TEST REPORT ### FCC/ISED RFID Test for EAX70191101 Certification APPLICANT LG Electronics Inc. REPORT NO. HCT-RF-2307-FI001 **DATE OF ISSUE** July 17, 2023 **Tested by** Kyung Jun Woo **Technical Manager**Jong Seok Lee Accredited by KOLAS, Republic of KOREA HCT CO., LTD. Bongsai Huh / CEO ### HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401 # TEST REPORT FCC/ISED RFID Test for EAX70191101 REPORT NO. HCT-RF-2307-FI001 DATE OF ISSUE July 17, 2023 Additional model - | Applicant | LG Electronics Inc. 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do 17709, Republic of Korea | |--------------------------|---| | Eut Type
Model Name | NFC Reader for EVC
EAX70191101 | | FCC ID
IC | BEJEAX70191101
2703H-EAX70191101 | | RF Output Field Strength | 29.66 dBμV/m @30 m | | Frequency of Operation | 13.56 MHz | | Modulation type | ASK | | FCC Classification | Low Power Communication Device Transmitter (DXX) | | FCC Rule Part(s) | FCC Part 15.225 Subpart C | | ISED Rule Part(s) | RSS-210 Issue 10 (December 2019),
RSS-Gen Issue 5_Amendment 1 (March 2019) | | | The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the standard. | F-TP22-03 (Rev. 04) Page 2 of 41 #### **REVISION HISTORY** The revision history for this test report is shown in table. | Revision No. | Date of Issue | Description | |--------------|---------------|-----------------| | 0 | July 17, 2023 | Initial Release | #### **Engineering Statement:** The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance. measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance. #### **KOLAS Statement:** The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA. (KOLAS Accreditation No. KT197) If this report is required to confirmation of authenticity, please contact to www.hct.co.kr F-TP22-03 (Rev. 04) Page 3 of 41 고 객 비 밀 CUSTOMER SECRET ### **CONTENTS** | 1. EUT DESCRIPTION | 5 | |--|----| | 2. TEST METHODOLOGY | 6 | | EUT CONFIGURATION | 6 | | EUT EXERCISE | 6 | | GENERAL TEST PROCEDURES | 6 | | DESCRIPTION OF TEST MODES | 7 | | 3. INSTRUMENT CALIBRATION | 7 | | 4. FACILITIES AND ACCREDITATIONS | 7 | | FACILITIES | 7 | | EQUIPMENT | 7 | | 5. ANTENNA REQUIREMENTS | 8 | | 6. MEASUREMENT UNCERTAINTY | 9 | | 7. DESCRIPTION OF TESTS | 10 | | 8. TEST SUMMARY | 24 | | 9. TEST RESULT | 26 | | 9.1. Operation within the band 13.110 MHz – 14.010 MHz | 26 | | 9.2. Radiated Emission 9 kHz – 30 MHz | 28 | | 9.3. Radiated Emission 30 MHz – 1000 MHz | 31 | | 9.4. 20 dB Bandwidth | 32 | | 9.5. Frequency Stability | 33 | | 9.6 POWERLINE CONDUCTED EMISSIONS | 37 | | 10. LIST OF TEST EQUIPMENT | 39 | | 11. ANNEX A_ TEST SETUP PHOTO | 41 | ### 1. EUT DESCRIPTION | Model | EAX70191101 | |---|---------------------------------| | Additional model | - | | EUT Type | NFC Reader for EVC | | Power Supply | 3.30 V | | Frequency Range | 13.56 MHz | | Transmit Power | 29.66 dB _μ V/m @30 m | | Modulation Type | ASK | | Date(s) of Tests | June 27, 2023 ~ July 12, 2023 | | PMN
(Product Marketing Number) | NFC Reader for EVC | | HVIN
(Hardware Version Identification
Number) | EAX70191101 | | FVIN
(Firmware Version Identification
Number) | R2.4 | | HMN
(Host Marketing Name) | N/A | | EUT serial numbers | Radiated: EM23060018 V1.0 | F-TP22-03 (Rev. 04) Page 5 of 41 #### 2. TEST METHODOLOGY The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) is used in the measurement of the test device. #### **EUT CONFIGURATION** The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application. #### **EUT EXERCISE** The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.225 under the FCC Rules Part 15 Subpart C. / RSS-210 Issue 10 (December 2019) #### **GENERAL TEST PROCEDURES** ### **Conducted Emissions** The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes. #### **Radiated Emissions** The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). F-TP22-03 (Rev. 04) Page 6 of 41 #### **DESCRIPTION OF TEST MODES** The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed. #### 3. INSTRUMENT CALIBRATION The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017). #### 4. FACILITIES AND ACCREDITATIONS #### **FACILITIES** The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032). #### **EQUIPMENT** Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods." F-TP22-03 (Rev. 04) Page 7 of 41 ### 5. ANTENNA REQUIREMENTS #### According to FCC 47 CFR § 15.203: "An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section." - (1) The antennas of this E.U.T are permanently attached. - (2) The E.U.T Complies with the requirement of § 15.203 #### According to RSS-Gen(Issue 5) Section 6.8: The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below). When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested. F-TP22-03 (Rev. 04) Page 8 of 41 ### **6. MEASUREMENT UNCERTAINTY** The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance. | <u> </u> | | |------------------------------------------|--------------------------------------------------| | Parameter | Expanded Uncertainty (dB) | | Conducted Disturbance (150 kHz ~ 30 MHz) | 1.90 (Confidence level about 95 %, <i>k</i> =2) | | Radiated Disturbance (9 kHz ~ 30 MHz) | 4.14 (Confidence level about 95 %, <i>k</i> =2) | | Radiated Disturbance (30 MHz ~ 1 GHz) | 5.82 (Confidence level about 95 %, <i>k</i> =2) | | Radiated Disturbance (1 GHz ~ 18 GHz) | 5.74 (Confidence level about 95 %, <i>k</i> =2) | | Radiated Disturbance (18 GHz ~ 40 GHz) | 5.76 (Confidence level about 95 %, <i>k</i> =2) | | Radiated Disturbance (Above 40 GHz) | 5.52 (Confidence level about 95 %, <i>k</i> =2) | | | | F-TP22-03 (Rev. 04) Page 9 of 41 ### 7. DESCRIPTION OF TESTS ### 7.1. Radiated Test ### Limit (Operation within the band 13.110 MHz – 14.010 MHz) | Frequency (MHz) | Field Strength (μV/m) | Measurement Distance (m) | |---------------------------|-----------------------|--------------------------| | 13.553 - 13.567 | 15,848 | 30 | | $13.410 \le f \le 13.553$ | 334 | 30 | | $13.567 \le f \le 13.710$ | 334 | 30 | | $13.110 \le f \le 13.410$ | 106 | 20 | | $13.710 \le f \le 14.010$ | 100 | 30 | ### Note: - 1. 15,848 μ V/m = 84.0 dB μ V/m - 2. 334 μ V/m = 50.47 dB μ V/m - 3. $106\mu V/m = 40.51dB\mu V/m$ ### Only FCC Limit | Frequency (MHz) | Field Strength (μV/m) | Measurement Distance (m) | |-----------------|-----------------------|--------------------------| | 0.009 – 0.490 | 2400/F(kHz) | 300 | | 0.490 – 1.705 | 24000/F(kHz) | 30 | | 1.705 – 30 | 30 | 30 | ### Only ISED Limit | Frequency (MHz) | Magnetic Field Strength (μA/m) | Measurement Distance (m) | |-----------------|--------------------------------|--------------------------| | 0.009 – 0.490 | 6.37/F(kHz) | 300 | | 0.490 – 1.705 | 63.7/F(kHz) | 30 | | 1.705 - 30 | 0.08 | 30 | F-TP22-03 (Rev. 04) Page 10 of 41 ### **FCC&ISED Limit** | Frequency (MHz) | Field Strength (μV/m) | Measurement Distance (m) | |-----------------|-----------------------|--------------------------| | 30-88 | *100 | 3 | | 88-216 | *150 | 3 | | 216-960 | *200 | 3 | | Above 960 | 500 | 3 | *• Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHzor 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241. ### **Test Configuration** ### Below 30 MHz Page 11 of 41 F-TP22-03 (Rev. 04) #### 30 MHz - 1 GHz ### **Test Procedure of in-band** - 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber. - 2. The loop antenna was placed at a location 3 m from the EUT - 3. The EUT is placed on a turntable, which is 0.8m above ground plane. - 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna. - 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 6. Distance Correction Factor =40log(3 m/30 m)= 40 dB Measurement Distance: 3 m(Below30 MHz) - 7. Spectrum Setting - 1) Frequency Range = 9 kHz ~ 150 kHz - Detector = Peak - Trace = Maxhold - RBW = 300 Hz - VBW ≥ $3 \times RBW$ - 2) Frequency Range = 150 kHz ~ 30 MHz - Detector = Peak - Trace = Maxhold - RBW = 10 kHz - VBW ≥ $3 \times RBW$ - 8.Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) F-TP22-03 (Rev. 04) Page 12 of 41 ### Test Procedure of Radiated spurious emissions(Below30 MHz) - 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber. - 2. The loop antenna was placed at a location 3 m from the EUT - 3. The EUT is placed on a turntable, which is 0.8m above ground plane. - 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna. - 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 6. Distance Correction Factor(0.009 MHz 0.490 MHz) =40log(3 m/300 m)= 80 dB Measurement Distance: 3 m - 7. Distance Correction Factor(0.490 MHz 30 MHz) =40log(3 m/30 m)= 40 dB Measurement Distance: 3 m - 8. Spectrum Setting - 1) Frequency Range = 9 kHz ~ 150 kHz - Detector = Peak - Trace = Maxhold - RBW = 300 Hz - VBW ≥ $3 \times RBW$ - 2) Frequency Range = 150 kHz ~ 30 MHz - Detector = Peak - Trace = Maxhold - RBW = 10 kHz - VBW \geq 3 x RBW - 9.Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) - 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor. ### KDB 414788 OFS and Chamber Correlation Justification Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result. F-TP22-03 (Rev. 04) Page 13 of 41 #### Test Procedure of Radiated spurious emissions(Above30 MHz) - 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber. - 2. The EUT is placed on a turntable, which is 0.8m above ground plane. - 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1m to 4m to find out the highest emissions. - 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. - 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 6. Spectrum Setting - Frequency Range = 30 MHz ~ 1 GHz - Detector = Peak - Trace = Maxhold - RBW = 100 kHz - VBW ≥ $3 \times RBW$ - 7.Total = = Measured Value - We apply to the offset in the range 30 MHz 1 GHz. The offset is Antenna Factor(A.F) + Cable Loss(C.L) – Amp Gain(A.G) - 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor. - = Measured Value - We apply to the offset in the range 30 MHz 1 GHz. The offset is Antenna Factor(A.F) + Cable Loss(C.L) – Amp Gain(A.G) Page 14 of 41 F-TP22-03 (Rev. 04) ### 7.2. 20 dB Bandwidth ### **Test Configuration** ### **Test Procedure** The 20 dB bandwidth was measured by using a spectrum analyzer. (Procedure 6.9.2 in ANSI 63.10-2013) - 1) RBW = $1 \% \sim 5 \%$ of the OBW - 2) VBW = approximately three times RBW - 3) Span = between two times and five times the OBW - 4) Detector = Peak - 5) Trace mode = Max hold - 6) Allow the trace to stabilize #### Note: We tested Occupied Bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. Page 15 of 41 F-TP22-03 (Rev. 04) #### 7.3. Frequency Stability #### Limit The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency. ### **Test Configuration** ### **Test Procedure.** For battery operated equipment, the equipment tests shall be performed using a new battery. - 1) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit. - 2) Set the temperature control on the chamber to the highest specified in the regulatory requirements - for the type of device and allow the oscillator heater and the chamber temperature to stabilize. - 3) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made. - 4) The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency. #### Note: 1) Temperature: The temperature is varied from -20 °C to + 50 °C using an environmental chamber. 2) Primary Supply Voltage: F-TP22-03 (Rev. 04) Page 16 of 41 The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer. F-TP22-03 (Rev. 04) Page 17 of 41 #### 7.4. AC Power line Conducted Emissions #### Limit For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). | Fraguency Dange (MUT) | Limits | (dBμV) | |-----------------------|-------------------------|-------------------------| | Frequency Range (MHz) | Quasi-peak | Average | | 0.15 to 0.50 | 66 to 56 ^(a) | 56 to 46 ^(a) | | 0.50 to 5 | 56 | 46 | | 5 to 30 | 60 | 50 | ^(a)Decreases with the logarithm of the frequency. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals. ### **Test Configuration** See test photographs attached in Annex A for the actual connections between EUT and support equipment. #### **Test Procedure** - 1. The EUT is placed on a wooden table 80 cm above the reference ground plane. - 2. The EUT is connected via LISN to a test power supply. - 3. The measurement results are obtained as described below: - 4. Detectors: Quasi Peak and Average Detector. - 5. The EUT is the device operating below 30 MHz. - For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected - For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal. #### Sample Calculation Quasi-peak(Final Result) = Measured Value + Correction Factor F-TP22-03 (Rev. 04) Page 18 of 41 ### 7.5. Receiver Spurious Emissions ### Limit | Frequency (MHz) | Field Strength (μV/m) | Measurement Distance (m) | |-----------------|-----------------------|--------------------------| | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | Note: Measurements for compliance with the limits in table may be performed at distances other than 3 ### **Test Configuration** ### 30 MHz - 1 GHz Page 19 of 41 F-TP22-03 (Rev. 04) ### Test Procedure of Receiver Spurious Emissions (Below 1GHz) - 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber. - 2. The EUT is placed on a turntable, which is 0.8 m above ground plane. - 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1 m to 4 m to find out the highest emissions. - 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. - 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 6. Spectrum Setting - (1) Measurement Type(Peak): - Measured Frequency Range: 30 MHz 1 GHz - Detector = Peak - Trace = Maxhold - RBW = 100 kHz - VBW ≥ $3 \times RBW$ - (2) Measurement Type(Quasi-peak): - Measured Frequency Range: 30 MHz 1 GHz - Detector = Quasi-Peak - RBW = 120 kHz - 7. Total = Measured Value - We apply to the offset in the range 30 MHz 1 GHz. The offset is Antenna Factor(A.F) + Cable Loss(C.L) – Amp Gain(A.G) Page 20 of 41 F-TP22-03 (Rev. 04) #### Above 1 GHz ### Test Procedure of Radiated spurious emissions (Above 1 GHz) - 1. The EUT is placed on a turntable, which is 1.5 m above ground plane. - 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. - 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions. - 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance. - 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. - 7. Spectrum Setting - (1) Measurement Type(Peak): - Measured Frequency Range : 1 GHz 25 GHz - Detector = Peak - Trace = Maxhold - RBW = 1 MHz - VBW ≥ $3 \times RBW$ - (2) Measurement Type(Average): - Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$ - Measured Frequency Range: 1 GHz 25 GHz - Detector = RMS - Averaging type = power (i.e., RMS) - RBW = 1 MHz F-TP22-03 (Rev. 04) Page 21 of 41 - VBW ≥ $3 \times RBW$ - Sweep time = auto. - 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor. - 9. Total = Measured Level + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Distance Factor(D.F) Page 22 of 41 F-TP22-03 (Rev. 04) ### 7.6. Worst case configuration and mode ### Radiated test - 1. All modes of operation were investigated and the worst case configuration results are reported. - Mode: Stand alone - Worstcase: Stand alone - 2. All EUT Axis of operation were investigated and the worst case configuration results are reported. - Worst case EUT Axis: Z - 3. All type and bitrate were investigated and the worst case results are reported. - Worst case: Type A, 106 kbps - 4. All position of loop antenna were investigated and the worst case configuration results are reported. - Position: Horizontal, Vertical, Parallel to the ground plane - Worstcase: Horizontal ### **AC Power line Conducted Emissions** - 1. All modes of operation were investigated and the worst case configuration results are reported. - Mode: Stand alone - Worstcase: Stand alone ### 20 dB Bandwidth & Frequency Stability - 1. All type and bitrate were investigated and the worst case results are reported. - Worst case: Type A, 106 kbps Page 23 of 41 F-TP22-03 (Rev. 04) 고 객 비 밀 CUSTOMER SECRET ### 8. TEST SUMMARY ### FCC Part | Regulation | Requirement | Result | |-----------------|---------------------------------------------------------------------------------------------|--------| | Part 15.225 (a) | Radiated Electric Field Emissions
(13.553 MHz to 13.567 MHz) | Pass | | Part 15.225 (b) | Radiated Electric Field Emissions $ (13.410 \le f \le 13.553, \\ 13.567 \le f \le 13.710) $ | Pass | | Part 15.225 (c) | Radiated Electric Field Emissions $ (13.110 \le f \le 13.410, \\ 13.710 \le f \le 14.010) $ | Pass | | Part 15.209 | Radiated Electric Field Emissions
(9 kHz to 30 MHz) | Pass | | Part 15.209 | Radiated Electric Field Emissions
(30 MHz to 1 GHz) | Pass | | Part 15.225 (e) | Frequency Stability | Pass | | Part 15.207 | AC power conducted emissions
(150 kHz to 30 MHz) | Pass | | Part 15.215 (c) | 20 dB Bandwidth | Pass | Page 24 of 41 F-TP22-03 (Rev. 04) 고 객 비 밀 CUSTOMER SECRET ## ISED Part | Test Description | ISED Part
Section(s) | Test Result | |---|----------------------------|-------------| | Radiated Electric Field Emissions (13.553 MHz to 13.567 MHz) | RSS-210, annex B.6(a)(i) | Pass | | Radiated Electric Field Emissions $ (13.410 \le f \le 13.553, \\ 13.567 \le f \le 13.710) $ | RSS-210, annex B.6(a)(ii) | Pass | | Radiated Electric Field Emissions $ (13.110 \le f \le 13.410, \\ 13.710 \le f \le 14.010) $ | RSS-210, annex B.6(a)(iii) | Pass | | Radiated Electric Field Emissions
(9 kHz to 30 MHz) | RSS-GEN, 8.9 | Pass | | Radiated Electric Field Emissions
(30 MHz to 1 GHz) | RSS-GEN, 8.9 | Pass | | Frequency Stability | RSS-210, annex B.6(a)(iv) | Pass | | AC power conducted emissions (150kHz to 30MHz) | RSS-GEN, 8.8 | Pass | | 20 dB Bandwidth | RSS-GEN, 6.7 | Pass | | Receiver Spurious Emissions | RSS-GEN, 7 | Pass | Page 25 of 41 F-TP22-03 (Rev. 04) ### 9. TEST RESULT ### 9.1. Operation within the band 13.110 MHz - 14.010 MHz ### Measured Frequency Range: #### 13.553 MHz-13.567 MHz | Frequency
(MHz) | Measured
Value
(dBμV/m)
@3 m | A.F+C.L
[dB/m] | Distance
Correction
(dB) | Ant.
POL
(H/V) | Total
(dBμV/m)
@30 m | Limit
(dBµV/m)
@30 m | Margin
(dB) | |--------------------|---------------------------------------|-------------------|--------------------------------|----------------------|----------------------------|----------------------------|----------------| | 13.5605 | 49.08 | 20.59 | -40.00 | Н | 29.66 | 84.00 | 54.34 | | 13.5621 | 48.02 | 20.59 | -40.00 | Н | 28.61 | 84.00 | 55.39 | ### Measured Frequency Range: #### 13.410 MHz-13.553 MHz and 13.567 MHz-13.710 MHz | Frequency
(MHz) | Measured
Value
(dBμV/m)
@3 m | A.F+C.L
[dB/m] | Distance
Correction
(dB) | Ant.
POL
(H/V) | Total
(dBµV/m)
@30 m | Limit
(dBµV/m)
@30 m | Margin
(dB) | |--------------------|---------------------------------------|-------------------|--------------------------------|----------------------|----------------------------|----------------------------|----------------| | 13.5530 | 42.63 | 20.59 | -40.00 | Н | 23.22 | 50.47 | 27.25 | | 13.5671 | 43.68 | 20.59 | -40.00 | Н | 24.27 | 50.47 | 26.20 | ### Measured Frequency Range: ### 13.110 MHz – 13.410 MHz and 13.710 MHz-14.010 MHz | Frequency
(MHz) | Measured
Value
(dBμV/m)
@3 m | A.F+C.L
[dB/m] | Distance
Correction
(dB) | Ant.
POL
(H/V) | Total
(dΒμV/m)
@30 m | Limit
(dBµV/m)
@30 m | Margin
(dB) | |--------------------|---------------------------------------|-------------------|--------------------------------|----------------------|----------------------------|----------------------------|----------------| | 13.1571 | 10.31 | 20.59 | -40.00 | Н | -9.10 | 40.51 | 49.61 | | 13.9404 | 9.48 | 20.59 | -40.00 | Н | -9.93 | 40.51 | 50.44 | F-TP22-03 (Rev. 04) Page 26 of 41 #### Test Plots #### 13.553 MHz ~ 13.567 MHz Date: 6.JUL.2023 08:56:36 #### 13.567 MHz-13.710 MHz Date: 6.JUL.2023 09:02:10 #### Note: In order to simplify the report, Plots of worst case are only reported F-TP22-03 (Rev. 04) Page 27 of 41 ### 9.2. Radiated Emission 9 kHz - 30 MHz ### -FCC ### Measured Frequency Range: ### 9 kHz - 490 kHz | Frequency
(kHz) | Measured
Value
(dBµV/m)
@3 m | A.F+C.L
[dB/m] | Distance
Correction
(dB) | Ant. POL
(H/V) | Total
(dBµV/m)
@300 m | Limit
(dBµV/m)
@300 m | Margin
(dB) | |--------------------|---------------------------------------|-------------------|--------------------------------|-------------------|-----------------------------|-----------------------------|----------------| | 0.0194 | 36.14 | 19.62 | -80.00 | Н | -24.24 | 41.85 | 66.09 | | 0.0524 | 32.16 | 20.14 | -80.00 | Н | -27.70 | 33.23 | 60.93 | ### Measured Frequency Range: ### 490 kHz - 30 MHz | Frequency
(MHz) | Measured
Value
(dBμV/m)
@3 m | A.F+C.L
[dB/m] | Distance
Correction
(dB) | Ant. POL
(H/V) | Total
(dBµV/m)
@30 m | Limit
(dBµV/m)
@30 m | Margin
(dB) | |--------------------|---------------------------------------|-------------------|--------------------------------|-------------------|----------------------------|----------------------------|----------------| | 24.0028 | 11.71 | 20.93 | -40.00 | Н | -7.36 | 29.54 | 36.90 | | 21.0614 | 10.25 | 20.93 | -40.00 | Н | -8.82 | 29.54 | 38.36 | | 19.6254 | 10.14 | 20.59 | -40.00 | Н | -9.27 | 29.54 | 38.81 | | 28.1632 | 10.90 | 20.79 | -40.00 | Н | -8.32 | 29.54 | 37.86 | Page 28 of 41 F-TP22-03 (Rev. 04) 고 객 비 밀 CUSTOMER SECRET ### -ISED ### Measured Frequency Range: ### 9 kHz - 490 kHz | Frequency
(kHz) | Measured
Value
(dBµV/m)
@3 m | A.F+C.L
[dB/m] | Distance
Correction
(dB) | Ant. POL
(H/V) | Total
(dBµA/m)
@300 m | Limit
(dBµA/m)
@300 m | Margin
(dB) | |--------------------|---------------------------------------|-------------------|--------------------------------|-------------------|-----------------------------|-----------------------------|----------------| | 0.0194 | 36.14 | 19.62 | -80.00 | Н | -75.77 | 0.33 | 76.10 | | 0.0524 | 32.16 | 20.14 | -80.00 | Н | -79.23 | 0.12 | 79.35 | ### Measured Frequency Range: ### 490 kHz - 30 MHz | Frequency
(MHz) | Measured
Value
(dBµV/m)
@3 m | A.F+C.L
[dB/m] | Distance
Correction
(dB) | Ant. POL
(H/V) | Total
(dBµA/m)
@30 m | Limit
(dBµA/m)
@30 m | Margin
(dB) | |--------------------|---------------------------------------|-------------------|--------------------------------|-------------------|----------------------------|----------------------------|----------------| | 24.0028 | 11.71 | 20.93 | -40.00 | Н | -58.89 | 0.08 | 58.97 | | 21.0614 | 10.25 | 20.93 | -40.00 | Н | -60.35 | 0.08 | 60.43 | | 19.6254 | 10.14 | 20.59 | -40.00 | Н | -60.80 | 0.08 | 60.88 | | 28.1632 | 10.90 | 20.79 | -40.00 | Н | -59.85 | 0.08 | 59.93 | F-TP22-03 (Rev. 04) Page 29 of 41 ### ■ Test Plot Date: 6.JUL.2023 09:19:21 #### Note: In order to simplify the report, Plot of worst case is only reported F-TP22-03 (Rev. 04) Page 30 of 41 #### 9.3. Radiated Emission 30 MHz - 1000 MHz | | Measured Frequency Range : 30 MHz - 1000 MHz | | | | | | | | | | |--------------------|--|-------------------|-------------------|-------------------|----------------|--|--|--|--|--| | Frequency
(MHz) | Measured
Value
(dBμV/m)@3 m | Ant. Pol
(H/V) | Total
(dΒμV/m) | Limit
(dΒμV/m) | Margin
(dB) | | | | | | | #162.5800 | 33.74 | Н | 33.74 | 43.52 | 9.78 | | | | | | | 216.8700 | 33.08 | Н | 33.08 | 46.02 | 12.94 | | | | | | | #244.0200 | 37.39 | V | 37.39 | 46.02 | 8.63 | | | | | | | #271.1700 | 34.27 | Н | 34.27 | 46.02 | 11.75 | | | | | | | 298.3100 | 37.34 | Н | 37.34 | 46.02 | 8.68 | | | | | | | #325.4600 | 35.08 | V | 35.08 | 46.02 | 10.94 | | | | | | #### Note: - 1. # is the result for restricted band. - 2. Correction factor was included in the Spectrum Analyzer. #### ■ Test Plot Date: 6.JUL.2023 11:22:24 #### Note: In order to simplify the report, Plot of worst case is only reported F-TP22-03 (Rev. 04) Page 31 of 41 #### 9.4. 20 dB Bandwidth F-TP22-03 (Rev. 04) Page 32 of 41 ### 9.5. Frequency Stability ### <u>Startup</u> PERATING FREQUENCY: 13.56 MHz REFERENCE VOLTAGE: 3.3 VDC **DEVIATION LIMIT:** $\pm 0.01\% = \pm 1356 \, \text{Hz}$ | Voltage | Power | Temp. | Frequency | Frequency
Dev. | Frequency | |---------|-------|-----------|-----------|-------------------|-----------| | (%) | (VDC) | (°C) | (MHz) | (Hz) | Dev (%) | | 100 % | | -20 | 13.560007 | 7 | 0.0000516 | | 100 % | | -10 | 13.560050 | 50 | 0.0003687 | | 100 % | | 0 | 13.560073 | 73 | 0.0005383 | | 100 % | 2.2 | +10 | 13.560034 | 34 | 0.0002507 | | 100 % | 3.3 | +20(Ref.) | 13.560095 | 95 | 0.0007006 | | 100 % | | +30 | 13.560069 | 69 | 0.0005088 | | 100 % | | +40 | 13.560083 | 83 | 0.0006121 | | 100 % | | +50 | 13.560058 | 58 | 0.0004277 | | LOW | 3.0 | +20 | 13.560096 | 96 | 0.0007080 | | HIGH | 3.6 | +20 | 13.560038 | 38 | 0.0002802 | F-TP22-03 (Rev. 04) Page 33 of 41 Report No. HCT-RF-2307-FI001 ### 2 minutes PERATING FREQUENCY: 13.56 MHz REFERENCE VOLTAGE: 3.3 VDC **DEVIATION LIMIT:** ±0.01 % = ±1356 Hz | Voltage | Power | Temp. | Frequency | Frequency
Dev. | Frequency | |---------|-------|-----------|-----------|-------------------|-----------| | (%) | (VDC) | (°C) | (MHz) | (Hz) | Dev (%) | | 100 % | | -20 | 13.560072 | 72 | 0.0005310 | | 100 % | | -10 | 13.560077 | 77 | 0.0005678 | | 100 % | | 0 | 13.560074 | 74 | 0.0005457 | | 100 % | 2.2 | +10 | 13.560064 | 64 | 0.0004720 | | 100 % | 3.3 | +20(Ref.) | 13.560005 | 5 | 0.0000369 | | 100 % | | +30 | 13.560048 | 48 | 0.0003540 | | 100 % | | +40 | 13.560006 | 6 | 0.0000442 | | 100 % | | +50 | 13.560078 | 78 | 0.0005752 | | LOW | 3.0 | +20 | 13.560016 | 16 | 0.0001180 | | HIGH | 3.6 | +20 | 13.560030 | 30 | 0.0002212 | Page 34 of 41 F-TP22-03 (Rev. 04) 5 minutes PERATING FREQUENCY: 13.56 MHz REFERENCE VOLTAGE: 3.3 VDC DEVIATION LIMIT: $\pm 0.01 \% = \pm 1356 \text{ Hz}$ | Voltage | Power | Temp. | Frequency | Frequency
Dev. | Frequency | |---------|-------|-----------|-----------|-------------------|-----------| | (%) | (VDC) | (°C) | (MHz) | (Hz) | Dev (%) | | 100 % | | -20 | 13.560042 | 42 | 0.0003097 | | 100 % | | -10 | 13.560100 | 100 | 0.0007375 | | 100 % | | 0 | 13.560089 | 89 | 0.0006563 | | 100 % | 2.2 | +10 | 13.560041 | 41 | 0.0003024 | | 100 % | 3.3 | +20(Ref.) | 13.560036 | 36 | 0.0002655 | | 100 % | | +30 | 13.560020 | 20 | 0.0001475 | | 100 % | | +40 | 13.560021 | 21 | 0.0001549 | | 100 % | | +50 | 13.560041 | 41 | 0.0003024 | | LOW | 3.0 | +20 | 13.560026 | 26 | 0.0001917 | | HIGH | 3.6 | +20 | 13.560036 | 36 | 0.0002655 | F-TP22-03 (Rev. 04) Page 35 of 41 10 minutes PERATING FREQUENCY: 13.56 MHz REFERENCE VOLTAGE: 3.3 VDC DEVIATION LIMIT: $\pm 0.01 \% = \pm 1356 \text{ Hz}$ | Voltage | Power | Temp. | Frequency | Frequency
Dev. | Frequency | |---------|-------|-----------|-----------|-------------------|-----------| | (%) | (VDC) | (°C) | (MHz) | (Hz) | Dev (%) | | 100 % | | -20 | 13.560012 | 12 | 0.0000885 | | 100 % | | -10 | 13.560043 | 43 | 0.0003171 | | 100 % | | 0 | 13.560094 | 94 | 0.0006932 | | 100 % | 2.2 | +10 | 13.560081 | 81 | 0.0005973 | | 100 % | 3.3 | +20(Ref.) | 13.560023 | 23 | 0.0001696 | | 100 % | | +30 | 13.560093 | 93 | 0.0006858 | | 100 % | | +40 | 13.560051 | 51 | 0.0003761 | | 100 % | | +50 | 13.560026 | 26 | 0.0001917 | | LOW | 3.0 | +20 | 13.560019 | 19 | 0.0001401 | | HIGH | 3.6 | +20 | 13.560004 | 4 | 0.0000295 | F-TP22-03 (Rev. 04) Page 36 of 41 ### 9.6 POWERLINE CONDUCTED EMISSIONS ### **Conducted Emissions** ### **TERM** Test 1/1 ### **Test Report** #### **Common Information** EUT : Operating Conditions : Comment : EAX70191101 RFID_Term Mode Full Spectrum ### Final_Result_QPK | Frequency
(MHz) | QuasiPeak
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas. Time (ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-----------------|----------------|-----------------|--------------------|------|--------|---------------| | 0.1545 | 54.62 | 65.75 | 11.13 | 1000.0 | 9.000 | N | OFF | 9.6 | | 0.1635 | 53.29 | 65.28 | 12.00 | 1000.0 | 9.000 | N | OFF | 9.6 | | 0.1703 | 47.16 | 64.95 | 17.79 | 1000.0 | 9.000 | N | OFF | 9.6 | | 1.2943 | 28.74 | 56.00 | 27.26 | 1000.0 | 9.000 | N | OFF | 9.7 | | 1.3033 | 26.40 | 56.00 | 29.60 | 1000.0 | 9.000 | N | OFF | 9.7 | | 1.3123 | 26.70 | 56.00 | 29.30 | 1000.0 | 9.000 | N | OFF | 9.7 | | 8.4020 | 22.22 | 60.00 | 37.78 | 1000.0 | 9.000 | N | OFF | 10.0 | | 8.6855 | 21.81 | 60.00 | 38.19 | 1000.0 | 9.000 | N | OFF | 10.0 | | 10.1143 | 22.23 | 60.00 | 37.77 | 1000.0 | 9.000 | N | OFF | 10.1 | ### Final_Result_CAV | Frequency
(MHz) | CAverage
(dBμV) | Limit (dBµV) | Margin
(dB) | Meas. Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|--------------------|--------------|----------------|--------------------|--------------------|------|--------|---------------| | 0.1523 | 36.19 | 55.88 | 19.69 | 1000.0 | 9.000 | L1 | OFF | 9.7 | | 0.1815 | 33.13 | 54.42 | 21.29 | 1000.0 | 9.000 | L1 | OFF | 9.7 | | 0.2130 | 29.91 | 53.09 | 23.18 | 1000.0 | 9.000 | L1 | OFF | 9.7 | | 0.4965 | 28.74 | 46.06 | 17.32 | 1000.0 | 9.000 | N | OFF | 9.6 | | 1.0310 | 16.43 | 46.00 | 29.57 | 1000.0 | 9.000 | N | OFF | 9.7 | | 1.3033 | 16.21 | 46.00 | 29.79 | 1000.0 | 9.000 | N | OFF | 9.7 | | 1.3145 | 15.66 | 46.00 | 30.34 | 1000.0 | 9.000 | N | OFF | 9.7 | | 9.7588 | 14.77 | 50.00 | 35.23 | 1000.0 | 9.000 | N | OFF | 10.0 | | 10.0175 | 15.14 | 50.00 | 34.86 | 1000.0 | 9.000 | N | OFF | 10.1 | 2023-07-11 오후 2:59:21 F-TP22-03 (Rev. 04) Page 37 of 41 ### **UNTERM** 1/1 Test ## **Test Report** #### **Common Information** EUT : Operating Conditions : Comment : EAX70191101 RFID_UnTem Mode Full Spectrum ### Final Result QPK | Frequency
(MHz) | QuasiPeak
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas. Time (ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-----------------|----------------|-----------------|--------------------|------|--------|---------------| | 0.1523 | 58.02 | 65.88 | 7.86 | 1000.0 | 9.000 | N | OFF | 9.6 | | 0.1635 | 57.11 | 65.28 | 8.17 | 1000.0 | 9.000 | N | OFF | 9.6 | | 0.1703 | 51.19 | 64.95 | 13.76 | 1000.0 | 9.000 | N | OFF | 9.6 | | 1.0378 | 27.71 | 56.00 | 28.29 | 1000.0 | 9.000 | N | OFF | 9.7 | | 1.2425 | 27.05 | 56.00 | 28.95 | 1000.0 | 9.000 | N | OFF | 9.7 | | 1.4720 | 27.12 | 56.00 | 28.88 | 1000.0 | 9.000 | N | OFF | 9.7 | | 13.4533 | 22.27 | 60.00 | 37.73 | 1000.0 | 9.000 | L1 | OFF | 10.1 | | 13.5613 | 55.58 | 60.00 | 4.42 | 1000.0 | 9.000 | L1 | OFF | 10.1 | | 27.1220 | 40.38 | 60.00 | 19.62 | 1000.0 | 9.000 | L1 | OFF | 10.6 | #### Final Result CAV | Frequency
(MHz) | CAverage
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas, Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|--------------------|-----------------|----------------|--------------------|--------------------|------|--------|---------------| | 0.1545 | 39.45 | 55.75 | 16.31 | 1000.0 | 9.000 | L1 | OFF | 9.7 | | 0.1838 | 35.28 | 54.31 | 19.03 | 1000.0 | 9.000 | L1 | OFF | 9.7 | | 0.2153 | 30.40 | 53.00 | 22.60 | 1000.0 | 9.000 | L1 | OFF | 9.7 | | 1.0445 | 16.36 | 46.00 | 29.64 | 1000.0 | 9.000 | N | OFF | 9.7 | | 1.4338 | 14.55 | 46.00 | 31.45 | 1000.0 | 9.000 | N | OFF | 9.7 | | 1.4653 | 16.38 | 46.00 | 29.62 | 1000.0 | 9.000 | N | OFF | 9.7 | | 13.5613 | 51.40 | 50.00 | -1.40 | 1000.0 | 9.000 | L1 | OFF | 10.1 | | 13.6558 | 15.38 | 50.00 | 34.62 | 1000.0 | 9.000 | L1 | OFF | 10.2 | | 27.1220 | 35.76 | 50.00 | 14.24 | 1000.0 | 9.000 | L1 | OFF | 10.6 | 오후 2:53:27 2023-07-11 ### **10. LIST OF TEST EQUIPMENT** ### **Conducted Test** | Equipment | Model | Manufacturer | Serial No. | Due to
Calibration | Calibration
Interval | |--------------------------------|-----------|-----------------|------------|-----------------------|-------------------------| | LISN | ENV216 | Rohde & Schwarz | 102245 | 08/22/2023 | Annual | | EMI Test Receiver | ESR | Rohde & Schwarz | 101910 | 05/26/2024 | Annual | | Temperature Chamber | SU-642 | ESPEC | 93008124 | 02/22/2024 | Annual | | Signal Analyzer | N9030A | Keysight | MY55410508 | 09/06/2023 | Annual | | Power Meter | N1911A | Agilent | MY45100523 | 03/06/2024 | Annual | | Power Sensor | N1921A | Agilent | MY57820067 | 03/06/2024 | Annual | | Directional Coupler | 87300B | Agilent | 3116A03621 | 11/02/2023 | Annual | | Power Splitter | 11667B | Hewlett Packard | 10545 | 02/06/2024 | Annual | | DC Power Supply | E3632A | Agilent | KR75305528 | 01/03/2024 | Annual | | Attenuator(10 dB)(DC-26.5 GHz) | 8493C-010 | Agilent | 08285 | 06/21/2023 | Annual | | Attenuator(30 dB)(DC-26.5 GHz) | 8493C-030 | Agilent | 77640 | 06/14/2023 | Annual | | Software | EMC32 | Rohde & Schwarz | N/A | N/A | N/A | | FCC WLAN&BT&BLE Conducted | N1 /A | LIST CO. LTD. | N1/A | N1 /A | N1 /A | | Test Software v3.0 | N/A | HCT CO., LTD. | N/A | N/A | N/A | | Bluetooth Tester | CBT | Rohde & Schwarz | 100808 | 02/16/2024 | Annual | ### Note: - 1. Equipment listed above that calibrated during the testing period was set for test after the calibration. - 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date. F-TP22-03 (Rev. 04) Page 39 of 41 ### **Radiated Test** | Equipment | Model | Manufacturer | Serial No. | Due to
Calibration | Calibration
Interval | |--|----------------------------|----------------------|-------------|-----------------------|-------------------------| | Controller(Antenna mast) | CO3000 | Innco system | CO3000-4p | N/A | N/A | | Antenna Position Tower | MA4640/800-XP-EP | Innco system | N/A | N/A | N/A | | Controller | EM2090 | Emco | 060520 | N/A | N/A | | Turn Table | N/A | Ets | N/A | N/A | N/A | | Loop Antenna | FMZB 1513 | Rohde & Schwarz | 1513-333 | 03/17/2024 | Biennial | | Hybrid Antenna | VULB 9168 | Schwarzbeck | 9168-0895 | 08/16/2024 | Biennial | | Horn Antenna | BBHA 9120D | Schwarzbeck | 9120D-1191 | 11/18/2023 | Biennial | | Horn Antenna(15 GHz ~ 40 GHz) | BBHA9170 | Schwarzbeck | BBHA9170124 | 03/28/2025 | Biennial | | Amp & Filter Bank Switch
Controller | FBSM-01A | TNM system | 0 | N/A | N/A | | RF Switching System | FBSR-03A
(3G HPF+LNA) | T&M SYSTEM | S3L1 | 12/05/2023 | Annual | | RF Switching System | FBSR-03A
(10dB ATT+LNA) | T&M SYSTEM | S3L2 | 12/05/2023 | Annual | | RF Switching System | FBSR-03A
(7G HPF+LNA) | T&M SYSTEM | S3L3 | 12/05/2023 | Annual | | RF Switching System | FBSR-03A
(3dB ATT+LNA) | T&M SYSTEM | S3L4 | 12/05/2023 | Annual | | Power Amplifier | CBL18265035 | CERNEX | 22966 | 12/01/2023 | Annual | | Power Amplifier | CBL26405040 | CERNEX | 25956 | 03/02/2024 | Annual | | Power Amplifier | 310N | SONOMA
INSTRUMENT | 186169 | 02/15/2024 | Annual | | Bluetooth Tester | TC-3000C | TESCOM | 3000C000175 | 03/28/2024 | Annual | | Spectrum Analyzer | FSP
(9 kHz ~ 30 GHz) | Rohde & Schwarz | 836650/016 | 09/06/2023 | Annual | | Spectrum Analyzer | FSVA40
(10 Hz ~ 40 GHz) | Rohde & Schwarz | 101502 | 03/17/2024 | Annual | - 1. Equipment listed above that calibrated during the testing period was set for test after the calibration. - 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date. - 3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version: 2017). Page 40 of 41 F-TP22-03 (Rev. 04) ### 11. ANNEX A_ TEST SETUP PHOTO Please refer to test setup photo file no. as follows; | No. | Description | |-----|---------------------| | 1 | HCT-RF-2307-FI001-P | Page 41 of 41 F-TP22-03 (Rev. 04)