

EVALUATION REPORT

for Certification of Conformity FCC Part 18 (Class II Permissive change)

Date of Issue: Jul. 19, 2024 Applicant: LG Electronics USA, Inc.

111 Sylvan Avenue North Building Order Number: GETEC-C1-24-500

Test Report Number: GETEC-E3-24-102 Englewood Cliffs New Jersey United States 07632,

Attn: David Kim / Team leader Test Site: GUMI UNIVERSITY EMC CENTER

CAB Designation Number: KR0033

FCC ID. : BEJE18MFF07

Applicant: LG Electronics USA, Inc.

Rule Part(s) : FCC Part 18

Test Method : FCC/OET MP-5

EUT Type : Household Refrigerator

Equipment Class : Part 18 Consumer Device(8CC)

Type of Authority : Certification

Model Name : SKSCF3001P

Family Model Name : SKSCF1801P, SKSCF2401P

Trade Mark : LG

This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in FCC/OET MP-5 (1986)

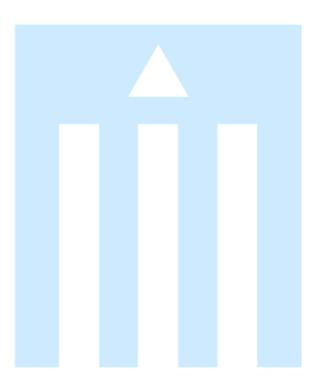
I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the vest of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested by, Reviewed by,

Tak Dong Kim, Associate Engineer Sung Joo Park, Technical Manager **GUMI UNIVERSITY EMC CENTER**

GETEC-QP-16-008 (Rev.01)

GUMI UNIVERSITY EMC CENTER


EMC CENTER

: GETEC-C1-24-500

Revision History

Test Report No.	Issue Date	Description
GETEC-E3-24-102	Jul. 19, 2024	First Approval Test Report

imes This test report is not related to the accredited test result by ISO/IEC 17025 and KOLAS

CONTENTS

1. GENERAL INFORMATION	4
2. INTRODUCTION	
3. PRODUCT INFORMATION	6
3.1 DESCRIPTION OF EUT	6
3.2 DEFINITION OF MODELS	6
3.3 SUPPORT EQUIPMENT / CABLES USED	7
3.4 MODIFICATION ITEM(S)	7
4. DESCRIPTION OF TESTS	8
4.1 TEST CONDITION	8
5. SUMMARY OF TEST RESULTS	8
6. CONDUCTED EMISSION	9
6.1 OPERATING ENVIRONMENT	10
6.2 TEST SET-UP	10
6.3 MEASUREMENT UNCERTAINTY	10
6.4 LIMIT	11
6.5 TEST EQUIPMENT USED	11
6.6 TEST DATA FOR CONDUCTED EMISSION	11
7. RADIATED EMISSION	13
7.1 OPERATING ENVIRONMENT	13
7.2 TEST SET-UP	13
7.3 MEASUREMENT UNCERTAINTY	15
7.4 LIMIT	16
7.5 TEST EQUIPMENT USED	16
7.6 TEST DATA FOR RADIATED EMISSION	17
8. SAMPLE CALCULATIONS	21
8.1 EXAMPLE 1:	21
8.2 EXAMPLE 2:	21
9. RECOMMENDATION & CONCLUSION	22
APPENDIX A - ATTESTATION STATEMENT	
APPENDIX B – INFORMATION OF CLASS II PERMISSIVE CHANGE	
APPENDIX C – SCHEMATIC DIAGRAM	
APPENDIX D – TEST SETUP PHOTOGRAPH	

APPENDIX E - INTERNAL PHOTOGRAPH

APPENDIX F - USER'S MANUAL

Number : GETEC-C1-24-500 eport Number : GETEC-E3-24-102

Scope: Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and / or unintentional radiators for compliance with technical rules and regulations of the Federal Communications Commission.

1. General Information

Applicant: LG Electronics USA, Inc.

Applicant Address: 111 Sylvan Avenue North Building

Englewood Cliffs New Jersey United States 07632

Manufacturer: LG Electronics Inc.

Manufacturer Address: 170, Sungsanpaechong-ro, Seongsan-gu, Changwon-si,

Gyeongsangnam-do, 51533, Korea

Contact Person: David Kim / Team leader

Telephone Number: 1-201-266-2443

• FCC ID. BEJE18MFF07

• EUT Type Household Refrigerator

Model Name SKSCF3001P

• Family Model Name SKSCF1801P, SKSCF2401P

• Rule Part(s) FCC Part 18

• Test Method FCC/OET MP-5

• Type of Authority Certification

• Test Procedure(s) FCC/OET MP-5

• **Dates of Test** Jul. 15, 2024

Place of Test
 GUMI UNIVERSITY EMC CENTER

(FCC Test Firm Registration Number: 269701)

37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 39213, Republic of Korea.

• Test Report Number GETEC-E3-23-102

Dates of Issue Jul. 19, 2024

GETEC-QP-16-008 (Rev.01)

2. Introduction

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Nose Emissions From Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2017) was used in determining radiated and conducted emissions emanating from **Household Refrigerator** (**Model name: SKSCF3001P**).

These measurement tests were conducted at **GUMI UNIVERSITY EMC CENTER**.

The site address is 37 Yaeun-ro, Gumi-si, Gyeongsangbuk-do, 39213, Korea

This test site is one of the highest point of GUMI UNIVERSITY at about 200 kilometers away from Seoul city and 40 kilometers away from Daegu city. It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures. The detailed description of the measurement facility was found to be in compliance with the requirements of §2.948 according to ANSI C63.4 (2017)

Fig 1. The map above shows the GUMI UNIVERSITY in vicinity area.

: GETEC-C1-24-500 Test Report Number : GETEC-E3-24-102

3. Product Information

3.1 Description of EUT

The Equipment under Test (EUT) is the Household Refrigerator (Model Name: SKSCF3001P)

FCC ID.: BEJE18MFF07

Type of Equipment	Household Refrigerator
Model Name	SKSCF3001P
Serial Number	Prototype
RF Frequency	330 kHz ~ 370 kHz
External connector	DC input 1 EA
Rated Voltage	Input : AC 115 V, 60 Hz (Wireless Power Transmitter input voltage: DC 12 V)
Output Electricity Power	Less than 3W
Size(W x H x T)	35 ^{3/4} (W) x23 ^{7/8} (D) x83 ^{1/2} (H) inch
	(Wireless Power Transmitter module :50 (mm) x 35 (mm) x 1.0 (mm))

3.2 Definition of models

- None

GETEC-QP-16-008 (Rev.01)

: GETEC-C1-24-500

3.3 Support Equipment / Cables used

3.3.1 Used Support Equipment

Description	Manufacturer	Model Name	S/N & FCC ID.
None	-	-	S/N: - FCC ID.: -

See "Appendix E – Test Setup Photographs" for actual system test set-up

3.3.2 System configuration

Description	Manufacturer	Model Name	S/N & FCC ID.		
Home wireless power transfer device	LG Electronics Inc.	WRS-207	S/N: - FCC ID.: -		
WLAN module	LG Electronics Inc.	LCWB-001	S/N: FCC ID.: BEJ-LCWB001		

3.3.3 Used Cable(s)

Cable Name	Condition			Description
Power cable	Connected to the	EUT and AC powe	r	2.30 m Unshielded.

3.4 Modification Item(s)

-. None

GETEC-QP-16-008 (Rev.01)

4. Description of tests

4.1 Test Condition

The EUT was installed, arranged and operated in a manner that is most representative of equipment as typically used.

The measurements were carried out while varying operating modes and cable positions within typically arrangement to determine maximum emission level.

The representative and worst test mode(s) were noted in the test report.

Test Voltage / Frequency: AC 115 V, 60 Hz
 (Wireless Power Transfer Device were supplied DC 12 V from main system.)

Operating condition during the test(s) :

This device has been tested in the configurations of Power transmitting mode with WLAN module operating.

Transmitting Curren	Su	Comment			
1 000 mA		Refrige	rator S	helf RX module	

4.2 General Test Procedures

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 (2017) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which Fixed at 2 m above the ground plane to find out the highest emission.

And also, each emission was to be maximized by the table was turned from 0 degrees to 360 degrees. In order to find out the max emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4 (2017).

5. Summary of Test Results

FCC Part Section(s)	Test Description	Test Result
§18.305	Radiated Emission	Pass
§18.307	Conducted Emission	Pass

GETEC-QP-16-008 (Rev.01) **EUT Type: Household Refrigerator**

6. Conducted Emission

-Test Description

The Line conducted emission test facility is inside a 4 m × 8 m × 2.5 m shielded enclosure.

(FCC Test Firm Registration No.: 269701)

The EUT was placed on a non-conducting 1.0 m by 1.5 m table, which is 0.8 m in height and 0.4 m away from the vertical wall of the shielded enclosure.

The EUT is powered from the Rohde & Schwarz LISN and the support equipment is powered from the Rohde & Schwarz LISN Powers to the LISN are filtered by high-current high insertion loss power line filter.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

The RF output of the LISN was connected to the EMI test receiver

Exploratory measurements were conducted to identify the highest emission by operating the EUT in a range of typical modes of operation, cable positions, system configuration and arrangement.

Based on exploratory measurements, the final measurements were conducted at the worst test conditions.

Exploratory measurements were scanned using Peak mode of EMI Test receiver from 150 kHz to 30 MHz with 20 ms sweep time. The final measurements were measured with Quasi-Peak and Average mode.

The bandwidth of EMI Test Receiver was set to 9 kHz. Interface cables were connected to the available interface ports of the test unit. Excess cable lengths were bundled at center with $30 \text{ cm} \sim 40 \text{ cm}$.

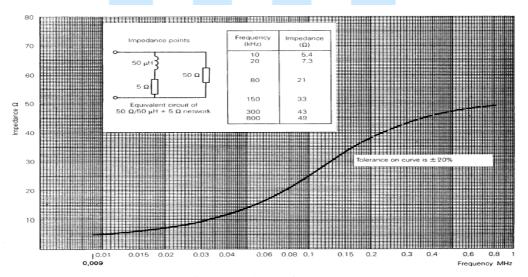


Fig 2. Impedance of LISN

GETEC-QP-16-008 (Rev.01)

FCC Part 18 Page 10 / 22

6.1 Operating Environment

23.6 ℃ Temperature 66.5 % Relative Humidity Air Pressure 100.4 kPa

6.2 Test Set-up

The conducted emission measurements were performed in the shielded room.

The EUT was placed on wooden table, 0.8 m heights above the floor, 0.4 m from the reference ground plane (GRP) wall and 0.8 m from AMN & ISN.

AMN is bonded on horizontal reference ground plane.

The ground plane, which was electrically bonded to the shield room, ground system and all power lines entering the shield room, were filtered.

6.3 Measurement Uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in

The measurement uncertainty was given with a confidence of 95 %.

Test Items	Uncertainty	Remark
Conducted emission (9 kHz ~ 150 kHz)	3.69 dB	Confidence level of approximately 95 % ($k = 2$)
Conducted emission (150 kHz ~ 30 MHz)	3.32 dB	Confidence level of approximately 95 % $(k = 2)$

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

The listed uncertainties are the worst case uncertainty for the entire range of measurement. please note that the uncertainty values are provided for informational purposes only are not used in determining the PASS/FAIL results

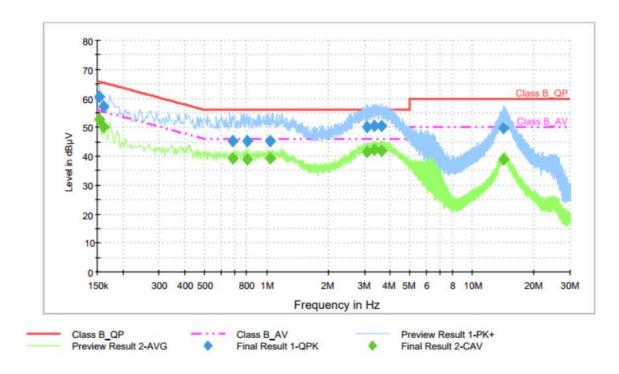
6.4 Limit

4 Limit										
RFI Conducted	FCC Limit(dBμV/m)									
Freq. Range	Quasi-Peak	Average								
0.009 MHz ~ 0.05 MHz	110	-								
0.05 MHz ~ 0.15 MHz	90 ~ 80*	1-								
0.15 MHz ~ 0.5 MHz	66 ~ 56*	56 ~ 46*								
0.5 MHz ~ 5 MHz	56	46								
5 MHz ~ 30 MHz	60	50								
*]	*Limits decreases linearly with the logarithm of frequency.									

6.5 Test Equipment used

	Model Name	Manu	ıfacture	r	D	escripti	ion		Serial N	Number	Calibration Date
■ -	ESCI	Rohde	e & Schv	varz	E	MI Test	Receiv	er	100237		Apr. 03, 2024
■ -	ENV216	Rohde	e & Schv	warz	L	ISN			100173		Apr. 03, 2024
□ -	ENV216	Rohde	e & Schv	warz	L	ISN			100172		Apr. 03, 2024
□ -	ESH2-Z5	Rohde	e & Schv	warz	L	ISN			829991	/009	Apr. 04, 2024
□ -	VTSD 9561-D	SCHV	VARZBI	ECK	Ρι	ılse Lin	niter		32		Apr. 04, 2024
■ -	EMC 32	Rohde	e & Schv	varz	So	oftware			Ver.8.53	3	N/A

6.6 Test data for Conducted Emission


-. Test Date : Jul. 15, 2024

-. Resolution Bandwidth : 9 kHz (0.15 MHz ~ 30 MHz)

-. Frequency Range : 0.15 MHz ~ 30 MHz -. Line : L1: Live, N: Neutral

-. Comment : None

• Operating condition: Continuous Power transmitting mode

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.154000	60.4	1000.0	9.000	Off	N	9.5	5.4	65.8	
0.161237	57.2	1000.0	9.000	Off	N	9.5	8.2	65.4	
0.685681	45.1	1000.0	9.000	Off	N	9.5	10.9	56.0	
0.803469	45.1	1000.0	9.000	Off	N	9.5	10.9	56.0	
1.040388	45.2	1000.0	9.000	Off	L1	9.6	10.8	56.0	
3.071262	50.1	1000.0	9.000	Off	N	9.7	5.9	56.0	Ű.
3.356719	50.6	1000.0	9.000	Off	L1	9.7	5.4	56.0	
3.608025	50.3	1000.0	9.000	Off	L1	9.7	5.7	56.0	Ų
14.191731	49.7	1000.0	9.000	Off	N	10.3	10.3	60.0	1

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.154000	52.6	1000.0	9.000	Off	N	9.5	3.2	55.8	
0.161237	50.2	1000.0	9.000	Off	N	9.5	5.2	55.4	ĵ
0.685681	39.1	1000.0	9.000	Off	N	9.5	6.9	46.0	
0.803469	39.0	1000.0	9.000	Off	N	9.5	7.0	46.0	
1.040388	39.1	1000.0	9.000	Off	L1	9.6	6.9	46.0	
3.071262	41.4	1000.0	9.000	Off	N	9.7	4.6	46.0	
3.356719	42.1	1000.0	9.000	Off	L1	9.7	3.9	46.0	
3.608025	41.9	1000.0	9.000	Off	L1	9.7	4.1	46.0	
14.191731	38.9	1000.0	9.000	Off	N	10.3	11.1	50.0	

GETEC-QP-16-008 (Rev.01)

7. Radiated Emission

7.1 Operating Environment

7.2 Test Set-up

The Radiated emission measurements were conducted at the worst test conditions.

The measurements of below 1 GHz were made at 3 m Semi Anechoic Chamber or 10 m Semi Anechoic Chamber (FCC Test Firm Registration No.: 269701) that complies with CISPR 16 / ANSI C63.4.

The frequency range of 9 kHz to 30 MHz, The EUT was placed on a non-conductive turntable approximately 0.8 m above the ground plane. The turntable with EUT was rotated 360° and the receive antenna was fixed 2.0 m on the ground plane.

The frequency range of 30 MHz to 1 000 MHz, The EUT was placed on a non-conductive turntable approximately 0.8 m above the ground plane. The turntable with EUT was rotated 360° and adjusting the receive antenna height from 1.0 m to 4.0 m. All frequencies were investigated in both horizontal and vertical antenna polarity.

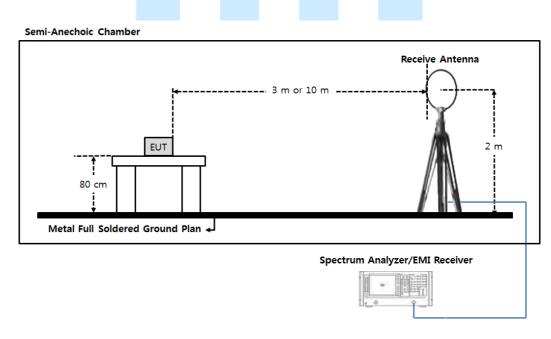


Fig 3. Configurations of Radiated emission test (9 kHz to 30 MHz)

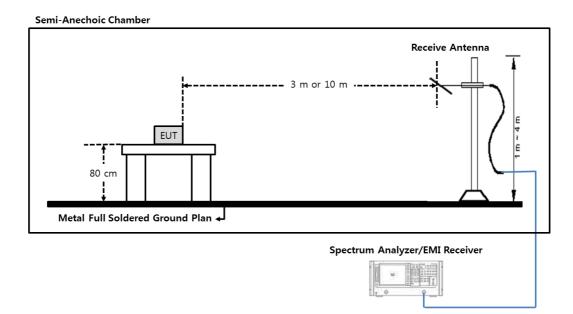


Fig 4. Configurations of Radiated emission test (30 MHz to 1 000 MHz)

: GETEC-C1-24-500 Test Report Number : GETEC-E3-24-102

7.3 Measurement Uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement".

The measurement uncertainty was given with a confidence of 95 %.

Test Items(10 m Anechoic Chamber)	Uncertainty	Remark
Radiated emission (30 MHz ~ 300 MHz, 10 m, Vertical)	4.77 dB	Confidence level of approximately 95 % ($k = 2$)
Radiated emission (30 MHz ~ 300 MHz, 10 m, Horizontal)	4.79 dB	Confidence level of approximately 95 % ($k = 2$)
Radiated emission (300 MHz ~ 1 000 MHz, 10 m, Vertical)	4.91 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (300 MHz ~ 1 000 MHz, 10 m, Horizontal)	4.90 dB	Confidence level of approximately 95 % $(k = 2)$
Radiated emission (1 000 MHz ~ 6 000 MHz, 3 m)	4.63 dB	Confidence level of approximately 95 % $(k = 2)$
Test items (3 m Anechoic Chamber)	Uncertainty	Remark
Radiated emission (30 MHz ~ 300 MHz, 3 m, Vertical)	4.90 dB	Confidence level of approximately 95 % (k = 2)
Radiated emission (30 MHz ~ 300 MHz, 3 m, Horizontal)	4.79 dB	Confidence level of approximately 95 % (k = 2)
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Vertical)	6.23 dB	Confidence level of approximately 95 % (k = 2)
Radiated emission (300 MHz ~ 1 000 MHz, 3 m, Horizontal)	5.16 dB	Confidence level of approximately 95 % (k = 2)
Radiated emission (1 GHz ~ 6 GHz, 3 m)	4.56 dB	Confidence level of approximately 95 % (k = 2)
Radiated emission (6 GHz ~ 18 GHz, 3 m)	4.88 dB	Confidence level of approximately 95 % (k = 2)
Radiated emission (18 GHz ~ 26 GHz, 3 m)	5.16 dB	Confidence level of approximately 95 % (k = 2)

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

The listed uncertainties are the worst case uncertainty for the entire range of measurement. please note that the uncertainty values are provided for informational purposes only are not used in determining the PASS/FAIL results

7.4 Limit

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)
Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500 500 or more	25 25×SQRT(power/500)	300 ¹300
	Any non-ISM frequency	Below 500 500 or more	15 15×SQRT(power/500)	300 ¹300
Industrial heaters and RF stabilized arc welders	5 725 MHz		10 (2)	1,600 (2)
Medical diathermy	Any ISM frequency Any non-ISM frequency	Any Any	25 15	300 300
Ultrasonic	Below 490 kHz	Below 500 500 or more	2,400/F(kHz) 2,400/F(kHz)× SQRT(power/500)	300 ³ 300
	490 to 1,600 kHz Above 1,600 kHz	Any Any	24,000/F(kHz) 15	30 30
Induction cooking ranges	Below 90 kHz On or above 90 kHz	Any Any	1,500 300	⁴ 30 ⁴ 30

Note.

- 1) Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.
- 2) Reduced to the greatest extent possible.
- 3) Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment is not permitted the increase in field strength otherwise permitted here for over 500 watts.
- 4) Induction cooking ranges manufactured prior to February 1, 1980, shall be subject to the field strength limits for miscellaneous ISM equipment.

7.5 Test Equipment used

Model Name	Manufacturer	Description	Serial Number	Calibration Date
■ - ESR7	Rohde & Schwarz	EMI Test Receiver	101382	Apr. 03, 2024
■ - HFH2-Z2	Rohde & Schwarz	Loop ANT	100041	Apr. 15, 2024
■ - CO3000	Innco system GmbH	Position Controller	CO3000/779/330	N/A
			50314/L	
■ - DT3000	Innco system GmbH	Turntable	1280314	N/A
□ - MA4000-EP	Innco system GmbH	Antenna Mast	4420314	N/A
□ - MA4640-XP-ET	Innco system GmbH	Antenna Mast	MA4640/558	N/A
■ - EMC 32	Rohde & Schwarz	Software	Ver.10.40.10	N/A

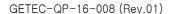
All test equipment used is calibrated on a regular basis.

GETEC-QP-16-008 (Rev.01) EUT Type: Household Refrigerator

7.6 Test data for Radiated Emission

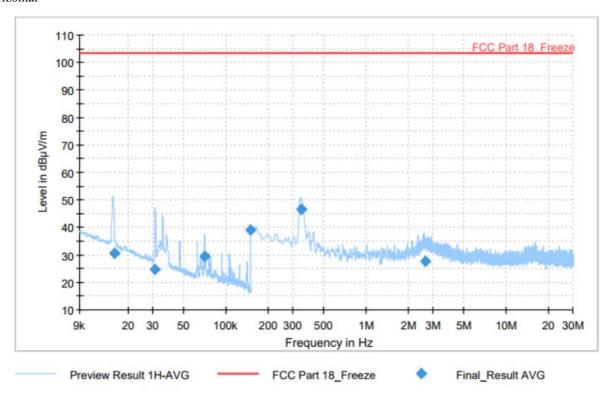
-. Test Date : Jul. 15, 2024

-. Measurement Distance : 3 m


-. Note : frequency range to be scanned up to 30 MHz, because the frequency band in which the

EUT operates less than 1.705 MHz

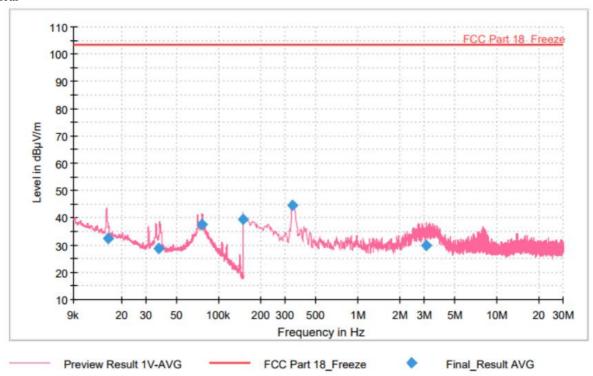
-. Measurement setting


Frequency range	9 kHz ~ 150 kHz	0.15 MHz ~ 30 MHz
Detector mode	Average	Average
Resolution bandwidth	200 Hz	9 kHz

-. Measurement Data: Continuous Power transmitting mode (1.2W)

: GETEC-C1-24-500

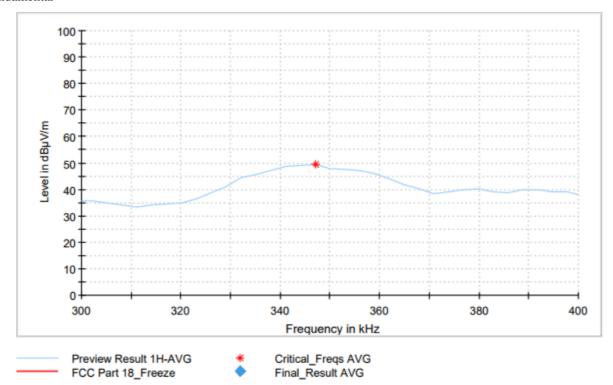
Horizontal



Final Result

Frequency (MHz)	Average (dBµV/m)	D.C.F (dBµV/ m)	Limit (dBµV/ m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azim uth (deg)	Corr. (dB/m)
0.016067	30.64	80.00	103.52	72.88	1000.0	0.200	Н	12.0	20.4
0.030796	24.79	80.00	103.52	78.73	1000.0	0.200	Н	6.0	20.1
0.070657	29.43	80.00	103.52	74.09	1000.0	0.200	Н	256.0	20.0
0.150000	38.90	80.00	103.52	64.62	1000.0	0.200	Н	0.0	20.0
0.342010	46.47	80.00	103.52	60.05	1000.0	9.000	Н	166.0	20.0
2.636700	27.50	80.00	103.52	76.02	1000.0	9.000	Н	0.0	20.4

eer : GETEC-C1-24-500 Number : GETEC-E3-24-102


Vertical

Final Result

Frequency (MHz)	Average (dBµV/m)	D.C.F (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azimuth (deg)	Corr. (dB/m)
0.016039	32.59	80.00	103.52	70.93	1000.0	0.200	V	0.0	20.4
0.037009	28.83	80.00	103.52	74.69	1000.0	0.200	V	216.0	20.1
0.076123	37.66	80.00	103.52	65.86	1000.0	0.200	V	308.0	20.0
0.150000	39.36	80.00	103.52	64.16	1000.0	9.000	٧	289.0	20.0
0.341055	44.49	80.00	103.52	59.03	1000.0	9.000	V	106.0	20.0
3.084210	30.03	80.00	103.52	73.49	1000.0	9.000	٧	147.0	20.4

Fundamental

Critical Freqs

Frequency (MHz)	Average (dBµV/m)	D.C.F (dBµV/ m)	Limit (dBµV/ m)	Margin (dB)	Pol	Azimuth (deg)	Corr. (dB/m)
0.347010	49.30	80.00	103.52	54.22	Н	202.0	20.0

Note.1 The worst case data were reported

And no other spurious and harmonic emissions were reported greater than listed emission above table

Note.2 "F"=Fundamental / "S"=Spurious / "*" = Noise Floor

Note.3 All measurements were recorded using a spectrum analyzer employing a peak detector for below 30 MHz

Note.4 Distance Correction Factor (D.C.F.)

For 300 m: $40\log(300/3) = 80 \text{ dB}$

Note.5 Sample calculation

Limit = 23.52(300 m) + D.C.F

Margin = Limit - Field Strength

Where, D.C.F = Distance Correction Factor

Note.6 "V1" = Vertical and perpendicular to the centerline / "V2" = vertical and parallel to the centerline

"H" = horizontal (parallel to the ground)

None.7 << The margin is More than 20 dB

GETEC-QP-16-008 (Rev.01) **EUT Type: Household Refrigerator**

8. Sample Calculations

$$\begin{split} dB\mu V &= 20\ Log\ {}_{10}(\mu V/m) \\ dB\mu V &= dBm + 107 \\ \mu V &= 10\ {}^{(dB\mu V/20)} \end{split}$$

8.1 Example 1:

■ 20.3 MHz

Class B Limit $= 250 \mu V = 48 dB\mu V$

Reading = $39.2 dB\mu V$

 $10^{(39.2dB\mu V/20)} = 91.2 \mu V$

Margin = $48 dB\mu V - 39.2 dB\mu V$

= 8.8 dB

8.2 Example 2:

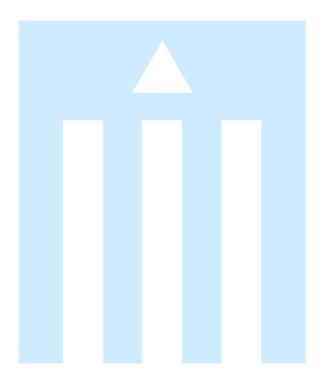
■ 66.7 MHz

Class B Limit = $100 \mu V/m = 40.0 dB \mu V/m$

Reading = $31.0 \text{ dB}\mu\text{V}$

Antenna Factor + Cable Loss = 5.8 dB

Total = $36.8 \text{ dB}\mu\text{V/m}$


 $Margin = 40.0 \ dB\mu V/m - 36.8 \ dB\mu V/m$

= 3.2 dB

9. Recommendation & Conclusion

The data collected shows that the **Household Refrigerator** (**Model Name: SKSCF3001P**) was complies with § 18.305 and 18.307 of the FCC Rules.

- The end -

