ELECTROMAGNETIC EMISSION COMPLIANCE REPORT FOR LOW-POWER, NON-LICENSED TRANSMITTER

Test Report No.	: OT-213-RWD-016
Reception No.	: 2012005330
Applicant	: LG Electronics USA
Address	: 111 Sylvan Avenue, North Building, Englewood Cliffs, New Jersey, 07632, United States
Manufacturer	: LG Electronics Inc.
Address	: 84, Wanam-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do, Republic of Korea
Type of Equipment	: Residential Remote Controller
FCC ID.	: BEJ-PREMTA200
Model Name	: PREMTA200
Serial number	: N/A
Total page of Report	: 7 pages (including this page)
Date of Incoming	: January 13, 2021
Date of issue	: March 04, 2021

SUMMARY

The equipment complies with the regulation; FCC PART 15 SUBPART C Section 15.247

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

Tested by Hyung-Kwon, Oh / Manager ONETECH Corp.

Reviewed by Tae-Ho, Kim / Senior Manager ONETECH Corp.

フノ夏

Approved by Ki-Hong, Nam / General Manager ONETECH Corp.

It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

CONTENTS

PAGE

1. VERIFICATION OF COMPLIANCE	4
2. GENERAL INFORMATION	5
2.1 PRODUCT DESCRIPTION	5
2.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	5
3. EUT MODIFICATIONS	5
4. MAXIMUM PERMISSIBLE EXPOSURE	6
4.1 RF Exposure Calculation	
4.2 EUT DESCRIPTION	
4.3 CALCULATED MPE SAFE DISTANCE FOR WLAN	7

Revision History

Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
0	OT-213-RWD-016 March 04, 2021		Initial Release	All

1. VERIFICATION OF COMPLIANCE

Applicant	: LG Electronics USA

Address : 111 Sylvan Avenue, North Building, Englewood Cliffs, New Jersey, 07632, United States

Contact Person : Choi young min / Research Engineer

Telephone No. : +82-10-4699-9873

FCC ID : BEJ-PREMTA200

Model Name : PREMTA200

Brand Name : -

Serial Number : N/A

Date : March 04, 2021

EQUIPMENT CLASS	DTS – DIGITAL TRNSMISSION SYSTEM			
E.U.T. DESCRIPTION	Residential Remote Controller			
THIS REPORT CONCERNS	Original Grant			
MEASUREMENT PROCEDURES	ANSI C63.10: 2020			
TYPE OF EQUIPMENT TESTED	Pre-Production			
KIND OF EQUIPMENT				
AUTHORIZATION REQUESTED	Certification			
EQUIPMENT WILL BE OPERATED	FCC PART 15 SUBPART C Section 15.247			
UNDER FCC RULES PART(S)	KDB 558074 D01 15.247 Meas Guidance v05r02			
Modifications on the Equipment to	News			
Achieve Compliance	None			
Final Test was Conducted On	3 m, Semi Anechoic Chamber			

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. GENERAL INFORMATION

2.1 Product Description

The LG Electronics USA, Model PREMTA200 (referred to as the EUT in this report) is a Residential Remote Controller. The product specification described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	Residential Remote Controller					
Temperature Range	-0 °C ~ 40 °C					
OPERATING FREQUENCY	2 412 MHz ~ 2 462 MHz (802.11b/g/n(HT20))					
	802.11b: DSSS Modulation(DBPSK/DQPSK/CCK)					
MODULATION TYPE	802.11g/n(HT20): OFDM Modulation(BPSK/QPSK/16QAM/64QAM)					
	12.80 dBm(802.11b)					
RF OUTPUT POWER	11.99 dBm(802.11g)					
	11.85 dBm(802.11n_HT20)					
ANTENNA TYPE	Chip Antenna					
ANTENNA GAIN	3.0 dBi					
List of each Osc. or crystal						
Freq.(Freq. >= 1 MHz)	32.768 kHz, 24 MHz					

2.2 Alternative type(s)/model(s); also covered by this test report.

-. None

3. EUT MODIFICATIONS

-. None

4. MAXIMUM PERMISSIBLE EXPOSURE

4.1 RF Exposure Calculation

According to the FCC rule 1.1310 table 1B, the limit for the maximum permissible RF exposure for an uncontrolled environment are f/1500 mW/cm² for the frequency range between 300 MHz and 1 500 MHz and 1.0 mW/cm² for the frequency range between 1 500 MHz and 100 000 MHz.

The electric field generated for a 1 mW/cm² exposure is calculated as follows:

$$E = \sqrt{(30 * P * G)} / d$$
, and $S = E^2 / Z = E^2 / 377$, because 1 mW/cm² = 10 W/m²

Where

S = Power density in mW/cm², Z = Impedance of free space, 377 Ω

E = Electric filed strength in V/m, G = Numeric antenna gain, and d = distance in meter

Combing equations and rearranging the terms to express the distance as a function of the remaining variable

 $d = \sqrt{(30 * P * G) / (377 * 10 S)}$

Changing to units of mW and cm, using P(mW) = P(W) / 1000, d(cm) = 0.01 * d(m)

 $d = 0.282 * \sqrt{(P * G) / S}$

Where

d = distance in cm, P = Power in mW, G = Numeric antenna gain, and S = Power density in mW/cm²

4.2 EUT Description

Kind of EUT	Residential Remote Controller					
	\Box Portable (< 20 cm separation)					
Device Category	\Box Mobile (> 20 cm separation)					
	■ Others					
_	■ MPE					
Exposure	□ SAR					
Evaluation Applied	□ N/A					

4.3 Calculated MPE Safe Distance for WLAN

According to above equation, the following result was obtained.

Operating Freq. Band	0		Max tune up power		Antenna Gain		Safe Distance	Power Density (mW/cm ²)	Limit (mW/
(MHz)		(dBm)	(dBm)	(mW)	Log	Linear	(cm)	@ 20 cm Separation	cm ²)
2 400	802.11b	12.5 ± 1.0	13.50	22.39			1.88	0.008 9	1.00
	802.11g	11.5 ± 1.0	12.50	17.78	3.00	2.00	1.68	0.007 1	1.00
~ 2 483.5	802.11n_HT20	11.5 ± 1.0	12.50	17.78			1.68	0.007 1	1.00

According to above table, for 2 400 ~ 2483.5 MHz Band(802.11 b), safe distance,

 $D = 0.282 * \sqrt{(22.39 * 2.00)/1.00} = 1.88 \text{ cm}.$

For getting power density at 20 cm separation in above table, following formula was used.

 $S = P * G / (4\pi * R^2) = 22.39 * 2.00 / (4 * \pi * 20^2) = 0.008 9$

Where:

S = Power Density,

P = Power input to the external antenna (Output power from the EUT antenna port (dBm) – cable loss (dB)),

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna