted dated February 14, 2019 (CAB identifier: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203 / RSS-Gen(Issue 5) Section 8:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

(1) The antennas of this E.U.T are permanently attached.

(2) The E.U.T Complies with the requirement of § 15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Expanded Uncertainty (±dB)
1.82
3.40
4.80
5.70
5.05

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

EUT Spectrum Ana Coax cable	yzer
--------------------------------	------

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

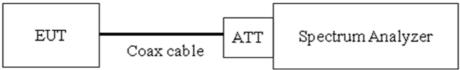
We tested according to the zero-span measurement method, 6.0)b) in KDB 558074 v05r02.

The largest available value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (\geq RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10log(1/Duty Cycle)



7.2. 6dB Bandwidth & 99 % Bandwidth(ISED)

Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 8.2 in KDB 558074 v05r02,

Procedure 11.8.1 in ANSI 63.10-2013)

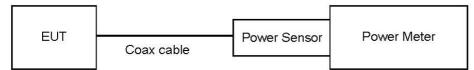
- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Test Procedure (99 % Bandwidth for ISED)

The transmitter output is connected to the spectrum analyzer.

RBW = $1\% \sim 5\%$ of the occupied bandwidth VBW $\Rightarrow 3 \times$ RBW Detector = Peak Trace mode = max hold Sweep = auto couple Allow the trace to stabilize

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.



7.3. Output Power

Limit

The maximum permissible conducted output power is 1 Watt.

Test Configuration

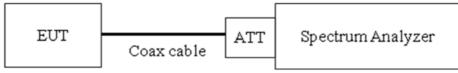
Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.
- Average Power (Procedure 8.3.2.3 in KDB 558074 v05r02, Procedure 11.9.2.3 in ANSI 63.10-2013)
 - 1) Measure the duty cycle.
 - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3) Add 10 $\log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Reading Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Reading Value + ATT loss + Cable loss + Duty Cycle Factor



7.4. Power Spectral Density

Limit

The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3 kHz BW.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

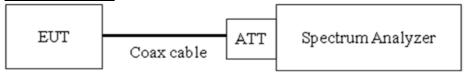
We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013.

The spectrum analyzer is set to :

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set span to at least 1.5 times the OBW.
- 3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple
- 6) Detector = Peak
- 7) Trace mode = max hold
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
 If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

Power Spectral Density = Reading Value + ATT loss + Cable loss



7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions

Limit

The maximum conducted (Peak) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz. [Conducted > 20 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 8.5 in KDB 558074 v05r02, Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points \geq 2 x Span/VBW
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

Factors f	or frequency
-----------	--------------

Freq(MHz)	Factor(dB)
30	20.05
100	20.10
200	20.14
300	20.19
400	20.25
500	20.25
600	20.26
700	20.27
800	20.28
900	20.30
1000	20.35
2000	20.50
2400	20.53
2412	20.55
2437	20.55
2462	20.55
2500	20.54
3000	20.64
4000	20.72
5000	20.79
5700	20.80
5800	20.87
6000	20.88
7000	21.01
8000	21.01
9000	21.09
10000	21.19
11000	21.28
12000	21.37
13000	21.38
14000	21.41
15000	21.51
16000	21.59
17000	21.80
18000	21.93
19000	21.85
20000	21.52
21000	21.65
22000	21.64
23000	21.65
24000 25000	<u>21.66</u> 21.76

Note : 1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Attenuator loss(20dB) + Cable loss

7.6. Radiated Test

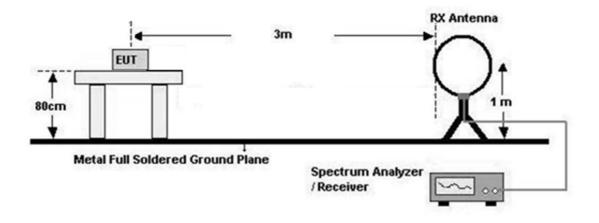
FCC

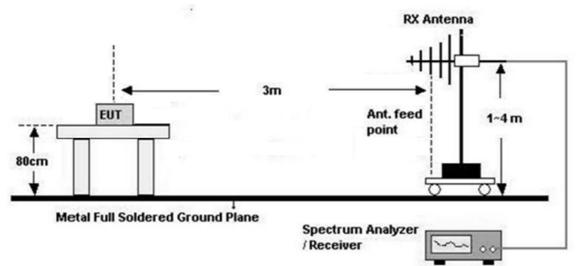
Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30	30	30

ISED

Frequency (MHz)	Field Strength (uA/m)	Measurement Distance (m)
0.009 - 0.490	6.37/F(kHz)	300
0.490 - 1.705	63.7/F(kHz)	30
1.705 – 30	0.08	30

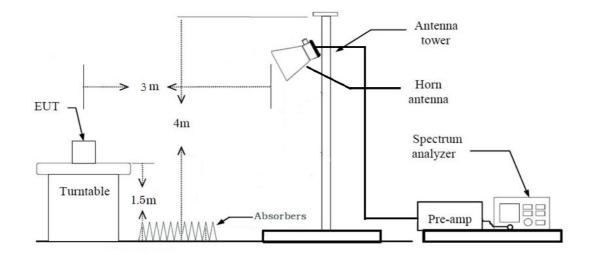
FCC&ISED


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Report No. HCT-RF-2106-FI013

Test Configuration

Below 30 MHz


30 MHz - 1 GHz

Report No. HCT-RF-2106-FI013

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB
 - Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = $40\log(3 \text{ m}/30 \text{ m}) = -40 \text{ dB}$
 - Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW
- 9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz

In general, (1) is used mainly

7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1

9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)

11. Total (Measurement Type : Peak)

= Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance

Factor(D.F)

Total (Measurement Type : Average)

- = Average Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G)
- + Distance Factor(D.F) + Duty Cycle Factor + Duty Cycle Correction Factor

Test Procedure of Radiated Restricted Band Edge

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 2310 MHz \sim 2390 MHz/ 2483.5 MHz \sim 2500 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$
 - Measured Frequency Range : 2310 MHz \sim 2390 MHz/ 2483.5 MHz \sim 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had

the test been performed at 100 percent duty cycle.

- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.

- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total(Measurement Type : Peak
 - = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
 - Total(Measurement Type : Average)
 - = Average Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
 - + Duty Cycle Factor

7.7. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)	
0.50 to 5	56	46	
5 to 30	60	50	

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

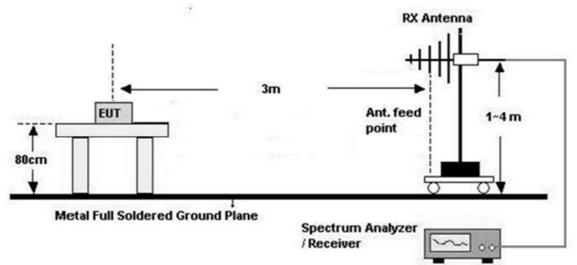
- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

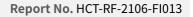
Quasi-peak(Final Result) = Reading Value + Correction Factor

7.8. Receiver Spurious Emissions

Limit


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

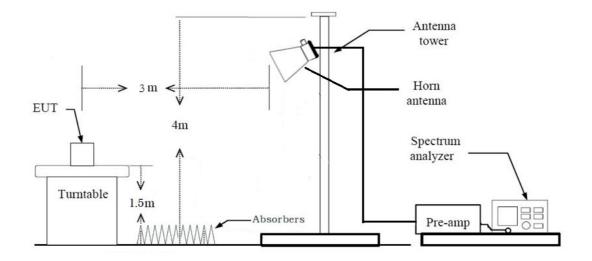
Note:


Measurements for compliance with the limits in table may be performed at distances other than 3 metres.

Test Configuration

30 MHz - 1 GHz

Test Procedure of Receiver Spurious Emissions (Below 1GHz)


- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

Above 1 GHz

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW

- (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW $\geq 1/\tau$ Hz, where τ = pulse width in seconds
 - The actual setting value of VBW = 1 kHz
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

7.9. Worst case configuration and mode

Radiated Test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone
- Worstcase : Stand alone
- 2. EUT Axis:
 - Radiated Spurious Emissions : Y-H
 - Radiated Restricted Band Edge : X-H
- 3. All packet length of operation were investigated and the test results are worst case in lowest

packet length.

(Worst case : 37 Byte)

4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.

- Position : Horizontal, Vertical, Parallel to the ground plane

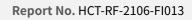
AC Power line Conducted Emissions

1. We don't perform powerline conducted emission test. Because this EUT is used DC.

Conducted test

1. The EUT was configured with packet length of highest power.

(Worst case : 37 Byte)



8. SUMMARY TEST OF RESULTS

FCC Part

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§ 15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Output Power	§ 15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§ 15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§ 15.207	cf. Section 7.7		N/A(#Note1)
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Dedicted	PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS

#Note1 : Not Tested

HCT

Test Description	Test Description ISED Part Test Limit Section(s)		Test Condition	Test Result	
6 dB Bandwidth	RSS-247, 5.2	> 500 kHz		PASS	
99% Bandwidth	RSS-GEN, 6.7	N/A		PASS	
Conducted Maximum Peak Output Power And e.i.r.p.	RSS-247, 5.4.b	< 1 Watt <4 Watt(e.i.r.p.)	Conducted	PASS	
Power Spectral Density	ectral RSS-247, 5.2 < 8 dBm			PASS	
Band Edge(Out of Band Emissions)	RSS-247, 5.5	Conducted > 20 dBc		PASS	
AC Power line Conducted Emissions	RSS-GEN, 8.8	RSS-GEN section 8.8 table 4		N/A(#Note1)	
Radiated Spurious Emissions	RSS-GEN, 8.9			PASS	
Receiver Spurious Emissions	RSS-GEN, 5 RSS-GEN, 7.3	RSS-GEN section 7.3 table 3	Radiated	PASS	
Radiated Restricted Band Edge	RSS-GEN, 8.10	RSS-GEN section 8.10 table 7		PASS	

#Note1 : Not Tested

9. TEST RESULT

9.1 DUTY CYCLE

Data rate	Packet length	T _{on}	T _{total}	Duty Cycle	Duty Cycle Factor
(Bit/s)	(Byte)	(ms)	(ms)		(dB)
1M	37	0.410	0.626	0.656	1.83

9.2 DUTY CYCLE CORRECTION

Worst case) Duty Cycle Correction Factor

- a. T_{total} [ms]= 0.626 ms
- b. Number of hits = $100/T_{total} + 1 = 160$
- c. Wrst case 100ms operation = 0.410 ms
- d. Duty Cycle Correction Factor(DCCF)
 - = 20log (number of hits * (worst case 100ms operation /100ms)) = 3.65 dB

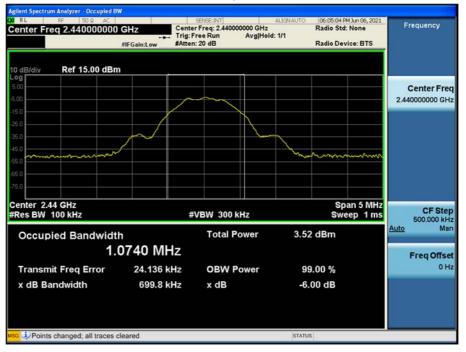
IM Bit/s (37 Byte) Test Plots

enter Freq 2.402000	PNO: East	rig: Free Run Atten: 6 dB	ALIGNAUTO #Avg Type: RMS	06:03:07 PM Jun 06, 2021 TRACE 2 3 4 5 0 TYPE WANNINN DET P. N.N.N.N.N	Frequency
Ref Offset 20.5 D dB/div Ref 15.00 dB			1	۵/Mkr3 625.7 µs 2.12 dB	Auto Tun
500	1∆2	3Δ4] (Center Fre 2.402000000 GH
150					Start Fre 2.402000000 GF
50 50 50	1			ามสารการสารมีหมู่ได้เร็	Stop Fre 2.402000000 GH
enter 2.402000000 GH es BW 8 MHz	lz #VBW 8.	0 MHz	Sweep 1	Span 0 Hz .267 ms (1001 pts)	CF Ste 8.000000 MH Auto Ma
KR MODE TRC SCL 1 Δ2 1 t (Δ) 2 F 1 t		0.18 dB 11.64 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	
3 Δ4 1 t (Δ) 4 F 1 t	625.7 μs (Δ) 3.800 μs -	2.12 dB 11.64 dBm			Freq Offs 0 F

9.3 6dB BANDWIDTH & 99 % BANDWIDTH

FCC

Mode	Channel	6 dB Bandwidth	Limit
(Bit/s)	Channel	(kHz)	(kHz)
1.14	0	679.2	
1M	19	699.8	> 500
37 Byte	39	700.6	




IM Bit/s(37 Byte) Test Plots

RL RF 50 Ω AC enter Freq 2.40200000	0 GHz Cento	SENSE:INT or Freq: 2.402000000 GHz Free Run Avg Hol n: 20 dB	ALIGNAUTO d: 1/1	06:03:18 PM Jun 06, 2021 Radio Std: None Radio Device: BTS	Frequency
dB/div Ref 15.00 dB	m				
29 00 00 50		~			Center Fre 2.402000000 GH
0					
0			1		
o www.www.			~~~~~	Murr Murren	
0					
enter 2.402 GHz tes BW 100 kHz	I	VBW 300 kHz		Span 5 MHz Sweep 1 ms	CF Ste 500.000 kH
Occupied Bandwid	th	Total Power	3.77	7 dBm	Auto Ma
1	.0608 MHz				Freq Offse
Transmit Freq Error	24.476 kHz	OBW Power	99	9.00 %	0 H
x dB Bandwidth	679.2 kHz	x dB	-6.	00 dB	
Deints changed; all traces	: cleared		STATU	s	

6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

Agilent Spectrum Analyzer - Occupied B	W	SENSE:INT	ALIGNAUTO 06:0	5:52 PM Jun 06, 2021	
Center Freq 2.48000000	Trig:	er Freq: 2.480000000 GHz	Radio d: 1/1	o Std: None Device: BTS	Frequency
10 dB/div Ref 15.00 dBr	n		1		
5.00 					Center Fre 2.480000000 GH
-15.0			<u></u>		
45.0			hanner	human	
75.0					
Center 2.48 GHz #Res BW 100 kHz	#	¢VBW 300 kHz		Span 5 MHz Sweep 1 ms	CF Ste 500.000 kH
Occupied Bandwidt		Total Power	3.09 dBr	n	<u>Auto</u> Mi
	1238 MHz				Freq Offs
Transmit Freq Error	52.626 kHz	OBW Power	99.00	6	01
x dB Bandwidth	700.6 kHz	x dB	-6.00 dl	В	
Points changed; all traces	cleared		STATUS		

6 dB Bandwidth plot (High-CH 39)

Report No. HCT-RF-2106-FI013

99 % Bandwidth(ISED)

Mode (Bit/s)	Packet length (Byte)	Channel	99 % Bandwidth (MHz)
	37	0	1.0355
1M		19	1.0526
		39	1.0607

IM Bit/s (37 Byte) Test Plots

RL RF 50Ω AC		SENSE:INT ter Freg: 2.402000000 GHz	ALIGN AUTO 06:03:30 PM Jun 06, 202 Radio Std; None	Frequency
enter Freq 2.402000000	Trig	: Free Run Avg Hold en: 20 dB		
0 dB/div Ref 15.00 dBm				
6 g .00 .00 .50		m		Center Free 2.402000000 GH
5.0	\sim			
5.0 5.0 5.0				
enter 2.402 GHz Res BW 51 kHz		#VBW 150 kHz	Span 5 MH Sweep 1.867 m	
Occupied Bandwidt	'n	Total Power	4.60 dBm	Auto Ma
1.0	0355 MHz			Freq Offse
Transmit Freq Error	29.886 kHz	OBW Power	99.00 %	0 H
x dB Bandwidth	593.6 kHz	x dB	-6.00 dB	

99 % Bandwidth plot (Low-CH 0)

99 % Bandwidth plot (Mid-CH 19)

Agilent Spectrum Analyzer - Occupied BN W RL RF 50.0 AC	N	SENSE:INT	ALIGNAUTO	06:07:04 PM Jun 06, 2021		
Center Freq 2.48000000	Trig:	Center Freq: 2.48000000 GHz Trig: Free Run Avg Hold: 1/1			Frequency	
10 dB/div Ref 15.00 dBm	·					
5.00 -5.00 -15.0		m			Center Free 2.480000000 GH	
-25.0	\sim		~~~			
45.0 55.0			·····	han marine		
750 Center 2.48 GHz #Res BW 51 kHz		≠VBW 150 kHz		Span 5 MHz Sweep 1.867 ms	CF Ste 500.000 kH	
Occupied Bandwidt	^h 0607 MHz	Total Power	3.90	dBm	<u>Auto</u> Ma	
	33.586 kHz	OBW Power	99.	00 %	Freq Offse 0 H	
x dB Bandwidth	554.7 kHz	x dB	-6.0	0 dB		
ISG .			STATUS			

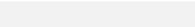
99 % Bandwidth plot (High-CH 39)

9.4 OUTPUT POWER

Peak Power

Data rate	Packet length	LE M	lode	Measured	Limit	
(Bit/s)	(Byte)	Frequency [MHz]	Channel	Power(dBm)	(dBm)	
		2402	0	0.261	30	
1M	37	2440	19	-0.245		
		2480	39	-1.016		

Average Power


Data rate	Packet length	LE M	LE Mode		Duty Cycle Factor	Result	Limit (dBm	
(Bit/s)	(Byte)	Frequency [MHz]	Channel	(dBm)	(dB)	(dBm))	
		2402	0	-1.92	1.83	-0.09		
1M	37	2440	19	-2.35	1.83	-0.52	30	
		2480	39	-3.11	1.83	-1.28		

Note :

1. Power meter offset = Attenuator loss + Cable loss

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

So, 20.55 dB is offset for 2.4 GHz Band.

9.5 POWER SPECTRAL DENSITY

			Test Result			
Frequency (MHz)	Channel No.	Mode (Bit/s)	Measured Power(dBm)	Limit (dBm/3kHz)		
2402	0	1M D:+/-	-13.352			
2440	19	1M Bit/s	-14.896	8		
2480	39	37 Byte	-13.910			

Note :

HCT

1. The PSD measured results in plot is already including the actual values of loss for the attenuator and cable combination.

2. Spectrum offset = Attenuator loss + Cable loss

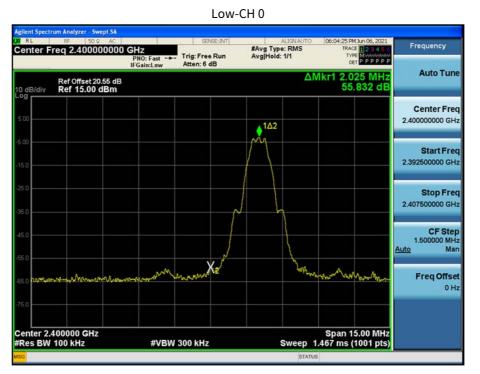
3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 20.55 dB is offset for 2.4 GHz Band.

IM Bit/s (37 Byte) Test Plots

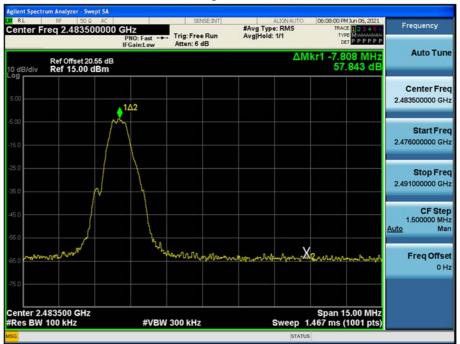
Power Spectral Density (Mid-CH 19)

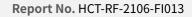
Center F	RF 50 Ω AC req 2.480000000	GHz PNO: Wide	SENSE:INT Trig: Free Run Atten: 6 dB	#Avg Type: Avg Hold: 1		TRAC	M Jun 09, 2021 EE 123455 PE MUNININ ET PINNNN	Fr	equency
10 dB/div	Ref Offset 20.55 dB Ref 5.00 dBm	I Game Gw			Mkr1 2		8 5 GHz 10 dBm		Auto Tun
5.00			1						Center Fre
25.0	Annhananan	and many	MMMMM	MANANA	MMA	MWMM	100 0 0	2.479	Start Fre
35.0 MM 45.0	Amilian					, vi	nalan	2.480	Stop Fr 0576460 GI
55.0								Auto	CF Ste 115.292 k M
75.0								'	Freq Offs 0 I
enter 2.	4800000 GHz					Span 1	.153 MHz		
Res BW		#VBW	9.1 kHz		Sweep		(769 pts)		

Power Spectral Density (High-CH 39)


Report No. HCT-RF-2106-FI013

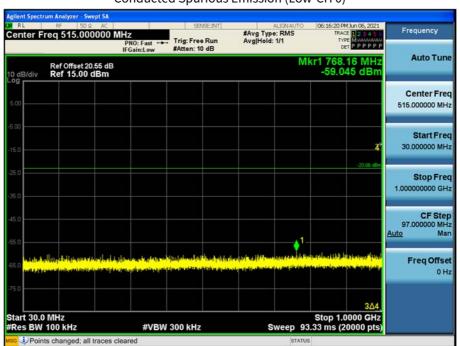
9.6 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS


Test Result : please refer to the plot below. In order to simplify the report, attached plots were only the worst case channel and data rate.

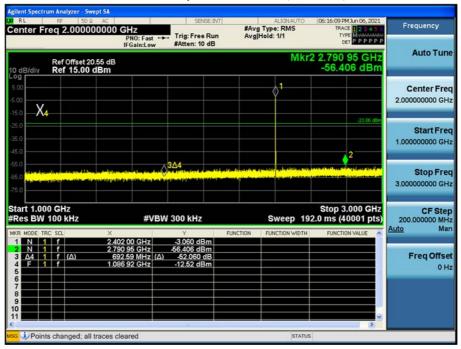


IM Bit/s (37 Byte) Test Plots -BandEdge

High-CH 39



IM Bit/s (37 Byte) Test Plots -Conducted Spurious Emission


30 MHz ~ 1 GHz

Conducted Spurious Emission (Low-CH 0)

1 GHz ~ 3 GHz

Conducted Spurious Emission (Low-CH 0)

밀

비

Page 46 of 63

Report No. HCT-RF-2106-FI013

객

CUSTOMER SECRET

ב

Frequency

Auto Tune

Center Freq 4.00000000 GHz

Start Freq 3.00000000 GHz

Stop Freq 5.00000000 GHz

CF Step 200.000000 MHz to Man

Freq Offset 0 Hz

Ito

lun 06, 20

TYPE MUSEUM

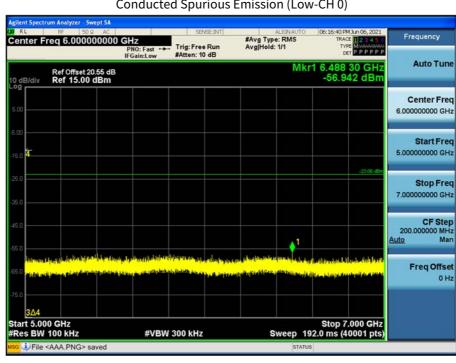
Mkr1 4.803 55 GHz -54.662 dBm

Stop 5.000 GHz Sweep 192.0 ms (40001 pts)

Conducted Spurious Emission (Low-CH 0)

GHz PNO: Fast →→→ IFGain:Low #Atten: 10 dB

#Avg Type: RMS Avg|Hold: 1/1


5 GHz ~ 7 GHz

Start 3.000 GHz #Res BW 100 kHz

Points changed; all traces cleared

Conducted Spurious Emission (Low-CH 0) CHZ PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 10 dB #Avg Type: RMS Avg|Hold: 1/1 Ref Offset 20.55 dB Ref 15.00 dBm

#VBW 300 kHz

3 GHz ~ 5 GHz

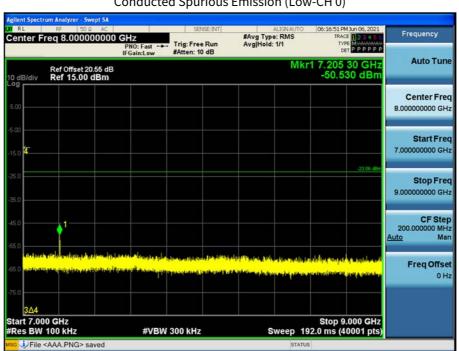
R

Center Freq 4.000000000 GHz

Ref Offset 20.55 dB Ref 15.00 dBm

Page 47 of 63

7 GHz ~ 9 GHz


9 GHz ~ 11 GHz

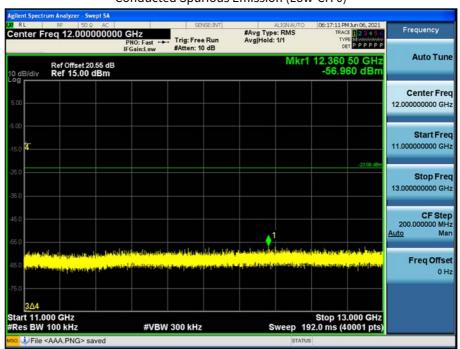
Conducted Spurious Emission (Low-CH 0)

Conducted Spurious Emission (Low-CH 0)

F-TP22-03 (Rev. 03)

	000 GHz PNO: Fast	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold: 1/1	06:17:01 PM Jun 06, 2021 TRACE 2 3 4 5 0 TYPE M	Frequency
	dB	WALLER. TO UD	Mkr	1 9.607 10 GHz -52.793 dBm	Auto Tur
					Center Fre 10.000000000 GF
					Start Fre 9.000000000 GF
				-23.09 dBm	Stop Fre 11.000000000 GF
	∮ ¹				CF Ste 200.000000 MH Auto Ma
nieli chatis probail annie 1 ^{929 – C} harlys Colony (c. c.	l lende alle bendrations de se Service a service alle site services	a coste interferentiere indefere		errorial manufacture and a	Freq Offso 0 ⊦
GHz 00 kHz	4/8/	W 300 kHz	Sween 10	Stop 11.000 GHz 2.0 ms (40001 pts)	
	RF 50.0 A oq 10.000000	rg 10.00000000 GHz PNO: Fast - IFGaint.ow Ref Offset 20.55 dB Ref 15.00 dBm	RF 50.0 AC SEPEENT Iq 10.0000000000 GHz PN0: Fast →→ IFGain:tow Trig: Free Run #Atten: 10 dB Ref Offset 20.55 dB Ref 15.00 dBm	RF SOG_AC ENSPIRE ALIGNATIO Ig 10.000000000 GHz IFGain:Low Trig: Free Run #Atten: 10 dB #Avg Type: RMS Avg Hold: 1/1 Ref Offset 20.55 dB Ref 15.00 dBm Mkr	RF S0.9 AC SEME:INT ALISPAUTO D61:79:01 PM Jan 06, 2021 PN0: Fast PN0: Fast Trig: Free Run #Avg Type: RMS TRACE 10:00000000 PN0: Fast PN0: Fast PN0: Fast PN0: Fast PN0: Fast PN0: Fast Ref Offset 20:55 dB Mkr1 9.607 10 GHz SEME:INT Mkr1 9.607 10 GHz Ref Offset 20:55 dB Offset 20:55 dB SEME:INT SEME:INT Ref Offset 20:55 dB SEME:INT SEME:INT SEME:INT Ref Offset 20:56 dB SEME:INT SEME

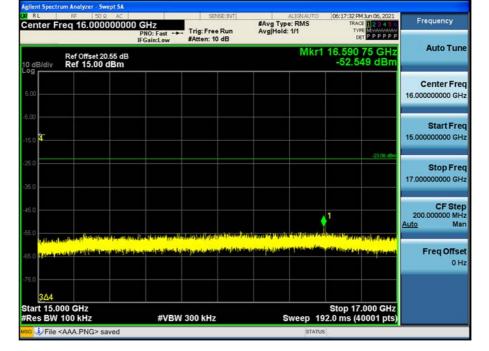
Page 48 of 63


11 GHz ~ 13 GHz

Conducted Spurious Emission (Low-CH 0)

13 GHz ~ 15 GHz

Center Freq 14.000000000 GHz PNO: Fast +++ IFGain:Low #Atten: 10 dB #Avg Type: RMS Avg|Hold: 1/1 DET P P P P P Auto Tune Mkr1 14.953 35 GHz -56.263 dBm Ref Offset 20.55 dB Ref 15.00 dBm Center Freq 14.00000000 GHz Start Freq 13.00000000 GHz Stop Freq 15.00000000 GHz CF Step 200.000000 MHz <u>ato</u> Man Auto Freq Offset 0 Hz Λ.4 Start 13.000 GHz #Res BW 100 kHz Stop 15.000 GHz Sweep 192.0 ms (40001 pts) #VBW 300 kHz File <AAA.PNG> saved



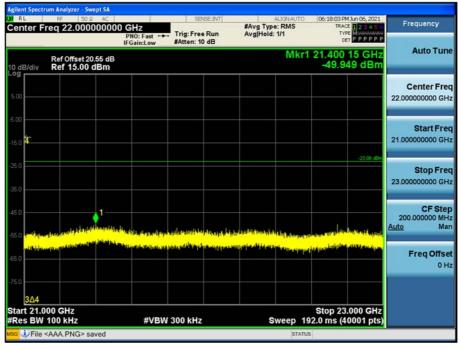
Page 49 of 63

$15~\text{GHz} \sim 17~\text{GHz}$

17 GHz ~ 19 GHz

19 GHz ~ 21 GHz

m Analy


er - Swept Si

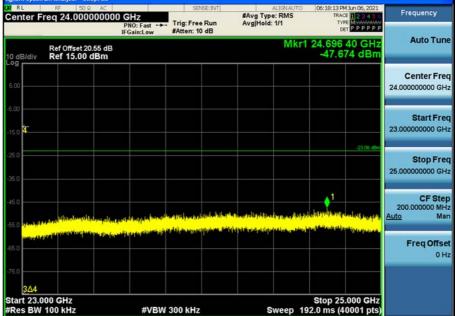
R un 06, 202 Center Freq 20.000000000 GHz PR0: Fast →→→ IFGain:Low #Atten: 10 dB #Avg Type: RMS Avg|Hold: 1/1 Frequency TYPE MULLION Auto Tune Mkr1 20.810 50 GHz -51.551 dBm Ref Offset 20.55 dB Ref 15.00 dBm Center Freq 20.00000000 GHz Start Freq 19.00000000 GHz Stop Freq 21.00000000 GHz CF Step 200.000000 MHz <u>ato</u> Man uto Freq Offset 0 Hz Stop 21.000 GHz Sweep 192.0 ms (40001 pts) Start 19.000 GHz #VBW 300 kHz #Res BW 100 kHz File <AAA.PNG> saved

21 GHz ~ 23 GHz

Report No. HCT-RF-2106-FI013

23 GHz ~ 25 GHz

m Ar


Conducted Spurious Emission (Low-CH 0)

1 Auto Stop 25.000 GHz Sweep 192.0 ms (40001 pts) Start 23.000 GHz #Res BW 100 kHz #VBW 300 kHz File <AAA.PNG> saved

Note:

Limit : -23.06 dBm

9.7 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30MHz

Frequenc y	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB			
No Critical peaks found										

Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

Frequenc y	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB			
No Critical peaks found										

Frequency Range : Below 1 GHz

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

Mode: 1M Bit/s (37 Byte)

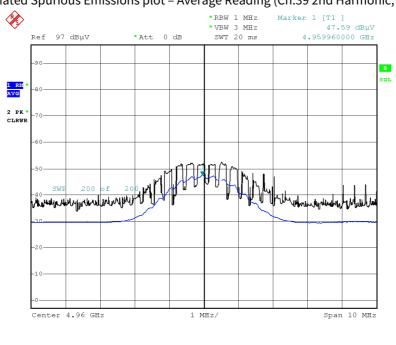
Operation Mode: CH Low

Frequency	Reading	Duty cycle	DCCF Factor	AN.+CL-AMP G	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	Factor	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	51.87	0.00	0.00	2.98	V	54.85	73.98	19.13	PK
4804	45.66	1.83	-3.65	2.98	V	46.82	53.98	7.16	AV
7206	44.68	0.00	0.00	9.57	V	54.25	73.98	19.73	PK
7206	34.97	1.83	-3.65	9.57	V	42.72	53.98	11.26	AV
4804	52.61	0.00	0.00	2.98	Н	55.59	73.98	18.39	PK
4804	46.45	1.83	-3.65	2.98	Н	47.61	53.98	6.37	AV
7206	45.12	0.00	0.00	9.57	Н	54.69	73.98	19.29	PK
7206	35.82	1.83	-3.65	9.57	Н	43.57	53.98	10.41	AV

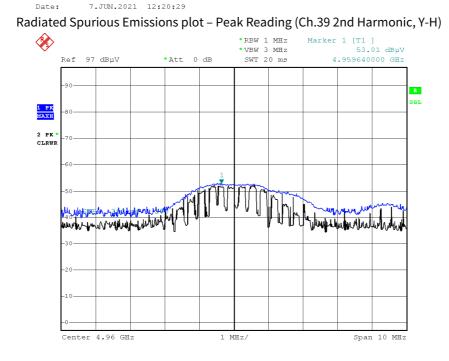
Operation Mode: CH Mid

Frequency	Reading	Duty cycle	DCCF Factor	AN.+CL-AMP G	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	Factor	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4880	50.93	0.00	0.00	3.33	۷	54.26	73.98	19.72	PK
4880	45.45	1.83	-3.65	3.33	۷	46.96	53.98	7.02	AV
7320	45.90	0.00	0.00	10.20	V	56.10	73.98	17.88	PK
7320	36.23	1.83	-3.65	10.20	V	44.61	53.98	9.37	AV
4880	51.73	0.00	0.00	3.33	Н	55.06	73.98	18.92	PK
4880	45.99	1.83	-3.65	3.33	Н	47.50	53.98	6.48	AV
7320	46.01	0.00	0.00	10.20	Н	56.21	73.98	17.77	PK
7320	36.83	1.83	-3.65	10.20	Н	45.21	53.98	8.77	AV

Frequency	Reading	Duty cycle	DCCF Factor	AN.+CL-AMP G	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	Factor	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	52.78	0.00	0.00	2.36	V	55.14	73.98	18.84	PK
4960	46.71	1.83	-3.65	2.36	V	47.25	53.98	6.73	AV
7440	45.26	0.00	0.00	10.72	V	55.98	73.98	18.00	PK
7440	35.16	1.83	-3.65	10.72	V	44.06	53.98	9.92	AV
4960	53.01	0.00	0.00	2.36	Н	55.37	73.98	18.61	PK
4960	47.59	1.83	-3.65	2.36	Н	48.13	53.98	5.85	AV
7440	44.46	0.00	0.00	10.72	Н	55.18	73.98	18.80	PK
7440	35.06	1.83	-3.65	10.72	Н	43.96	53.98	10.02	AV


Operation Mode: CH High

Note: All data Worst case Duty Cycle Correction Factor applied.



IM Bit/s 37 Byte Test Plots

Radiated Spurious Emissions plot – Average Reading (Ch.39 2nd Harmonic, Y-H)

ote:

Date: 7.JUN.2021 12:20:47

Note:

Plot of worst case are only reported.

9.8 RADIATED RESTRICTED BAND EDGES

Mode : 1M Bit/s (37 Byte)

Operating Frequency	
Channel No.	

Frequency	Reading	Duty Cycle Factor	※ A.F.+CL	Ant. Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	19.78	0.00	35.16	Н	54.94	73.98	19.04	PK
2390.0	8.59	1.83	35.16	Н	45.58	53.98	8.40	AV
2390.0	19.37	0.00	35.16	V	54.53	73.98	19.45	PK
2390.0	8.55	1.83	35.16	V	45.54	53.98	8.44	AV

2402 MHz

0

Operating Frequency
Channel No.

2480	MHz
39	

Frequency	Reading	Duty Cycle Factor	※ A.F.+CL	Ant. Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2483.5	20.47	0.00	35.36	Н	55.83	73.98	18.15	PK
2483.5	8.70	1.83	35.36	Н	45.88	53.98	8.10	AV
2483.5	20.16	0.00	35.36	V	55.52	73.98	18.46	PK
2483.5	8.66	1.83	35.36	V	45.85	53.98	8.13	AV

Mode : 1M Bit/s (37yte) Test Plots

Radiated Restricted Band Edges plot – Average Reading (Ch.39, H)

Radiated Restricted Band Edges plot – Peak Reading (Ch.39, H)

Note:

Plot of worst case are only reported.

9.9 RECEIVER SPURIOUS EMISSIONS

Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

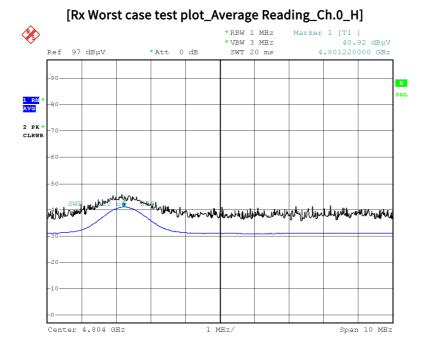
Frequency Range : Above 1 GHz

-Ch.0-

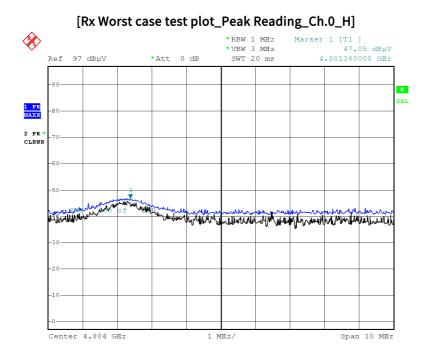
Frequency	Reading	AN.+CL-AMP G	Ant. POL	Total	Limit	Margin	Dotoct
MHz	dBuV	[dB]	(H/V)	[dBuV/m]	dBuV/m	dB	Detect
4804	45.00	2.98	V	47.98	73.98	26.00	PK
4804	37.02	2.98	V	40.00	53.98	13.98	AV
4804	47.05	2.98	Н	50.03	73.98	23.95	PK
4804	40.92	2.98	Н	43.90	53.98	10.08	AV

-Ch.19-

Frequency	Reading	AN.+CL-AMP G	Ant. POL	Total	Limit	Margin	Detect
MHz	dBuV	[dB]	(H/V)	[dBuV/m]	dBuV/m	dB	Detect
4880	43.92	3.33	V	47.25	73.98	26.73	PK
4880	35.12	3.33	V	38.45	53.98	15.53	AV
4880	45.82	3.33	Н	49.15	73.98	24.83	PK
4880	39.08	3.33	Н	42.41	53.98	11.57	AV


Report No. HCT-RF-2106-FI013

-Ch.39-	
---------	--


Frequency	Reading	AN.+CL-AMP G	Ant. POL	Total	Limit	Margin	Dotoct
MHz	dBuV	[dB]	(H/V)	[dBuV/m]	dBuV/m	dB	Detect
4960	43.79	2.36	V	46.15	73.98	27.83	PK
4960	35.94	2.36	V	38.30	53.98	15.68	AV
4960	45.81	2.36	Н	48.17	73.98	25.81	PK
4960	39.18	2.36	Н	41.54	53.98	12.44	AV

Report No. HCT-RF-2106-FI013

Date: 7.JUN.2021 20:13:33

Date: 7.JUN.2021 20:13:44

F-TP22-03 (Rev. 03)

10. LIST OF TEST EQUIPMENT

Conducted Test

Model / Equipment	Calibration Date	Calibration Interval	Serial No.
ENV216 / LISN	09/04/2020	Annual	102245
ESCI / Test Receiver	09/16/2020	Annual	101910
SU-642 /Temperature Chamber	03/15/2021	Annual	0093008124
N9020A / Signal Analyzer	04/16/2021	Annual	MY50210191
N9030A / Signal Analyzer	01/11/2021	Annual	MY49431210
N1911A / Power Meter	04/08/2021	Annual	MY45100523
N1921A / Power Sensor	04/08/2021	Annual	MY57820067
87300B / Directional Coupler	11/10/2020	Annual	3116A03621
11667B / Power Splitter	02/09/2021	Annual	10545
E3632A / DC Power Supply	02/16/2021	Annual	MY50360067
2-20 / Attenuator(20 dB)	10/07/2020	Annual	BR0592
EMC32 / Software	N/A	N/A	N/A
FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	N/A	N/A
CBT / Bluetooth Tester	05/04/2021	Annual	100422
	ENV216 / LISN ESCI / Test Receiver SU-642 /Temperature Chamber N9020A / Signal Analyzer N9030A / Signal Analyzer N1911A / Power Meter N1921A / Power Meter N1921A / Power Sensor 87300B / Directional Coupler 11667B / Power Splitter E3632A / DC Power Supply 2-20 / Attenuator(20 dB) EMC32 / Software FCC WLAN&BT&BLE Conducted Test Software v3.0	Model / EquipmentDateENV216 / LISN09/04/2020ESCI / Test Receiver09/16/2020SU-642 /Temperature Chamber03/15/2021N9020A / Signal Analyzer04/16/2021N9030A / Signal Analyzer01/11/2021N1911A / Power Meter04/08/2021N1921A / Power Sensor04/08/202187300B / Directional Coupler11/10/202011667B / Power Splitter02/09/2021E3632A / DC Power Supply02/16/20212-20 / Attenuator(20 dB)10/07/2020EMC32 / SoftwareN/AFCC WLAN&BT&BLE Conducted Test Software v3.0N/A	Model / EquipmentDateIntervalENV216 / LISN09/04/2020AnnualESCI / Test Receiver09/16/2020AnnualSU-642 /Temperature Chamber03/15/2021AnnualN9020A / Signal Analyzer04/16/2021AnnualN9030A / Signal Analyzer01/11/2021AnnualN1911A / Power Meter04/08/2021AnnualN1921A / Power Sensor04/08/2021Annual87300B / Directional Coupler11/10/2020Annual11667B / Power Splitter02/09/2021AnnualE3632A / DC Power Supply02/16/2021Annual2-20 / Attenuator(20 dB)10/07/2020AnnualEMC32 / SoftwareN/AN/AFCC WLAN&BT&BLE Conducted Test Software v3.0N/AN/A

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Emco	2090 / Controller	N/A	N/A	060520
Ets	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	03/19/2020	Biennial	1513-333
Schwarzbeck	VULB 9168 / Hybrid Antenna	09/04/2020	Biennial	9168-0895
Schwarzbeck	BBHA 9120D / Horn Antenna	11/18/2019	Biennial	9120D-1191
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	11/29/2019	Biennial	BBHA9170541
Rohde & Schwarz	FSP(9 kHz ~ 30 GHz) / Spectrum Analyzer	09/14/2020	Annual	836650/016
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	09/22/2020	Annual	101068-SZ
Wainwright Instruments	WRCJV2400/2483.5-2370/2520- 60/12SS / Band Reject Filter	01/06/2021	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	02/08/2021	Annual	1
CERNEX WEINSCHEL	CBLU1183540B-01/Broadband Bench Top LNA 56-10 / Attenuator(10 dB)	12/23/2020	Annual	N/A
CERNEX Api tech.	CBL06185030 / Broadband Low Noise Amplifier 18B-03 / Attenuator (3 dB)	12/23/2020	Annual	N/A
Wainwright Instruments	WHKX10-2700-3000-18000-40SS / High Pass Filter	12/23/2020	Annual	N/A
Wainwright Instruments	WHKX8-6090-7000-18000-40SS / High Pass Filter	12/23/2020	Annual	N/A
T&M SYSTEM	COAXIAL ATTENUATOR / Thru	12/23/2020	Annual	N/A
CERNEX	CBL18265035 / Power Amplifier	12/04/2020	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	03/23/2021	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/09/2021	Annual	3000C000276

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2106-FI013-P