

HCT CO., LTD.

CERTIFICATE OF COMPLIANCE

FCC Certification

Applicant Name: LG Electronics Inc.		Date of Issue: July 11, 2014 Test Site/Location:
Address: 222 LG-ro Jinwi-myeon, F	yeongtaek-si, Gyeonggi-do 451-	HCT CO., LTD., 74,Seoicheon-ro 578beon-gil,Majang- myeo,Icheon-si, Gyeonggi-do, Korea Report No.: HCT-R-1407-F012-1
713, Korea		HCT FRN: 0005866421 IC Recognition No.: 5944A-3
FCC ID IC APPLICANT	: BEJ9QK-TWFMB008D : 2703H-TWFMB008D : LG Electronics Inc.	
FCC/ IC Model(s): EUT Type: Port 0 Max. RF Output Power:	TWFM-B008D WLAN Module Wi-Fi 802.11a (5180~5240) (10.06 dBm) Wi-Fi 802.11n_40 MHz BW(5190~5230))/ Wi-Fi 802.11n_20 MHz BW (5180~5240) (10.58 dBm)/ (12.47 dBm)
Port 1 Max. RF Output Power:	Wi-Fi 802.11a (5180~5240) (9.58 dBm)/ Wi-Fi 802.11n_40 MHz BW(5190~5230)	Wi-Fi 802.11n_20 MHz BW (5180~5240) (9.44 dBm)/ (12.57 dBm)
Port0 & 1 Sum Max. RF Output Power:	Wi-Fi 802.11a (5180~5240) (12.51 dBm) Wi-Fi 802.11n_40 MHz BW(5190~5230))/ Wi-Fi 802.11n_20 MHz BW (5180~5240) (13.01 dBm)/ (15.53 dBm)
Frequency Range:	20 MHz BW: 5180 MHz - 5240 MHz (40 MHz BW: 5190 MHz - 5230 MHz (
Modulation type FCC Classification: FCC Rule Part(s): IC Rule :	OFDM Unlicensed National Information Infrastru Part 15.407 RSS-GEN Issue 3(December 2010), RS	
Engineering Statement:		

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this

equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Kyung Soo Kang Test engineer of RF Team

Approved by

: Chang Seok Choi Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1407-F012	July 03, 2014	- First Approval Report
HCT-R-1407-F012-1	July 11, 2014	-Add the Port0 & 1 Sum Max. RF Output Power on page 1 -Revised the Antenna gain Section 6

Table of Contents

2. EUT DESCRIPTION 4 2.1 EUT OPERATING MODE 4 3. TEST METHODOLOGY 5 3.1 EUT CONFIGURATION 5 3.2 EUT EXERCISE 5 3.3 GENERAL TEST PROCEDURES 5
3. TEST METHODOLOGY 5 3.1 EUT CONFIGURATION 5 3.2 EUT EXERCISE 5
3.1 EUT CONFIGURATION
3.2 EUT EXERCISE
· · · · · ·
3.3 GENERAL TEST PROCEDURES
3.4 DESCRIPTION OF TEST MODES 5
4. INSTRUMENT CALIBRATION
5. FACILITIES AND ACCREDITATIONS
5.1 FACILITIES
5.2 EQUIPMENT
6. ANTENNA REQUIREMENTS
7. SUMMARY OF TEST RESULTS
7.1 FCC Part 8
7.2 IC Part
8. TEST RESULT 1 0
8.1 DUTY CYCLE 1 0
8.2 26 dB BANDWIDTH MEASUREMENT 1 2
8.3 99% BANDWIDTH MEASUREMENT 1 9
8.4 OUTPUT POWER MEASUREMENT AND E.I.R.P 2 6
8.5 POWER SPECTRAL DENSITY 4 0
8.6 PEAK EXCURSION RATIO
8.7 FREQUENCY STABILITY
8.8 RADIATED MEASUREMENT
8.8.1 RADIATED SPURIOUS EMISSIONS
8.8.2 RADIATED RESTRICTED BAND EDGE MEASUREMENTS
8.8.3 RECEIVER SPURIOUS EMISSIONS
8.9 POWERLINE CONDUCTED EMISSIONS
9. LIST OF TEST EQUIPMENT
9.1 LIST OF TEST EQUIPMENT(Conducted Test) 7 6
9.2 LIST OF TEST EQUIPMENT(Radiated Test) 7 7

1. GENERAL INFORMATION

Applicant:	LG Electronics Inc.
Address:	222 LG-ro Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do 451-713, Korea
FCC ID:	BEJ9QK-TWFMB008D
IC:	2703H-TWFMB008D
EUT Type:	WLAN Module
FCC/ IC Model name(s):	TWFM-B008D
Date(s) of Tests:	June 16, 2014 ~ June 30, 2014
Place of Tests:	HCT Co., Ltd. 74,Seoicheon-ro 578beon-gil,Majang-myeon, Icheon-si, Gyeonggi-do, Korea. (IC Recognition No. : 5944A-3)

2. EUT DESCRIPTION

EUT Type	WLAN Module		
FCC/ IC Model Name	TWFM-B008D		
Power Supply	DC 3.5 V		
Frequency Range	TX_20 MHz BW: 5180 MHz - 5240 MHz (UNII 1) 40 MHz BW: 5190 MHz - 5230 MHz (UNII 1) RX_20 MHz BW: 5180 MHz - 5240 MHz (UNII 1) 40 MHz BW: 5190 MHz - 5240 MHz (UNII 1) 40 MHz BW: 5190 MHz - 5230 MHz (UNII 1)		
Port 0 Max. RF Output Power	Wi-Fi 802.11a (5180~5240) (10.06 dBm)/ Wi-Fi 802.11n_20 MHz BW (5180~5240) (10.58 dBm)/ Wi-Fi 802.11n_40 MHz BW(5190~5230) (12.47 dBm)		
Port 1 Max. RF Output Power	Wi-Fi 802.11a (5180~5240) (9.58 dBm)/ Wi-Fi 802.11n_20 MHz BW (5180~5240) (9.44 dBm)/ Wi-Fi 802.11n_40 MHz BW(5190~5230) (12.57 dBm)		
Modulation Type	OFDM(802.11a, 802.11n)		
Antenna Specification	Manufacturer: Amotech		
	Antenna type: PCB Antenna		
	Peak Gain : cf. Section 6		

2.1 EUT OPERATING MODE

Operating mode

Mode	Operating Mode	Operating Ant.
802.11a,n	SISO	Ant 0
		Ant 1
	MIMO	Ant 0 & 1

Note :

1. In case of radiation test, we have done all test case. Worst case is Ant 0 & 1. So, we attached the results of only worst case.

3. TEST METHODOLOGY

The measurement procedure described in FCC KDB 789033 D01 General UNII Test Procedures Old Rules v01r04 dated June 06, 2014 entitled "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part15, Subpart E" and the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.4-2003) were used in the measurement.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version :2003) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version: 2003)

Conducted Antenna Terminal

See Section from 8.1 to 8.4.(KDB 789033)

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

(주)에이치시티

4. INSTRUMENT CALIBRATION

The. measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2003) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated February 28, 2014 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

*The E.U.T Complies with the requirement of §15.203

Directional Gain Calculations

• If any transmit signals are correlated with each other(802.11a,n),

Directional gain = $10^{*}\log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^{2}/N] dBi$

- If all transmit signals are completely uncorrelated with each other(802.11n)

Directional gain = $10^{10} \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N] dBi$

Antenna Gain

CDD mode(UNII 1)

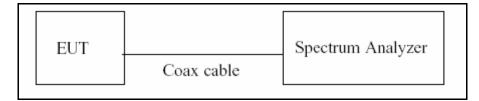
Antonno Coin	Ant 0	4.09 dBi	
Antenna Gain	Ant 1	3.85 dBi	
Directional Antenna Gain	Ant 0 & 1	6.98 dBi(802.11a,n)	

7. SUMMARY OF TEST RESULTS

7.1 FCC Part

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
26dB Bandwidth	§15.407 (for Power Measurement)	NA		PASS
Maximum Conducted Output Power,	§15.407(a)(1)	< 50 mW or 4+10 log 10 (BW) dBm (5150-5250 MHz)		PASS
Peak Power Spectral Density	§15.407(a)(1), (5)	15.407(a)(1), (5) <4 dBm/ MHz (5150-5250)		PASS
Peak Excursion	§15.407(a)(6)	<13 dB/ MHz maximum difference		PASS
Frequency Stability	§15.407(g)	NA		NA
AC Conducted Emissions 150 kHz-30 MHz §15.207		<fcc 15.207="" limits<="" td=""><td></td><td>NA</td></fcc>		NA
		<-27 dBm/ MHz EIRP (5150-5350 MHz, 5470-5725 MHz)	DADIATED	PASS
General Field Strength Limits(Restricted Bands and Radiated Emission Limits)	§15.205, 15.407(b)(1), (5), (6)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS

7.2 IC Part


Test Description	IC Part Section(s)	Test Limit	Test Condition	Test Result
99% Bandwidth(IC)	RSS-GEN 4.6.1	NA		PASS
Maximum e.i.r.p (IC)	RSS-210 [A9.2]	< 200 mW or 10+10 log ₁₀ (BW) dBm (5150-5250 MHz)	CONDUCTED	PASS
e.i.r.p Spectral Density	RSS-210 [A9.2]	<10 dBm/ MHz (5150-5250)		PASS
AC Conducted Emissions 150 kHz-30 MHz	RSS-GEN, Section 7.2.4	ion RSS-GEN section 7.2.4 table 4		NA
Undesirable Emissions	RSS-210 [A8.5]	<-27 dBm/ MHz EIRP (5150-5250 MHz)		PASS
General Field Strength Limits(Restricted Bands and Radiated Emission Limits)	RSS-GEN, Section 7.2.3	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS
Receiver Spurious Emissions	RSS-GEN, Section 7.2.3	cf. Section 8.8.3		PASS

8. TEST RESULT 8.1 DUTY CYCLE

The zero-span mode on a spectrum analyzer or EMI receiver ,if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where *T* is defined in section B)1)a), and the number of sweep points across duration *T* exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if $T \leq 16.7$ microseconds.)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zerospan measurement method, B)2) in KDB 789033(issued 06/06/2014)

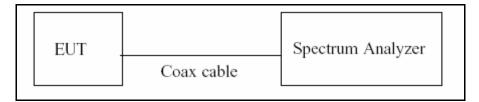
The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used becaure all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (≥ RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10*log(1/Duty Cycle)

Duty Cycle Factor

Mode	Data Rate	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor
	6	2.057	2.177	0.94487827	0.246
	9	1.380	1.455	0.94845361	0.230
	12	1.038	1.095	0.94794521	0.232
902 11 a 20 MHz DW	18	0.700	0.740	0.94594595	0.241
802.11a_20 MHz BW	24	0.529	0.558	0.94802867	0.232
	36	0.362	0.388	0.93298969	0.301
	48	0.275	0.299	0.91973244	0.363
	54	0.247	0.272	0.90808824	0.419
	6.5	1.902	2.007	0.94768311	0.233
	13	0.966	1.017	0.94985251	0.223
	19.5	0.650	0.684	0.95029240	0.221
802.11n 20 MHz BW	26	0.492	0.518	0.94980695	0.224
	39	0.338	0.364	0.92857143	0.322
	52	0.259	0.283	0.91519435	0.385
	58.5	0.236	0.260	0.90769231	0.421
	65	0.215	0.239	0.89958159	0.460
	13.5	0.927	1.029	0.90087464	0.453
	27	0.478	0.528	0.90530303	0.432
	40.5	0.327	0.362	0.90331492	0.442
802.11n_40 MHz BW	54	0.251	0.275	0.91272727	0.397
	81	0.176	0.199	0.88442211	0.533
	108	0.140	0.163	0.85889571	0.661
	121.5	0.127	0.151	0.84105960	0.752
	135	0.115	0.139	0.82733813	0.823



8.2 26 dB BANDWIDTH MEASUREMENT

The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum power control level, as defined in KDB 789033(issued 06/06/2014), at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26 dB bandwidth.

The 26 dB bandwidth is used to determine the conducted power limits.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer.

- 1. The Spectrum Analyzer is set to(C in KDB 789033, issued 06/06/2014)
- 2. RBW = approximately 1 % of the emission bandwidth
- 3. VBW > RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

Note : We tested 26 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 26 dB.

TEST RESULTS Ant.0

20 MHz BW

Conducted 26 dB Bandwidth Measurements for 802.11a

802.11a Mode		Measured Bandwidth	Minimum Bandwidth	
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail
5180	36	19.09	N/A	Pass
5200	40	19.21	N/A	Pass
5240	48	19.37	N/A	Pass

Conducted 26 dB Bandwidth Measurements for 802.11n

802.11n Mode		Measured Bandwidth	Minimum Bandwidth	
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail
5180	36	19.40	N/A	Pass
5200	40	19.36	N/A	Pass
5240	48	19.34	N/A	Pass

40 MHz BW

Conducted 26 dB Bandwidth Measurements for 802.11n

802.11n Mode		Measured Bandwidth	Minimum Bandwidth		
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail	
5190	38	39.24	N/A	Pass	
5230	46	39.46	N/A	Pass	

TEST RESULTS Ant.1

20 MHz BW

Conducted 26 dB Bandwidth Measurements for 802.11a

802.11a Mode		Measured Bandwidth	Minimum Bandwidth		
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail	
5180	36	19.07	N/A	Pass	
5200	40	19.15	N/A	Pass	
5240	48	19.23	N/A	Pass	

Conducted 26 dB Bandwidth Measurements for 802.11n

802.11n Mode		Measured Bandwidth	Minimum Bandwidth		
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail	
5180	36	19.56	N/A	Pass	
5200	40	19.43	N/A	Pass	
5240	48	19.43	N/A	Pass	

40 MHz BW

Conducted 26 dB Bandwidth Measurements for 802.11n

802.11n Mode		Measured Bandwidth	Minimum Bandwidth		
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail	
5190	38	39.25	N/A	Pass	
5230	46	39.70	N/A	Pass	

Note :

- 1. In order to simplify the report, attached plots were only the most wide channel.
- 2. We did not perform 20 dB BW test. Because already 26 dB BW is narrower than 20 MHz. We performed the 26 dB BW test for highest channel in UNII1 band to prove that no part of the fundamental emissions of any UNII1 band signals lies within the UNII2 band.

RESULT PLOTS Ant.0

20 MHz BW

26 dB Bandwidth plot (802.11a-CH 48)

26 dB Bandwidth plot (802.11n-CH 40)

40 MHz BW

26 dB Bandwidth plot (802.11n_CH 46)

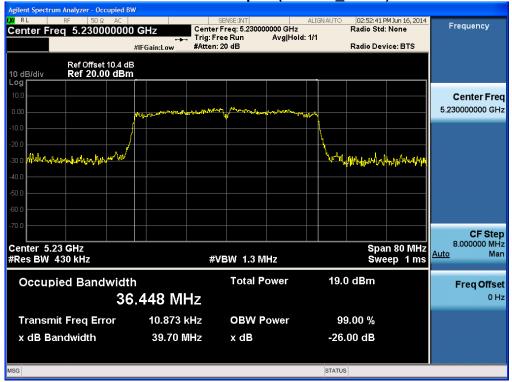
Agilent Spectrum Analyzer - Occupied B	W			
KL RF 50 Ω AC Center Freq 5.23000000	trig:F	SENSE:INT r Freq: 5.230000000 GHz ree Run Avg Hold : 20 dB	ALIGNAUTO 12:32:37 PMJ Radio Std: No d: 1/1 Radio Device	ne Frequency
Ref Offset 10.4 dl 10 dB/div Ref 20.00 dBn Log				
10.0	Multiplearent	M March Aprica (Amproximation		Center Freq 5.230000000 GHz
-10.0 -20.0 -30.0 4016-12.00014.00014.00014.00014.000			weight of an 1 of a	
-40.0			. A Propriet with a propriet	
-50.0				
Center 5.23 GHz			Span	CF Step 8.000000 MHz
#Res BW 390 kHz	#	VBW 1.2 MHz		o 1 ms
Occupied Bandwidt	^h 6.366 MHz	Total Power	19.0 dBm	Freq Offset 0 Hz
Transmit Freq Error	-32.803 kHz	OBW Power	99.00 %	
x dB Bandwidth	39.46 MHz	x dB	-26.00 d B	
MSG			STATUS	



RESULT PLOTS Ant.1

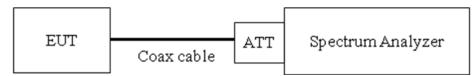
20 MHz BW

26 dB Bandwidth plot (802.11a-CH 48) 01:13:46 PM Jun 16, 2014 Radio Std: None RL Frequency Center Freq: 5.240000000 GHz Trig: Free Run Avg|Hold: 1/1 Center Freq 5.240000000 GHz #Atten: 20 dB #IFGain:Low Radio Device: BTS Ref Offset 10.4 dB Ref 20.00 dBm 10 dB/div _og **Center Freq** 5.240000000 GHz And wathrow of man man Monde CF Step 4.000000 MHz Center 5.24 GHz #Res BW 200 kHz Span 40 MHz Sweep 1 ms <u>Auto</u> Man #VBW 560 kHz **Occupied Bandwidth Total Power** 15.4 dBm Freq Offset 16.386 MHz 0 Hz 16.379 kHz **OBW Power Transmit Freq Error** 99.00 % x dB Bandwidth 19.23 MHz -26.00 dB x dB STATUS


26 dB Bandwidth plot (802.11n-CH 36)

40 MHz BW

26 dB Bandwidth plot (802.11n_CH 46)


8.3 99% BANDWIDTH MEASUREMENT

limit

None; for IC reporting purposes only

The 99 % bandwidth is used to determine the conducted power limits(for IC).

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to as close to 1% of the selected span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RBW = 1% of the total span VBW \geq 3 x RBW Detector = Peak Trace mode = max hold Sweep = auto couple Allow the trace to stabilize

TEST RESULTS Ant.0

20 MHz BW

Conducted 99% Bandwidth Measurements for 802.11a

802.11a Mo	Measured Bandwidth	
Frequency [MHz]	Channel No.	[MHz]
5180	36	16.485
5200	40	16.518
5240	48	16.527

Conducted 99% Bandwidth Measurements for 802.11n

802.11n Mo	Measured Bandwidth	
Frequency [MHz]	Channel No.	[MHz]
5180	36	17.625
5200	40	17.614
5240	48	17.605

40 MHz BW

Conducted 99% Bandwidth Measurements for 802.11n

802.11n Mo	Measured Bandwidth	
Frequency [MHz]	Channel No.	[MHz]
5190	38	36.508
5230	46	36.471

TEST RESULTS Ant.1

20 MHz BW

Conducted 99% Bandwidth Measurements for 802.11a

802.11a Mo	Measured Bandwidth	
Frequency [MHz] Channe No.		[MHz]
5180	36	16.520
5200	40	16.503
5240	48	16.461

Conducted 99% Bandwidth Measurements for 802.11n

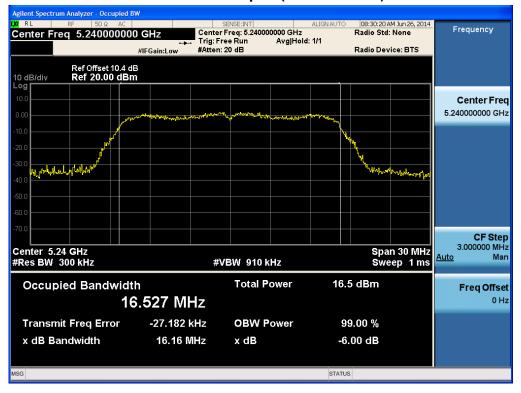
802.11n Mo	Measured Bandwidth	
Frequency [MHz] Channel No.		[MHz]
5180	36	17.614
5200	40	17.608
5240	48	17.592

40 MHz BW

Conducted 99% Bandwidth Measurements for 802.11n

802.11n Mo	Measured Bandwidth		
Frequency [MHz] Channe No.		[MHz]	
5190	38	36.451	
5230	46	36.496	

Note :


1. In order to simplify the report, attached plots were only the most wide channel.

RESULT PLOTS Ant.0

20 MHz BW

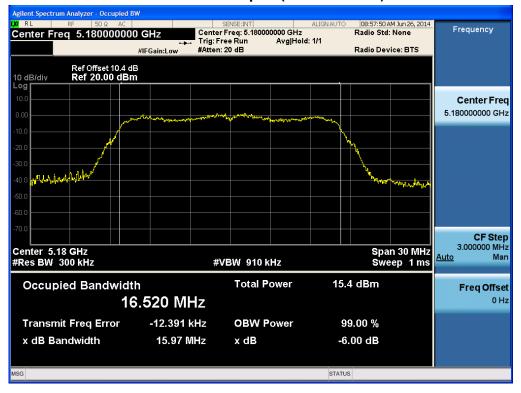
99% Bandwidth plot (802.11a-CH48)

99% Bandwidth plot (802.11n-CH36)

Agilent Spectrum Analyzer - Occupied BV IX RL RF 50 Ω AC Center Freq 5.180000000	SI	ENSE:INT	ALIGN AUTO	08:34:05 AM Jun 26, 2 Radio Std: None	2014 Frequency
	Trig: Fre #IFGain:Low #Atten: 2	e Run Avg Hold	1: 1/1	Radio Device: BTS	
Ref Offset 10.4 dB 10 dB/div Ref 20.00 dBm					
10.0 0.00	rangh and y strand an and a second and a second as	and the state of the second	and the construction		Center Freq 5.180000000 GHz
-10.0				h h	
-30.0 -40.0 -50.0				When have a first for the firs	~~~
-60.0					CF Step
Center 5.18 GHz #Res BW 300 kHz	#VI	BW 910 kHz		Span 30 M Sweep 1 i	Hz Auto Map
Occupied Bandwidth 17	.625 MHz	Total Power	16.9	dBm	Freq Offset 0 Hz
Transmit Freq Error	-3.286 kHz	OBW Power	99.	.00 %	
x dB Bandwidth	17.03 MHz	x dB	-6.0	00 dB	
MSG			STATUS		

40 MHz BW

Agilent Spectrum Analyzer - Occupied BW						
RL RF 50 Ω AC Center Freg 5.190000000 (ENSE:INT Freg: 5.190000000 GHz	ALIGN AUTO	08:39:37 Al Radio Std:	M Jun 26, 2014 None	Frequency
	FGain:Low #Atten:	ee Run Avg Hold	l: 1/1	Radio Devi		
Ref Offset 10.4 dB						
10 dB/div Ref 20.00 dBm						
Log						Center Freq
0.00						5.19000000 GHz
-10.0	and the second and and and and and and and and and a	a portal market and	- Andrew and	N		
				N.		
-20.0				×		
-30.0 Mpall man more marked				N. www.	Monard Margh Low	
-40.0						
-50.0						
-60.0						
-70.0						CF Step
Center 5.19 GHz				Spar	n 60 MHz	6.000000 MHz
#Res BW 620 kHz	#V	BW 2 MHz		Swe	ep 1 ms	<u>Auto</u> Man
Occupied Bandwidth		Total Power	14.0	6 dBm		Freq Offset
	508 MHz					0 Hz
Transmit Freq Error	-5.815 kHz	OBW Power	99	9.00 %		
x dB Bandwidth	36.34 MHz	x dB	-6.	00 dB		
MSG			STATUS	6		


99% Bandwidth plot (802.11n-CH38)

RESULT PLOTS Ant.1

20 MHz BW

99% Bandwidth plot (802.11a-CH36)

99% Bandwidth plot (802.11n-CH36)

Agilent Spectrum Analyzer - Occupied BW I/M R L RF 50 Ω AC		ENSE:INT	ALIGN AUTO	09:02:56 AM :	Jun 26, 2014	-
Center Freq 5.18000000	GHz Center Trig: Fr #Atten:		d: 1/1	Radio Std: N Radio Device		Frequency
Ref Offset 10.4 dB 10 dB/div Ref 20.00 dBm						
10.0 0.00	RIN-Un-water flag from Annual fland Fland and Annual	And the state of t	Andream			Center Freq 5.18000000 GHz
-10.0				h.		
-30.0				h Minter	≁vµ∥∕\vu)#Us	
-50.0						
Center 5.18 GHz #Res BW 300 kHz	#V	/BW 910 kHz			30 MHz p 1 ms	CF Step 3.000000 MHz <u>Auto</u> Mar
Occupied Bandwidth 17	.614 MHz	Total Power	15.7	7 dBm		Freq Offsel 0 Hz
Transmit Freq Error	-6.779 kHz	OBW Power	99	9.00 %		
x dB Bandwidth	17.27 MHz	x dB	-6.	00 dB		
MSG			STATUS			

40 MHz BW

99% Bandwidth plot (802.11n-CH46)

Agilent Spectrum Analyzer - Occupied BW					
Image: Weight of the state in th			Radio Sto		Frequency
Ref Offset 10.4 dB 10 dB/div Ref 20.00 dBm					
10.0 0.00	monor hand a married	~ the line was the particular	Mullule generation		Center Freq 5.230000000 GHz
-10.0 -20.0			A A A A A A A A A A A A A A A A A A A	1	
-30.0 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/				prover fillen skyf	
-50.0					
Center 5.23 GHz #Res BW 620 kHz	#V	BW 2 MHz	Spa Sw	n 60 MHz eep 1 ms	CF Step 6.000000 MHz <u>Auto</u> Man
Occupied Bandwidth 36 .	496 MHz	Total Power	19.0 dBm		Freq Offset 0 Hz
Transmit Freq Error	22.797 kHz	OBW Power	99.00 %		
x dB Bandwidth	36.32 MHz	x dB	-6.00 dB		
MSG			STATUS		

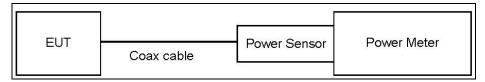
8.4 OUTPUT POWER MEASUREMENT AND E.I.R.P.

Test Requirements and limit, §15.407(a)(1) & RSS-210

The transmitter output is connected to the input of a RF power sensor or spectrum analyzer. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Limit(CDD)

- 1. Maximum Conducted Output Power(for FCC)
- 2. 50 mW(16.99 dBm) or $4+10 \log_{10}$ (BW) dBm whichever power is less.


Operating Made	Band	Mode	Ant. Port	Ant. Gain	Limit
Operating Mode	Danu	Mode		(dBi)	(dBm)
		900 11a m 00 MU	0	4.09	16.81
SISO	1 18 111 - 4	802.11a,n_20 MHz	1	3.85	16.80
	UNII 1		0	4.09	16.99
		802.11n_40 MHz	1	3.85	16.99
	802.11a,		0 & 1	6.98	15.82
MIMO(2 TX)	UNII 1	802.11n_40 MHz	0 & 1	6.98	16.01

Note : Above the limits is calculated according to antenna gain. Because antenna gain is higher than 6 dBi.

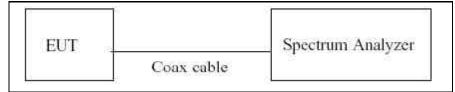
Maximum EIRP(for & IC) : 200 mW or 10+10 log 10 (BW) dBm whichever power is less.
Note : The limits of conducted power were applied the antenna gain. Therefore, if conducted power is pass, EIRP is also pass. So, we attached only conducted power table.

■ TEST CONFIGURATION(20 MHz BW)

TEST PROCEDURE(20 MHz BW)

We tested according to Method E)3)a) in KDB 789033(issued 06/06/2014).

- Average Power
 - 1. Measure the duty cycle.
 - 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3. Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.


Note :

1. We apply to the offset in the UNII 1 band that was rounded off to the closest tenth dB. Actual value of loss for the attenuator and cable combination is below table. We used the particular cable type that is supported by manufacture.

Band	Loss(dB)
UNII 1	10.4

(Actual value of loss for the attenuator and cable combination)

TEST CONFIGURATION(40 MHz BW)

TEST PROCEDURE(40 MHz BW)

The transmitter output is connected to the Spectrum Analyzer. We use the spectrum analyzer's integrated band power measurement function. We tested according to Method SA-2 in KDB 789033(issued 06/06/2014).

The Spectrum Analyzer is set to

- Average Power
 - 1. Measure the duty cycle.
 - 2. Set span to encompass the 26 dB EBW of the signal.
 - 3. RBW = 1 MHz.
 - 4. VBW ≥ 3 MHz.
 - 5. Number of points in sweep $\geq 2^*$ span/RBW.

- 6. Sweep time = auto.
- 7. Detector = RMS.
- 8. Do not use sweep triggering. Allow the sweep to "free run".
- 9. Trace average at least 100 traces in power averaging(RMS) mode
- 10. Integrated bandwidth = OBW
- 11. Add $10\log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Note :

1. We apply to the offset in the UNII 1 band that was rounded off to the closest tenth dB. Actual value of loss for the attenuator and cable combination is below table.

Band	Loss(dB)
UNII 1	10.4

(Actual value of loss for the attenuator and cable combination)

Sample Calculation (Conducted)

Output Power = Reading Value + ATT loss + Cable loss(1 ea) + Duty Cycle Factor

Sample Calculation (EIRP)

Output Power = Reading Value + ATT loss + Cable loss(1 ea) + Duty Cycle Factor + Ant. Gain

TEST RESULTS_Ant.0

Conducted Output Power Measurements (8	802.11a Mode: 5180~5240)
---	--------------------------

802.11a N	Node				Measured	
Frequency [MHz]	Channel No.	Rate (Mbps)	Measured Power(dBm)	Duty Cycle Factor	Power(dBm) + Duty Cycle Factor	Limit (dBm)
		6	8.88	0.246	9.12	16.81
		9	9.25	0.230	9.48	16.81
		12	9.18	0.232	9.41	16.81
5180	36	18	8.99	0.241	9.23	16.81
5180	30	24	9.12	0.232	9.35	16.81
		36	9.05	0.301	9.36	16.81
		48	8.97	0.363	9.33	16.81
		54	8.91	0.419	9.32	16.81
	40	6	9.77	0.246	10.01	16.81
		9	9.80	0.230	10.03	16.81
		12	9.81	0.232	10.04	16.81
5000		18	9.78	0.241	10.02	16.81
5200		24	9.81	0.232	10.04	16.81
		36	9.76	0.301	10.06	16.81
		48	9.59	0.363	9.95	16.81
		54	9.54	0.419	9.96	16.81
		6	9.56	0.246	9.81	16.81
		9	9.60	0.230	9.83	16.81
		12	9.53	0.232	9.76	16.81
5040	40	18	9.57	0.241	9.81	16.81
5240	48	24	9.55	0.232	9.78	16.81
		36	9.51	0.301	9.81	16.81
		48	9.55	0.363	9.92	16.81
		54	9.39	0.419	9.81	16.81

TEST RESULTS_Ant.1

Conducted Output Power Measurements	(802.11a Mode: 5180~5240)
--	---------------------------

802.11a Mode					Measured	
Frequency [MHz]	Channel No.	Rate (Mbps)Measured Power(dBm)Duty Cycle Factor		Power(dBm) + Duty Cycle Factor	Limit (dBm)	
		6	9.23	0.246	9.48	16.80
		9	9.17	0.230	9.40	16.80
		12	9.35	0.232	9.58	16.80
5180	36	18	9.32	0.241	9.56	16.80
5180	30	24	8.89	0.232	9.13	16.80
		36	8.80	0.301	9.10	16.80
		48	8.71	0.363	9.07	16.80
		54	8.68	0.419	9.10	16.80
	40	6	8.49	0.246	8.73	16.80
		9	8.06	0.230	8.29	16.80
		12	8.21	0.232	8.44	16.80
5000		18	8.23	0.241	8.47	16.80
5200		24	8.21	0.232	8.44	16.80
		36	8.18	0.301	8.48	16.80
		48	8.12	0.363	8.48	16.80
		54	8.12	0.419	8.54	16.80
		6	8.54	0.246	8.79	16.80
	-	9	8.54	0.230	8.77	16.80
		12	8.25	0.232	8.48	16.80
5240	10	18	8.56	0.241	8.80	16.80
5240	48	24	8.63	0.232	8.86	16.80
		36	8.55	0.301	8.86	16.80
		48	8.04	0.363	8.40	16.80
		54	8.40	0.419	8.81	16.80

TEST RESULTS_Sum Data of Ant.0 and Ant.1

802.11a Mode		Rate	Measured	Limit
Frequency[MHz]	Channel No.	(Mbps)	Power(dBm)	(dBm)
		6	12.31	15.82
		9	12.45	15.82
		12	12.51	15.82
5100		18	12.41	15.82
5180	36	24	12.25	15.82
		36	12.24	15.82
		48	12.21	15.82
		54	12.22	15.82
		6	12.43	15.82
	40	9	12.26	15.82
		12	12.32	15.82
5200		18	12.32	15.82
5200		24	12.32	15.82
		36	12.35	15.82
		48	12.29	15.82
		54	12.32	15.82
		6	12.34	15.82
		9	12.34	15.82
		12	12.18	15.82
5240	48	18	12.34	15.82
	40	24	12.35	15.82
		36	12.37	15.82
		48	12.24	15.82
		54	12.35	15.82

Conducted Output Power Measurements (802.11a Mode: 5180~5240)

TEST RESULTS_Ant.0

802.11n Mode					Measured	
Frequency [MHz]	Channel No.	Rate (Mbps)	Measured Power(dBm)	Duty Cycle Factor	Power(dBm) + Duty Cycle Factor	Limit (dBm)
		6.5	10.26	0.233	10.49	16.81
		13	10.35	0.223	10.58	16.81
		19.5	10.34	0.221	10.57	16.81
5180	36	26	10.24	0.224	10.46	16.81
5160	30	39	10.20	0.322	10.53	16.81
		52	10.14	0.385	10.53	16.81
		58.5	10.08	0.421	10.50	16.81
		65	10.07	0.460	10.53	16.81
	40	6.5	10.22	0.233	10.45	16.81
		13	10.29	0.223	10.52	16.81
		19.5	10.16	0.221	10.38	16.81
5000		26	10.18	0.224	10.40	16.81
5200		39	10.06	0.322	10.38	16.81
		52	9.97	0.385	10.36	16.81
		58.5	9.85	0.421	10.27	16.81
		65	9.76	0.460	10.22	16.81
5240	48	6.5	10.00	0.233	10.24	16.81
		13	10.05	0.223	10.27	16.81
		19.5	10.07	0.221	10.29	16.81
		26	10.18	0.224	10.41	16.81
		39	10.05	0.322	10.38	16.81
		52	9.68	0.385	10.07	16.81
		58.5	9.98	0.421	10.40	16.81
		65	9.90	0.460	10.36	16.81

TEST RESULTS_Ant.1

Conducted Output Power Measurements (802.11n Mode: 5180~5240) _20 MHz BW

802.11n Mode					Measured	
Frequency [MHz]	Channel No.	Rate (Mbps)	Measured Power(dBm)	Duty Cycle Factor	Power(dBm) + Duty Cycle Factor	Limit (dBm)
		6.5	9.20	0.233	9.44	16.80
		13	8.66	0.223	8.88	16.80
		19.5	8.69	0.221	8.92	16.80
5180	36	26	9.11	0.224	9.33	16.80
5180	50	39	9.00	0.322	9.32	16.80
		52	8.60	0.385	8.98	16.80
		58.5	8.60	0.421	9.02	16.80
		65	8.61	0.460	9.07	16.80
	40	6.5	8.62	0.233	8.86	16.80
		13	8.58	0.223	8.81	16.80
		19.5	9.00	0.221	9.23	16.80
5000		26	8.51	0.224	8.73	16.80
5200		39	8.46	0.322	8.78	16.80
		52	8.35	0.385	8.74	16.80
		58.5	8.81	0.421	9.23	16.80
		65	8.35	0.460	8.81	16.80
	48	6.5	8.75	0.233	8.99	16.80
		13	8.85	0.223	9.07	16.80
		19.5	8.90	0.221	9.12	16.80
5240		26	8.91	0.224	9.13	16.80
		39	8.86	0.322	9.18	16.80
		52	8.74	0.385	9.13	16.80
		58.5	8.69	0.421	9.11	16.80
		65	8.69	0.460	9.15	16.80

TEST RESULTS_Sum Data of Ant.0 and Ant.1

Conducted Output Power Measurements (802.11n Mode: 5180~5240) _20 MHz BW

802.11n Mode		Rate	Measured	Limit
Frequency[MHz]	Channel No.	(Mbps)	Power(dBm)	(dBm)
	36	6.5	13.01	15.82
		13	12.82	15.82
		19.5	12.83	15.82
5180		26	12.94	15.82
5100		39	12.98	15.82
		52	12.83	15.82
		58.5	12.83	15.82
		65	12.87	15.82
	40	6.5	12.74	15.82
		13	12.76	15.82
		19.5	12.85	15.82
5200		26	12.66	15.82
5200		39	12.66	15.82
		52	12.64	15.82
		58.5	12.79	15.82
		65	12.58	15.82
	48	6.5	12.67	15.82
5240		13	12.72	15.82
		19.5	12.75	15.82
		26	12.83	15.82
		39	12.83	15.82
		52	12.64	15.82
		58.5	12.81	15.82
		65	12.81	15.82

TEST RESULTS_Ant.0

Conducted Output Power Measurements (802.11n Mode: 5190~5230) _40 MHz BW

802.11n Mode					Measured	
Frequency [MHz]	Channel No.	Rate (Mbps)	Measured Power(dBm)	Duty Cycle Factor	Power(dBm) + Duty Cycle Factor	Limit (dBm)
	38	13.5	7.25	0.453	7.70	16.99
		27	7.33	0.432	7.76	16.99
		40.5	7.33	0.442	7.77	16.99
5190		54	7.36	0.397	7.76	16.99
5190		81	7.28	0.533	7.81	16.99
		108	7.02	0.661	7.68	16.99
		121.5	7.04	0.752	7.79	16.99
		135	6.96	0.823	7.78	16.99
	46	13.5	11.95	0.453	12.40	16.99
5230		27	11.06	0.432	11.49	16.99
		40.5	12.01	0.442	12.45	16.99
		54	12.07	0.397	12.47	16.99
		81	11.86	0.533	12.40	16.99
		108	11.80	0.661	12.46	16.99
		121.5	11.51	0.752	12.26	16.99
		135	11.60	0.823	12.43	16.99

TEST RESULTS_Ant.1

Conducted Output Power Measurements (802.11n Mode: 5190~5230) _40 MHz BW

802.11n Mode					Measured	
Frequency [MHz]	Channel No.	Rate (Mbps)	Measured Power(dBm)	Duty Cycle Factor	Power(dBm) + Duty Cycle Factor	Limit (dBm)
	38	13.5	4.46	0.453	4.92	16.99
		27	4.98	0.432	5.41	16.99
5190		40.5	4.97	0.442	5.41	16.99
		54	4.51	0.397	4.91	16.99
		81	4.83	0.533	5.37	16.99
		108	4.24	0.661	4.90	16.99
		121.5	4.66	0.752	5.41	16.99
		135	4.14	0.823	4.96	16.99
	46	13.5	12.11	0.453	12.56	16.99
5230		27	11.56	0.432	11.99	16.99
		40.5	11.59	0.442	12.03	16.99
		54	11.65	0.397	12.05	16.99
		81	11.91	0.533	12.45	16.99
		108	11.91	0.661	12.57	16.99
		121.5	11.23	0.752	11.98	16.99
		135	11.63	0.823	12.46	16.99

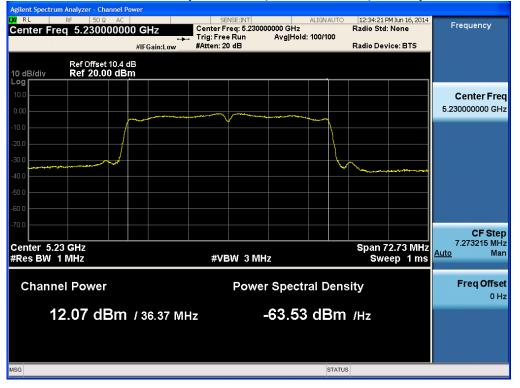
TEST RESULTS_Sum Data of Ant.0 and Ant.1

Conducted Output Power Measurements (802.11n Mode: 5190~5230) _40 MHz BW

802.11n Mode		Rate	Measured	Limit
Frequency[MHz]	Channel No.	(Mbps)	Power(dBm)	(dBm)
		13.5	9.54	16.01
		27	9.75	16.01
		40.5	9.76	16.01
5190	38	54	9.58	16.01
5190	30	81	9.77	16.01
		108	9.52	16.01
		121.5	9.77	16.01
		135	9.61	16.01
		13.5	15.49	16.01
		27	14.76	16.01
		40.5	15.26	16.01
5230	46	54	15.28	16.01
	40	81	15.44	16.01
		108	15.53	16.01
		121.5	15.13	16.01
		135	15.46	16.01

Note :

1. In order to simplify the report, attached plots were only the highest conducted power channel.

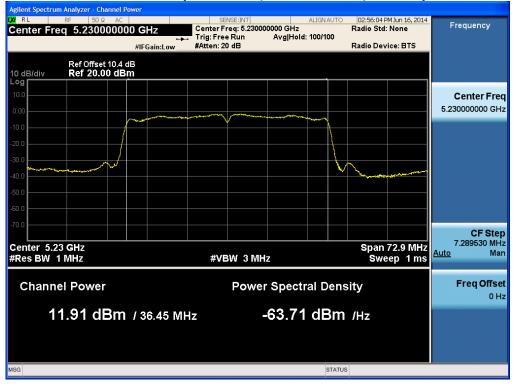


RESULT PLOTS Ant.0

40 MHz BW

RESULT PLOTS (5190 ~ 5230 MHz)

Conducted Output Power (802.11n-CH 46) 54 Mbps



RESULT PLOTS Ant.1

40 MHz BW

RESULT PLOTS (5190 ~ 5230 MHz)

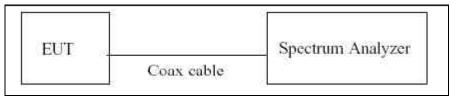
Conducted Output Power (802.11n-CH 46) 108 Mbps

8.5 POWER SPECTRAL DENSITY

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies. The maximum permissible peak power spectral density is 4 dBm/ MHz in the 5.15 GHz – 5.25 GHz band.

Limit(CDD)

1. Maximum Conducted Power Spectral Density(for FCC)


Operating Made	Dand Made Ant Dart		Ant. Gain	Limit	
Operating Mode	Band	Mode	Ant. Port	(dBi)	(dBm)
		000 11	0	4.09	4
SISO	UNII 1	802.11a,n	1	3.85	4
MIMO(2 TX)	UNII 1	802.11a,n	0 & 1	6.98	3.02

Note : Above the limits is calculated according to antenna gain. Because antenna gain is higher than 6 dBi.

2. EIRP Sepctral Density : 10 dBm

Note : The limits of conducted power spectral density were applied the antenna gain. Therefore, if PSD is pass, e.i.r.p. spectral density is also pass. So, we attached only PSD table.

TEST CONFIGURATION

TEST PROCEDURE

We tested according to Method in KDB 789033(issued 06/06/2014).

The spectrum analyzer is set to :

- 1. Set span to encompass the entire emission bandwidth(EBW) of the signal.
- 2. RBW = 1 MHz.
- 3. VBW \geq 3 MHz.
- 4. Number of points in sweep $\geq 2^*$ span/RBW.
- 5. Sweep time = auto.
- 6. Detector = RMS(i.e., power averaging), if available. Otherwise, use sample detector mode.
- 7. Do not use sweep triggering. Allow the sweep to "free run".
- 8. Trace average at least 100 traces in power averaging(RMS) mode

- 9. Use the peak search function on the spectrum analyzer to find the peak of the spectrum.
- 10. If Method SA-2 was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.

Sample Calculation

PSD = Reading Value + ATT loss + Cable loss(1 ea) + Duty Cycle FactorOutput Power = -5 dBm + 10 dB + 0.8 dB + 0.21 dB = 16.01 dBm

Note :

- 1. Spectrum reading values are not plot data. The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss

3. We apply to the offset in the UNII 1 band that was rounded off to the closest tenth dB. Actual value of loss for the attenuator and cable combination is below table.

Band	Loss(dB)
UNII 1	10.4

(Actual value of loss for the attenuator and cable combination)

TEST RESULTS_Ant.0

Conducted Power Density Measurements

			Test Result				
Frequency (MHz)	Channel No.	Mode	Measured Power Density (dBm)	Duty Cycle Factor (dB)	Measured Power Density(dBm) + Duty Cycle Factor	Limit (dBm)	Pass/Fail
5180	36		-0.935	0.229839	-0.705		Pass
5200	40	802.11a	-0.134	0.301232	0.167		Pass
5240	48		0.024	0.363385	0.387		Pass
5180	36	802.11n	0.047	0.223438	0.270		Pass
5200	40	20MHz	0.127	0.223438	0.350	4	Pass
5240	48	BW	0.110	0.223647	0.334		Pass
5190	38	802.11n 40MHz	-5.810	0.533404	-5.277		Pass
5230	46	BW	-0.969	0.39659	-0.572		Pass

TEST RESULTS_Ant.1

Conducted Power Density Measurements

			Test Result				
Frequency (MHz)	Channel No.	Mode	Measured Power Density (dBm)	Duty Cycle Factor (dB)	Measured Power Density(dBm) + Duty Cycle Factor	Limit (dBm)	Pass/Fail
5180	36		-1.249	0.232168	-1.017		Pass
5200	40	802.11a	-1.648	0.246241	-1.402		Pass
5240	48		-1.738	0.231785	-1.506		Pass
5180	36	802.11n	-1.338	0.233369	-1.105		Pass
5200	40	20MHz	-1.841	0.420613	-1.420	4	Pass
5240	48	BW	-1.016	0.321847	-0.694		Pass
5190	38	802.11n 40MHz	-8.658	0.441608	-8.216		Pass
5230	46	BW	-1.677	0.660596	-1.016		Pass

TEST RESULTS_Sum Data of Ant.0 and Ant.1

Conducted Power Density Measurements

			Test Re	sult	
Frequency (MHz)	Channel No.	Mode	Power Density (dBm)	Limit (dBm)	Pass/Fail
5180	36		2.15		Pass
5200	40	802.11a	2.46		Pass
5240	48		2.55		Pass
5180	36	802.11n	2.65	3.02	Pass
5200	40	20MHz BW	2.56	3.02	Pass
5240	48		2.86		Pass
5190	38	802.11n	-3.49		Pass
5230	46	40MHz BW	2.22		Pass

Note :

1. In order to simplify the report, attached plots were only the highest PSD channel.

RESULT PLOTS Ant.0 20 MHz BW

ent Spectrum Analyzer - Swept S 09:48:06 AM Jun 16, 2014 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN RL SENSE:INT #Avg Type: Pwr(RMS) Avg[Hold: 100/100 Frequency Center Freq 5.240000000 GHz CHZ PNO: Fast ↔→ IFGain:Low #Atten: 20 dB Auto Tune Mkr1 5.238 997 GHz 0.024 dBm Ref Offset 10.4 dB Ref 20.00 dBm 10 dB/div Center Freq 5.240000000 GHz ø Start Freq 5.225475125 GHz Stop Freq 5.254524875 GHz **CF** Step 2.904975 MHz Man Auto **Freq Offset** 0 Hz Center 5.24000 GHz #Res BW 1.0 MHz Span 29.05 MHz Sweep 1.07 ms (1000 pts) #VBW 3.0 MHz* Points changed; all traces cleared

Power Spectral Density (802.11a-CH 48)

Power Spectral Density (802.11n-CH 40)

40 MHz BW

Power Spectral Density (802.11n-CH 46)

RESULT PLOTS Ant.1 20 MHz BW

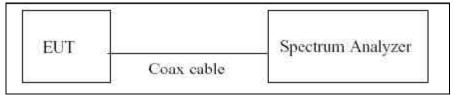
ent Spectrum Analyzer 07:06:38 AM Jun 20, 2014 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N RL SENSE:INT #Avg Type: Pwr(RMS) Avg[Hold: 100/100 Frequency Center Freq 5.180000000 GHz PNO: Fast ↔ IFGain:Low Trig: Free Run #Atten: 20 dB Auto Tune Mkr1 5.179 041 GHz -1.249 dBm Ref Offset 10.4 dB Ref 20.00 dBm 10 dB/div Center Freq 5.180000000 GHz 1 Start Freq 5.165699804 GHz Stop Freq 5.194300196 GHz **CF** Step 2.860039 MHz Man Auto **Freq Offset** 0 Hz Center 5.18000 GHz #Res BW 1.0 MHz Span 28.60 MHz Sweep 1.07 ms (1000 pts) #VBW 3.0 MHz* Points changed; all traces cleared

Power Spectral Density (802.11a-CH 36)

Power Spectral Density (802.11n-CH 48)

40 MHz BW

Power Spectral Density (802.11n-CH 46)



8.6 PEAK EXCURSION RATIO

The spectrum analyzer was connected to the antenna terminal while the EUT was operating in the continuous transmission mode at the appropriate center frequencies. The largest permissible difference between the modulation envelope(measured using a peak hold function) and the maximum conducted output power 13 dB/MHz.

TEST CONFIGURATION

TEST PROCEDURE

We tested according to KDB 789033(issued 06/06/2014).

The spectrum analyzer is set to :

- 1. Span = Set the span to view the entire emission bandwidth.
- 2. RBW = 1 MHz
- 3. VBW ≥ 3 MHz
- 4. Detector Mode = Peak
- 5. Trace Mode = Max hold
- 6. Allow the sweeps to continue until the trace stabilizes.
- 7. Use the peak search function to find the peak of the spectrum.
- 8. Use the procedure to measure the PPSD
- 9. Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD.

Note :

- 1. The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the UNII 1 band that was rounded off to the closest tenth dB. Actual value of loss for the attenuator and cable combination is below table.

Band	Loss(dB)
UNII 1	10.4

(Actual value of loss for the attenuator and cable combination)

RESULT PLOTS Ant.0

20 MHz BW


Center Freq 5.180000000 GHz PNO: Fast ↔ IFGain:Low R I SENSE:INT 03 AM Jun 20, 2014 Frequency #Avg Type: Pwr(RMS) TYPE A MWAM DET A P N N N Auto Tune ΔMkr1 401 kHz 7.86 dB Ref Offset 10.4 dB Ref 20.00 dBm 10 dB/div Log **Center Freq** 5.180000000 GHz X-2 Start Freq 5.165683326 GHz Stop Freq Why. 5.194316674 GHz 64 / 11 CF Step 2.863335 MHz <u>Auto</u> Man **Freq Offset** 0 Hz Center 5.18000 GHz #Res BW 1.0 MHz Span 28.63 MHz Sweep 1.07 ms (1000 pts) #VBW 3.0 MHz G 😳 Points changed; all traces cleared

Peak Excursion Ratio (802.11a-CH 36)

Peak Excursion Ratio (802.11a-CH 40)

Peak Excursion Ratio (802.11a-CH 48)

Peak Excursion Ratio (802.11n-CH 36)

ilent Spectrum Analyzer - Swept SA RL 08:43:52 AM Jun 20, 2014 Frequency #Avg Type: Pwr(RMS) TRACE 1 2 TYPE A MI DET A P Center Freq 5.200000000 GHz Trig: Free Run #Atten: 20 dB PNO: Fast +++ IFGain:Low Auto Tune ΔMkr1 1.337 MHz 9.14 dB Ref Offset 10.4 dB Ref 20.00 dBm 10 dB/div 1Δ2 **Center Freq** 5.20000000 GHz Mer Marchell ALAN ILL umber Start Freq 5.185480107 GHz Stop Freq and sharked William the property 5.214519893 GHz CF Step 2.903979 MHz <u>Auto</u> Man **Freq Offset** 0 Hz Center 5.20000 GHz #Res BW 1.0 MHz Span 29.04 MHz Sweep 1.07 ms (1000 pts) #VBW 3.0 MHz G 🗼 Points changed; all traces cleared STATUS

Peak Excursion Ratio (802.11n-CH 40)

Peak Excursion Ratio (802.11n-CH 48)

40 MHz BW

12:31:56 PM Jun 16, 2014 TRACE 1 2 3 4 5 6 RL SENSE:INT Frequency #Avg Type: Pwr(RMS) Center Freq 5.190000000 GHz CHZ PNO: Fast ↔→ IFGain:Low #Atten: 20 dB TYPE A MWWWW DET A P N N N Auto Tune ΔMkr1 120 kHz 10.07 dB Ref Offset 10.4 dB Ref 20.00 dBm 10 dB/div **Center Freq** 142 5.19000000 GHz MA Start Freq X 5.160566636 GHz Stop Freq White 1 5.219433364 GHz MA. und half hard an and un vellen **CF** Step 5.886673 MHz Auto Man Freq Offset 0 Hz Center 5.19000 GHz #Res BW 1.0 MHz Span 58.87 MHz Sweep 1.07 ms (1000 pts) #VBW 3.0 MHz Points changed; all traces cleared

Peak Excursion Ratio (802.11n-CH 38)

Peak Excursion Ratio (802.11n-CH 46)

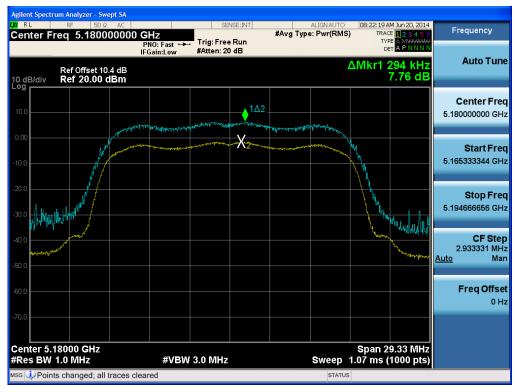
RESULT PLOTS Ant.1

20 MHz BW

Center Freq 5.180000000 GHz PNO: Fast ↔ IFGain:Low R I SENSE:INT 1 Jun 20, 2014 Frequency #Avg Type: Pwr(RMS) TYPE A MWWW DET A P N N N Auto Tune ∆Mkr1 -401 kHz 8.64 dB Ref Offset 10.4 dB Ref 20.00 dBm 10 dB/div Log **Center Freq** 5.180000000 GHz hole цĄ X-2 Start Freq 5.165699804 GHz Stop Freq 5.194300196 GHz wheel. CF Step 2.860039 MHz <u>Auto</u> Man **Freq Offset** 0 Hz Center 5.18000 GHz #Res BW 1.0 MHz Span 28.60 MHz Sweep 1.07 ms (1000 pts) #VBW 3.0 MHz G 😳 Points changed; all traces cleared

Peak Excursion Ratio (802.11a-CH 36)

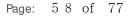
Peak Excursion Ratio (802.11a-CH 40)



Peak Excursion Ratio (802.11a-CH 48)

Peak Excursion Ratio (802.11n-CH 36)

Peak Excursion Ratio (802.11n-CH 48)


40 MHz BW

02:52:01 PM Jun 16, 2014 TRACE 1 2 3 4 5 6 RL SENSE:INT Frequency #Avg Type: Pwr(RMS) Center Freq 5.190000000 GHz CHZ PNO: Fast ↔→ IFGain:Low #Atten: 20 dB TYPE A MWWWW DET A P N N N Auto Tune ΔMkr1 -650 kHz Ref Offset 10.4 dB Ref 20.00 dBm 9.93 dB 10 dB/div **Center Freq** 5.19000000 GHz ▲1∆2 white www.wa Asserva mederall Mandrum Start Freq X2 5.160561875 GHz Stop Freq 5.219438125 GHz **CF** Step han which a start which all wat the 5.887625 MHz Auto Man Freq Offset 0 Hz Center 5.19000 GHz #Res BW 1.0 MHz Span 58.88 MHz Sweep 1.07 ms (1000 pts) #VBW 3.0 MHz Points changed; all traces cleared

Peak Excursion Ratio (802.11n-CH 38)

Peak Excursion Ratio (802.11n-CH 46)

8.7 FREQUENCY STABILITY.

The EUT was placed inside an environmental chamber as the temperature in the chamber was varied between -30 $^{\circ}$ C and 50 $^{\circ}$ C. The temperature was incremented by 10 $^{\circ}$ C intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded.

20 MHz BW

OPERATING BAND:	UNII Band 1
OPERATING FREQUENCY:	<u>5,180,000,000 Hz</u>
CHANNEL:	36
REFERENCE VOLTAGE:	3.5 VDC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(VDC)	(Ĵ)	(kHz)	Error (kHz)
100		+20(Ref)	5180013.50	13.50
100		-30	5180048.39	48.39
100		-20	5180052.33	52.33
100		-10	5180039.17	39.17
100	3.5	0	5180022.55	22.55
100		+10	5179969.87	-30.13
100		+30	5179960.42	-39.58
100		+40	5179989.75	-10.25
100		+50	5179971.63	-28.37
115	4.025	+20	5180017.40	17.40
85	2.975	+20	5180021.60	21.60

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency error noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

40 MHz BW

OPERATING BAND:	UNII Band 1
OPERATING FREQUENCY:	5,190,000,000 Hz
CHANNEL:	38
REFERENCE VOLTAGE:	220 VAC

Voltage	Power	Temp.	Frequency	Frequency
(%)	(VDC)	(°°)	(kHz)	Error (kHz)
100		+20(Ref)	5189979.27	-20.73
100		-30	5190045.20	45.20
100		-20	5190031.84	31.84
100		-10	5190039.55	39.55
100	3.5	0	5190010.71	10.71
100		+10	5190005.94	5.94
100		+30	5189972.32	-27.68
100		+40	5189955.53	-44.47
100		+50	5189962.83	-37.17
115	4.025	+20	5189973.89	-26.11
85	2.975	+20	5189975.69	-24.31

Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency error noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

8.8 RADIATED MEASUREMENT. 8.8.1 RADIATED SPURIOUS EMISSIONS.

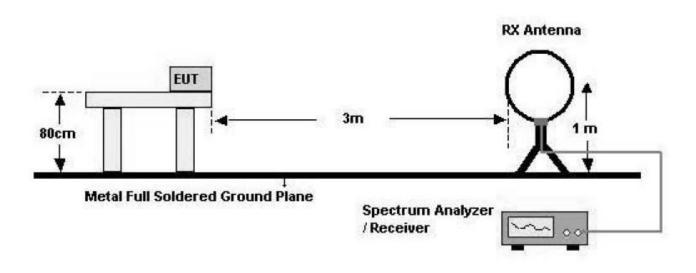
Test Requirements and limit, §15.205, §15.209, §15.407

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

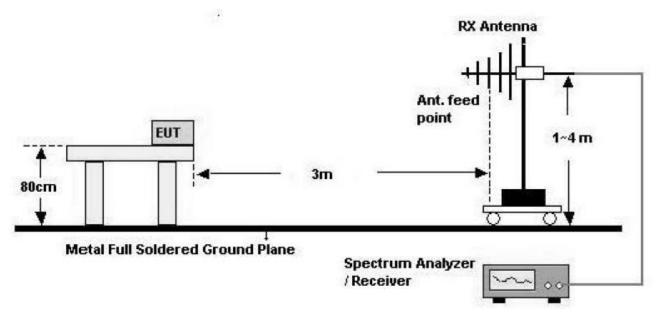
§15.407, KDB 789033

All harmonics that do not lie in a restricted band are subject to a peak limit of -27 dBm/MHz. At a distance of 3 meters the field strength limit in dB μ V/m can be determined by adding a "conversion" factor of 95.2 dB to the EIRP limit of -27 dBm/MHz to obtain the limit for out of band spurious emissions of 68.2 dB μ V/m.

Test case

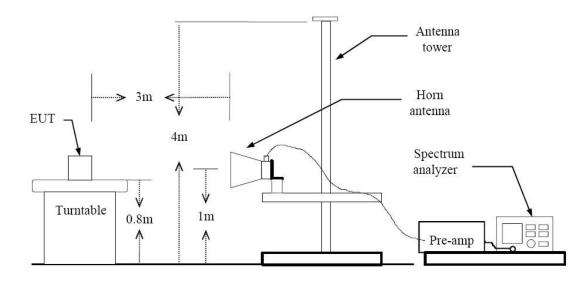

Service	SISO	Ant 0
		Ant 1
	MIMO	Ant 0 & 1(Worst Case)

Note : We have done all test case. We attached the results of only worst case.



Test Configuration

Below 30 MHz



30 MHz - 1 GHz

Above 1 GHz

TEST PROCEDURE USED

ANSI C63.4(2003) Method H)5) in KDB 789033, issued 06/06/2014 (Peak) Method H)6)d) in KDB 789033, issued 06/06/2014 (Average)

. Spectrum setting:

- Peak.
- 1. RBW = 1 MHz
- 2. VBW ≥ 3 MHz
- 3. Detector = Peak
- 4. Sweep Time = auto
- 5. Trace mode = max hold
- 6. Allow sweeps to continue until the trace stabilizes.
- 7. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle.
- Average (Method VB : Averaging using reduced video bandwidth)
- 1. RBW = 1 MHz
- 2. VBW
 - 2.1. If the EUT is configured to transmit with duty cycle ≥ 98 percent, set VBW ≤ RBW/100(i.e., 10 kHz) but not less than 10 Hz.
 - 2.2. If the EUT duty cycle is < 98 percent, set VBW ≥ 1/T, where T is the minimum transmission duration.
- 3. The analyzer is set to linear detector mode.

- 4. Detector = Peak.
- 5. Sweep time = auto.
- 6. Trace mode = max hold.
- 7. Allow max hold to run for at least 50 traces if the transmitted signal is continuous or has at least 98 percent duty cycle. For lower duty cycles, increase the minimym number of traces by a factor of 1/x, where x is the duty cycle.

Note :

- 1. We used the case 2 for 802.11a/n_20/n_40 to perform the average filed strength measurements for RSE and radiated band edge test.
- 2. The actual setting value of VBW for 802.11a/n_20/n_40.

Mode	Worst Data rate (Mbps)	T _{on} (ms)	T _{total} (ms)	Duty Cycle (%)	VBW(1/T) (Hz)	The actual setting value of VBW (Hz)
а	6	2.057	2.177	94.49	486	1000
n_20 MHz BW	6.5	1.902	2.007	94.77	526	1000
n_40 MHz BW	13.5	0.927	1.029	90.09	1079	3000

TEST RESULTS

9 kHz – 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dΒμN	dB /m	dB	(H/V)	dBµN/m	dBµN/m	dB	
No Critical peaks found								

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dΒμN	dB /m	dB	(H/V)	dBµN/m	dBµN/m	dB	
No Critical peaks found								

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Above 1 GHz

MIMO(Ant.0 & 1)

Band :	UNII 1
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5180 MHz
Channel No.	36 Ch

Frequency	Reading	AN.+CL-Amp G.	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
10360	64.24	-6.51	V	57.73	68.20	10.47	PK
15540	70.77	-6.42	V	64.35	73.98	9.63	PK
15540	52.35	-6.42	V	45.93	53.98	8.05	AV
10360	64.38	-6.51	Н	57.87	68.20	10.33	PK
15540	71.34	-6.42	Н	64.92	73.98	9.06	PK
15540	52.38	-6.42	Н	45.96	53.98	8.02	AV

Band :	UNII 1
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5200 MHz
Channel No.	40 Ch

Frequency	Reading	AN.+CL-Amp G.	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
10400	67.79	-6.49	V	61.30	68.20	6.90	PK
15600	73.31	-7.15	V	66.16	73.98	7.82	PK
15600	57.68	-7.15	V	50.53	53.98	3.45	AV
10400	67.87	-6.49	Н	61.38	68.20	6.82	PK
15600	73.89	-7.15	Н	66.74	73.98	7.24	PK
15600	57.72	-7.15	Н	50.57	53.98	3.41	AV

Band :	UNII 1
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5240 MHz
Channel No.	48 Ch

Frequency	Reading	AN.+CL-Amp G.	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
10480	67.42	-6.96	V	60.46	68.20	7.74	PK
15720	72.44	-6.62	V	65.82	73.98	8.16	PK
15720	56.79	-6.62	V	50.17	53.98	3.81	AV
10480	67.64	-6.96	Н	60.68	68.20	7.52	PK
15720	72.46	-6.96	Н	65.50	73.98	8.48	PK
15720	56.86	-6.62	Н	50.24	53.98	3.74	AV

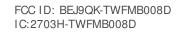
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done all data rate in 802.11a mode test. . Worst case of EUT is lowest data rate in 802.11a.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Band :	UNII 1
Operation Mode:	802.11 n_20 MHz BW
Transfer Rate:	6.5 Mbps
Operating Frequency	5180 MHz
Channel No.	36 Ch

Frequency	Reading	AN.+CL-Amp G.	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
10360	64.68	-6.51	V	58.17	68.20	10.03	PK
15540	70.31	-6.42	V	63.89	73.98	10.09	PK
15540	52.57	-6.42	V	46.15	53.98	7.83	AV
10360	64.73	-6.51	Н	58.22	68.20	9.98	PK
15540	71.01	-6.42	Н	64.59	73.98	9.39	PK
15540	52.58	-6.42	Н	46.16	53.98	7.82	AV

Band :
Operation Mode:
Transfer Rate:
Operating Frequency
Channel No.

UNII 1
802.11 n_20 MHz BW
6.5 Mbps
5200 MHz
40 Ch


Frequency	Reading	AN.+CL-Amp G.	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
10400	66.61	-6.49	V	60.12	68.20	8.08	PK
15600	72.96	-7.15	V	65.81	73.98	8.17	PK
15600	57.58	-7.15	V	50.43	53.98	3.55	AV
10400	66.84	-6.49	Н	60.35	68.20	7.85	PK
15600	72.39	-7.15	Н	65.24	73.98	8.74	PK
15600	57.62	-7.15	Н	50.47	53.98	3.51	AV

Band :	UNII 1
Operation Mode:	802.11 n_20 MHz BW
Transfer Rate:	6.5 Mbps
Operating Frequency	5240 MHz
Channel No.	48 Ch

Frequency	Reading	AN.+CL-Amp G.	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
10480	66.93	-6.96	V	59.97	68.20	8.23	PK
15720	71.56	-6.62	V	64.94	73.98	9.04	PK
15720	56.71	-6.62	V	50.09	53.98	3.89	AV
10480	67.48	-6.96	Н	60.52	68.20	7.68	PK
15720	71.67	-6.96	Н	64.71	73.98	9.27	PK
15720	56.74	-6.62	Н	50.12	53.98	3.86	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done all data rate in 802.11n_20 MHz BW mode test. . Worst case of EUT is lowest data rate in 802.11n_20 MHz BW.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Band :	UNII 1
Operation Mode:	802.11n_40 MHz BW
Transfer Rate:	13.5 Mbps
Operating Frequency	5190 MHz
Channel No.	38 Ch

Frequency	Reading	AN.+CL-Amp G.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
10380	62.89	-5.38	V	57.51	68.20	10.69	PK
15570	63.01	-6.41	V	56.60	73.98	17.38	PK
15570	49.20	-6.41	V	42.79	53.98	11.19	AV
10380	63.09	-5.38	Н	57.71	68.20	10.49	PK
15570	64.07	-6.41	Н	57.66	73.98	16.32	PK
15570	49.21	-6.41	Н	42.80	53.98	11.18	AV

Band :	UNII 1
Operation Mode:	802.11n_40 MHz BW
Transfer Rate:	13.5 Mbps
Operating Frequency	5230 MHz
Channel No.	46 Ch

Frequency	Reading	AN.+CL-Amp G.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
10460	65.62	-6.88	V	58.74	68.20	9.46	PK
15690	69.21	-6.64	V	62.57	73.98	11.41	PK
15690	55.48	-6.64	V	48.84	53.98	5.14	AV
10460	66.15	-6.88	Н	59.27	68.20	8.93	PK
15690	69.30	-6.64	Н	62.66	73.98	11.32	PK
15690	55.52	-6.64	Н	48.88	53.98	5.10	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done all data rate in 802.11n_40 MHz BW. Worst case of EUT is lowest data rate in 802.11n_40 MHz BW.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

8.8.2 RADIATED RESTRICTED BAND EDGE MEASUREMENTS

Test Requirements and limit, §15.407, §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c)).

MIMO(Ant.0 & 1)

Band :	UNII 1
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5180 MHz
Channel No.	36 Ch

Frequency	Reading	AN.+CL+AMP+ATT.	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
5150	60.99	8.79	Н	69.78	73.98	4.20	PK
5150	42.18	8.79	Н	50.97	53.98	3.01	AV
5150	57.97	8.79	V	66.76	73.98	7.22	PK
5150	40.81	8.79	V	49.60	53.98	4.38	AV

Band :	UNII 1
Operation Mode:	802.11 n_20 MHz BW
Transfer Rate:	6.5 Mbps
Operating Frequency	5180 MHz
Channel No.	36 Ch

Frequency	Reading	AN.+CL+AMP+ATT.	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
5150	60.84	8.79	Н	69.63	73.98	4.35	PK
5150	42.14	8.79	Н	50.93	53.98	3.05	AV
5150	57.78	8.79	V	66.57	73.98	7.41	PK
5150	40.72	8.79	V	49.51	53.98	4.47	AV

Band :	UNII 1
Operation Mode:	802.11n_40 MHz BW
Transfer Rate:	13.5 Mbps
Operating Frequency	5190 MHz
Channel No.	38 Ch

Frequency	Reading	AN.+CL+AMP+ATT.	ANT. POL	Total	Limit	Margin	
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
5150	56.97	8.79	Н	65.76	73.98	8.22	PK
5150	39.62	8.79	Н	48.41	53.98	5.57	AV
5150	54.07	8.79	V	62.86	73.98	11.12	PK
5150	38.28	8.79	V	47.07	53.98	6.91	AV

- 1. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + ATT
- 2. We have done all data rate in 802.11a/n/ac mode test. . Worst case of EUT is lowest data rate in 802.11a/n/ac
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

8.8.3 RECEIVER SPURIOUS EMISSIONS

IC Rule(s)	RSS-GEN
Test Requirements:	Blow the table
Operating conditions:	Under normal test conditions
Method of testing:	Radiated
S/A Sottingo	F < 1 GHz: RBW: 120 kHz, VBW: 300 kHz (Quasi Peak)
S/A. Settings:	F < 1 GHz: RBW: 120 kHz, VBW: 300 kHz (Quasi Peak) F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)

Frequency	Field Strength			
(MHz)	(microvolts/m at 3 meters)			
30 - 88	100			
88 - 216	150			
216 – 960	200			
Above 960	500			

Operation Mode: Receive:

30 MHz ~ 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBµN	dB /m	dB	(H/V)	dBµN/m	dBµN/m	dB
No Critical peaks found							

Above 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBμN	dB /m	dB	(H/V)	dBµN/m	dBµN/m	dB
No Critical peaks found							

8.9 POWERLINE CONDUCTED EMISSIONS

Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

	Limits (dBµV)				
Frequency Range (MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference groundplane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

Note: We don't perform powerline conducted emission test. Because this EUT is used DC voltage.

9. LIST OF TEST EQUIPMENT

9.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration	Calibration	Calibration	Serial No.
		Date	Interval	Due	
Rohde & Schwarz	ENV216/ LISN	01/29/2014	Annual	01/29/2015	100073
Agilent	E4440A/ Spectrum Analyzer	04/09/2014	Annual	04/09/2015	US45303008
Agilent	N9020A/ SIGNAL ANALYZER	05/23/2014	Annual	05/23/2015	MY51110063
Agilent	N1911A/Power Meter	01/24/2014	Annual	01/24/2015	MY45100523
Agilent	N1921A /POWER SENSOR	07/11/2013	Annual	07/11/2014	MY45241059
Hewlett Packard	11636B/Power Divider	10/22/2013	Annual	10/22/2014	11377
Agilent	87300B/Directional Coupler	12/18/2013	Annual	12/18/2014	3116A03621
Hewlett Packard	11667B / Power Splitter	01/27/2014	Annual	01/27/2015	10545
DIGITAL	EP-3010 /DC POWER SUPPLY	10/29/2013	Annual	10/29/2014	3110117
ITECH	IT6720 / DC POWER SUPPLY	11/05/2013	Annual	11/05/2014	0100021562870011
TIECH	1167207 DC POWER SUPPLY	11/05/2013	Annuai	11/05/2014	99
TESCOM	TC-3000C / BLUETOOTH TESTER	04/11/2014	Annual	04/11/2015	3000C000276
Rohde & Schwarz	CBT / BLUETOOTH TESTER	05/07/2014	Annual	05/07/2015	100422
Agilent	8493C / Attenuator(10 dB)	07/24/2013	Annual	07/24/2014	76649
WEINSCHEL	2-3 / Attenuator(3 dB)	10/28/2013	Annual	10/28/2014	BR0617

9.2 LIST OF TEST EQUIPMENT(Radiated Test)

		Calibration	Calibration	Calibration	
Manufacturer	Model / Equipment	Date	Interval	Due	Serial No.
Schwarzbeck	VULB 9160/ TRILOG Antenna	12/17/2012	Biennial	12/17/2014	3150
Rohde & Schwarz	ESCI / EMI TEST RECEIVER	01/24/2014	Annual	01/24/2015	100584
HD	MA240/ Antenna Position Tower	N/A	N/A	N/A	556
EMCO	1050/ Turn Table	N/A	N/A	N/A	114
HD GmbH	HD 100/ Controller	N/A	N/A	N/A	13
HD GmbH	KMS 560/ SlideBar	N/A	N/A	N/A	12
Rohde & Schwarz	SCU-18/ Signal Conditioning Unit	09/10/2013	Annual	09/10/2014	10094
CERNEX	CBL18265035 / POWER AMP	07/24/2013	Annual	07/24/2014	22966
CERNEX	CBL26405040 / POWER AMP	04/04/2014	Annual	04/04/2015	19660
Schwarzbeck	BBHA 9120D/ Horn Antenna	07/05/2013	Biennial	07/05/2015	1151
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	10/30/2012	Biennial	10/30/2014	BBHA9170124
Rohde & Schwarz	FSP / Spectrum Analyzer	01/24/2014	Annual	01/24/2015	839117/011
Wainwright Instrument	WHF3.0/18G-10EF / High Pass Filter	02/03/2014	Annual	02/03/2015	F6
Wainwright Instrument	WHNX6.0/26.5G-6SS / High Pass Filter	04/09/2014	Annual	04/09/2015	1
Wainwright Instrument	WHNX7.0/18G-8SS / High Pass Filter	04/04/2014	Annual	04/04/2015	29
TESCOM	TC-3000C / BLUETOOTH TESTER	04/11/2014	Annual	04/11/2015	3000C000276
Rohde & Schwarz	CBT / BLUETOOTH TESTER	05/07/2014	Annual	05/07/2015	100422
Rohde & Schwarz	LOOP ANTENNA	08/14/2012	Biennial	08/14/2014	100179
CERNEX	CBL06185030 / POWER AMP	07/24/2013	Annual	07/24/2014	22965
CERNEX	CBLU1183540 / POWER AMP	07/24/2013	Annual	07/24/2014	22964