TEST REPORT ### FCC/IC BT LE Test for MR20GA Certification APPLICANT LG Electronics Inc. REPORT NO. HCT-RF-1905-FI001-R1 DATE OF ISSUE 28 May 2019 HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401 REPORT NO. HCT-RF-1905-FI001-R1 DATE OF ISSUE 28 May 2019 Other ID FCC: BEJMR20GA IC: 2703H-MR20GA | Applicant | LG Electronics Inc. 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do | |---|---| | Eut Type
Model Name | Magic Remote MR20GA | | Date of Receipt | May 08, 2019 | | RF Peak Output Power | 4.487 dBm (2.810 mW) | | FCC Rule Part(s):
ISED Rule Part(s): | Part 15.247
RSS-247 Issue 2 (February 2017), RSS-Gen Issue 5(April 2018) | | FCC Classification: | Digital Transmission System(DTS) | | Frequency range | 2 402 MHz ~ 2 480 MHz | Tested by Se Wook Park Technical Manager Jong Seok Lee HCT CO., LTD. (sign SooChan Lee / CEO Accredited by KOLAS, Republic of KOREA ### **EVISION HISTORY** The revision history for this test report is shown in table. | Revision No. | Date of Issue | Description | |--------------|---------------|------------------------------------| | 0 | May. 24, 2019 | Initial Release | | 1 | May. 28, 2019 | Revised the Antenna type on Page 5 | | | | | ### Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / IC Rules under normal use and maintenance. measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / IC Rules under normal use and maintenance. ### **CONTENTS** | EUT DESCRIPTION | 5 | |---|----| | 2. TEST METHODOLOGY | 6 | | EUT CONFIGURATION | 6 | | EUT EXERCISE | 6 | | GENERAL TEST PROCEDURES | 6 | | DESCRIPTION OF TEST MODES | 7 | | 3. INSTRUMENT CALIBRATION | 7 | | 4. FACILITIES AND ACCREDITATIONS | 8 | | FACILITIES | 8 | | EQUIPMENT | 8 | | 5. ANTENNA REQUIREMENTS | 8 | | 6. MEASUREMENT UNCERTAINTY | 9 | | 7. DESCRIPTION OF TESTS | 10 | | 8. SUMMARY TEST OF RESULTS | 31 | | 9. TEST RESULT | 33 | | 9.1 DUTY CYCLE | 33 | | 9.2 6dB BANDWIDTH | 35 | | 9.3 OUTPUT POWER | 40 | | 9.4 POWER SPECTRAL DENSITY | 51 | | 9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS | 56 | | 9.6 RADIATED SPURIOUS EMISSIONS | 74 | | 9.7 RADIATED RESTRICTED BAND EDGES | 78 | | 9.8 RECEIVER SPURIOUS EMISSIONS | 80 | | 9.9 POWERLINE CONDUCTED EMISSIONS | 81 | | 10. LIST OF TEST EQUIPMENT | 82 | | 11. ANNEX A_ TEST SETUP PHOTO | 84 | ### **EUT DESCRIPTION** | Model | MR20GA | | | |---|--|----------------------|--| | EUT Type | Magic Remote | | | | Power Supply | DC 3.0 V | | | | Frequency Range | 2402 MHz ~ 2480 MHz | | | | Mary DE Outroot Davisor | Peak | 4.487 dBm (2.810 mW) | | | Max. RF Output Power | Average | 4.38 dBm (2.742 mW) | | | BT Operating Mode | BT_Low E | Energy Mode | | | Modulation Type | GFSK | | | | Bluetooth Version | 4.2 | | | | Number of Channels | 40 Channels | | | | Antenna Specification | Antenna type: PCB antenna Peak Gain : 2.21 dBi | | | | Date(s) of Tests | May 08, 2019 ~ May 14, 2019 | | | | PMN
(Product Marketing Number) | Magic Rei | mote | | | HVIN (Hardware Version Identification Number) | MR20GA | | | | FVIN (Firmware Version Identification Number) | 1.0.141.2 | 7 | | | HMN
(Host Marketing Name) | N/A | | | ### 2. TEST METHODOLOGY FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version: 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'. #### **EUT CONFIGURATION** The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application. #### **EUT EXERCISE** The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpse of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C. / RSS-Gen issue 5, RSS-247 issue 2. #### **GENERAL TEST PROCEDURES** ### **Conducted Emissions** The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes. #### **Radiated Emissions** The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013) ### **DESCRIPTION OF TEST MODES** The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed. ### 3. INSTRUMENT CALIBRATION The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version: 2017). ### 4. FACILITIES AND ACCREDITATIONS #### **FACILITIES** The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radi ated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggido, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of A NSI C63.4. (Version :2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032). For ISED, test facility was accepted dated February 14, 2019 (CAB identifier: KR0032). ### **EQUIPMENT** Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods." ### 5. ANTENNA REQUIREMENTS According to FCC 47 CFR § 15.203 / RSS-Gen(Issue 5) Section 8: "An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section." - * The antennas of this E.U.T are permanently attached. - * The E.U.T Complies with the requirement of § 15.203 ### **6. MEASUREMENT UNCERTAINTY** The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance. | Parameter | Expanded Uncertainty (±dB) | |------------------------------------------|----------------------------| | Conducted Disturbance (150 kHz ~ 30 MHz) | 1.82 | | Radiated Disturbance (9 kHz ~ 30 MHz) | 3.40 | | Radiated Disturbance (30 MHz ~ 1 GHz) | 4.80 | | Radiated Disturbance (1 GHz ~ 18 GHz) | 5.70 | | Radiated Disturbance (18 GHz ~ 40 GHz) | 5.71 | #### 7. DESCRIPTION OF TESTS ### 7.1. Duty Cycle ### **Test Configuration** ### **Test Procedure** The transmitter output is connected to the Spectrum Analyzer. We tested according to the zero-span measurement method, 6.0)b) in KDB 558074 v05r02. The largest availble value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8) The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T. - 1. RBW = 8 MHz (the largest availble value) - 2. $VBW = 8 MHz (\ge RBW)$ - 3. SPAN = 0 Hz - 4. Detector = Peak - 5. Number of points in sweep > 100 - 6. Trace mode = Clear write - 7. Measure Ttotal and Ton - 8. Calculate Duty Cycle = T_{on}/ T_{total} and Duty Cycle Factor = 10*log(1/Duty Cycle) ### 7.2. 6dB Bandwidth ### Limit The minimum permissible 6 dB bandwidth is 500 kHz. # EUT Coax cable ATT Spectrum Analyzer ### **Test Procedure** The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to (Procedure 8.2 in KDB 558074 v05r02, Procedure 11.8.1 in ANSI 63.10-2013) - 1) RBW = 100 kHz - 2) VBW \geq 3 x RBW - 3) Detector = Peak - 4) Trace mode = max hold - 5) Sweep = auto couple - 6) Allow the trace to stabilize - 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB. ### 7.3. Output Power ### Limit The maximum permissible conducted output power is 1 Watt. ### **Test Configuration** ### **Test Procedure** The transmitter output is connected to the Spectrum Analyzer. This EUT TX condition is actual operating mode by BT LE mode test program. The Spectrum Analyzer is set to - Peak Power (Procedure 8.3.1.1 in KDB 558074 v05r02, Procedure 11.9.1.1 in ANSI 63.10-2013) - 1) RBW ≥ DTS Bandwidth - 2) VBW \geq 3 x RBW - 3) SPAN \geq 3 x RBW - 4) Detector Mode = Peak - 5) Sweep = auto couple - 6) race Mode = max hold - 7) Allow trace to fully stabilize. - 8) Use peak marker function to determine the peak amplitude level - Average Power (Procedure 8.3.2.2 in KDB 558074 v05r02, Procedure 11.9.2.2 in ANSI 63.10-2013) - 1) We use the spectrum analyzer's integrated band power measurement function. - 2) Measure the duty cycle - 3) Set span to at least 1.5 times the OBW - 4) RBW = 1-5 % of the OBW, not to exceed 1 MHz. - 5) VBW \geq 3 x RBW. - 6) Number of points in sweep ≥ 2 x span / RBW. (This gives bin-to-bin spacing \leq RBW/2, so that narrowband signals are not lost between frequency bins.) - 7) Sweep time = auto. - 8) Detector = RMS(i.e., power averaging) - 9) Do not use sweep triggering. Allow the sweep to "free run". - 10) Trace average at least 100 traces in power averaging (RMS) mode. - 11) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. - 12) Add 10 $\log (1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. ### **Sample Calculation** - Conducted Output Power(Peak) = Reading Value + ATT loss + Cable loss - Conducted Output Power(Average) = Reading Value + ATT loss + Cable loss + Duty Cycle Factor ### 7.4. Power Spectral Density #### Limit The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3kHz BW. ### Test Configuration ### **Test Procedure** The transmitter output is connected to the Spectrum Analyzer. We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013. The spectrum analyzer is set to: - 1) Set analyzer center frequency to DTS channel center frequency. - 2) Span = 1.5 times the DTS channel bandwidth. - 3) RBW = $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$. - 4) VBW \geq 3 x RBW. - 5) Sweep = auto couple - 6) Detector = peak - 7) Trace Mode = max hold - 8) Allow trace to fully stabilize. - 9) Use the peak marker function to determine the maximum amplitude level within the RBW. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat. ### **Sample Calculation** Power Spectral Density = Reading Value + ATT loss + Cable loss ### 7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions #### Limit The maximum conducted (Peak) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz. [Conducted > 20 dBc] ### **Test Procedure** The transmitter output is connected to the spectrum analyzer. (Procedure 8.5 in KDB 558074 v05r02, Procedure 11.11 in ANSI 63.10-2013) - 1) RBW = 100 kHz - 2) VBW \geq 3 x RBW - 3) Set span to encompass the spectrum to be examined - 4) Detector = Peak - 5) Trace Mode = max hold - 6) Sweep time = auto couple - 7) Ensure that the number of measurement points $\geq 2*Span/RBW$ - 8) Allow trace to fully stabilize. - 9) Use peak marker function to determine the maximum amplitude level. Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels. ### Factors for frequency | Freq(MHz) | Factor(dB) | |-----------|------------| | 30 | 21.2 | | 100 | 19.73 | | 200 | 20.09 | | 300 | 20.03 | | 400 | 20.13 | | 500 | 20.15 | | 600 | 20.22 | | 700 | 20.25 | | 800 | 20.25 | | 900 | 20.24 | | 1000 | 20.29 | | 2000 | 20.54 | | 2400* | 20.55 | | 2500* | 20.57 | | 3000 | 20.58 | | 4000 | 20.79 | | 5000 | 20.97 | | 6000 | 20.96 | | 7000 | 21.25 | | 8000 | 21.22 | | 9000 | 21.38 | | 10000 | 21.46 | | 11000 | 21.46 | | 12000 | 21.58 | | 13000 | 21.73 | | 14000 | 21.8 | | 15000 | 21.88 | | 16000 | 21.94 | | 17000 | 21.92 | | 18000 | 21.98 | | 19000 | 21.97 | | 20000 | 22.04 | | 21000 | 22.07 | | 22000 | 22.21 | | 23000 | 22.5 | | 24000 | 22.24 | | 25000 | 22.43 | | 26000 | 21.92 | Note: 1. '*' is fundamental frequency range. 2. Factor = Attenuator loss + Cable loss ### 7.6. Radiated Test ### <u>Limit</u> ### <u>FCC</u> | Frequency (MHz) | Field Strength (uV/m) | Measurement Distance (m) | |-----------------|-----------------------|--------------------------| | 0.009 – 0.490 | 2400/F(kHz) | 300 | | 0.490 – 1.705 | 24000/F(kHz) | 30 | | 1.705 – 30 | 30 | 30 | ### <u>IC</u> | Frequency (MHz) | Field Strength (uA/m) | Measurement Distance (m) | |-----------------|-----------------------|--------------------------| | 0.009 – 0.490 | 6.37/F(kHz) | 300 | | 0.490 – 1.705 | 63.7/F(kHz) | 30 | | 1.705 – 30 | 0.08 | 30 | ### FCC&IC | Frequency (MHz) | Field Strength (uV/m) | Measurement Distance (m) | |-----------------|-----------------------|--------------------------| | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | ### **Test Configuration** Below 30 MHz 30 MHz - 1 GHz ### Above 1 GHz ### Test Procedure of Radiated spurious emissions(Below 30 MHz) - 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber. - 2. The loop antenna was placed at a location 3m from the EUT - 3. The EUT is placed on a turntable, which is 0.8m above ground plane. - 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. - 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40*log(3 m/300 m) = -80 dBMeasurement Distance : 3 m - 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40*log(3 m/30 m) = -40 dBMeasurement Distance : 3 m - 8. Spectrum Setting - Frequency Range = 9 kHz ~ 30 MHz - Detector = Peak - Trace = Maxhold - -RBW = 9 kHz - VBW ≥ 3*RBW - 9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) - 10. The test results for below 30 MHz is correlated to an open site. The result on OFS is about 2 dB higher than semi-anechoic chamber(10 m chamber) ### KDB 414788 OFS and Chamber Correlation Justification Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result. ### Test Procedure of Radiated spurious emissions(Below 1GHz) - 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber. - 2. The EUT is placed on a turntable, which is 0.8m above ground plane. - 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. - 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 5. Spectrum Setting - (1) Measurement Type(Peak): - Measured Frequency Range: 30 MHz 1 GHz - Detector = Peak - Trace = Maxhold - -RBW = 100 kHz - VBW ≥ 3*RBW - (2) Measurement Type(Quasi-peak): - Measured Frequency Range: 30 MHz 1 GHz - Detector = Quasi-Peak - RBW = 120 kHz - *In general, (1) is used mainly - 6. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) ### Test Procedure of Radiated spurious emissions (Above 1 GHz) - 1. The EUT is placed on a turntable, which is 1.5 m above ground plane. - 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. - 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions. - 5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m). *Distance extrapolation factor = 20*log (test distance / specific distance) (dB) - 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance. - 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. - 8. The unit was tested with its standard battery. - 9. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013) - (1) Measurement Type(Peak): - Measured Frequency Range: 1 GHz 25 GHz - Detector = Peak - Trace = Maxhold - RBW = 1 MHz - VBW ≥ 3*RBW - (2) Measurement Type(Average): - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$ - Measured Frequency Range: 1 GHz 25 GHz - Detector = RMS - Averaging type = power (i.e., RMS) - RBW = 1 MHz - VBW ≥ 3*RBW - Sweep time = auto. - Trace mode = average (at least 100 traces). - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. - Duty Cycle Factor (dB): Please refer to the please refer to section 9.1. - 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor. - 11. Total(Measurement Type: Peak) - $= Reading\ Value + Antenna\ Factor(A.F) + Cable\ Loss(C.L) Amp\ Gain(G) + Distance\ Factor(D.F)$ Total(Measurement Type: Average) - = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F) - + Duty Cycle Factor ### **Test Procedure of Radiated Restricted Band Edge** - 1. The EUT is placed on a turntable, which is 1.5 m above ground plane. - 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. - 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions. - 5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m). *Distance extrapolation factor = 20*log (test distance / specific distance) (dB) - 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance. - 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. - 8. The unit was tested with its standard battery. - 9. Spectrum Setting - (1) Measurement Type(Peak): - Measured Frequency Range: 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz - Detector = Peak - Trace = Maxhold - RBW = 1 MHz - VBW ≥ 3*RBW - (2) Measurement Type(Average): - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$ - Measured Frequency Range: 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz - Detector = RMS - Averaging type = power (i.e., RMS) - RBW = 1 MHz - VBW ≥ 3*RBW - Sweep time = auto. - Trace mode = average (at least 100 traces). - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. - Duty Cycle Factor (dB): Please refer to the please refer to section 9.1. - 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor. - 11. Total(Measurement Type: Peak) - = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) Total(Measurement Type: Average) = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) + Duty Cycle Factor ### 7.7. AC Power line Conducted Emissions ### Limit For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \,\mu\text{H}/50$ ohms line impedance stabilization network (LISN). | Francisco de Paraca (MIII-) | Limits (dΒμV) | | | |-----------------------------|---------------|-----------|--| | Frequency Range (MHz) | Quasi-peak | Average | | | 0.15 to 0.50 | 66 to 56* | 56 to 46* | | | 0.50 to 5 | 56 | 46 | | | 5 to 30 | 60 | 50 | | ^{*}Decreases with the logarithm of the frequency. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals. ### **Test Configuration** See test photographs attached in Annex A for the actual connections between EUT and support equipment. ### **Test Procedure** - 1. The EUT is placed on a wooden table 80 cm above the reference ground plane. - 2. The EUT is connected via LISN to a test power supply. - 3. The measurement results are obtained as described below: - 4. Detectors: Quasi Peak and Average Detector. ### Sample Calculation Quasi-peak(Final Result) = Reading Value + Correction Factor ### 7.8. Receiver Spurious Emissions ### <u>Limit</u> | Frequency (MHz) | Field Strength (uV/m) | Measurement Distance (m) | |-----------------|-----------------------|--------------------------| | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | ### Note: Measurements for compliance with the limits in table may be performed at distances other than 3 metres. ### **Test Configuration** 30 MHz - 1 GHz Above 1 GHz ### Test Procedure of Radiated spurious emissions (Above 1 GHz) - 1. The EUT is placed on a turntable, which is 1.5 m above ground plane. - 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. - 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions. - 5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m). *Distance extrapolation factor = 20*log (test distance / specific distance) (dB) - 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance. - 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. - 8. The unit was tested with its standard battery. - 9. Spectrum Setting - (1) Measurement Type(Peak): - Measured Frequency Range: 1 GHz 25 GHz - Detector = Peak - Trace = Maxhold - RBW = 1 MHz - VBW ≥ 3*RBW - (2) Measurement Type(Average): - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$ - Measured Frequency Range: 1 GHz 25 GHz - Detector = RMS - Averaging type = power (i.e., RMS) - RBW = 1 MHz - VBW ≥ 3*RBW - Sweep time = auto. - Trace mode = average (at least 100 traces). - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. - Duty Cycle Factor (dB): Please refer to the please refer to section 9.1. - 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor. - 11. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F) - 7.9. Worst case configuration and mode ### Radiated test - 1. All packet length of operation were investigated and the worst case configuration results are reported. - 2. Worst case: 37 Byte - 3. EUT Axis - Radiated Spurious Emissions : X- Radiated Restricted Band Edge : X ### **Conducted test** All packet length of operation were investigated and the test results are worst case in highest packet length. - Worst case: 37 Byte ### 8. SUMMARY TEST OF RESULTS ### FCC Part | Test Description | FCC Part Section(s) | Test Limit | Test | Test | |----------------------------------------|-----------------------------------|----------------------|-----------|---------------------| | | | | Condition | Result | | 6 dB Bandwidth | § 15.247(a)(2) | > 500 kHz | | PASS | | Conducted Maximum
Peak Output Power | § 15.247(b)(3) | < 1 Watt | | PASS | | Power Spectral Density | § 15.247(e) | < 8 dBm / 3 kHz Band | Conducted | PASS | | Band Edge
(Out of Band Emissions) | § 15.247(d) | Conducted > 20 dBc | | PASS | | AC Power line Conducted Emissions | § 15.207 | cf. Section 7.7 | | NT ^{Note2} | | Radiated Spurious
Emissions | § 15.247(d),
15.205,
15.209 | cf. Section 7.6 | Radiated | PASS | | Radiated Restricted
Band Edge | § 15.247(d),
15.205,
15.209 | cf. Section 7.6 | кашацей | PASS | ### Note: - 1. NT = Not Tested - 2. We don't perform powerline conduct de emission test. Because this EUT uses DC power. ### IC Part | | | | ı | 1 | |--|----------------------------|-----------------------------------|----------------|---------------------| | Test Description | FCC Part Section(s) | Test Limit | Test Condition | Test
Result | | 6 dB Bandwidth | RSS-247,5.2 | > 500 kHz | | PASS | | 99% Bandwidth | RSS-GEN, 6.7 | NA | | NA | | Conducted Maximum Peak Output Power And e.i.r.p. | RSS-247, 5.4.4 | < 1 Watt
<4 Watt(e.i.r.p.) | CONDUCTED | PASS | | Power Spectral Density | RSS-247, 5.2 | < 8 dBm / 3 kHz Band | | PASS | | Band Edge(Out of
Band Emissions) | RSS-247, 5.5 | Conducted > 20 dBc | | PASS | | AC Power line Conducted Emissions | RSS-GEN, 8.8 | RSS-GEN
section 8.8 table 4 | | NT ^{Note2} | | Radiated Spurious
Emissions | RSS-GEN, 8.9 | RSS-GEN section 8.9
table 5, 6 | | PASS | | Receiver Spurious
Emissions | RSS-GEN, 5
RSS-GEN, 7.3 | RSS-GEN section 7.3
table 3 | RADIATED | PASS | | Radiated Restricted
Band Edge | RSS-GEN, 8.10 | RSS-GEN section 8.10
table 7 | | PASS | ### Note: - 1. NT = Not Tested - 2. We don't perform powerline conductde emission test. Because this EUT uses DC power. ### 9. TEST RESULT ### 9.1 DUTY CYCLE | Packet length | Ton | T _{total} | Durby Cycle | Duty Cycle Factor | |---------------|--------|--------------------|-------------|-------------------| | (Byte) | (ms) | (ms) | Duty Cycle | (dB) | | 37 | 0.4091 | 0.6245 | 0.6552 | 1.84 | | 255 | 2.1550 | 2.5000 | 0.8620 | 0.64 | ### (37 Byte) Test Plots ### (255 Byte) Test Plots ### Duty Cycle (Low-CH 0) ### 9.2 6dB BANDWIDTH ### 37 byte | Channel | 6 dB Bandwidth | Limit | | |---------|----------------|-------|--| | | (kHz) | (kHz) | | | 0 | 682.0 | | | | 19 | 672.1 | > 500 | | | 39 | 687.5 | | | ### 255byte | Channel | 6 dB Bandwidth | Limit | | |---------|----------------|-------|--| | | (kHz) | (kHz) | | | 0 | 665.4 | | | | 19 | 687.2 | > 500 | | | 39 | 681.7 | 1 | | ### ■ 37 byteTest Plots ### 6 dB Bandwidth plot (Low-CH 0) ### 6 dB Bandwidth plot (Mid-CH 19) #### | SENSE:INT | ALIGN AUTO | Center Freq: 2.480000000 GHz → Trig: Free Run Avg|Hold: 1/1 #Atten: 10 dB 06:12:32 PM May 08, 2019 Radio Std: None Frequency #IFGain:Low Radio Device: BTS Ref 20.00 dBm Center Freq 2.480000000 GHz Center 2.48 GHz #Res BW 100 kHz Span 5 MHz Sweep 1 ms CF Step 500.000 kHz Man #VBW 300 kHz **Total Power** 10.8 dBm Occupied Bandwidth 1.0978 MHz Freq Offset Transmit Freq Error 21.939 kHz % of OBW Power 99.00 % x dB Bandwidth 687.5 kHz -6.00 dB GG Points changed; all traces cleared ## 6 dB Bandwidth plot (High-CH 39) ## ■ 255 byteTest Plots #### 6 dB Bandwidth plot (Low-CH 0) 6 dB Bandwidth plot (Mid-CH 19) #### 6 dB Bandwidth plot (High-CH 39) # 9.3 OUTPUT POWER # Peak Power | LE Mode | | Packet length | Measured | Limit | | |----------------|-------------|---------------|------------|-------|--| | Frequency[MHz] | Channel No. | (Byte) | Power(dBm) | (dBm) | | | 2402 | 0 | 37 | 3.914 | | | | | | 255 | 4.146 | | | | 2440 | 19 | 37 | 4.487 | 30 | | | | | 255 | 4.352 | 30 | | | 2480 | 39 | 37 | 4.198 | | | | | | 255 | 4.026 | | | ## **Average Power** | LE Mode | | Packet length | Measured | Duty Cycle
Factor | Result | Limit | |--------------------|-------------|---------------|------------|----------------------|--------|-------| | Frequency
[MHz] | Channel No. | (Byte) | Power(dBm) | (dB) | (dBm) | (dBm) | | 2402 | 0 | 37 | 1.78 | 1.84 | 3.62 | | | | | 255 | 3.16 | 0.64 | 3.81 | | | 2440 | 19 | 37 | 2.55 | 1.84 | 4.38 | 20 | | | | 255 | 3.40 | 0.64 | 4.05 | 30 | | 2480 | 39 | 37 | 2.15 | 1.84 | 3.99 | | | | | 255 | 3.47 | 0.64 | 4.11 | | ## Note: - 1. Spectrum reading values are not plot data. - The power results in plot is already including the actual values of loss for the attenuator and cable combination. - 2. Spectrum offset = Attenuator loss + Cable loss - 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 20.55 dB is offset for 2.4 GHz Band. #### ■ (37 Byte) Test Plots #### **Peak Power** #### Conducted Output Power (Low-CH 0) #### Conducted Output Power (Mid-CH 19) ## Conducted Output Power (High-CH 39) ## **Average Power** ## Conducted Output Power (Low-CH 0) Conducted Output Power (Mid-CH 19) #### Conducted Output Power (High-CH 39) ■ (255 Byte) Test Plots <u>Peak Power</u> Conducted Output Power (Low-CH 0) #### Conducted Output Power (Mid-CH 19) ## Conducted Output Power (High-CH 39) #### **Average Power** #### Conducted Output Power (Low-CH 0) ## Conducted Output Power (Mid-CH 19) Center 2.48 GHz #Res BW 33 kHz **Channel Power** 3.47 dBm / 1.081 MHz # #VBW 100 kHz **Power Spectral Density** -56.87 dBm /Hz Span 2.163 MHz Sweep 2.467 ms CF Step 216.287 kHz Man Freq Offset 0 Hz <u>Auto</u> # Conducted Output Power (High-CH 39) #### 9.4 POWER SPECTRAL DENSITY | Frequency
(MHz) | Channel
No. | Packet | Test Result | | | |--------------------|----------------|------------------|-------------|-------|--| | | | length
(Byte) | PSD | Limit | | | | | | (dBm) | (dBm) | | | 2402 | 0 | 37 | -11.212 | 8.000 | | | 2440 | 19 | | -10.435 | 8.000 | | | 2480 | 39 | | -10.577 | 8.000 | | | 2402 | 0 | 255 | -11.782 | 8.000 | | | 2440 | 19 | | -11.553 | 8.000 | | | 2480 | 39 | | -10.609 | 8.000 | | ## Note: - 1. Spectrum reading values are not plot data. - The PSD results in plot is already including the actual values of loss for the attenuator and cable combination. - 2. Spectrum offset = Attenuator loss + Cable loss - 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 20.55 dB is offset for 2.4 GHz Band. #### ■ 37 Byte Test Plots #### Power Spectral Density (Low-CH 0) #### Power Spectral Density (Mid-CH 19) # Power Spectral Density (High-CH 39) 06:13:16 PM May 08, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P P #Avg Type: RMS Avg|Hold: 1/1 Center Freq 2.480000000 GHz PNO: Wide → IFGain:Low REF SOR AC SENSE:INT SENSE:INT Trig: Free Run Atten: 6 dB Mkr1 2.479 902 4 GHz -10.577 dBm Auto Tune Ref Offset 20.55 dB Ref 10.00 dBm Center Freq 2.480000000 GHz Start Freq 2.479484371 GHz Stop Freq 2.480515629 GHz CF Step 103.126 kHz Man Freq Offset Scale Type Center 2.4800000 GHz #Res BW 3.0 kHz Span 1.031 MHz Sweep 109.4 ms (1000 pts) <u>Lin</u> #VBW 9.1 kHz #### ■ 255 Byte Test Plots ## Power Spectral Density (Low-CH 0) #### Power Spectral Density (Mid-CH 19) # Power Spectral Density (High-CH 39) 05:59:07 PMMay 08, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWW DET PPPPP #Avg Type: RMS Avg|Hold: 1/1 Center Freq 2.480000000 GHz PNO: Wide → IFGein:Low REF 50 Ω AC SENSE:INT SENSE:INT Trig: Free Run Atten: 6 dB Mkr1 2.479 994 4 GHz -10.609 dBm Auto Tune Ref Offset 20.55 dB Ref 10.00 dBm Center Freq 2.480000000 GHz Start Freq 2.479488693 GHz Stop Freq 2.480511307 GHz CF Step 102.261 kHz Man Freq Offset Scale Type Center 2.4800000 GHz #Res BW 3.0 kHz Span 1.023 MHz Sweep 108.6 ms (1000 pts) Log **#VBW** 9.1 kHz # 9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS Test Result: please refer to the plot below. In order to simplify the report, attached plots were only the worst case channel and data rate. #### ■ 37 byte Test Plots (BandEdge) #### Low-CH 0 High-CH 39 ## **■** Test Plots (Conducted Spurious Emission) 30 MHz ~ 1 GHz 1 GHz ~ 3 GHz Conducted Spurious Emission (Low-CH 19) 3 GHz ~ 5 GHz #### Conducted Spurious Emission (Low-CH 19) 5 GHz ~ 7 GHz #### Conducted Spurious Emission (Low-CH 19)