TEST REPORT

Dt&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664

1. Report No: DRTFCC2211-0170(3)

2. Customer

• Name (FCC): LG Electronics USA / Name (IC): LG ELECTRONICS INC.

Address (FCC): 111 Sylvan Avenue North Building Englewood Cliffs New Jersey United States 07632
 Address (IC): 222, LG-ro, Jinwi-myeon Pyeongtaek-si, Gyeonggi-do 451-713 Korea (Republic Of)

3. Use of Report: FCC Class II permissive change & IC Class IV permissive change

4. Product Name / Model Name: RF Module / LGSBWAC93

FCC ID: BEJLGSBWAC93 IC: 2703H-LGSBWAC93

5. FCC Regulation(s): Part 15.407

IC Standard(s): RSS-247 Issue 2, RSS-Gen Issue 5

Test Method used: KDB789033 D02v02r01, KDB662911 D01v02r01, ANSI C63.10-2013

6. Date of Test: 2022.09.15 ~ 2022.11.22

7. Location of Test: Permanent Testing Lab

☐ On Site Testing

(Signature)

8. Testing Environment: See appended test report.

9. Test Result: Refer to the attached test result.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test report is not related to KOLAS accreditation.

Affirmation Tested by Name : JaeHyeok Bang (Sibrature) Name : JaeJin Lee

2023.01.04.

Dt&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

Pages: 2 / 71

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2211-0170	Nov. 04, 2022	Initial issue	JaeHyeok Bang	JaeJin Lee
DRTFCC2211-0170(1)	Nov. 24, 2022	Add Power Table	JaeHyeok Bang	JaeJin Lee
DRTFCC2211-0170(2)	Dec. 15, 2022	Corrected from C4PC to C2PC	JaeHyeok Bang	JaeJin Lee
DRTFCC2211-0170(3)	Jan. 04, 2023	Corrected from C2PC to C4PC	JaeHyeok Bang	JaeJin Lee

CONTENTS

Report No.: DRTFCC2211-0170(3)

1. General Information	4
1.1. Description of EUT	4
1.2. Support Equipment	4
1.3. Testing Laboratory	5
1.4. Testing Environment	5
1.5. Measurement Uncertainty	5
1.6. Test Equipment List	6
2. Test Methodology	7
2.1. EUT Configuration	7
2.2. EUT Exercise	
2.3. General Test Procedures	7
2.4. Instrument Calibration	7
2.5. Description of Test Modes	8
3. Antenna Requirements	11
4. Summary of Test Result	12
5. TEST RESULT	13
5.1 Maximum Conducted Output Power	13
5.2 Unwanted Emissions	
5.3 AC Power-Line Conducted Emissions	26
APPENDIX I	35
APPENDIX II	36
APPENDIX III	
~!! LIVIA III	+ V

Report No.: DRTFCC2211-0170(3) FCC ID: BEJLGSBWAC93

IC: 2703H-LGSBWAC93

1. General Information

1.1. Description of EUT

Equipment Class	Unlicensed National Information Infrastructure TX (NII)
Model Name	LGSBWAC93
Product Marketing Name	LGSBWAC93
Hardware Version Identification Number	TWCM-K504D
Firmware Version Identification Number	MT7668_V1.0
Host Marketing Name(FCC)	17HQ701G, 17HQ901G, 17HQ901G-B, 17HQ701G-B
Host Marketing Name(IC)	17HQ701G, 17HQ901G
EUT Serial Number	No Specified
Power Supply	DC 7.7 V
Modulation Technique	OFDM
Antenna Specification	Antenna Type: FPCB Antenna Gain: Refer to the clause 3 in test report.

1.2. Support Equipment

Equipment	Model	Serial No.	Manufacturer	Note
Control Box	LG Control Box	No Specified	LG	-

Note: The above equipment was supported by manufacturer.

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

1.3. Testing Laboratory

Dt&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of Part 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No.: KR0034

- ISED#: 5740A

www.dtnc.net

i	WWW.darioniot		
	Telephone	:	+ 82-31-321-2664
ľ	FAX	:	+ 82-31-321-1664

1.4. Testing Environment

Ambient Condition	
Temperature	+20 °C ~ +26 °C
Relative Humidity	+29 % ~ +44 %

1.5. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Antenna-port conducted emission	1.0 dB (The confidence level is about 95 %, k = 2)
AC power-line conducted emission	3.4 dB (The confidence level is about 95 %, k = 2)
Radiated emission (1 GHz Below)	4.9 dB (The confidence level is about 95 %, k = 2)
Radiated emission (1 GHz ~ 18 GHz)	4.9 dB (The confidence level is about 95 %, k = 2)
Radiated emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, k = 2)

Report No.: **DRTFCC2211-0170(3)** IC: **2703H-LGSBWAC93**

FCC ID: BEJLGSBWAC93

1.6. Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	21/12/16	22/12/16	MY48010133
Spectrum Analyzer	Agilent Technologies	N9020A	21/12/16	22/12/16	MY48011700
Spectrum Analyzer	Agilent Technologies	N9020A	22/06/24	23/06/24	US47360812
Spectrum Analyzer	Agilent Technologies	N9030B	22/06/24	23/06/24	MY55480168
Multimeter	FLUKE	17B+	21/12/16	22/12/16	36390701WS
Signal Generator	Rohde Schwarz	SMBV100A	21/12/16	22/12/16	255571
Signal Generator	ANRITSU	MG3695C	21/12/16	22/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	21/12/16	22/12/16	120612-2
Thermohygrometer	BODYCOM	BJ5478	21/12/16	22/12/16	120612-1
Thermohygrometer	BODYCOM	BJ5478	22/06/24	23/06/24	NA
Loop Antenna	ETS-Lindgren	6502	21/01/28	23/01/28	00226186
Hybrid Antenna	Schwarzbeck	VULB 9160	21/12/16	22/12/16	3362
Horn Antenna	ETS-Lindgren	3117	22/06/24	23/06/24	00143278
Horn Antenna	A.H.Systems Inc.	SAS-574	22/06/24	23/06/24	155
PreAmplifier	tsj	MLA-0118-B01-40	21/12/16	22/12/16	1852267
PreAmplifier	H.P	8447D	21/12/16	22/12/16	2944A07774
PreAmplifier	tsj	MLA-1840-J02-45	22/06/24	23/06/24	16966-10728
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	22/06/24	23/06/24	8
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	22/06/24	23/06/24	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	22/06/24	23/06/24	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	22/06/24	23/06/24	16012202
Attenuator	SMAJK	SMAJK-2-3	22/06/24	23/06/24	3
Attenuator	Aeroflex/Weinschel	56-3	22/06/24	23/06/24	Y2370
Attenuator	SMAJK	SMAJK-2-3	22/06/24	23/06/24	2
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A MA2490A	21/12/16	22/12/16	1338004 1249303
Attenuator	Attenuator	86-10-11	22/06/24	23/06/24	408
EMI Test Receiver	ROHDE&SCHWARZ	ESCI7	22/01/26	23/01/26	100910
Transient Limiter	EMCIS	TL-B0930A	22/08/23	23/08/23	11002
TWO-LINE V-NETWORK	ROHDE&SCHWARZ	ENV216	21/12/01	22/12/01	101979
Digital Humidity/Temperature	SATO	PC-5000TRH	22/10/19	23/10/19	NA
Cable	Dt&C	Cable	22/01/04	23/01/04	G-02
Cable	HUBER+SUHNER	SUCOFLEX 100	22/01/04	23/01/04	G-03
Cable	Dt&C	Cable	22/01/04	23/01/04	G-04
Cable	OMT	YSS21S	22/06/08	23/06/08	G-05
Cable	HUBER+SUHNER	SUCOFLEX 100	22/01/04	23/01/04	M-01
Cable	HUBER+SUHNER	SUCOFLEX 100	22/01/04	23/01/04	M-02
Cable	JUNFLON	MWX241/B	22/01/04	23/01/04	M-03
Cable	JUNFLON	J12J101757-00	22/01/04	23/01/04	M-07
Cable	HUBER+SUHNER	SUCOFLEX106	22/01/04	23/01/04	M-09
Cable	Junkosha	MWX241	22/01/04	23/01/04	mmW-01
Cable	Dt&C	Cable	22/01/04	23/01/04	RFC-45
Test Software	tsj	Noise Terminal Measurement	NA	NA	Version 2.00.0185
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0147

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by Dt&C itself.

FCC ID: BEJLGSBWAC93
IC: 2703H-LGSBWAC93

2. Test Methodology

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB789033 D02v02r01 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB789033 D02v02r01. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E.

2.3. General Test Procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB789033 D02v02r01.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB789033 D02v02r01. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on KDB789033 D02v02r01.

The EUT is placed on a non-conductive table, which is 0.8 m above ground plane. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 1 m or 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axis.

2.4. Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Pages: 7 / 71

FCC ID: BEJLGSBWAC93

Report No.: DRTFCC2211-0170(3)

IC: 2703H-LGSBWAC93

2.5. Description of Test Modes

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting.

Transmitting Configuration of EUT

	SISO		MIMO (CDD)	MIMO (SDM)	
Mode	Ant 1	Ant 2	Ant 1 & 2	Ant 1 & 2	
		Data ra	ate		
802.11a	6 ~ 54 Mbps	6 ~ 54 Mbps	6 ~ 54 Mbps	-	
802.11n(HT20)	MCS 0 ~ 7	MCS 0 ~ 7	MCS 0 ~ 7	MCS 8 ~ 15	
802.11ac(VHT20)	MCS 0 ~ 8(1SS)	MCS 0 ~ 8(1SS)	MCS 0 ~ 8(1SS)	MCS 0 ~ 8(2SS)	
802.11n(HT40)	MCS 0 ~ 7	MCS 0 ~ 7	MCS 0 ~ 7	MCS 8 ~ 15	
802.11ac(VHT40)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(2SS)	
802.11ac(VHT80)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(1SS)	MCS 0 ~ 9(2SS)	

Note1: SDM = Spatial Diversity Multiplexing, CDD = Cycle Delay Diversity, SS = Spatial Streams

EUT Operation test setup

- Test Software: MT7668_V1.0

- Power setting: Refer to the table below.

Tested frequency and power setting

	802.11a			
Band	Channel	Frequency (MHz)	Power Setting	
	36	5 180	7	
U-NII 1	40	5 200	7	
	48	5 240	7.5	
	52	5 260	7	
U-NII 2A	60	5 300	8.5	
	64	5 320	9.5	
	100	5 500	11	
U-NII 2C	116	5 580	13	
	144	5 720	13	
	149	5 745	13	
U-NII 3	157	5 785	13	
	165	5 825	13	

FCC ID: BEJLGSBWAC93

IC: 2703H-LGSBWAC93

		802.11n(HT20)			
Band	Channel	Frequency (MHz)	Power Setting		
	36	5 180	7.5		
U-NII 1	40	5 200	7.5		
	48	5 240	8.5		
	52	5 260	8.5		
U-NII 2A	60	5 300	9		
	64	5 320	11		
	100	5 500	12		
U-NII 2C	116	5 580	13		
	144	5 720	13		
	149	5 745	13		
U-NII 3	157	5 785	13		
	165	5 825	13		

		802.11ac(VHT20)			
Band	Channel	Frequency (MHz)	Power Setting		
	36	5 180	7.5		
U-NII 1	40	5 200	7.5		
	48	5 240	8.5		
	52	5 260	9.5		
U-NII 2A	60	5 300	13		
	64	5 320	13		
	100	5 500	13		
U-NII 2C	116	5 580	13		
	144	5 720	13		
	149	5 745	13		
U-NII 3	157	5 785	13		
	165	5 825	13		

FCC ID: **BEJLGSBWAC93** IC: 2703H-LGSBWAC93

Pages: 10 / 71

	802.11n(HT40)				
Band	Channel	Frequency (MHz)	Power Setting		
11 1111 4	38	5 190	7.5		
U-NII 1	46	5 230	12		
U-NII 2A	54	5 270	11		
U-INII ZA	62	5 310	10		
	102	5 510	9.5		
U-NII 2C	110	5 550	13		
	142	5 710	13		
U-NII 3	151	5 755	13		
U-INII 3	159	5 795	13		

D I		802.11ac(VHT40)				
Band	Channel	Frequency (MHz)	Power Setting			
11 NIII 4	38	5 190	7			
U-NII 1	46	5 230	12			
U-NII 2A	54	5 270	13			
U-INII ZA	62	5 310	11			
	102	5 510	8.5			
U-NII 2C	110	5 550	12			
	142	5 710	13			
U-NII 3	151	5 755	13			
U-INII 3	159	5 795	13			

	802.11ac(VHT80)			
Band	Channel	Frequency (MHz)	Power Setting	
U-NII 1	42	5 210	9.5	
U-NII 2A	58	5 290	11	
U-NII 2C	106	5 530	10.5	
U-INII 2C	138	5 690	13	
U-NII 3	155	5 775	13	

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-234(06)210316

FCC ID: **BEJLGSBWAC93**

Report No.: **DRTFCC2211-0170(3)** IC: **2703H-LGSBWAC93**

Tested Mode

Test Mode	Test Band	ANT configuration	Worst data rate
802.11a	U-NII 1, U-NII 2A, U-NII 2C, U-NII 3	CDD Multiple transmitting	6Mbps
802.11n(HT20)	U-NII 1, U-NII 2C, U-NII 3	CDD Multiple transmitting	MCS0
802.11ac(VHT20)	U-NII 2A	CDD Multiple transmitting	MCS0
802.11n(HT40)	U-NII 1, U-NII 2C, U-NII 3	CDD Multiple transmitting	MCS0
802.11ac(VHT40)	U-NII 2A	CDD Multiple transmitting	MCS0
802.11ac(VHT80)	U-NII 1, U-NII 2A, U-NII 2C, U-NII 3	CDD Multiple transmitting	MCS0

Note 1: The worst case data rate was determined as above test mode based on original test report.

3. Antenna Requirements

According to Part 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna employs a unique antenna connector.

Therefore this E.U.T complies with the requirement of Part 15.203

Directional antenna gain:

Bands	SI	MIMO (CDD) Note 1.	
	ANT 1 [dBi]	ANT 2 [dBi]	Directional Gain[dBi]
U-NII 1	3.1	3.8	6.47
U-NII 2A	3.2	3.8	6.52
U-NII 2C	3.2	4.0	6.62
U-NII 3	3.0	4.7	6.90

Note 1. Directional gain(correlated signal with unequal antenna gain and equal transmit power) $10 \log \left[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2 / N^{ANT} \right] dBi$

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-234(06)210316

Report No.: **DRTFCC2211-0170(3)** IC : **2703H-LGSBWAC93**

FCC ID: BEJLGSBWAC93

Pages: 12 / 71

4. Summary of Test Result

FCC Part Section(s)	RSS Section(s)	Test Description	Limit	Test Condition	Status Note 1
15.407(a)	RSS-247[6.2]	Emission Bandwidth (26 dB Bandwidth)	N/A		NT
15.407(e)	RSS-247[6.2]	Minimum Emission Bandwidth (6 dB Bandwidth)	> 500 kHz in 5 725 ~ 5 850 MHz		NT
15.407(a)	RSS-247[6.2]	Maximum Conducted Output Power	Part 15.407(a) (Refer to section 5.3)		С
15.407(a)	RSS-247[6.2]	Peak Power Spectral Density	Part 15.407(a) (Refer to section 5.4)	Conducted	NT
-	RSS-Gen[6.7]	Occupied Bandwidth (99 %)	N/A		NT
15.407(h)	RSS-247[6.3]	Dynamic Frequency Selection	Part 15.407(h) (Refer to the DFS test report)		NT
15.205 15.209 15.407(b)	RSS-Gen[8.9] RSS-Gen[8.10] RSS-247[6.2]	Unwanted Emissions	Part 15.209, 15.407(b) (Refer to section 5.5)	Radiated	C Note 3
15.207	RSS-Gen[8.8]	AC Conducted Emissions	Part 15.207 (Refer to section 5.6)	AC Line Conducted	С
15.203	-	Antenna Requirements	Part 15.203 (Refer to section 3)	-	С

Note 1: C = Comply NC = Not Comply NT = Not Tested NA = Not Applicable

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

Note 3: This test item was performed in three orthogonal EUT positions and the worst case data was reported.

Note 4: The module was installed into host product during test.

FCC ID: BEJLGSBWAC93
IC: 2703H-LGSBWAC93

Pages: 13 / 71

5. TEST RESULT

5.1 Maximum Conducted Output Power

■ Test Requirements

Part. 15.407(a)

(1) For the band 5.15 GHz - 5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15 GHz 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15 GHz 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15 GHz 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15 GHz 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25 GHz 5.35 GHz and 5.47 GHz 5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725 GHz 5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

IC: 2703H-LGSBWAC93 Report No.: DRTFCC2211-0170(3)

FCC ID: BEJLGSBWAC93

RSS-247[6.2]

(1) For band 5 150 MHz - 5 250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99 % emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

(2) For band 5 250 MHz - 5 350 MHz

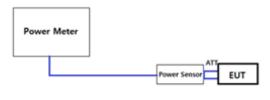
For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99 % emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

(3) For band 5 470 MHz - 5 600 MHz and 5 650 MHz - 5 725 MHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.


The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less, B is the 99 % emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than

500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

(4) For band 5 725 MHz - 5 850 MHz

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

■ Test Configuration

Method PM-G

■ Test Procedure

Method PM-G of KDB789033 D02v02r01

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

TRF-RF-234(06)210316 Pages: 14 / 71 FCC ID: **BEJLGSBWAC93**

Report No.: **DRTFCC2211-0170(3)** IC : **2703H-LGSBWAC93**

■ Test Results: Comply CDD Multiple transmitting

Mode	Band	Channel	Frequency	T	Test Result (dBm)		Directional	e.i.r.p
wode	Danu	Chamilei	(MHz)	ANT 1	ANT 2	МІМО	Gain(dBi)	(dBm)
		36	5 180	9.59	9.25	12.43	6.47	18.90
	U-NII 1	40	5 200	9.48	9.21	12.36	6.47	18.83
		48	5 240	7.91	7.44	10.69	6.47	17.16
		52	5 260	7.98	7.75	10.88	6.52	17.40
	U-NII 2A	60	5 300	8.64	8.61	11.64	6.52	18.16
802.11a		64	5 320	9.13	9.59	12.38	6.52	18.90
802.11a		100	5 500	11.98	11.32	14.67	6.62	21.29
	U-NII 2C	116	5 580	13.78	13.01	16.42	6.62	23.04
		144	5 720	14.39	14.03	17.22	6.62	23.84
		149	5 745	14.32	14.01	17.18	6.90	24.08
	U-NII 3	157	5 785	14.25	14.02	17.15	6.90	24.05
		165	5 825	12.94	12.41	15.69	6.90	22.59
	U-NII 1	36	5 180	10.02	9.89	12.97	6.47	19.44
		40	5 200	9.94	9.77	12.87	6.47	19.34
		48	5 240	9.55	9.57	12.57	6.47	19.04
	U-NII 2A	52	5 260	8.89	8.71	11.81	6.52	18.33
		60	5 300	9.44	9.40	12.43	6.52	18.95
802.11n		64	5 320	11.30	11.20	14.26	6.52	20.78
(HT20)	U-NII 2C	100	5 500	13.29	12.71	16.02	6.62	22.64
		116	5 580	14.11	13.71	16.92	6.62	23.54
		144	5 720	14.15	14.04	17.11	6.62	23.73
		149	5 745	14.26	14.06	17.17	6.90	24.07
	U-NII 3	157	5 785	14.18	14.09	17.15	6.90	24.05
		165	5 825	14.29	13.90	17.11	6.90	24.01
		36	5 180	10.09	9.20	12.68	6.47	19.15
	U-NII 1	40	5 200	10.21	9.93	13.08	6.47	19.55
		48	5 240	9.51	9.71	12.62	6.47	19.09
		52	5 260	9.21	9.35	12.29	6.52	18.81
	U-NII 2A	60	5 300	12.15	11.99	15.08	6.52	21.60
802.11ac		64	5 320	12.28	12.35	15.33	6.52	21.85
(VHT20)		100	5 500	13.67	13.19	16.45	6.62	23.07
	U-NII 2C	116	5 580	13.43	13.01	16.24	6.62	22.86
		144	5 720	14.29	14.01	17.16	6.62	23.78
		149	5 745	14.22	14.06	17.15	6.90	24.05
	U-NII 3	157	5 785	14.09	14.03	17.07	6.90	23.97
		165	5 825	14.22	14.09	17.17	6.90	24.07

Note 1: e.i.r.p= Conducted Output Power + Antenna Gain

Pages: 15 / 71

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

Pages: 16 / 71

NA1 -	Daniel .	01	Frequency	Te	Test Result [dBm]		Directional	e.i.r.p
Mode	Band	Channel	(MHz)	ANT 1	ANT 2	MIMO	Gain(dBi)	(dBm)
	LLAULA	38	5 190	9.98	9.67	12.84	6.47	19.31
	U-NII 1	46	5 230	12.98	12.80	15.90	6.47	22.37
	11 111 24	54	5 270	11.65	11.41	14.54	6.52	21.06
	U-NII 2A	62	5 310	11.19	10.39	13.82	6.52	20.34
802.11n (HT40)		102	5 510	10.70	10.03	13.39	6.62	20.01
(11140)	U-NII 2C	110	5 550	13.87	13.19	16.55	6.62	23.17
		142	5 710	14.30	14.01	17.17	6.62	23.79
	LLAULO	151	5 755	14.42	14.03	17.24	6.90	24.14
	U-NII 3	159	5 795	14.47	14.21	17.35	6.90	24.25
	U-NII 1	38	5 190	8.94	8.64	11.80	6.47	18.27
		46	5 230	12.87	12.73	15.81	6.47	22.28
	U-NII 2A	54	5 270	13.21	13.59	16.41	6.52	22.93
		62	5 310	10.85	10.65	13.76	6.52	20.28
802.11ac (VHT40)		102	5 510	9.85	9.02	12.47	6.62	19.09
(111140)	U-NII 2C	110	5 550	12.98	12.06	15.55	6.62	22.17
		142	5 710	14.35	14.01	17.19	6.62	23.81
	U-NII 3	151	5 755	14.41	14.02	17.23	6.90	24.13
	U-INII 3	159	5 795	14.49	14.03	17.28	6.90	24.18
	U-NII 1	42	5 210	9.97	9.82	12.91	6.47	19.38
	U-NII 2A	58	5 290	10.55	10.33	13.45	5.52	18.97
802.11ac (VHT80)	11 111 20	106	5 530	11.34	10.39	13.90	6.62	20.52
(VHT80)	U-NII 2C	138	5 690	12.72	12.43	15.59	6.62	22.21
	U-NII 3	155	5 775	14.35	14.01	17.19	6.90	24.09

Note 1: e.i.r.p= Conducted Output Power + Antenna Gain

Report No.: DRTFCC2211-0170(3) IC : 2703H-LGSBWAC93

FCC ID: BEJLGSBWAC93

5.2 Unwanted Emissions

■ Test Requirements

- Part 15.407(b) & RSS-Gen[6.2]

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the **5.15 GHz 5.25 GHz band**: all emissions outside of the **5.15 GHz 5.35 GHz band** shall not exceed an **EIRP of -27 dBm/MHz**.
- (2) For transmitters operating in the **5.25 GHz 5.35 GHz band**: all emissions outside of the **5.15 GHz 5.35 GHz band** shall not exceed an **EIRP of -27 dBm/MHz**.
- (3) For transmitters operating in the **5.47 GHz 5.725 GHz band**: all emissions outside of the **5.47 GHz 5.725 GHz band** shall not exceed an **EIRP of -27 dBm/MHz**.
- (4) For transmitters operating in the **5.725 GHz 5.85 GHz band**: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.

- Part 15.209 & RSS-247[8.9]: General requirements

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (μA/m)	Measurement Distance (m)
0.009 - 0.490	2 400 / F (kHz)	6.37/F (F in kHz)	300
0.490 - 1.705	24 000 / F (kHz)	63.7/F (F in kHz)	30
1.705 – 30.0	30	0.08	30

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	100	3
88 ~ 216	150 **	150	3
216 ~ 960	200 **	200	3
Above 960	500	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd.

TRF-RF-234(06)210316

Pages: 17 / 71

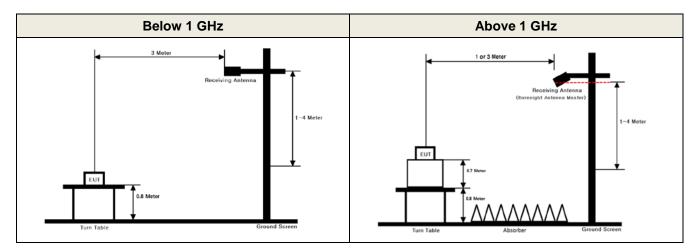
| FCC | ID: BEJLGSBWAC93 | Report No.: DRTFCC2211-0170(3) | IC: 2703H-LGSBWAC93 |

- Part 15.205(a): Restricted band of operation

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

- RSS-Gen[8.10]: Restricted frequency bands

MHz	MHz	MHz	MHz	MHz	GHz
0.090 ~ 0.110	8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 345.8 ~ 3 358	9.0 ~ 9.2
0.495 ~ 0.505	8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 427	3 500 ~ 4 400	9.3 ~ 9.5
2.173 5 ~ 2.190 5	8.414 25 ~ 8.414 75	108 ~ 138	1 435 ~ 1 626.5	4 500 ~ 5 150	10.6 ~ 12.7
3.020 ~ 3.026	12.29 ~ 12.293	149.9 ~ 150.05	1 645.5 ~ 1 646.5	5 350 ~ 5 460	13.25 ~ 13.4
4.125 ~ 4.128	12.519 75 ~ 12.520 25	156.524 75 ~	1 660 ~ 1 710	7 250 ~ 7 750	14.47 ~ 14.5
4.177 25 ~ 4.177 75	12.576 75 ~ 12.577 25	156.525 25	1 718.8 ~ 1 722.2	8 025 ~ 8 500	15.35 ~ 16.2
4.207 25 ~ 4.207 75	13.36 ~ 13.41	156.7 ~ 156.9	2 200 ~ 2 300		17.7 ~ 21.4
5.677 ~ 5.683	16.42 ~ 16.423	162.01 25 ~ 167.17	2 310 ~ 2 390		22.01 ~ 23.12
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 483.5 ~ 2 500		23.6 ~ 24.0
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 655 ~ 2 900		31.2 ~ 31.8
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	3 260 ~ 3 267		36.43 ~ 36.5
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 332 ~ 3 339		Above 38.6


Pages: 18 / 71

IC: 2703H-LGSBWAC93

FCC ID: BEJLGSBWAC93

Report No.: DRTFCC2211-0170(3)

■ Test Configuration

■ Test Procedure

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turn table shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1 m or 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Radiated spurious emission measured using following Measurement Procedure of KDB789033 D02v02r01

► General Requirements for Unwanted Emissions Measurements

The following requirements apply to all unwanted emissions measurements, both in and outside of the restricted bands:

- EUT Duty Cycle
 - (1) The EUT shall be configured or modified to transmit continuously except as stated in (ii), below. The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.
 - (2) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations of the EUT (e.g., overheating), the following additions to the measurement and reporting procedures are required:
 - The EUT shall be configured to operate at the maximum achievable duty cycle.
 - Measure the duty cycle, x, of the transmitter output signal.
 - Adjustments to measurement procedures (e.g., increasing test time and number of traces averaged) shall be performed as described in the procedures below.
 - The test report shall include the following additional information:
 - The reason for the duty cycle limitation.
 - The duty cycle achieved for testing and the associated transmit duration and interval between transmissions.
 - The sweep time and the amount of time used for trace stabilization during max-hold measurements for peak emission measurements.
 - (3) Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission - not on an average across on and off times of the transmitter.

TRF-RF-234(06)210316 Pages: 19 / 71 Report No.: DRTFCC2211-0170(3) IC : 2703H-LGSBWAC93

FCC ID: BEJLGSBWAC93

► Measurements below 1 000 MHz

- a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".
- b) Compliance shall be demonstrated using **CISPR quasi-peak detection**; however, **peak detection** is permitted as an alternative to quasi-peak detection.

► Measurements Above 1 000 MHz (Peak)

- a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".
- b) Peak emission levels are measured by setting the analyzer as follows:
 - (i) RBW = 1 MHz.
 - (ii) VBW ≥ 3 MHz.
 - (iii) Detector = Peak.
 - (iv) Sweep time = Auto.
 - (v) Trace mode = Max hold.
 - (vi) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

► Measurements Above 1000 MHz (Method AD)

- (i) RBW = 1 MHz.
- (ii) VBW ≥ 3 MHz.
- (iii) Detector = RMS, if span / (# of points in sweep) ≤ RBW / 2. Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, the detector mode shall be set to peak.
- (iv) Averaging type = power (i.e., RMS)
 - As an alternative, the detector and averaging type may be set for linear voltage averaging.
 Some analyzers require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
- (v) Sweep time = Auto.
- (vi) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, the number of traces shall be increased by a factor of 1/x, where x is the duty cycle. For example, with 50 percent duty cycle, at least 200 traces shall be averaged.
- (vii) If tests are performed with the EUT transmitting at a duty cycle less than 98 percent, a correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - If power averaging (RMS) mode was used in step (iv) above, the correction factor is 10 log(1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 percent, then 3 dB must be added to the measured emission levels.
 - If linear voltage averaging mode was used in step (iv) above, the correction factor is 20 log (1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 percent, then 6 dB must be added to the measured emission levels.
 - If a specific emission is demonstrated to be continuous (100 percent duty cycle) rather than turning on and off with the transmit cycle, no duty cycle correction is required for that emission.

Duty Cycle Correction factor

Test Mode	Date rate	T _{on} (ms)	T _{on+off} (ms)	$x = T_{on} / (T_{on+off})$	DCCF = 10 log(1/x) (dB)
802.11a	6 Mbps	1.390	1.426	0.974 8	0.11
802.11n(HT20)	MCS 0	1.301	1.339	0.971 6	0.13
802.11ac(VHT20)	MCS 0	1.312	1.348	0.973 3	0.12
802.11n(HT40)	MCS 0	0.628	0.704	0.892 0	0.50
802.11ac(VHT40)	MCS 0	0.614	0.686	0.895 0	0.48
802.11ac(VHT80)	MCS 0	0.301	0.363	0.829 2	0.81

Note1: Where, T = Transmission duration / x = Duty cycle

Note2: Please refer to the appendix II for duty cycle plots.

TRF-RF-234(06)210316 Pages: 20 / 71

IC: 2703H-LGSBWAC93

FCC ID: BEJLGSBWAC93

Detector Mode: QPK

Report No.: DRTFCC2211-0170(3)

■ Test Results

Test Notes

- 1. The radiated emissions below 1GHz were investigated 9 kHz to 1 GHz and the worst case data was reported.
- 2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations. In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

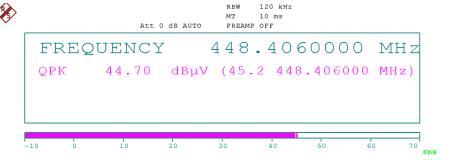
At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

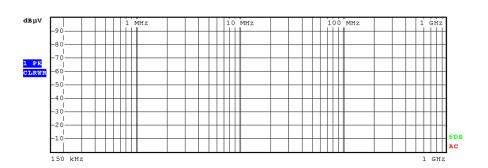
When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

 $Margin = Limit - Result \quad / \quad Result = Reading + TF + DCCF + DCF \quad / \quad TF = AF + CL + HL + AL - AG$

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor


4. The limit is converted to field strength.


E(dBuV/m) = EIRP(dBm) + 95.2 dB = -27 dBm + 95.2 = 68.2 dBuV/m

Unwanted Emissions data(9 kHz ~ 1 GHz) : 802.11a & CDD

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
U-NII 1 5 180		42.94	V	Х	QPK	36.30	-8.5	N/A	N/A	27.80	40.00	12.20
	5 180	448.42	Н	Х	QPK	44.70	-1.2	N/A	N/A	43.50	46.00	2.50
	_	551.97	V	Х	QPK	40.40	0.5	N/A	N/A	40.90	46.00	5.10

TM 1 & Lowest & X & Ver

TRF-RF-234(06)210316 Pages: 21 / 71 Report No.: **DRTFCC2211-0170(3)** IC : **2703H-LGSBWAC93**

FCC ID: BEJLGSBWAC93

Test Notes

- 1. The radiated emissions above 1 GHz were investigated up to 40 GHz. And no other spurious and harmonic emissions were found below listed frequencies.
- 2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, $TF = Total\ Factor$, $AF = Antenna\ Factor$, $CL = Cable\ Loss$, $AG = Amplifier\ Gain$, $HL = High\ pass\ filter\ Loss$, $AL = Attenuator\ Loss$, $DCCF = Duty\ Cycle\ Correction\ Factor$, $DCF = Distance\ Correction\ Factor$

4. The limit is converted to field strength.

E(dBuV/m) = EIRP(dBm) + 95.2 dB = -27 dBm + 95.2 = 68.2 dBuV/m

Unwanted Emissions data(1 GHz ~ 40 GHz) : 802.11a & CDD

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
		5 149.05	Н	Х	PK	49.05	3.38	N/A	N/A	52.43	74.00	21.57
	5 180	5 146.98	Н	Х	AV	39.11	3.38	0.11	N/A	42.60	54.00	11.40
U-NII 1		10 359.54	Н	Х	PK	43.25	10.13	N/A	N/A	53.38	68.20	14.82
	5 200	10 399.66	Н	Х	PK	43.34	10.47	N/A	N/A	53.81	68.20	14.39
	5 240	10 479.53	Н	Х	PK	43.66	11.25	N/A	N/A	54.91	68.20	13.29
	5 260	10 520.09	Н	Х	PK	43.86	11.42	N/A	N/A	55.28	68.20	12.92
	5 300	10 599.59	Н	Х	PK	43.53	11.37	N/A	N/A	54.90	68.20	13.30
	5 300	10 599.84	Н	Χ	AV	33.34	11.37	0.11	N/A	44.82	54.00	9.18
U-NII 2A		5 352.27	Н	Х	PK	48.71	3.82	N/A	N/A	52.53	74.00	21.47
	5 320	5 351.44	Н	Χ	AV	38.58	3.82	0.11	N/A	42.51	54.00	11.49
	3 320	10 640.80	Н	Х	PK	44.05	11.43	N/A	N/A	55.48	74.00	18.52
		10 640.01	Н	Х	AV	33.55	11.43	0.11	N/A	45.09	54.00	8.91
		5 459.76	Н	Х	PK	48.97	3.75	N/A	N/A	52.72	74.00	21.28
		5 457.23	Н	Х	AV	38.82	3.76	N/A	N/A	42.58	54.00	11.42
U-NII 2C _	5 500	5 465.97	Н	Х	PK	48.27	3.74	N/A	N/A	52.01	68.20	16.19
		11 000.49	Н	Х	PK	46.09	11.44	N/A	N/A	57.53	74.00	16.47
		11 000.25	Н	Х	AV	35.82	11.44	0.11	N/A	47.37	54.00	6.63
	E E00	11 160.06	Н	Х	PK	45.21	10.84	N/A	N/A	56.05	74.00	17.95
	3 360	11 160.13	Н	Х	AV	34.45	10.84	0.11	N/A	45.40	54.00	8.60
	U-NII	11 440.39	Н	Х	PK	43.49	9.70	N/A	N/A	53.19	74.00	20.81
	3 720	11 439.62	Н	Х	AV	32.83	9.71	0.11	N/A	42.65	54.00	11.35
		5 714.27	Н	Х	PK	48.32	4.23	N/A	N/A	52.55	68.20	15.65
	5 745	5 724.30	Н	Х	PK	55.18	4.16	N/A	N/A	59.34	78.20	18.86
	5 /45	11 489.99	Н	Х	PK	44.71	9.56	N/A	N/A	54.27	74.00	19.73
		11 490.20	Н	Х	AV	34.21	9.56	0.11	N/A	43.88	54.00	10.12
U-NII 3	5 785	11 569.55	Н	Х	PK	43.37	9.48	N/A	N/A	52.85	74.00	21.15
U-INII 3	3 7 00	11 569.73	Н	Х	AV	32.66	9.48	0.11	N/A	42.25	54.00	11.75
		5 850.59	Н	Х	PK	49.73	3.84	N/A	N/A	53.57	78.20	24.63
	5 825	5 861.23	Н	Х	PK	48.44	3.88	N/A	N/A	52.32	68.20	15.88
	5 6∠5	11 650.35	Н	Х	PK	43.90	9.53	N/A	N/A	53.43	74.00	20.57
		11 649.91	Н	Х	AV	33.82	9.53	0.11	N/A	43.46	54.00	10.54

| FCC | D: BEJLGSBWAC93 | Report No.: DRTFCC2211-0170(3) | IC : 2703H-LGSBWAC93 |

Unwanted Emissions data(1 GHz ~ 40 GHz) : 802.11n(HT20) & CDD

							, - =					
Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
		5 149.22	V	Х	PK	50.77	3.39	N/A	N/A	54.16	74.00	19.84
	5 180	5 148.94	V	Х	AV	39.11	3.39	0.13	N/A	42.63	54.00	11.37
U-NII 1		10 359.71	V	Х	PK	43.05	10.13	N/A	N/A	53.18	68.20	15.02
	5 200	10 400.28	V	X	PK	42.73	10.47	N/A	N/A	53.20	68.20	15.00
	5 240	10 480.16	V	Х	PK	43.71	11.25	N/A	N/A	54.96	68.20	13.24

Unwanted Emissions data(1 GHz ~ 40 GHz) : 802.11ac(VHT20) & CDD

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5 260	10519.74	V	X	PK	43.91	11.42	N/A	N/A	55.33	68.20	12.87
	F 200	10599.99	V	Х	PK	44.10	11.37	N/A	N/A	55.47	74.00	18.53
U-NII 2A	5 300	10600.48	V	Х	AV	33.67	11.37	0.12	N/A	45.16	54.00	8.84
	5 320	5350.13	Н	Х	PK	50.00	3.82	N/A	N/A	53.82	74.00	20.18
		5352.77	Н	Х	AV	39.48	3.82	0.12	N/A	43.42	54.00	10.58
		10640.56	V	Χ	PK	44.15	11.43	N/A	N/A	55.58	74.00	18.43
		10640.29	V	X	AV	33.79	11.43	0.12	N/A	45.34	54.00	8.66

Unwanted Emissions data(1 GHz ~ 40 GHz) : 802.11n(HT20) & CDD

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
		5 459.66	V	Х	PK	48.68	3.75	N/A	N/A	52.43	74.00	21.57
		5 457.12	V	Х	AV	38.79	3.76	0.13	N/A	42.68	54.00	11.32
	5 500	5 464.96	V	Χ	PK	48.00	3.74	N/A	N/A	51.74	68.20	16.46
		11 000.35	V	Х	PK	45.21	11.44	N/A	N/A	56.65	74.00	17.35
U-NII 2C		10 999.55	V	X	AV	34.62	11.44	0.13	N/A	46.19	54.00	7.81
	5 580	11 160.70	V	Х	PK	45.21	10.84	N/A	N/A	56.05	74.00	17.95
	5 560	11 159.80	V	Х	AV	34.56	10.84	0.13	N/A	45.53	54.00	8.47
	5 720	11 439.95	V	Х	PK	43.76	9.70	N/A	N/A	53.46	74.00	20.54
5 720	11 439.51	V	Х	AV	33.56	9.70	0.13	N/A	43.39	54.00	10.61	
5 720	5 712.19	V	Х	PK	48.78	4.22	N/A	N/A	53.00	68.20	15.20	
	5 724.92	V	Х	PK	51.96	4.16	N/A	N/A	56.12	78.20	22.08	
	11 489.70	V	Х	PK	45.15	9.56	N/A	N/A	54.71	74.00	19.29	
		11 489.93	V	Х	AV	34.09	9.56	0.13	N/A	43.78	54.00	10.22
U-NII 3	5 785	11 569.82	V	Х	PK	44.77	9.48	N/A	N/A	54.25	74.00	19.75
U-INII 3	5 7 65	11 570.30	V	Х	AV	34.35	9.48	0.13	N/A	43.96	54.00	10.04
		5 851.39	V	Х	PK	48.60	4.05	N/A	N/A	52.65	78.20	25.55
	5 825	5 862.95	V	Х	PK	49.57	4.26	N/A	N/A	53.83	68.20	14.37
	0 020	11 650.78	V	Х	PK	44.97	9.53	N/A	N/A	54.50	74.00	19.50
	-	11 650.85	V	Х	AV	34.56	9.53	0.13	N/A	44.22	54.00	9.78

| FCC | ID: BEJLGSBWAC93 | Report No.: DRTFCC2211-0170(3) | IC : 2703H-LGSBWAC93 |

Unwanted Emissions data(1 GHz ~ 40 GHz) : 802.11n(HT40) & CDD

					-							
Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
U-NII 1	5 190	5 149.02	Н	Х	PK	50.86	2.63	N/A	N/A	53.49	74.00	20.51
		5 149.62	Н	Х	AV	39.00	2.63	0.50	N/A	42.13	54.00	11.87
		10 380.32	Н	Х	PK	42.43	10.31	N/A	N/A	52.74	68.20	15.46
	5 230	10 459.71	Н	Х	PK	43.65	11.09	N/A	N/A	54.74	68.20	13.46

Unwanted Emissions data(1 GHz ~ 40 GHz): 802.11ac(VHT40) & CDD

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5 270	10540.06	V	Х	PK	44.18	11.41	N/A	N/A	55.59	68.20	12.61
U-NII 2A	5 310	5351.67	Н	Х	PK	49.76	3.82	N/A	N/A	53.58	74.00	20.42
		5350.38	Н	Х	AV	39.33	3.82	0.48	N/A	43.63	54.00	10.38
		10619.68	V	Х	PK	43.59	11.40	N/A	N/A	54.99	74.00	19.01
		10619.46	V	Х	AV	33.51	11.40	0.48	N/A	45.39	54.00	8.62

Unwanted Emissions data(1 GHz ~ 40 GHz) : 802.11n(HT40) & CDD

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
		5 453.15	Н	Х	PK	50.33	3.77	N/A	N/A	54.10	74.00	19.90
		5 456.61	Н	Х	AV	39.09	3.73	0.50	N/A	43.32	54.00	10.68
	5 510	5 468.85	Н	Х	PK	40.40	3.73	N/A	N/A	44.13	68.20	24.07
		11 020.92	Н	Х	PK	45.04	11.35	N/A	N/A	56.39	74.00	17.61
U-NII 2C		11 020.48	Н	Х	AV	34.71	11.35	0.50	N/A	46.56	54.00	7.44
20	F FF0	11 099.72	Н	Х	PK	43.87	11.10	N/A	N/A	54.97	74.00	19.03
	5 550	11 099.95	Н	Х	AV	33.28	11.10	0.50	N/A	44.88	54.00	9.12
	5 550 5 710	11 420.68	Н	Х	PK	42.64	9.79	N/A	N/A	52.43	74.00	21.57
	5 / 10	11 420.72	Н	Х	AV	32.76	9.79	0.50	N/A	43.05	54.00	10.95
	5 714.94	Н	Х	PK	54.21	4.23	N/A	N/A	58.44	68.20	9.76	
	5 710 5 755	5 720.87	Н	Х	PK	60.63	4.19	N/A	N/A	64.82	78.20	13.38
	5 7 55	11 510.36	Н	Х	PK	45.13	9.53	N/A	N/A	54.66	74.00	19.34
LLAULO		11 510.35	Н	Х	AV	34.48	9.53	0.50	N/A	44.51	54.00	9.49
U-INII 3		5 850.18	Н	Х	PK	53.41	3.84	N/A	N/A	57.25	78.20	20.95
	U-NII 3 5 795	5 860.72	Н	Х	PK	48.85	3.86	N/A	N/A	52.71	68.20	15.49
		11 590.18	Н	Х	PK	43.94	9.50	N/A	N/A	53.44	74.00	20.56
		11 590.12	Н	Х	AV	32.86	9.50	0.50	N/A	42.86	54.00	11.14

FCC ID: BEJLGSBWAC93

CC2211-0170(3) IC: 2703H-LGSBWAC93

Unwanted Emissions data(1 GHz ~ 40 GHz) : 802.11ac(VHT80) & CDD

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
		5 149.78	Н	X	PK	51.81	3.39	N/A	N/A	55.20	74.00	18.80
U-NII 1	5 210	5 149.72	Н	Х	AV	40.24	3.39	0.81	N/A	44.44	54.00	9.56
		10 420.01	Н	Х	PK	42.47	10.69	N/A	N/A	53.16	68.20	15.04
		5 352.45	Н	Х	PK	50.07	3.92	N/A	N/A	53.99	74.00	20.01
5 530	5 290	5 350.39	Н	Х	AV	39.14	3.92	0.81	N/A	43.87	54.00	10.13
2.7		10 580.64	Н	Х	PK	43.15	11.38	N/A	N/A	54.53	68.20	13.67
U-NII 2C		5 455.06	Н	Х	PK	55.68	3.77	N/A	N/A	59.45	74.00	14.55
	5 530	5 459.37	Н	Х	AV	43.31	3.76	0.81	N/A	47.88	54.00	6.12
		5 462.08	Н	Х	PK	55.77	3.75	N/A	N/A	59.52	68.20	8.68
_		11 060.89	Н	Х	PK	44.25	11.19	N/A	N/A	55.44	(dBuV/m) 74.00 54.00 68.20 74.00 54.00 68.20 74.00 54.00 54.00	18.56
		11 060.33	Н	Х	AV	34.08	11.19	0.81	N/A	46.08		7.92
	F 600	11 380.37	Н	Х	PK	43.51	9.93	N/A	N/A	55.44 74.00 46.08 54.00 53.44 74.00	20.56	
	5 690	11 380.06	Н	X	AV	33.44	9.93	0.81	N/A	44.18	54.00	9.82
		5 713.14	Н	X	PK	62.09	4.22	N/A	N/A	66.31	68.20	1.89
		5 724.41	Н	Х	PK	63.20	4.16	N/A	N/A	67.36		10.84
LLMILO	E 77E	5 851.82	Н	Х	PK	57.62	3.84	N/A	N/A	61.46	78.20	16.74
U-INII 3	3773	5 861.26	Н	Х	PK	54.99	3.88	N/A	N/A	58.87	68.20	9.33
		11 550.32	Н	Х	PK	43.74	9.47	N/A	N/A	53.21	74.00	20.79
U-NII 3 5 775		11 550.46	Н	Х	AV	33.37	9.47	0.81	N/A	43.65	54.00	10.35

Pages: 25 / 71

Report No.: DRTFCC2211-0170(3) FCC ID: BEJLGSBWAC93

IC: 2703H-LGSBWAC93

5.3 AC Power-Line Conducted Emissions

■ Test Requirements, §15.207 & RSS-Gen[8.8]

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Francisco Para va (MILI-)	Conducted Limit (dBuV)							
Frequency Range (MHz)	Quasi-Peak	Average						
0.15 ~ 0.5	66 to 56 *	56 to 46 *						
0.5 ~ 5.0	56	46						
5 ~ 30	60	50						

^{*} Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

■ Test Configuration

See test photographs for the actual connections between EUT and support equipment.

■ Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

- 1. The test procedure is performed in a 6.5 m \times 3.5 m \times 3.5 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

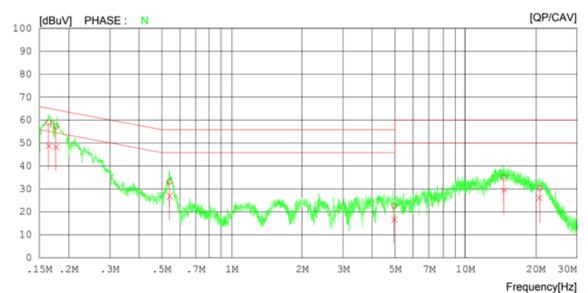
■ Test Results: Comply

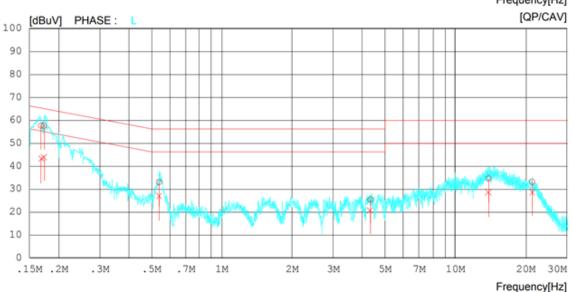
See next pages for actual measured spectrum plots and data for worst case result.

FCC ID: BEJLGSBWAC93 IC: 2703H-LGSBWAC93

Pages: 27 / 71

AC Power-Line Conducted Emissions (Graph)


& 802.11a & 5240 MHz Test Mode: U-NII 1


5.1G_a_5240

Results of Conducted Emission

DT&C Date 2022-11-03 13:51

Order No. 17HQ901G-B Power Supply Temp/Humi/Átm 20'C / 29% Test Condition

FCC ID: BEJLGSBWAC93
IC: 2703H-LGSBWAC93

Pages: 28 / 71

AC Power-Line Conducted Emissions (Data List)

Test Mode: U-NII 1 & 802.11a & 5 240 MHz

Results of Conducted Emission

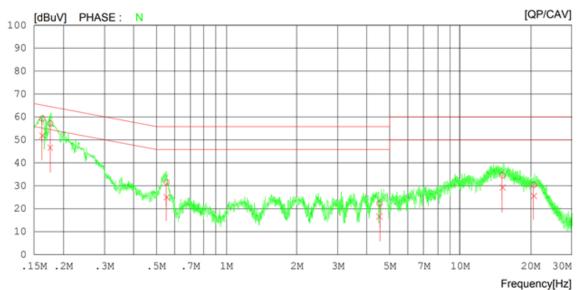
DT&C Date 2022-11-03 13:51

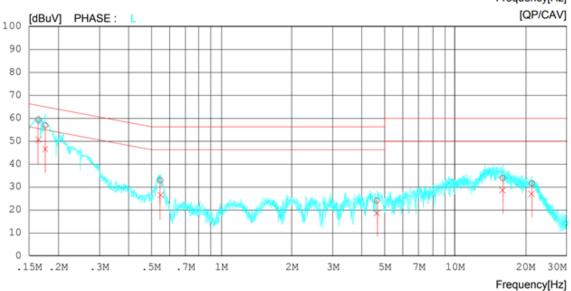
Order No. 17HQ901G-B
Power Supply
Temp/Humi/Atm
Test Condition 17HQ901G-B
20'C / 29%
5.1G_a_5240

	NO	FREQ	REAL		C.FACTOR		ULT	LIM				PHASE	
		[MHz]	QP [dBuV]	CAV [dBuV]	[dB]		CAV [dBuV]	QP [dBuV]	CAV [dBuV]	QP [dBuV]	CAV [dBuV]		
	1	0.16435	39.05	29.14	19.83	58.88	48.97	65.24	55.24	6.36	6.27	N	
	2	0.17655	37.50	28.60	19.85	57.35	48.45	64.65	54.65	7.30	6.20	N	
	3	0.54101	12.99	6.77	20.14	33.13	26.91	56.00	46.00	22.87	19.09	N	
	4	4.95320	2.63	-3.39	20.11	22.74	16.72	56.00	46.00	33.26	29.28	N	
	5	14.59700	13.85	8.43	21.11	34.96	29.54	60.00	50.00	25.04	20.46	N	
	6	20.78880	9.34	4.88	21.01	30.35	25.89	60.00	50.00	29.65	24.11	N	
	7	0.16838	37.83	23.26	19.73	57.56	42.99	65.04	55.04	7.48	12.05	L	
	8	0.17290	37.72	24.00	19.73	57.45	43.73	64.82	54.82	7.37	11.09	L	
	9	0.53891	13.06	6.97	19.84	32.90	26.81	56.00	46.00	23.10	19.19	L	
1	0	4.32120	5.26	0.71	20.07	25.33	20.78	56.00	46.00	30.67	25.22	L	
1	1	13.86700	13.52	7.41	21.04	34.56	28.45	60.00	50.00	25.44	21.55	L	
1	2	21.30400	12.07	7.73	20.96	33.03	28.69	60.00	50.00	26.97	21.31	L	

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

Pages: 29 / 71


AC Power-Line Conducted Emissions (Graph)


Test Mode: U-NII 2A & 802.11a & 5 320 MHz

Results of Conducted Emission

DT&C Date 2022-11-03 14:07

Order No. 17HQ901G-B Power Supply Temp/Humi/Atm 20'C / 29% Test Condition 5.3G_a_5320

FCC ID: BEJLGSBWAC93
IC: 2703H-LGSBWAC93

AC Power-Line Conducted Emissions (Data List)

Test Mode: U-NII 2A & 802.11a & 5 320 MHz

Results of Conducted Emission

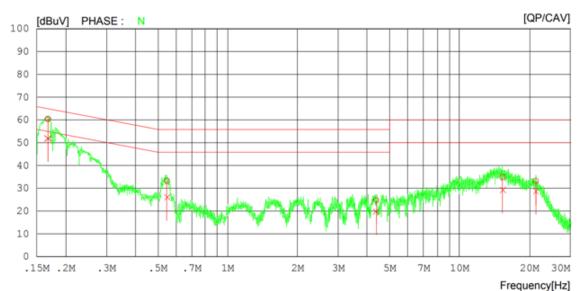
DT&C Date 2022-11-03 14:07

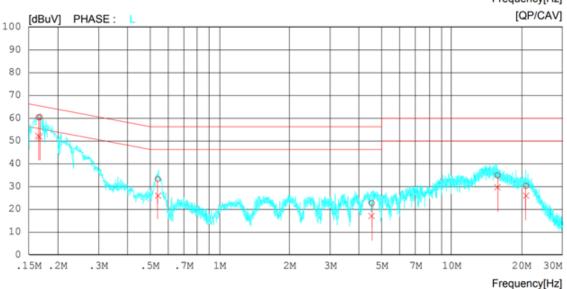
Order No. 17HQ901G-B Power Supply Temp/Humi/Atm 20'C / 29% Test Condition 5.3G_a_5320

N	O FREQ	READING QP CAV [dBuV][dBuV]	C.FACTOR	RESULT QP CAV [dBuV][dBuV]	LIMIT QP CAV [dBuV][dBuV]	MARGIN QP CAV [dBuV][dBuV]	PHASE
1		39.46 32.01		59.29 51.84	65.32 55.32	6.03 3.48	N
2	0.17612	37.33 26.67	19.85	57.18 46.52	64.67 54.67	7.49 8.15	N
3	0.55441	11.42 4.96	20.14	31.56 25.10	56.00 46.00	24.44 20.90	N
4	4.52500	2.18 -3.50	20.09	22.27 16.59	56.00 46.00	33.73 29.41	N
5	15.16860	13.47 7.91	21.14	34.61 29.05	60.00 50.00	25.39 20.95	N
6	20.66800	9.34 4.81	21.02	30.36 25.83	60.00 50.00	29.64 24.17	N
7	0.16429	39.53 30.66	19.73	59.26 50.39	65.24 55.24	5.98 4.85	L
8	0.17617	37.07 26.84	19.73	56.80 46.57	64.66 54.66	7.86 8.09	L
9	0.54754	12.94 6.37	19.84	32.78 26.21	56.00 46.00	23.22 19.79	L
10	4.62680	3.94 -1.49	20.09	24.03 18.60	56.00 46.00	31.97 27.40	L
11	15.96220	12.63 7.45	21.13	33.76 28.58	60.00 50.00	26.24 21.42	L
12	21.30000	10.48 6.09	20.96	31.44 27.05	60.00 50.00	28.56 22.95	L

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

Pages: 31 / 71


AC Power-Line Conducted Emissions (Graph)


Test Mode: U-NII 2C & 802.11a & 5 720 MHz

Results of Conducted Emission

DT&C Date 2022-11-03 14:24

Order No. 17HQ901G-B Power Supply Temp/Humi/Atm 20'C / 29% Test Condition 5.5G_a_5720

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

Pages: 32 / 71

AC Power-Line Conducted Emissions (Data List)

Test Mode: U-NII 2C & 802.11a & 5 720 MHz

Results of Conducted Emission

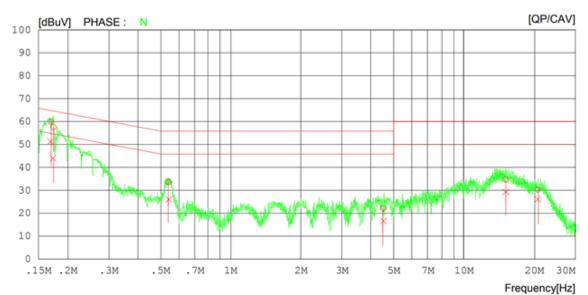
DT&C Date 2022-11-03 14:24

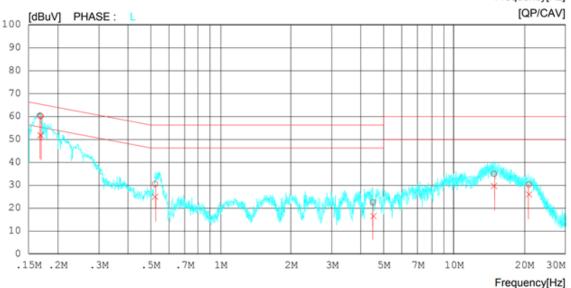
Order No. 17HQ901G-B Power Supply Temp/Humi/Atm 20'C / 29% Test Condition 5.5G_a_5720

NO		READING QP CAV	C.FACTOR	RESULT QP CAV	Pag. 1	AV	MARGIN QP CAV	PHASE
	[MHz]	[dBuV][dBuV]	[dB]	[dBuV] [dBuV]	[dBuV] [dB	BuV]	[dBuV] [dBuV	1
1	0.16792	40.59 32.10	19.83	60.42 51.93	65.06 55	5.06	4.64 3.13	N
2	0.16789	40.67 32.21	19.83	60.50 52.04	65.06 55	5.06	4.56 3.02	N
3	0.54732	13.14 6.11	20.14	33.28 26.25	56.00 46	5.00	22.72 19.75	N
4	4.36280	4.77 -0.15	20.07	24.84 19.92	56.00 46	5.00	31.16 26.08	N
5	15.31020	13.87 8.37	21.13	35.00 29.50	60.00 50	0.00	25.00 20.50	N
6	21.30360	12.30 7.86	20.96	33.26 28.82	60.00 50	0.00	26.74 21.18	N
7	0.16577	40.52 32.40	19.73	60.25 52.13	65.17 55	5.17	4.92 3.04	L
8	0.16771	40.57 32.10	19.73	60.30 51.83	65.07 55	5.07	4.77 3.24	L
9	0.54037	13.30 6.24	19.84	33.14 26.08	56.00 46	5.00	22.86 19.92	L
10	4.51800	2.44 -3.34	20.09	22.53 16.75	56.00 46	5.00	33.47 29.25	L
11	15.76060	13.58 8.36	21.13	34.71 29.49	60.00 50	0.00	25.29 20.51	L
12	20.93800	9.16 4.75	21.00	30.16 25.75	60.00 50	0.00	29.84 24.25	L

| FCC ID: BEJLGSBWAC93
| Report No.: DRTFCC2211-0170(3) | IC : 2703H-LGSBWAC93

AC Power-Line Conducted Emissions (Graph)


Test Mode: U-NII 3 & 802.11a & 5 825 MHz


Results of Conducted Emission

DT&C Date 2022-11-03 14:40

Pages: 33 / 71

Order No. 17HQ901G-B Power Supply Temp/Humi/Atm 20'C / 29% Test Condition 5.7G_a_5825

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

Pages: 34 / 71

AC Power-Line Conducted Emissions (Data List)

Test Mode: U-NII 3 & 802.11a & 5 825 MHz

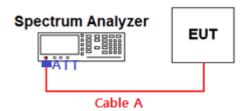
Results of Conducted Emission

DT&C Date 2022-11-03 14:40

Order No. 17HQ901G-B Power Supply Temp/Humi/Atm 20'C / 29% Test Condition 5.7G_a_5825

NC	FREQ	READING	C.FACTOR	RESULT	LIMIT			PHASE
	[MHz]	QP CAV [dBuV][dBuV] [dB]	QP CAV [dBuV][dBuV]		iBuV]	QP CAV [dBuV][dBuV]	
1	0.16963	40.14 31.31	19.83	59.97 51.14	64.98 54	4.98	5.01 3.84	N
2	0.17387	37.83 24.06	19.84	57.67 43.90	64.77 54	4.77	7.10 10.87	N
3	0.54127	13.52 6.15	20.14	33.66 26.29	56.00 46	6.00	22.34 19.71	N
4	4.49660	2.08 -3.56	20.07	22.15 16.51	56.00 46	6.00	33.85 29.49	N
5	15.08500	13.69 8.32	21.14	34.83 29.46	60.00 50	0.00	25.17 20.54	N
6	20.69720	9.38 4.86	21.02	30.40 25.88	60.00 50	0.00	29.60 24.12	N
7	0.16921	40.20 31.76	19.73	59.93 51.49	65.00 55	5.00	5.07 3.51	L
8	0.16825	40.46 32.15	19.73	60.19 51.88	65.05 55	5.05	4.86 3.17	L
9	0.52352	10.53 4.81	19.84	30.37 24.65	56.00 46	6.00	25.63 21.35	L
10	4.49840	2.28 -3.50	20.07	22.35 16.57	56.00 46	6.00	33.65 29.43	L
11	14.83140	13.65 8.20	21.13	34.78 29.33	60.00 50	0.00	25.22 20.67	L
12	20.89280	9.15 4.73	21.00	30.15 25.73	60.00 50	0.00	29.85 24.27	L

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**


Pages: 35 / 71

APPENDIX I

Conducted Test set up Diagram

Conducted Measurement

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

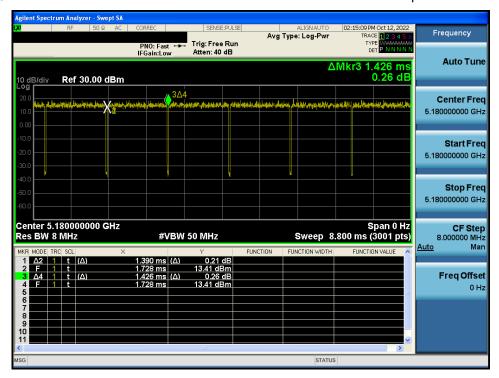
APPENDIX II

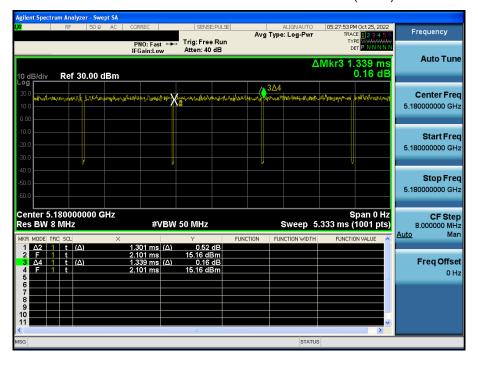
Duty Cycle Information

■ Test Procedure

Duty Cycle [X = On Time / (On + Off time)] is measured using Measurement Procedure of KDB789033 D02v02r01

- 1. Set the center frequency of the spectrum analyzer to the center frequency of the transmission.
- 2. Set RBW ≥ EBW if possible; otherwise, set RBW to the largest available value.
- 3. Set VBW ≥ RBW. Set detector = peak.
- 4. Note: The zero-span measurement method shall not be used unless both RBW and VBW are > 50 / T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T≤ 16.7 microseconds.)
 - T: The minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
 - (**T = On time** of the above table since the EUT operates with above fixed Duty Cycle and it is the minimum On time)

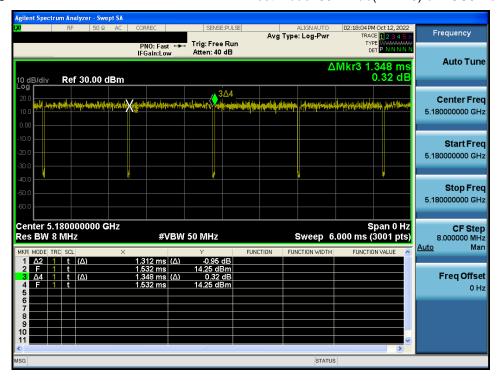

Pages: 36 / 71


Duty Cycle

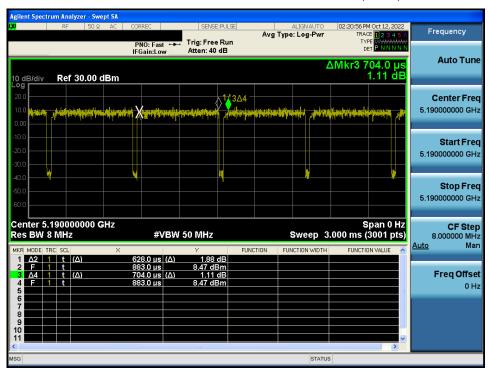
Test Mode: 802.11a & 6 Mbps & Ch.36

Duty Cycle

Test Mode: 802.11n(HT20) & MCS0 & Ch.36



TDt&C

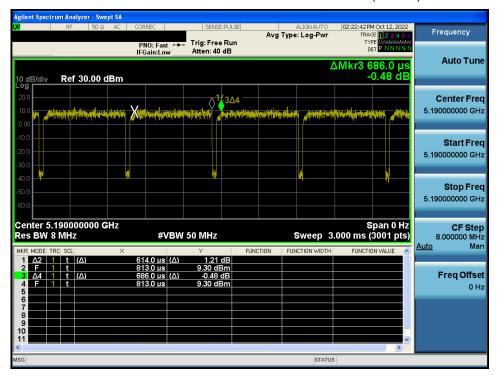

Duty Cycle

Test Mode: 802.11ac(VHT20) & MCS0 & Ch.36

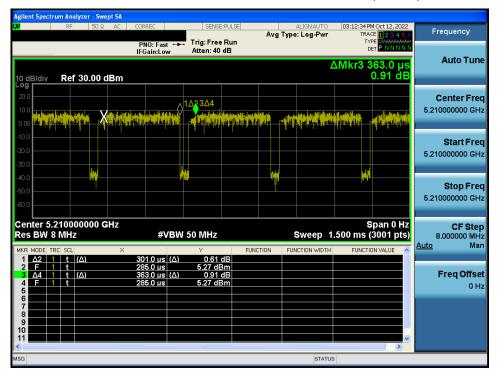
Duty Cycle

Test Mode: 802.11n(HT40) & MCS0 & Ch.38

TRF-RF-234(06)210316 Pages: 38 / 71



Pages: 39 / 71

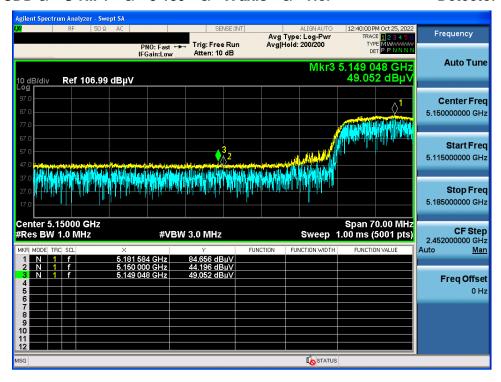

Duty Cycle

Test Mode: 802.11ac(VHT40) & MCS0 & Ch.38

Duty Cycle

Test Mode: 802.11ac(VHT80) & MCS0 & Ch.42

TRF-RF-234(06)210316



APPENDIX III

Unwanted Emissions (Radiated) Test Plot:

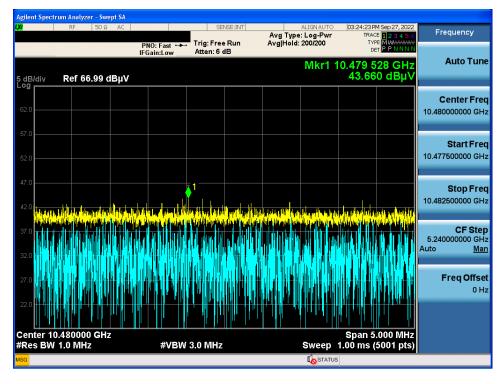
802.11a & CDD & U-NII 1 & 5 180 & X axis & Hor

Detector Mode: PK

802.11a & CDD & U-NII 1 & 5 180 & X axis & Hor

Detector Mode: AV

Pages: 40 / 71



TDt&C

802.11a & CDD & U-NII 1 & 5 240 & X axis & Hor

Detector Mode: PK

TRF-RF-234(06)210316 Pages: 41 / 71

Report No.: DRTFCC2211-0170(3)

802.11a & CDD & U-NII 2A & 5 320 & X axis & Hor

Detector Mode: PK

802.11a & CDD & U-NII 2A & 5 320 & X axis & Hor

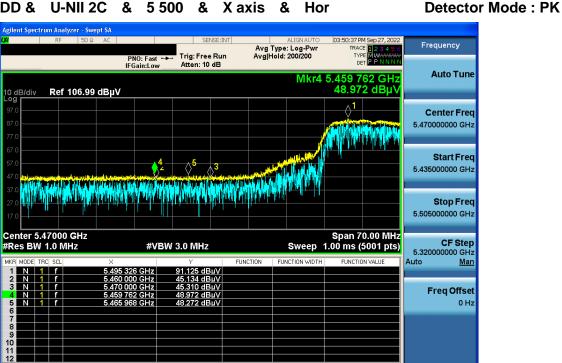
Detector Mode: AV

Pages: 42 / 71

Report No.: **DRTFCC2211-0170(3)** IC : **2703H-LGSBWAC93**

802.11a & CDD & U-NII 2A & 5 320 & X axis & Hor

TRF-RF-234(06)210316 Pages: 43 / 71



Detector Mode: AV

Report No.: DRTFCC2211-0170(3) IC: 2703H-LGSBWAC93

802.11a & CDD & U-NII 2C & 5 500 & X axis & Hor

STATUS

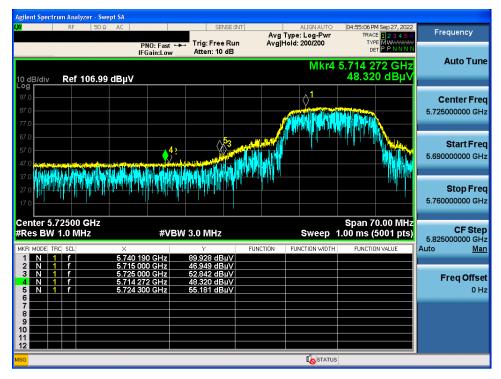
802.11a & CDD & U-NII 2C & 5 500 & X axis & Hor

Report No.: DRTFCC2211-0170(3)

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

802.11a & CDD & U-NII 2C & 5 500 & X axis & Hor Detector Mode : AV

TRF-RF-234(06)210316 Pages: 45 / 71



Report No.: DRTFCC2211-0170(3) IC: 2703H-LGSBWAC93

TDt&C

802.11a & CDD & U-NII 3 & 5 745 & X axis & Hor

Detector Mode: PK

802.11a & CDD & U-NII 3 & 5 825 & X axis & Hor

Detector Mode: PK

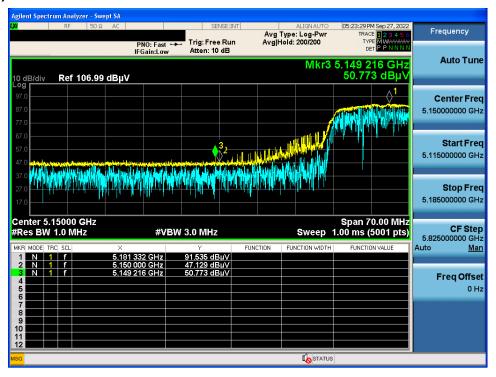
Pages: 46 / 71

TDt&C

FCC ID: BEJLGSBWAC93 IC: 2703H-LGSBWAC93

802.11a & CDD & U-NII 3 & 5 745 & X axis & Hor

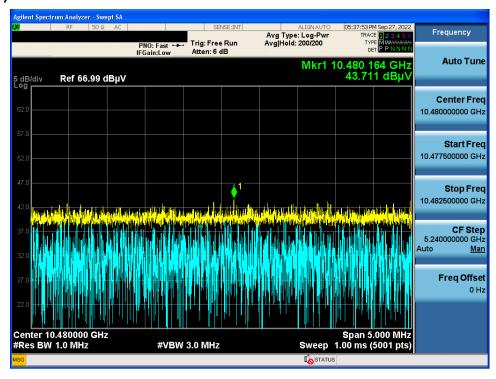
Detector Mode: AV


TRF-RF-234(06)210316 Pages: 47 / 71

Report No.: DRTFCC2211-0170(3) IC: 2703H-LGSBWAC93

802.11n(20) & CDD & U-NII 1 & 5 180 & X axis & Ver **Detector Mode: PK**

802.11n(20) & CDD & U-NII 1 & 5 180 & X axis & Ver **Detector Mode: AV**



T Dt&C

Report No.: **DRTFCC2211-0170(3)** IC: **2703H-LGSBWAC93**

FCC ID: BEJLGSBWAC93

802.11n(20) & CDD & U-NII 1 & 5 240 & X axis & Ver Detector Mode : PK

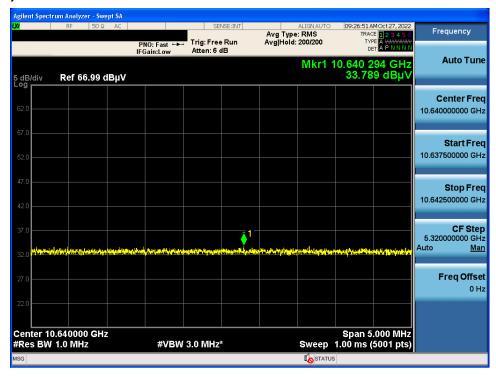
TRF-RF-234(06)210316 Pages: 49 / 71

Pages: 50 / 71

TDt&C

802.11ac(20) & CDD & U-NII 2A & 5 320 & X axis & Ver Detector Mode : PK

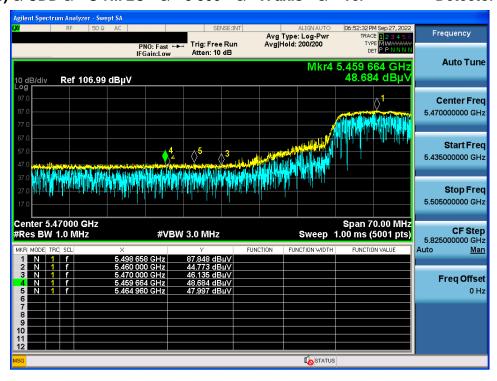
802.11ac(20) & CDD & U-NII 2A & 5 320 & X axis & Ver Detector Mode : AV



Report No.: DRTFCC2211-0170(3)

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

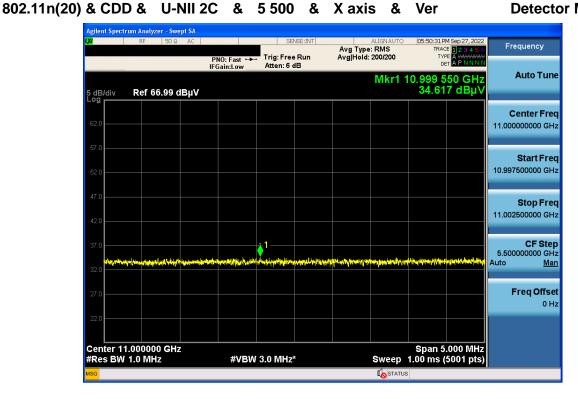
802.11ac(20) & CDD & U-NII 2A & 5 320 & X axis & Ver Detector Mode : AV


TRF-RF-234(06)210316 Pages: 51 / 71

Pages: 52 / 71

TDt&C

802.11n(20) & CDD & U-NII 2C & 5 500 & X axis & Ver Detector Mode : PK

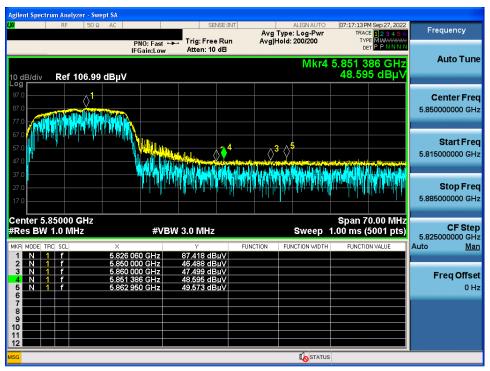

802.11n(20) & CDD & U-NII 2C & 5 500 & X axis & Ver Detector Mode : AV

IC: 2703H-LGSBWAC93

Detector Mode: AV


TRF-RF-234(06)210316 Pages: 53 / 71

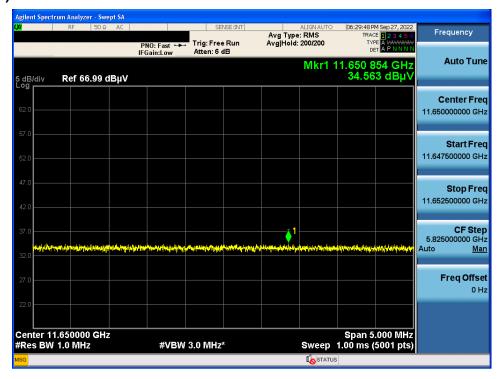
TDt&C


802.11n(20) & CDD & U-NII 3 & 5 745 & X axis & Ver

Detector Mode: PK

802.11n(20) & CDD & U-NII 3 & 5 825 & X axis & Ver

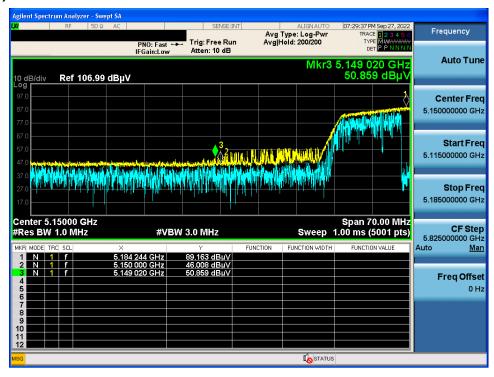
Detector Mode: PK



Pages: 54 / 71

Report No.: **DRTFCC2211-0170(3)** IC: **2703H-LGSBWAC93**

802.11n(20) & CDD & U-NII 3 & 5 825 & X axis & Ver Detector Mode : AV

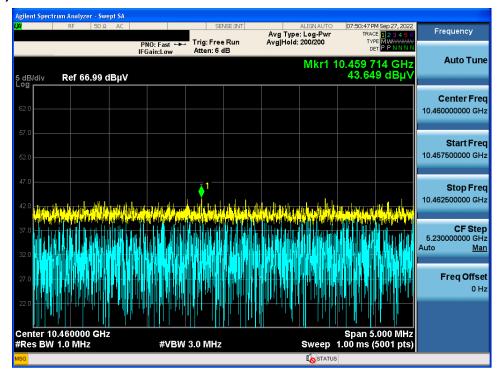


TRF-RF-234(06)210316 Pages: 55 / 71

TDt&C

802.11n(40) & CDD & U-NII 1 & 5 190 & X axis & Hor Detector Mode : PK

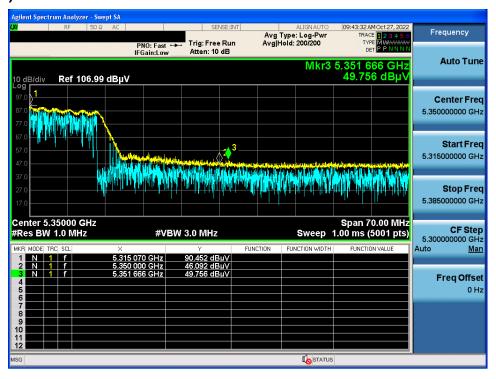
802.11n(40) & CDD & U-NII 1 & 5 190 & X axis & Hor Detector Mode : AV



Pages: 56 / 71

TDt&C

802.11n(40) & CDD & U-NII 1 & 5 230 & X axis & Hor **Detector Mode: PK**


Pages: 57 / 71

IC: 2703H-LGSBWAC93

TDt&C

802.11ac(40) & CDD & U-NII 2A & 5 310 & X axis & Hor Detector Mode : PK

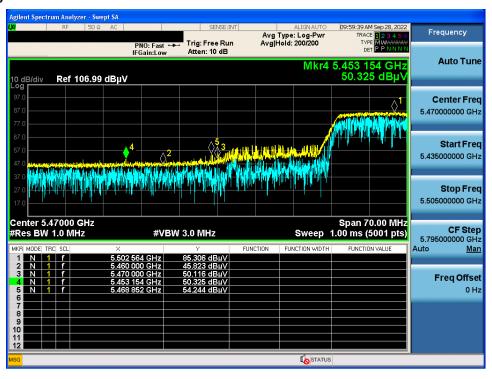
802.11ac(40) & CDD & U-NII 2A & 5 310 & X axis & Hor Detector Mode : AV

Pages: 58 / 71

Report No.: DRTFCC2211-0170(3)

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

802.11ac(40) & CDD & U-NII 2A & 5 310 & X axis & Hor Detector Mode : AV

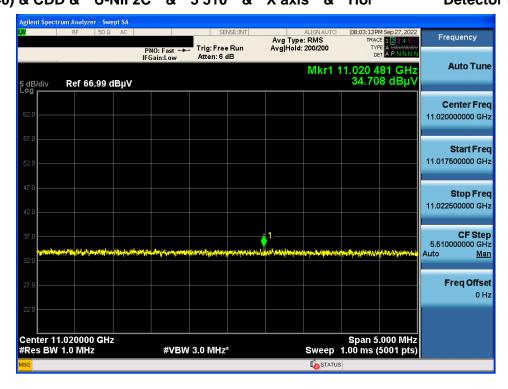


TRF-RF-234(06)210316 Pages: 59 / 71

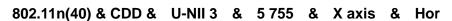


TDt&C

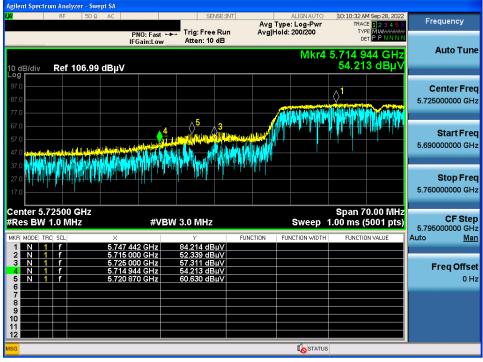
802.11n(40) & CDD & U-NII 2C & 5 510 & X axis & Hor Detector Mode : PK


802.11n(40) & CDD & U-NII 2C & 5 510 & X axis & Hor Detector Mode : AV

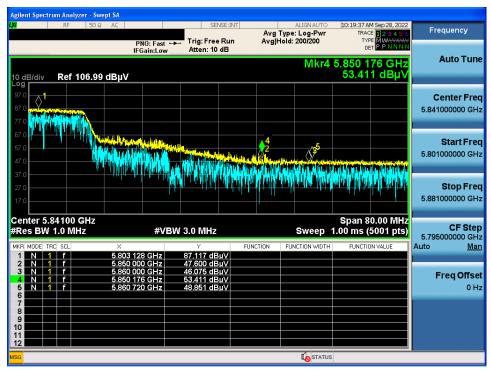
IC: 2703H-LGSBWAC93


802.11n(40) & CDD & U-NII 2C & 5 510 & X axis & Hor Detector Mode : AV

TRF-RF-234(06)210316 Pages: 61 / 71



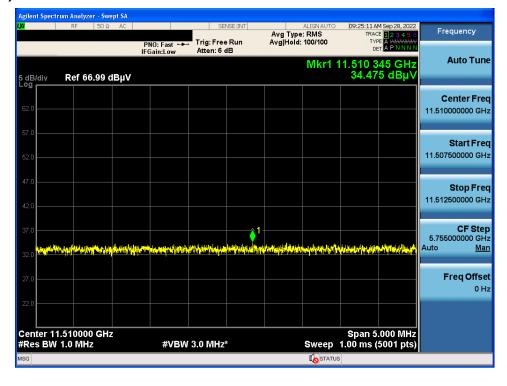
Report No.: DRTFCC2211-0170(3) IC: 2703H-LGSBWAC93


TDt&C

802.11n(40) & CDD & U-NII 3 & 5 795 & X axis & Hor

Detector Mode: PK

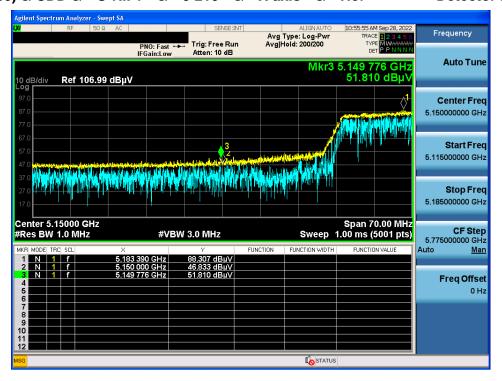
TRF-RF-234(06)210316 Pages: 62 / 71



Report No.: **DRTFCC2211-0170(3)** IC: **2703H-LGSBWAC93**

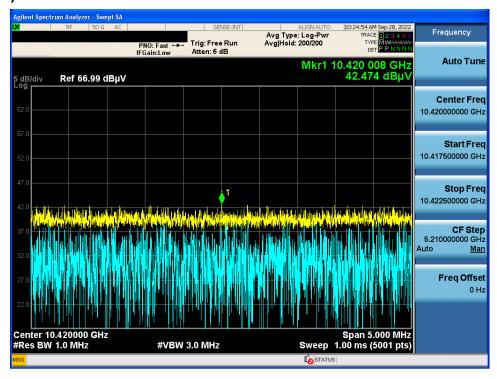
802.11n(40) & CDD & U-NII 3 & 5 755 & X axis & Hor

TDt&C


TRF-RF-234(06)210316 Pages: 63 / 71

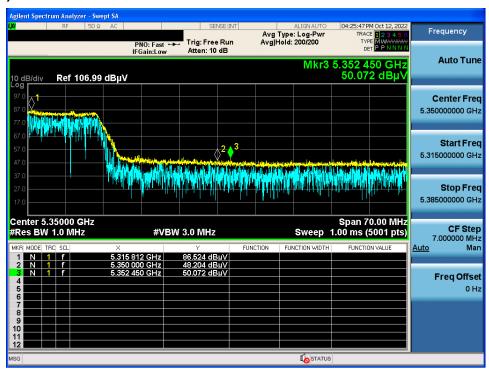
Report No.: DRTFCC2211-0170(3) IC: 2703H-LGSBWAC93

802.11ac(80) & CDD & U-NII 1 & 5 210 & X axis & Hor **Detector Mode: PK**


802.11ac(80) & CDD & U-NII 1 & 5 210 & X axis & Hor **Detector Mode: AV**

TDt&C

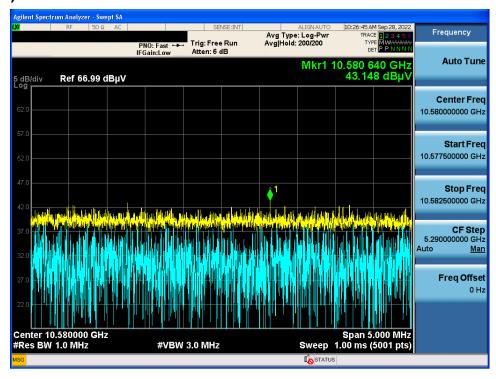
802.11ac(80) & CDD & U-NII 1 & 5 210 & X axis & Hor Detector Mode : PK


Pages: 65 / 71

Pages: 66 / 71

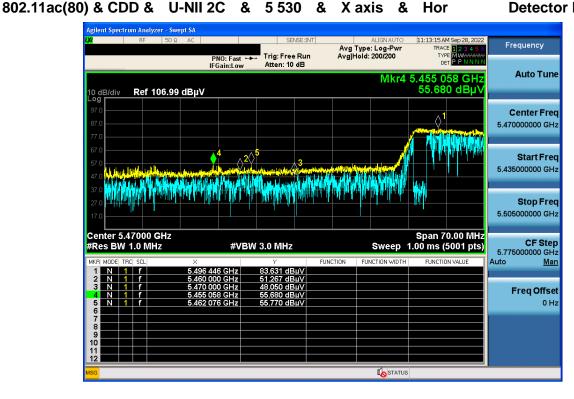
TDt&C

802.11ac(80) & CDD & U-NII 2A & 5 290 & X axis & Hor Detector Mode : PK


802.11ac(80) & CDD & U-NII 2A & 5 290 & X axis & Hor Detector Mode : AV

TDt&C

802.11ac(80) & CDD & U-NII 2A & 5 290 & X axis & Hor Detector Mode : PK


Pages: 67 / 71

Pages: 68 / 71

TDt&C Report No.: DRTFCC2211-0170(3)

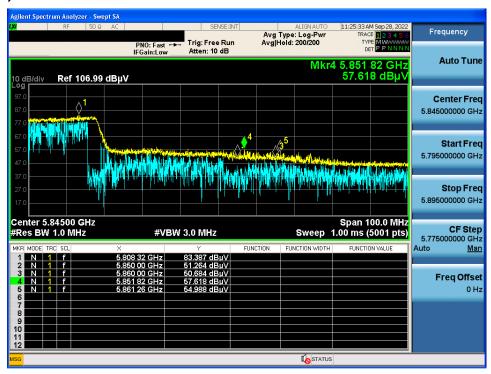
Detector Mode: PK


802.11ac(80) & CDD & U-NII 2C & 5 530 & X axis & Hor **Detector Mode: AV**

Report No.: DRTFCC2211-0170(3) IC: 2703H-LGSBWAC93

802.11ac(80) & CDD & U-NII 2C & 5 530 & X axis & Hor Detector Mode : AV

Pages: 69 / 71



TDt&C

802.11ac(80) & CDD & U-NII 3 & 5 775 & X axis & Hor Detector Mode : PK

802.11ac(80) & CDD & U-NII 3 & 5 775 & X axis & Hor Detector Mode : PK

Pages: 70 / 71

Report No.: DRTFCC2211-0170(3)

FCC ID: **BEJLGSBWAC93**IC: **2703H-LGSBWAC93**

802.11ac(80) & CDD & U-NII 3 & 5 775 & X axis & Hor Dete

TRF-RF-234(06)210316 Pages: 71 / 71