

FCC Radio Test Report

FCC ID: BEJKBA2

Report No. Equipment Model Name Brand Name Applicant Address	 BTL-FCCP-1-2201T123 KEYBOARD KBA2 LG LG Electronics USA 111 Sylvan Avenue, North Building, Englewood Cliffs, New Jersey, United States,07632
Radio Function	: Short Range Devices
FCC Rule Part(s) Measurement Procedure(s)	 FCC Part15, Subpart C (15.249) ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2022/2/8 : 2022/2/8 ~ 2022/3/18 : 2022/3/23

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by	: <u>Eric Lee, Engineer</u>
Approved by	: Jerry Chuang, Supervisor
BTL Inc.	
No.18, Ln. 171, Sec.	2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan
Tel: +886-2-2657-329	99 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVISION	I HISTORY	4
SUMMAR	Y OF TEST RESULTS	5
1.1	TEST FACILITY	6
1.2	MEASUREMENT UNCERTAINTY	6
1.3	TEST ENVIRONMENT CONDITIONS	6
1.4	TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	7
1.5	DUTY CYCLE	7
GENERAI	INFORMATION	8
1.6	DESCRIPTION OF EUT	8
1.7	TEST MODES	9
1.8	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
1.9	SUPPORT UNITS	10
RADIATEI	D EMISSIONS TEST	11
1.10	LIMIT	11
1.11	TEST PROCEDURE	12
1.12	DEVIATION FROM TEST STANDARD	12
1.13	TEST SETUP	12
1.14	EUT OPERATING CONDITIONS	13
1.15	TEST RESULT – 30 MHZ TO 1 GHZ	14
1.16	TEST RESULT – ABOVE 1 GHZ	14
BANDWIE	TH TEST	15
1.17	APPLIED PROCEDURES / LIMIT	15
1.18	TEST PROCEDURE	15
1.19	DEVIATION FROM STANDARD	15
1.20	TEST SETUP	15
1.21	EUT OPERATION CONDITIONS	15
1.22	TEST RESULTS	15
LIST OF N	IEASURING EQUIPMENTS	16
EUT TES	РНОТО	17
EUT PHO	TOS	17
APPENDI	X A RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	18
APPENDI	X B RADIATED EMISSIONS - ABOVE 1 GHZ	21
APPENDI	X C BANDWIDTH	34

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2201T123	R00	Original Report.	2022/3/23	Valid

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.249)						
Standard(s) Section	Description	Test Result	Judgement	Remark		
15.207	AC Power Line Conducted Emissions		N/A			
15.205 15.209 15.249(a)(d)	Radiated Emissions	APPENDIX A APPENDIX B	Pass			
15.215(c)	Bandwidth	APPENDIX C	Pass			

NOTE:

"N/A" denotes test is not applicable in this Test Report.
 The report format version is TP.1.1.1.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

	C05	CB08	CB11	\boxtimes	CB15	CB16
\boxtimes	SR06					

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95** %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
CB15	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
	1 GHz ~ 6 GHz	5.21
	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

B. Conducted test :

Test Item	U,(dB)
Bandwidth	0.5334

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
Radiated emissions below 1 GHz	22 °C, 68 %	DC 3V	Eddie Lee
Radiated emissions above 1 GHz	22 °C, 62 ~ 68 %	DC 3V	Eddie Lee
Bandwidth	24.6 °C, 67 %	DC 3V	William Wei

1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software	Pixart EMI Test Tool v1.2.8				
Frequency	2405 MHz	2442 MHz	2474 MHz	Data Rate	
SRD	4	4	4	2 Mbps	

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period
Mada	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle
Widde	(ms)	(ON)	(ms)	(ms)	(%)
SRD	0.377	1	0.377	17.710	2.13%

GENERAL INFORMATION

1.6 DESCRIPTION OF EUT

Equipment	KEYBOARD
Model Name	KBA2
Brand Name	LG
Model Difference	N/A
Power Source	Supplied from battery.
Power Rating	DC 3V
Products Covered	N/A
Frequency Range	2400 MHz ~ 2483.5 MHz
Operation Frequency	2405 MHz ~ 2474 MHz
Modulation Technology	GFSK
Transfer Rate	2 Mbps
Field Strength	101.40 dBuV/m
Test Model	KBA2
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- (2) Channel List:

Channel	Frequency (MHz)
01	2405
02	2407
03	2418
04	2426
05	2430
06	2437
07	2442
08	2447
09	2458
10	2469
11	2471
12	2474

(3) Table for Filed Antenna:

Ant. Brand		Brand	Model	Antenna Type	Connector	Gain (dBi)
	1 Unictron AA055C		Chip	N/A	2.5	

1.7 **TEST MODES**

Test Items	Test mode	Channel	Note
Transmitter Radiated Emissions (below 1GHz)	SRD	12	-
Transmitter Radiated Emissions	SRD	01/07/12	Fundamental
(above 1GHz)	SRD	01/07/12	Harmonic
Bandwidth	SRD	01/07/12	-

NOTE:

- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.
 (3) There were no emissions found below 30 MHz within 20 dB of the limit.

1.8 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 1.9.

1.9 SUPPORT UNITS

Item	em Equipment Brand		Model No.	Series No.	Remarks
-			-	-	-
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
-	-	-	-	-	-

RADIATED EMISSIONS TEST

1.10 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

	Radiated I (dBu	Measurement Distance	
	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

(4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

10.11	
19.11 + 2.11 =	= 21.22

Measurement Value		Limit Value		Margin Level
21.22	I	54	=	-32.78

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

Spectrum Parameter	Setting	
Attenuation	Auto	
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector	
Start ~ Stop Frequency	90KHz~110KHz for QP detector	
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector	
Start ~ Stop Frequency	490KHz~30MHz for QP detector	
Start ~ Stop Frequency	30MHz~1000MHz for QP detector	

1.11 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

1.12 DEVIATION FROM TEST STANDARD

No deviation.

1.13 TEST SETUP

1.15 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX A.

1.16 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX B.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

BANDWIDTH TEST

1.17 APPLIED PROCEDURES / LIMIT

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

1.18 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

1.19 DEVIATION FROM STANDARD

No deviation.

1.20 TEST SETUP

1.21 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

1.22 TEST RESULTS

Please refer to the APPENDIX C.

LIST OF MEASURING EQUIPMENTS

	Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC02325	980217	2021/4/8	2022/4/7			
2	Preamplifier	EMCI	EMC012645B	980222	2021/4/8	2022/4/7			
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7			
4	Test Cable	EMCI	EMC104-SM-1000	180809	2021/4/8	2022/4/7			
5	Test Cable	EMCI	EMC104-SM-SM-3000	151205	2021/4/8	2022/4/7			
6	Test Cable	EMCI	EMC-SM-SM-7000	180408	2021/4/8	2022/4/7			
7	MXE EMI Receiver	Agilent	N9038A	MY56400087	2021/5/27	2022/5/26			
8	Signal Analyzer	Agilent	N9010A	MY56480554	2021/8/25	2022/8/24			
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31			
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1			
11	Horn Ant	Schwarzbeck	BBHA 9170	340	2021/7/9	2022/7/8			
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-352	2021/8/11	2022/8/10			
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/8/11	2022/8/10			
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

	Bandwidth								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Spectrum Analyzer	R&S	FSV 7	103032	2021/8/17	2022/8/16			

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

EUT TEST PHOTO

Please refer to document Appendix No.: TP-2201T123-FCCP-1 (APPENDIX-TEST PHOTOS).

EUT PHOTOS

Please refer to document Appendix No.: EP-2201T123-1 (APPENDIX-EUT PHOTOS).

APPENDIX A RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

	-	Test Mo	de			S	RD				T	est Date	Э			202	2/3/16	
	Test Frequency Temp 0 dBuV/m					247	′4M⊢	lz			Pc	olarizatio	on			Ve	rtical	
		Temp	1			2	2°C					Hum.				6	8%	
80.0	dB	uV/m																_
70																		
60																		
50			r															
40																		
30					4			5 X						6 X				
20	X	2 X	з Х		ž													
10																		
0.0																		
30).000	127.00	224.	00	321.0)0	418.	00	515.	00 E	612.0)0 70)9.00) 806	6.00		1000.00	MHz
No	D.	Mk.	Freq		Read Lev	ding /el	Co Fa	orrect actor	Me	easure- ment		Limit		Over				
			MHz	2	dBu	uV	(dB	d	BuV/m	d	IBuV/m		dB	Det	ector	Comm	ent
1			45.64	93	29.	41	-6	3.72		20.69		40.00		-19.31	р	eak		
2			128.26	610	29.	61	-1	0.26		19.35		43.50		-24.15	р	eak		
3			165.18	857	29.	75	-9	9.19		20.56		43.50		-22.94	р	eak		
4			317.02	230	29.	78	-7	7.91		21.87		46.00		-24.13	р	eak		
5			461.97	'33	30.	24	-2	1.20	2	26.04		46.00		-19.96	р	eak		
6		*	731.85	597	29.	69	0	.96		30.65		46.00		-15.35	р	eak		

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

	-	Toot M	odo			0	חסי				т	oct Data				2022	0/2/16	
	Teo	t Erec				247		7			Do	Jarizatio	n			LUZZ Hori-	zontal	
	163	Tom	n n			247	2°C	Z			FU	Hum				6	2011.01	
80.0	dB	uV/m	γ			2	20					Tium.				00	570	
00.0																		
70																		
60																	_	
50			r															
40	<u> </u>																	_
30		-										5 X			6 X			_
20	1 X		2 X		з Х	4 ×												_
10																		-
0.0																		
30	0.000	127.0	0 224.	00	321	.00	418.	00	515.	00 E	612.	00 70	9.00	80	6.00		1000.0	D MHz
No	Э.	Mk.	Freq	•	Rea Le	ading evel	Co Fa	orrect actor	Me	easure- ment		Limit	(Over				
			MHz		dE	BuV		dB	d	BuV/m	C	BuV/m		dB	Det	ector	Comm	nent
1			47.23	36	29	.28	-8	3.69		20.59		40.00	- '	19.41	р	eak		
2			162.92	23	30	.49	-6	9.10	4	21.39		43.50	-2	22.11	р	eak		
3	6		283.52	56	29	.69	-8	3.66	4	21.03		46.00	-2	24.97	р	eak		
4			323.55	642	29	9.34	-7	7.79		21.55		46.00	-2	24.45	р	eak		
5	5		630.81	80	29	.09	-().58	2	28.51		46.00	- '	17.49	р	eak		
6	;	*	820.87	'33	28	3.70	2	.28		30.98		46.00	- '	15.02	р	eak		

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - ABOVE 1 GHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) Average Correct Factor = 20Log(duty cycle) = -33.43

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) Average Correct Factor = 20Log(duty cycle) = -33.43

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) Average Correct Factor = 20Log(duty cycle) = -33.43

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) Average Correct Factor = 20Log(duty cycle) = -33.43

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) Average Correct Factor = 20Log(duty cycle) = -33.43

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) Average Correct Factor = 20Log(duty cycle) = -33.43

	Test Mo	de		S	RD		Test D	late	202	2/3/16
Te	est Frequ	iency		240	5MHz		Polariza	ation	Ve	rtical
	Temp)		2	2°C		Hun	n.	6	2%
130.0 c	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50										
40		×								
30		2 X								
20										
10.0										
1000.0	000 3550.0	0 6100.0	00 8	8650.00	11200.00	13750.00	16300.00	18850.00	21400.00	26500.00 MHz
No.	Mk.	Freq.	R	eading	Correct Eactor	Measure	e- Lim	it Ove	er	
		MHz		dBuV	dB	dBuV/n	n dBuV	//m dE	B Detector	Comment
1		4810.00	0	53.03	-9.85	43.18	74.0	0 -30.	82 peak	
2	*	4810.00	0	42.47	-9.85	32.62	54.0	0 -21.	38 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = -33.43

	Test Mo			S	RD			-	Test Da	ite		2022	2/3/16	
Te	est Frequ	iency			240	5MHz			Ρ	olarizat	tion		Horiz	zontal
	Temp				22	2°C				Hum.			62	2%
130.0	dBuV/m													
120														
110														
100														
90														
80														
70														
60														
50														
40		×												
20		2 X												
20														
20														
10.0	000 3550 0	0 6100	nn	8650.0	າດ	11200.00	137	50.00	163	00 00	18850 (NN 21 4	.00.00	26500.00 MHz
No.	Mk.	Frea.		Readi	ina	Correc	t M	easure)-	Limit		Over		_3000.00 MIL
		. 4.		Leve	əl	Factor		ment						
		MHz		dBu	V	dB	d	BuV/m	۱	dBuV/r	n	dB	Detector	Comment
1		4810.00	00	53.6	5	-9.85		43.80		74.00	-	30.20	peak	
2	*	4810.00	00	42.8	2	-9.85		32.97		54.00	-	21.03	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.
(3) Average Correct Factor = 20Log(duty cycle) = -33.43

	Test Mod	le	S	RD		Test Dat	e	2022	2/3/16
Te	est Freque	ency	244	2MHz		Polarizati	on	Vei	tical
_	Temp		2	2°C		Hum.		62	2%
130.0	dBu¥/m								
120									
110									
100									
90									
80									
70									
60									
50			1 X						
40			x						
30									
20									
10.0									
1000.0	000 3550.00) 6100.00	8650.00	11200.00	13750.00	16300.00 1	18850.00 214	100.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	n dB	Detector	Comment
1		7326.000	53.37	-2.73	50.64	74.00	-23.36	peak	
2	*	7326.000	45.15	-2.73	42.42	54.00	-11.58	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = -33.43

	Test Mod	de	S	RD		Test Date	е	2022	2/3/16
Te	est Freque	ency	244	2MHz		Polarizatio	on	Horiz	zontal
	Temp		2	2°C		Hum.		62	2%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50			1 X						
40			×						
30									
20									
10.0									
1000.0	000 3550.00) 6100.00	8650.00	11200.00	13750.00	16300.00 1	8850.00 214	100.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	ı dB	Detector	Comment
1		7326.000	52.79	-2.73	50.06	74.00	-23.94	peak	
2	*	7326.000	45.39	-2.73	42.66	54.00	-11.34	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = -33.43

	Test Mod	le	S	RD		Test Dat	te	2022	2/3/16
Te	est Freque	ency	247	4MHz		Polarizati	on	Vei	tical
	Temp		2	2°C		Hum.		68	8%
130.0	dBu¥/m								
120									
110									
100									
90									
80									
70									
60									
50			1 X 2						
40			x						
30									
20									
10.0									
1000.0	000 3550.00) 6100.00	8650.00	11200.00	13750.00	16300.00 1	18850.00 214	400.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	n dB	Detector	Comment
1		7422.000	53.12	-2.27	50.85	74.00	-23.15	peak	e on mont
2	*	7422.000	45.75	-2.27	43.48	54.00	-10.52	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = -33.43

	Test Mod	de	S	RD		Test Date	e	2022	2/3/16
Te	est Frequ	ency	247	4MHz		Polarizatio	on	Horiz	zontal
	Temp		2	2°C		Hum.		68	8%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50			i ž						
40			x						
30									
20									
10.0									
1000.0	000 3550.00	D 6100.00	8650.00	11200.00	13750.00	16300.00 1	8850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		7422.000	52.10	-2.27	49.83	74.00	-24.17	peak	<u>connon</u>
2	*	7422.000	45.69	-2.27	43.42	54.00	-10.58	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.
 (3) Average Correct Factor = 20Log(duty cycle) = -33.43

APPENDIX C BANDWIDTH

End of Test Report