On your side

TEST REPORT

FCC/ISED DTS Test for LVR-001 Certification

APPLICANT LG Electronics Inc.

REPORT NO. HCT-RF-2209-FI002

DATE OF ISSUE September 16, 2022

> Tested by Kyung Jun Woo

Technical Manager Jong Seok Lee

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401 The report shall not be reproduced except in full(only partly) without approval of the laboratory.

F-TP22-03(Rev.04)

1/77

HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

TEST REPORT FCC/ISED DTS Test for LVR-001	REPORT NO. HCT-RF-2209-F1002 DATE OF ISSUE September 16, 2022 Additional Model -	
Applicant	LG Electronics Inc. 170, Seongsanpaechong-ro, Seongsan-gu, Changwon-si Gyeongsangnam-do 51533 Republic of Korea	
Eut Type Model Name	VR Gen3 module LVR-001	
FCC ID IC	BEJ-LVR001 2703N-LVR001	
Modulation type	CCK/DSSS/OFDM	
FCC Classification	Digital Transmission System(DTS)	
FCC Rule Part(s)	Part 15.247	
ISED Rule Part(s)	RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5_Amendment 2 (February 2021)	
	The result shown in this test report refer only to the sample(s) tested unless	

otherwise stated.

This test results were applied only to the test methods required by the standard.

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	September 16, 2022	Initial Release

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / ISED Rules under normal use and maintenance.

KOLAS Statement:

The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA. (KOLAS Accreditation No. KT197)

If this report is required to confirmation of authenticity, please contact to www.hct.co.kr

CONTENTS

1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	6
GENERAL TEST PROCEDURES	6
DESCRIPTION OF TEST MODES	7
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS	7
FACILITIES	7
EQUIPMENT	7
5. ANTENNA REQUIREMENTS	8
6. MEASUREMENT UNCERTAINTY	9
7. DESCRIPTION OF TESTS	10
8. SUMMARY TEST OF RESULTS	30
9. TEST RESULT	32
9.1 DUTY CYCLE	32
9.2 6dB BANDWIDTH & 99 % BANDWIDTH	33
9.3 OUTPUT POWER	39
9.4 POWER SPECTRAL DENSITY	45
9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	48
9.6 RADIATED SPURIOUS EMISSIONS	59
9.7 RADIATED RESTRICTED BAND EDGES	63
9.8 RECEIVER SPURIOUS EMISSIONS	66
9.9 POWERLINE CONDUCTED EMISSIONS(5 V)	67
9.10 POWERLINE CONDUCTED EMISSIONS(12 V)	71
10. LIST OF TEST EQUIPMENT	75
11. ANNEX A_ TEST SETUP PHOTO	77

1. EUT DESCRIPTION

Model	LVR-001		
Additional Model	-		
EUT Type	VR Gen3 module		
Power Supply	DC 5.0 V / 12.0 V		
Frequency Range	2 412 MHz – 2 462 MHz		
Max. RF Output Power	Peak Power	802.11b: 22.78 dBm 802.11g: 22.12 dBm 802.11n(HT20): 22.36 dBm	
	Average Power	802.11b: 16.75 dBm 802.11g: 14.42 dBm 802.11n(HT20): 14.28 dBm	
Modulation Type	DSSS/CCK : 802.11b OFDM : 802.11g, 802.11n		
Number of Channels	11 Channels		
Antenna Specification	Dielectric Chip Antenna Peak Gain : 1.57 dBi		
Date(s) of Tests	August 30, 2022 ~ September 16, 2022		
PMN (Product Marketing Number)	VR Gen3 module		
HVIN (Hardware Version Identification Number)	LVR-001		
FVIN (Firmware Version Identification Number)	Voice_dqc_v.0.0.0		
HMN (Host Marketing Name)	N/A		
EUT serial numbers	Radiated : 0808#17 Conducted : 0808#3		
	LG Electronics Inc.		
Manufacturer	170, Seongsanpaechong-ro, Seongsan-gu, Changwon-si Gyeongsangnam-do 51533 Republic of Korea		
Factory	Ohsung Electronics Co., Ltd 335-4, Sanho-daero, Gumi-si, Gyeongsangbuk-do, Republic of Korea		

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C. / RSS-Gen issue 5, RSS-247 issue 2.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radi ated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of A NSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

For ISED, test facility was accepted dated February 14, 2019 (CAB identifier: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of § 15.203

According to RSS-GEN(Issue 5) Section 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of

ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	2.00 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.40 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.74 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.51 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.92 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.48 (Confidence level about 95 %, <i>k</i> =2)

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

EUT Spectrum Analyzer Coax cable

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to the zero-span measurement method.

The largest available value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (\geq RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10log(1/Duty Cycle)

7.2. 6 dB Bandwidth & 99 % Bandwidth

Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 11.8.1 in ANSI 63.10-2013)

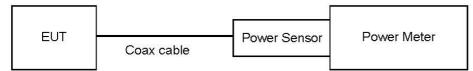
- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Test Procedure (99 % Bandwidth for ISED)

The transmitter output is connected to the spectrum analyzer.

RBW = $1 \% \sim 5 \%$ of the occupied bandwidth VBW $\Rightarrow 3 \times$ RBW Detector = Peak Trace mode = max hold Sweep = auto couple Allow the trace to stabilize

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.



7.3. Output Power

Limit

The maximum permissible conducted output power is 1 Watt.

Test Configuration

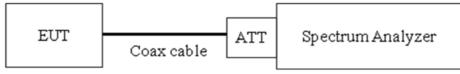
Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.
- Average Power (Procedure 11.9.2.3 in ANSI 63.10-2013)
 - 1) Measure the duty cycle.
 - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3) Add 10 $\log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Measured Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Measured Value + ATT loss + Cable loss + Duty Cycle Factor



7.4. Power Spectral Density

Limit

The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3 kHz BW.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

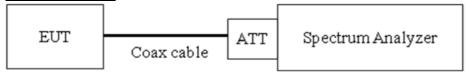
We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10.2 in ANSI 63.10-2013.

The spectrum analyzer is set to :

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Span = 1.5 times the DTS channel bandwidth.
- 3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple
- 6) Detector = peak
- 7) Trace Mode = max hold
- 8) Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
 If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

Power Spectral Density = Measured Value + ATT loss + Cable loss



7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions

Limit

The maximum conducted (Peak) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz. [Conducted > 20 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points $\geq 2 \times \text{Span/RBW}$
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

Page 15 of 77

2. Factor = Attenuator loss + Cable loss

Factors for frequency

Freq(MHz)	Factor(dB)
30	10.27
100	10.33
200	10.34
300	10.36
400	10.40
500	10.59
600	10.60
700	10.62
800	10.65
900	10.66
1 000	10.67
2 000	10.76
2 400	10.87
2 412	10.87
2 437	10.83
2 462	11.05
2 500	11.11
3 000	11.55
4 000	11.74
5 000	11.74
5 700	11.80
5 800	11.82
6 000	11.85
7 000	11.90
8 000	12.03
9 000	12.09
10 000	12.11
11 000	12.17
12 000	12.20
13 000	12.22
14 000	12.31
15 000	12.50
16 000	12.64
17 000	12.56
18 000	12.23
19 000	12.36
20 000	12.35
21 000	12.32
22 000	12.37
23 000	12.48
24 000	12.51
25 000	12.67

HCT

7.6. Radiated Test

Limit

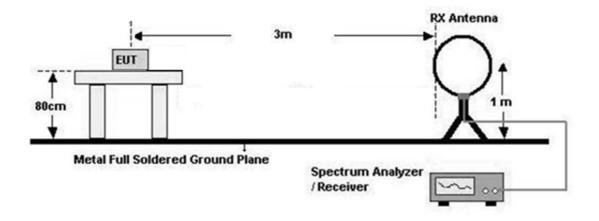
FCC

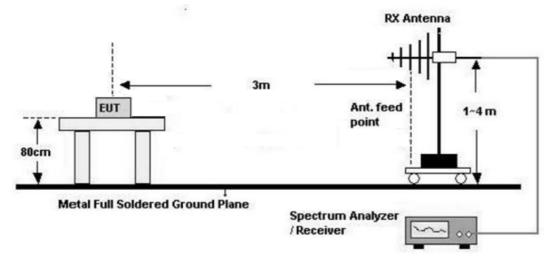
Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30

ISED

Frequency (MHz)	Field Strength (μ A/m)	Measurement Distance (m)
0.009 - 0.490	6.37/F(kHz)	300
0.490 – 1.705	63.7/F(kHz)	30
1.705 – 30	0.08	30

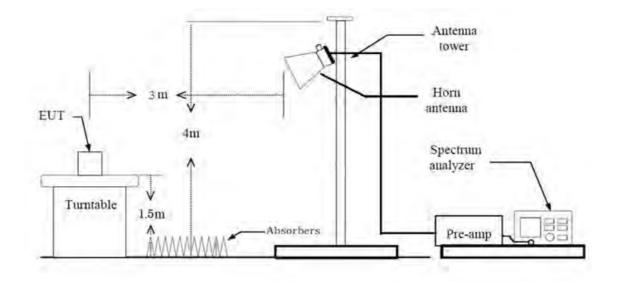
FCC&ISED


Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Report No. HCT-RF-2209-FI002

Test Configuration

Below 30 MHz




```
30 MHz - 1 GHz
```


Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3 m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40log(3 m/30 m) = 40 dB Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW
- 9. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1 GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - **%**In general, (1) is used mainly ∎
- 7. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average): Duty cycle \geq 98 %
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - (3) Measurement Type(Average): Duty cycle < 98 %, duty cycle variations are less than ± 2 %
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).

- Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 9. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 10. Total(Measurement Type : Peak)
 - = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle \geq 98 %)

= Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle < 98 %)

- = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G) + Distance Factor(D.F)
- + Duty Cycle Factor

Test Procedure of Radiated Restricted Band Edge

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 2310 MHz \sim 2390 MHz/ 2483.5 MHz \sim 2500 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average): Duty cycle \geq 98 %,
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - (3) Measurement Type(Average): Duty cycle < 98 %, duty cycle variations are less than ± 2 %
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the

emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.

- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total(Measurement Type : Peak)

= Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle \geq 98 %)

= Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle < 98 %)

= Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) + Duty Cycle Factor

7.7. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)	
Frequency Range (MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)
0.50 to 5	56	46
5 to 30	60	50

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

1. The EUT is placed on a wooden table 80 cm above the reference ground plane.

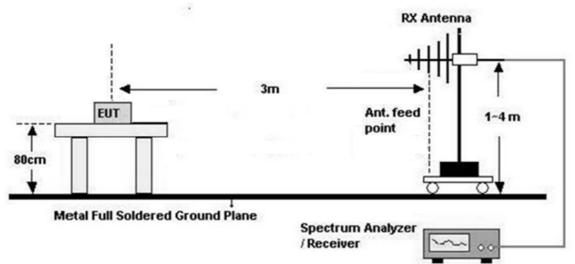
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Measured Value + Correction Factor

7.8. Receiver Spurious Emissions

Limit


Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note:

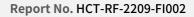
Measurements for compliance with the limits in table may be performed at distances other than 3 metres.

Test Configuration

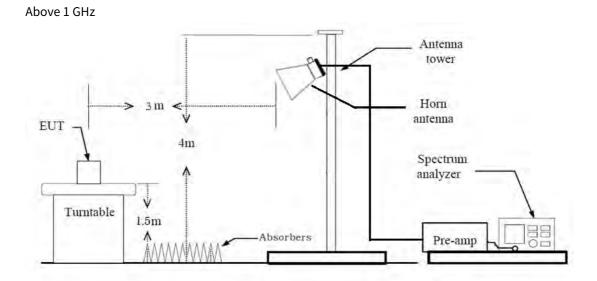
30 MHz - 1 GHz

Test Procedure of Receiver Spurious Emissions (Below 1GHz)

1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.


2. The EUT is placed on a turntable, which is 0.8m above ground plane.

3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1 m to 4 m to find out the highest emissions.


4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
- 7. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)

Test Procedure of of Receiver spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW

- (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

11. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F)

7.9. Worst case configuration and mode

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

2. All configurations of antenna were investigated and the worst case configuration results are

reported.

- Mode : Stand alone
- Worstcase : Stand alone
- 3. EUT Axis
 - Radiated Spurious Emissions : X
 - Radiated Restricted Band Edge : X
- 4. Test was performed with continuous Tx.

5. All datarates of operation were investigated and the worst case datarate results are reported.

- 802.11b : 1 Mbps
- 802.11g: 6 Mbps
- 802.11n : MCS0
- 6. All position of loop antenna were investigated and the test result is a no critical peak found at all

positions.

- Position : Horizontal, Vertical, Parallel to the ground plane
- 7. All Voltages of operation were investigated and the worst case datarate results are reported.
 - Mode : DC 5V, 12V
 - Worstcase : DC 12V

AC Power line Conducted Emissions

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone

Conducted test

- 1. The EUT was configured with data rate of highest power.
- 2. All datarate of operation were investigated and the worst case datarate results are reported
 - 802.11b : 11 Mbps
 - 802.11g : 6 Mbps
 - 802.11n : MCS0
- 3. All Voltages of operation were investigated and the worst case datarate results are reported.
 - Mode : DC 5V, 12V
 - Worstcase : DC 12V

8. SUMMARY TEST OF RESULTS

FCC Part

Test Description	FCC Part Test Limit Section(s)		Test Condition	Test Result
6 dB Bandwidth	§ 15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Output Power	§ 15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§ 15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§ 15.207	cf. Section 7.7		PASS
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Dediated	PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS

Report No. HCT-RF-2209-FI002

HCT

ISED	Part
------	------

Test Description	ISED Part	Test Limit	Test Condition	Test
	Section(s)			Result
6 dB Bandwidth	RSS-247, 5.2.(a)	> 500 kHz	_	PASS
99 % Bandwidth	RSS-GEN, 6.7	N/A		PASS
Conducted Maximum Peak Output Power And e.i.r.p.	RSS-247, 5.4.(d)	< 1 Watt <4 Watt(e.i.r.p.)	Conducted	PASS
Power Spectral Density	RSS-247, 5.2(b)	< 8 dBm / 3 kHz Band		PASS
Band Edge(Out of Band Emissions)	RSS-247, 5.5	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	RSS-GEN, 8.8	cf. Section 7.7		PASS
Radiated Spurious Emissions	RSS-GEN, 8.9	cf. Section 7.6		PASS
Receiver Spurious Emissions	RSS-GEN, 5 RSS-GEN, 7.3	cf. Section 7.8	Radiated	PASS
Radiated Restricted Band Edge	RSS-GEN, 8.9 RSS-GEN, 8.10	cf. Section 7.6		PASS

9. TEST RESULT

9.1 DUTY CYCLE

Mode	Ton (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor (dB)
802.11b	-	-	-	-
802.11g	-	-	-	-
802.11n (HT20)	-	-	-	-

Note:

1. Duty Cycle Factor = $10\log(1/Duty Cycle)$. where, Duty Cycle = Ton / Ttotal

2. Test was performed with continuous Tx.

9.2 6dB BANDWIDTH & 99 % BANDWIDTH

6 dB Bandwidth Measurements (FCC)

802.11b Mode		Massured Dandwidth [MU7]	Minimum Dandwidth [MUz]
Frequency [MHz]	Channel No.	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	9.124	> 0.5
2437	6	9.121	> 0.5
2462	11	9.122	> 0.5

802.11	g Mode	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
Frequency [MHz]	Channel No.	Measured bandwidth [MHZ]	
2412	1	16.58	> 0.5
2437	6	16.57	> 0.5
2462	11	16.57	> 0.5


802.11n(H	T20) Mode	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
Frequency [MHz]	Channel No.	Measured bandwidth [MHZ]	
2412	1	17.78	> 0.5
2437	6	17.74	> 0.5
2462	11	17.79	> 0.5

Report No. HCT-RF-2209-FI002

Test Plots

6dB Bandwidth plot (802.11g-CH 6)

Keysight Spectrum Analyzer - Occupied B	W				0.9.2
X RL RF 50 0 DC Center Freq 2.43700000		SENSE:INT Center Freq: 2.43700 Trig: Free Run #Atten: 20 dB	ALIGN AUTO 0000 GHz Avg Hold: 1/1	Radio Device: BTS	Frequency
10 dB/div Ref Offset 10.87 Ref 20.00 dB					
100 	prononter interesting		and the second		Center Freq 2.437000000 GHz
20 D 30 D 40.0 m Wanda Maraharan			- Anna	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	
-60.0					
-70.0 Center 2.43700 GHz #Res BW 100 kHz		#VBW 300 k	Hz	Span 40.00 M Sweep 3.867	
Occupied Bandwid	th 6.490 MH	Total P	ower 20	.4 dBm	Auto Man Freq Offset
Transmit Freq Error x dB Bandwidth	-11.569 kH 16.57 MH			9.00 % 5.00 dB	0 Hz
MSG			STAT	US	

6dB Bandwidth plot (802.11b-CH 6)

Report No. HCT-RF-2209-FI002

6dB Bandwidth plot (802.11n_HT20-CH 6)

Note:

In order to simplify the report, attached plots were only the narrowest 6 dB BW channel.

99 % Bandwidth Measurements (ISED)

802.11b Mode		OBW	Limit
Frequency [MHz]	Channel No.	Bandwidth [MHz]	[MHz]
2412	1	14.045	N/A
2437	6	14.044	N/A
2462	11	14.048	N/A
802.11g Mode Frequency [MHz]	Channel No.	OBW Bandwidth [MHz]	Limit [MHz]
2412	1	17.182	N/A
2437	6	17.194	N/A
2462	11	17.174	N/A
802.11n(HT20) Moc		OBW	
Frequency [MHz]	Channel No.	Bandwidth [MHz]	Limit [MHz]
2412	1	18.169	N/A
2437	6	18.183	N/A
2462	11	18.166	N/A

Page 37 of 77

Test Plots

99 % Bandwidth plot (802.11b-CH 11)

99 % Bandwidth plot (802.11g-CH 6)

Keysight Spectrum Analyzer - Occupied BW RL RF 50 Ω DC			ALIGN AUTO 05:00	:36 PM Sep 05, 2022	0 9 8
Center Freq 2.437000000	Trig: I	r Freq: 2.437000000 GHz Free Run Avg Hold: h: 20 dB	>1/1	Std: None Device: BTS	Frequency
Ref Offset 10.87 of 10 dB/div Ref 20.00 dBm			· · · · ·		
10.0 D.00	J	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Center Fre 2.437000000 GH
200			m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
40.0 50.0 60.0					
70.0 Center 2.43700 GHz			Sna	ND 40 00 MHz	
Res BW 390 kHz	#	VBW 1.2 MHz		an 40.00 MHz Sweep 1 ms	CF Ste 4.000000 MH
Occupied Bandwidt	^h .194 MHz	Total Power	21.2 dBm	1	Auto Ma Freq Offse
Transmit Freq Error x dB Bandwidth	-152.64 kHz 16.51 MHz	% of OBW Powe x dB	er 99.00 % -6.00 dE		он
en			STATUS		
SG			STATUS		

99 % Bandwidth plot (802.11n_HT20-CH 6)

Note:

In order to simplify the report, attached plots were only the widest 99 % Bandwidth channel.

9.3 OUTPUT POWER

Peak Power

1. Power Meter offset = Attenuator loss+ Cable loss

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

So, 10.87 dB is offset for 2.4 GHz Band

802.11b M	ode	Rate (Mbps) Peak Output Power		Limit
Frequency[MHz]	Channel No.	Rate (Mbps)	(dBm)	(dBm)
		1	19.14	30
2412	1	2	20.01	30
2412		5.5	21.35	30
		11	22.78	30
		1	19.14	30
2427	C	2	19.57	30
2437	6	5.5	20.93	30
		11	22.34	30
		1	19.21	30
2462	11	2	19.64	30
2462	11	5.5	21.00	30
		11	22.21	30

802.11g M			Peak Output Power		
Frequency[MHz]	Channel No.	Rate (Mbps)	(dBm)	(dBm)	
		6	21.34	30	
		9	21.03	30	
	1	12	20.79	30	
2412		18	20.86	30	
2412		24	21.25	30	
		36	20.82	30	
		48	21.01	30	
		54	21.21	30	
		6	22.12	30	
		9	21.60	30	
		12	22.08	30	
2437	6	18	21.35	30	
2437	Ö	24	22.04	30	
		36	21.91	30	
		48	21.93	30	
		54	22.02	30	
		6	21.01	30	
		9	20.76	30	
		12	20.84	30	
2462	11	18	20.68	30	
2402	ΤΤ	24	20.96	30	
		36	20.82	30	
		48	20.93	30	
		54	20.94	30	

802.11n(HT20			S Index Peak Output Power Lin	
Frequency[MHz]	Channel No.	MCS Index	(dBm)	(dBm)
		0	21.51	30
		1	20.93	30
		2	21.07	30
2412	1	3	21.09	30
2412	1	4	21.48	30
		5	21.27	30
		6	21.44	30
	-	7	21.51	30
		0	22.36	30
		1	22.08	30
		2	21.72	30
2427	C I	3	22.07	30
2437	6	4	22.05	30
	-	5	22.20	30
	=	6	22.25	30
	-	7	22.08	30
		0	21.18	30
		1	21.02	30
		2	20.87	30
2462	11	3	20.92	30
2462	11 -	4	20.88	30
		5	21.11	30
		6	21.07	30
		7	20.94	30

Average Power

1. Power Meter offset = Attenuator loss + Cable loss

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.87 dB is offset for 2.4 GHz Band.

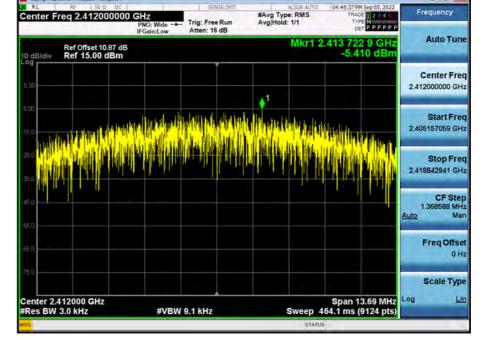
802.11	b Mode		Average Output Dever	Limit	
Frequency [MHz]	Channel No.	Rate (Mbps)	Average Output Power (dBm)	(dBm)	
		1	16.66	30	
2412	1	2	16.71	30	
2412	L	5.5	16.69	30	
		11	16.68	30	
		1	16.56	30	
2427	6	2	16.67	30	
2437	6	5.5	16.67	30	
		11	16.65	30	
		1	16.62	30	
2462	11	2	16.75	30	
2462	11 -	5.5	16.72	30	
		11	16.74	30	

802.11	g Mode		Average Output Power	Limit	
Frequency [MHz]	Channel No.	Rate (Mbps) 6 9	(dBm)	(dBm)	
		6	13.82	30	
		9	12.85	30	
		12	12.88	30	
2412	1	18	12.93	30	
2412	1	24	13.75	30	
		36	12.79	30	
		48	12.71	30	
		54	12.74	30	
		6	14.36	30	
		9	14.35	30	
		12	14.36	30	
2427	6	18	14.42	30	
2437	6	24	14.32	30	
		36	14.29	30	
		48	14.34	30	
		54	14.31	30	
		6	13.11	30	
		9	13.09	30	
		12	13.07	30	
2462	11	18	13.12	30	
2402	11	24	13.00	30	
		36	12.95	30	
		48	12.98	30	
		54	12.93	30	

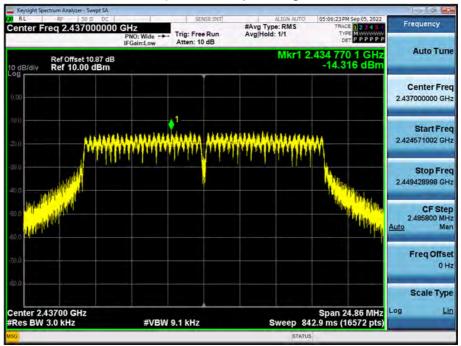
802.11n(H	T20) Mode	Average Output Power		
Frequency [MHz]	Channel No.	MCS Index	Average Output Power (dBm)	Limit (dBm)
		0	13.39	30
		1	13.30	30
		2	13.39	30
2412	1	3	13.36	30
2412	L L	4	13.65	30
		5	13.37	30
		6	13.40	30
		7	13.33	30
		0	14.26	30
		1	14.23	30
		2	14.28	30
2437	6	3	14.22	30
2437	0	4	14.01	30
		5	14.22	30
		6	13.98	30
		7	13.93	30
		0	13.05	30
		1	12.82	30
		2	13.12	30
2462	11	3	12.85	30
2402	11	4	13.01	30
		5	12.98	30
		6	13.04	30
		7	12.99	30

9.4 POWER SPECTRAL DENSITY

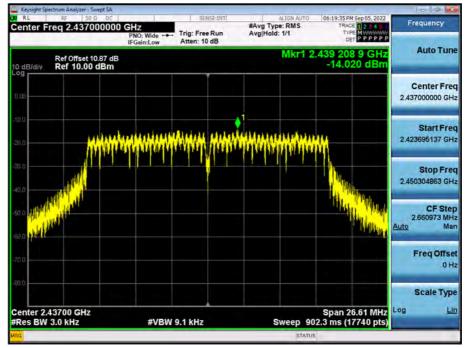
	-		Test	Result
Mode	Frequency (MHz)	Channel No.	Power Spectral Density (dBm/3 kHz)	Limit (dBm/3 kHz)
	2412	1	-5.410	
802.11b	2437	6	-5.826	
	2462	11	-5.777	
	2412	1	-15.335	
802.11g	2437	6	-14.316	8
	2462	11	-15.935	
	2412	1	-14.533	
802.11n(HT20)	2437	6	-14.020	
	2462	11	-15.498	


Note :

- 1. The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.87 dB is offset for 2.4 GHz Band.


Test Plots

Key

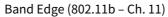

Power Spectral Density (802.11b - Ch. 1)

Power Spectral Density (802.11g – Ch. 6)

Power Spectral Density (802.11n_HT20 - Ch. 6)

Note :

In order to simplify the report, attached plots were only the worstcase PSD channel.



9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS

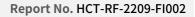
Test Result : please refer to the plot below. In order to simplify the report, attached plots were only the worst case channel and data rate.

Test Plots(BandEdge)

Frequency Auto Tune	04:57:14 PM Sep 05, 2022 TRACE 1 2 3 4 5 TYPE MWWWWW DET P P P P P P	#Avg Type: RMS Avg Hold:>1/1		Trig: Fr	0 GHz PNO: Fast ~ IFGain:Low	RF 50 Ω DC eq 2.40000000	enter Fr
	/kr1 16.26 MHz 30.946 dB	Δ				Ref Offset 10.87 dl Ref 15.00 dBm	0 dB/div
Center Fre 2.400000000 GH		1Δ2					5.00
Start Fre 2.365000000 GH		and the state of t					5.00
Stop Fre 2.43500000 GH	A how		X2				25.0
CF Ste 7.000000 MH Auto Ma	Mray Walanta Ala			whenter	Malad	angsharahiya wataliyaaniya	45.0
Freq Offse 0 H					Property and a	anysine strewach by entry	55.0
Scale Typ							75:0
Log L	Span 70.00 MHz .611 ms (1400 pts)	Sweep 2	Iz	/BW 300 kH	#VB	0000 GHz 100 kHz	enter 2.4 Res BW

Band Edge (802.11g - Ch. 1)

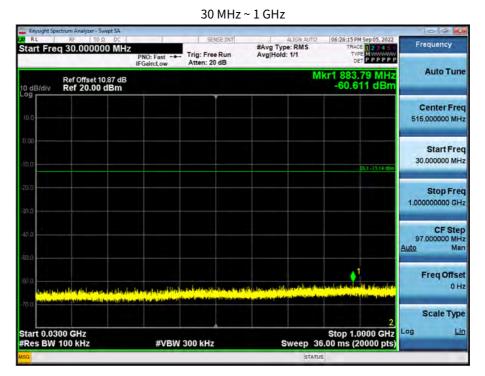
Band Edge (802.11g - Ch. 11)



RL RF 500 DC Center Freq 2.400000000	PNO: Fast Trig	Free Run n: 16 dB	#Avg Type: RMS Avg Hold: 1/1	06:13:11 PM Sep 05, 202 TRACE 1 2 3 4 3 TYPE MWWWW DET P P P P P	Frequency
Ref Offset 10.87 dB			1	∆Mkr1 9.26 MH 30.787 di	Auto Tune
5.00					Center Fre 2.400000000 GH
5 iii)		- form	factorio incentionale allowed with		Start Fre 2.365000000 GH
25.0		X2		1 million	Stop Fre 2.435000000 GH
45.0	and a far for for the start	M ²		Alertic and Arriver	CF Ste 7.000000 MH Auto Ma
55.0 Manualitation (101/101/101/101/101/101/101/101/101/101					Freq Offse 0 F
75.0					Scale Typ
Center 2.40000 GHz #Res BW 100 kHz	#VBW 300	kHz	Sweep	Span 70.00 MH 2.611 ms (1400 pts	z Log Li

Band Edge (802.11n_HT20 - Ch. 1)

Band Edge (802.11n_HT20 – Ch. 11)

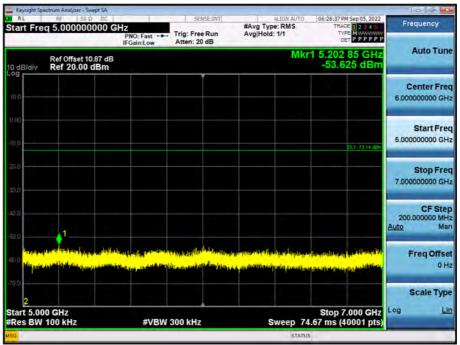


Test Plots(Conducted Spurious Emission)

Mode: 802.11b_Ch. 1_11 Mbps

Limit : -13.14 dBm

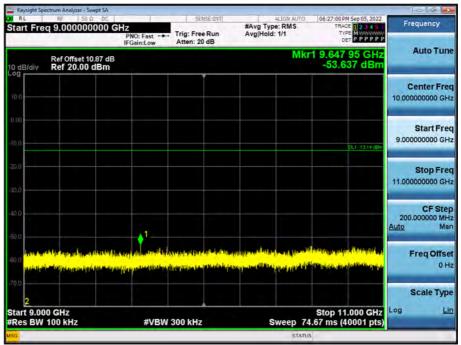
1 GHz ~ 3 GHz


	DC	SENSE:INT			PM Sep 05, 2022	Frequency
tart Freq 1.000000	PNO: Fast *	Trig: Free Run	#Avg Type: RI Avg Hold: 1/1	T		
	IFGain:Low	Atten: 20 dB				Auto Tune
Ref Offset 10 0 dB/div Ref 20.00				Mkr2 2.511 -52.8	60 GHz 300 dBm	
10.0			01			Center Fre
0.00						2.00000000 GH
10.0		_			011-13.14-00H	
ai 0						Start Fre
30.0						1.00000000 GH
40.0						
50.0				²		
		ti		2	a bille som til stølle men	and the second
60.0						
60.0 70.0 Start 1.000 GHz					3.000 GHz	3.00000000 GH CF Ste
500 500 700 Start 1.000 GHz fRes BW 100 kHz		W 300 kHz		ep 74.67 ms (40001 pts)	3.00000000 GH CF Ste 200.000000 MH
60.0 Start 1.000 GHz Res BW 100 kHz KR MODE TRC SCL 1 N 1	× 2.410 55 GHz	Y FL 6.864 dBm	Swee	ep 74.67 ms (40001 pts)	3.00000000 GH CF Ste 200.000000 MH
60.0 Prince Annual Contract of Contract Start 1.000 GHz Res BW 100 kHz	x	Y FL		ep 74.67 ms (40001 pts)	3.00000000 GH CF Ste 200.00000 MH <u>Auto</u> Ma
0.0 0.0 <td>× 2.410 55 GHz</td> <td>Y FL 6.864 dBm</td> <td></td> <td>ep 74.67 ms (</td> <td>40001 pts)</td> <td>3.00000000 GH CF Ste 200.000000 MH <u>Auto</u>Ma Freq Offs</td>	× 2.410 55 GHz	Y FL 6.864 dBm		ep 74.67 ms (40001 pts)	3.00000000 GH CF Ste 200.000000 MH <u>Auto</u> Ma Freq Offs
0.0 0.0 <td>× 2.410 55 GHz</td> <td>Y FL 6.864 dBm</td> <td></td> <td>ep 74.67 ms (</td> <td>40001 pts)</td> <td>3.00000000 GH CF Ste 200.000000 MH <u>Auto</u>Ma Freq Offs 0 H</td>	× 2.410 55 GHz	Y FL 6.864 dBm		ep 74.67 ms (40001 pts)	3.00000000 GH CF Ste 200.000000 MH <u>Auto</u> Ma Freq Offs 0 H
0.0 0.0 <td>× 2.410 55 GHz</td> <td>Y FL 6.864 dBm</td> <td></td> <td>ep 74.67 ms (</td> <td>40001 pts)</td> <td>3.00000000 GH CF Ste 200.000000 MH <u>Auto</u> Ma Freq Offsi 0 H</td>	× 2.410 55 GHz	Y FL 6.864 dBm		ep 74.67 ms (40001 pts)	3.00000000 GH CF Ste 200.000000 MH <u>Auto</u> Ma Freq Offsi 0 H
800 Lucrosubare Res 1000 Start 1.000 GHz Res BW 100 kHz MOMETRC: SCL 1 N 2 N 4 5 7 8	× 2.410 55 GHz	Y FL 6.864 dBm		ep 74.67 ms (40001 pts) NON VALUE	Stop Fre 3.00000000 GH CF Ste 200.000000 MH Auto Ma Freq Offsa 0 H Scale Typ Log L

Francisco	06:26:26 PM Sep 05, 2022	ALIGN AUTO	SENSE:INT		n Analyzer - Swept SA RF 50 Ω DC		R
Frequency Auto Tune	TYPE MUSE	#Avg Type: RMS Avg Hold: 1/1	Trig: Free Run Atten: 20 dB	PNO: Fast	.000000000 GH	t Freq 3	itar
	Ref Offset 10.87 dB Mkr1 3.830 20 GHz 0 dB/div Ref 20.00 dBm -52.355 dBm						
Center Fre 4.00000000 GH							og IU (i
Start Fre 3.000000000 GH	DL1-1314 (Bin						9,019, 10,01
Stop Fre 5.00000000 GH							(9.0) 19.0
CF Ste 200.000000 MH Auto Ma			ì.				0.0
Freq Offse 0 H	, de al las regio de cal·lina d Najvar na desagli, antici de ca	geld William angesid Willi <mark>Tan</mark> an kalangan gengender	And South and a strend by the south	eli feridit Marine	and Antoniana Mangareta v		60,0
Scale Typ						2	70.0
Log Ll	Stop 5.000 GHz .67 ms (40001 pts)	Sweep 74	00 kHz	#VBW		t 3.000 C s BW 10	
-		STATUS					5G

3 GHz ~ 5 GHz

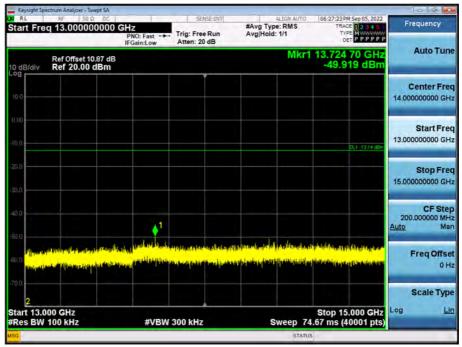
5 GHz ~ 7 GHz



	NO: Fast Trig	SENSE:INT	#Avg Type: RMS Avg Hold: 1/1		Frequency
Ref Offset 10.87 dB	Gain:Low Atte	en: 20 dB	1	Mkr1 7.239 40 GHz -51.496 dBm	Auto Tun
.og		1			Center Fre B.000000000 GH
10,0				DL1 -13 14 dBin	Start Fre 7.000000000 GF
30.0					Stop Fre 9.00000000 GH
10.0					CF Ste 200.000000 MH Auto Mi
er a the second state of the second states of a second states of the second states of the second states of the		nganininininini Manina Malaya	de foldes Orde Henriere He folget kanne de bereieren	habadaattira ya kabadaataha A minakata aya ka paulakataha	Freq Offse 0 F
700 2 Start 7.000 GHz #Res BW 100 kHz	#VBW 300			Stop 9.000 GHz	

7 GHz ~ 9 GHz

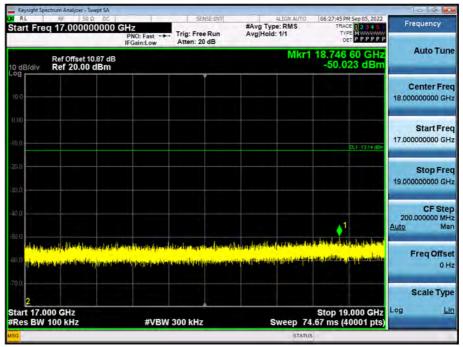
9 GHz ~ 11 GHz



RL RF 50 Q DC	SENSE:INT	ALIGN AUTO	06:27:12 PM Sep 05, 2022	Frequency
	PNO: Fast +++ Trig: Free Run FGain:Low Atten: 20 dB	#Avg Type: RMS Avg Hold: 1/1	TYPE MWWWWW DET PPPPP	
Ref Offset 10.87 dB		Mkr1	12.826 90 GHz -52.632 dBm	Auto Tune
0				Center Free 12.000000000 GH
· · · · · · · · · · · · · · · · · · ·			DL1 -13 14 stin	Start Free 11.000000000 GH
) 				Stop Fre 13.000000000 GH
			1	CF Ste 200.000000 MH <u>Auto</u> Ma
apariterana tari teli lana aratika ³ aparterana perana peterapatan dina	e a Maina Maini dan tara dan kabitatian Mangka dan sata Maini dan mangka sata farangan	dame dame a dis	anididhe ann a bhitean ean Mhairigean agusatan san	Freq Offse 0 H
2				Scale Typ
rt 11.000 GHz es BW 100 kHz	#VBW 300 kHz	Sweep 74	Stop 13.000 GHz 1.67 ms (40001 pts)	Log <u>Li</u>

11 GHz ~ 13 GHz

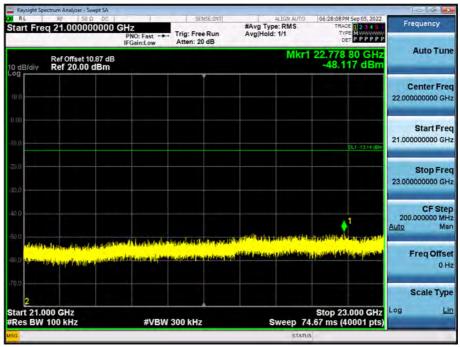
13 GHz ~ 15 GHz



Francisco	06:27:34 PM Sep 05, 2022	ALIGN AUTO		SENSE:INT			Ω DC		L	R
Frequency	TRACE 1 2 3 4 5 TYPE MWWWWWW DET P P P P P P	pe: RMS d: 1/1	#Avg Avg h	ree Run 20 dB		PNO: Fast	00000	q 15.0000	rt Fre	Star
Auto Tur	15.219 95 GHz -50.837 dBm	Mkr1					10.87 dB dBm	Ref Offset Ref 20.0	B/div	
Center Fre 16.00000000 GH										10.0
Start Fre 15.000000000 GF	CC1 -13 14 cBm									
Stop Fre 17.000000000 GH										
CF Ste 200.000000 MH Auto Ma								↓ 1		
Freq Offs 0 F	lan og fillfaller folksing og en skippe Hanne og en spir skippe og en skippe	ndinadasini napalitanina	an linaithe <mark>Angsanna</mark>	ndaritarada Isan parana		n na darkan na baba Masha pa pa kapa	alilabel navio Recta de maise	and i de angener Regener	abarbh Abartes	
Scale Typ	Stop 17.000 GHz							00 GHz	2	70.0
	.67 ms (40001 pts)	Sweep 74		Iz	V 300 k	#VBW		100 kHz		

15 GHz ~ 17 GHz

17 GHz ~ 19 GHz



RL RF 50.0 DC tart Freq 19.000000000 G	PNO: Fast	#Avg Type: RMS Avg Hold: 1/1	06:27:56 PM Sep 05, 2022 TRACE 2 34 5 TYPE MWWWW DET P P P P P P	Frequency
Ref Offset 10.87 dB	IFGam:Low Atten: 20 db	Mkr1	19.216 80 GHz -50.354 dBm	Auto Tun
0 0				Center Fre 20.000000000 GH
08			DL1 -13 14 (Bin	Start Fre 19.000000000 GH
0.0				Stop Fre 21.000000000 GH
00 1				CF Ste 200.000000 MH Auto Ma
0.0 Delever to the first first of the second s	foundation and second and second rate	i de la companya da a su a su a da a da a da a da a da	n para sa Annana na kata ba	Freq Offse 0 H
2 2 tart 19.000 GHz			Stop 24 000 CH	Scale Typ
Res BW 100 kHz	#VBW 300 kHz	Sweep 74	1.67 ms (40001 pts)	

19 GHz ~ 21 GHz

21 GHz ~ 23 GHz

	Stop Fre 25.00000000 GH 25.00000000 GH CF Ste 200.000000 MH <u>Auto</u> Ma
	Start Fre 23.00000000 GF 25.00000000 GF 25.00000000 GF CF Ste 200.00000 MH
	Start Fre 23.000000000 Gi Stop Fre 25.00000000 Gi
	Col #1114.000 Col #1114.000 Stop Frd
0.00	23.000000000 Gi
	Start Fre 23.000000000 G
100 24.0	24.00000000 G
	24 0000000 01
	Center Fre
Ref Offset 10.87 dB 10 dB/div .og Mkr1 24.892 50 GHz -45.714 dBm	

23 GHz ~ 25 GHz

9.6 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30 MHz

Frequency	Measured Value	A.F + C.L + D.F	Ant. POL	Total	Limit	Margin	
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	
No Critical peaks found							

Note:

1. The Measured Value of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits ($dB\mu V$) + Distance extrapolation factor

Frequency Range : Below 1 GHz

Frequency	Measured Value	A.F + C.L	Ant. POL	Total	Limit	Margin	
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	
No Critical peaks found							

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz				
Operation Mode:	802.11b			
Transfer Rate:	1 Mbps			
Operating Frequency	2 412 MHz			
Channel No.	01 Ch			

Frequency	Measured Value	AF+CL+DF-AG	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4 824	46.11	3.54	V	49.65	73.98	24.33	PK
4 824	38.77	3.54	V	42.31	53.98	11.67	AV
7 236	40.81	8.25	V	49.06	73.98	24.92	PK
7 236	28.54	8.25	V	36.79	53.98	17.19	AV
4 824	47.41	3.54	Н	50.95	73.98	23.03	PK
4 824	41.49	3.54	Н	45.03	53.98	8.95	AV
7 236	41.40	8.25	Н	49.65	73.98	24.33	PK
7 236	29.83	8.25	Н	38.08	53.98	15.90	AV

Operation Mode:	802.11b
Transfer Rate:	1 Mbps
Operating Frequency	2437
Channel No.	06 Ch

Frequency	Measured Value	AF+CL+DF-AG	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4 874	44.54	2.70	V	47.24	73.98	26.74	PK
4 874	36.84	2.70	V	39.54	53.98	14.44	AV
7 311	41.98	9.28	V	51.26	73.98	22.72	PK
7 311	29.86	9.28	V	39.14	53.98	14.84	AV
4 874	43.12	2.70	Н	45.82	73.98	28.16	PK
4 874	35.99	2.70	Н	38.69	53.98	15.29	AV
7 311	42.52	9.28	Н	51.80	73.98	22.18	PK
7 311	30.09	9.28	Н	39.37	53.98	14.61	AV

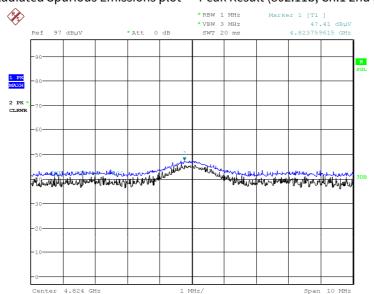
Operation Mode:	802.11b
Transfer Rate:	1 Mbps
Operating Frequency	2 462 MHz
Channel No.	11 Ch

Frequency	Measured Value	AF+CL+DF-AG	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4 924	46.08	2.21	V	48.29	73.98	25.69	PK
4 924	39.01	2.21	V	41.22	53.98	12.76	AV
7 386	41.62	9.95	V	51.57	73.98	22.41	PK
7 386	29.75	9.95	V	39.70	53.98	14.28	AV
4 924	45.83	2.21	Н	48.04	73.98	25.94	PK
4 924	38.94	2.21	Н	41.15	53.98	12.83	AV
7 386	40.96	9.95	Н	50.91	73.98	23.07	PK
7 386	29.68	9.95	Н	39.63	53.98	14.35	AV

Note:

All Modes of operation were investigated and the worst case configuration results are reported.

- Mode: 802.11b, 802.11g, 802.11n


- Worstcase : 802.11b 1 Mbps

Test Plots (Worst case : X-H)

Radiated Spurious Emissions plot - Average Result (802.11b, Ch.1 2nd Harmonic) *RBW 1 MHz Ø Marker 1 [T1] 41.49 dBµV 4.823967949 GHz *VBW 3 MHz SWT 20 ms 97 dBµV *Att 0 dB Ref B SGL 1 RM AVG 2 PK CLRWE threat and the state of the state of the second all for the second and the second an whitewar Center 4.824 GHz Span 10 MHz 1 MHz/

Date: 1.SEP.2022 13:58:38

Radiated Spurious Emissions plot - Peak Result (802.11b, Ch.1 2nd Harmonic)

Date: 1.SEP.2022 13:58:52

Note:

Plot of worst case are only reported.

9.7 RADIATED RESTRICTED BAND EDGES

Operation Mode:	802.11b
Transfer Rate:	1 Mbps
Operating Frequency	2 412 MHz, 2 462 MHz
Channel No.	01 Ch, 11 Ch

Frequency	Measured Value	AF+CL+DF	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
2 310.0 ~ 2 390.0	21.99	35.43	Н	57.42	73.98	16.56	PK
2 310.0 ~ 2 390.0	9.13	35.43	Н	44.56	53.98	9.42	AV
2 310.0 ~ 2 390.0	21.68	35.43	V	57.10	73.98	16.88	PK
2 310.0 ~ 2 390.0	9.08	35.43	V	44.50	53.98	9.48	AV
2 483.5 ~ 2 500.0	22.29	35.57	Н	57.85	73.98	16.13	PK
2 483.5 ~ 2 500.0	6.81	35.57	Н	42.37	53.98	11.61	AV
2 483.5 ~ 2 500.0	22.10	35.57	V	57.66	73.98	16.32	PK
2 483.5 ~ 2 500.0	6.59	35.57	V	42.15	53.98	11.83	AV

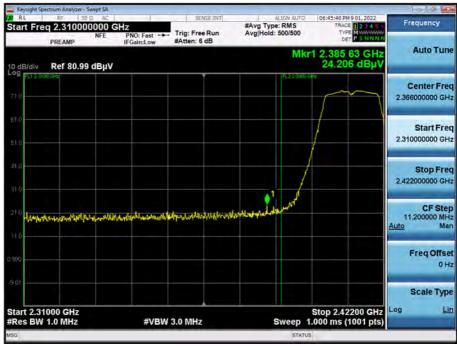
Operation Mode:
Transfer Rate:
Operating Frequency
Channel No.

802.11g
6 Mbps
2 412 MHz, 2 462 MHz
01 Ch, 11 Ch

Frequency	Measured Value	AF+CL+DF	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
2 310.0 ~ 2 390.0	23.58	35.43	Н	59.00	73.98	14.98	PK
2 310.0 ~ 2 390.0	7.92	35.43	Н	43.34	53.98	10.64	AV
2 310.0 ~ 2 390.0	23.35	35.43	V	58.77	73.98	15.21	PK
2 310.0 ~ 2 390.0	7.77	35.43	V	43.19	53.98	10.79	AV
2 483.5 ~ 2 500.0	26.74	35.57	Н	62.30	73.98	11.68	PK
2 483.5 ~ 2 500.0	7.31	35.57	Н	42.88	53.98	11.10	AV
2 483.5 ~ 2 500.0	26.71	35.57	V	62.28	73.98	11.70	PK
2 483.5 ~ 2 500.0	7.26	35.57	V	42.82	53.98	11.16	AV

Operation Mode:	802.11n (HT20)
Transfer Rate:	MCS 0
Operating Frequency	2 412 MHz, 2 462 MHz
Channel No.	01 Ch, 11 Ch

Frequency	Measured Value	AF+CL+DF	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
2 310.0 ~ 2 390.0	24.21	35.43	Н	59.63	73.98	14.35	PK
2 310.0 ~ 2 390.0	9.93	35.43	Н	45.36	53.98	8.62	AV
2 310.0 ~ 2 390.0	24.12	35.43	V	59.54	73.98	14.44	PK
2 310.0 ~ 2 390.0	9.86	35.43	V	45.28	53.98	8.70	AV
2 483.5 ~ 2 500.0	25.75	35.57	Н	61.32	73.98	12.66	PK
2 483.5 ~ 2 500.0	8.37	35.57	Н	43.94	53.98	10.04	AV
2 483.5 ~ 2 500.0	25.32	35.57	V	60.88	73.98	13.10	PK
2 483.5 ~ 2 500.0	8.20	35.57	V	43.76	53.98	10.22	AV



Test Plots (Worst case : X-H)

Radiated Restricted Band Edges plot – Average Result (802.11n, Ch.1)

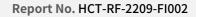
Radiated Restricted Band Edges plot - Peak Result (802.11n, Ch.1)

Note:

Plot of worst case are only reported.

9.8 RECEIVER SPURIOUS EMISSIONS

Frequency Range : Below 1 GHz


Frequency	Measured Value	A.F + C.L	Ant. POL	Total	Limit	Margin			
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]			
	No Critical peaks found								

Note:

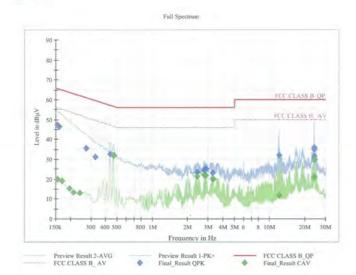
1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

Frequency	Measured Value	A.F + C.L – A.G + D.F	Ant. POL	Total	Limit	Margin			
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]			
	No Critical peaks found								

9.9 POWERLINE CONDUCTED EMISSIONS(5 V)

Conducted Emissions (Line 1)


Test

1/2

Test Report

Common Information EUT : Manufacturer : Test Site: Operating Conditions : Operator Name: Comment:

LVR-001 LG Electronics Inc. SHIELD ROOM 5V_2.4G_WLAN MODE_N

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	47.20	65.75	18.55	9.000	N	OFF	9.5
0.1613	46.50	65.40	18.90	9.000	N	OFF	9.5
0.2715	35.49	61.07	25.58	9.000	N	OFF	9.6
0.3278	31.22	59.51	28.29	9.000	N	OFF	9.6
0.4380	32.60	57.10	24.50	9.000	N	OFF	9.6
0.4673	32.07	56.56	24.50	9.000	N	OFF	9.6
2.4238	23.30	56.00	32.70	9.000	N	OFF	9.7
2.7680	24.43	56.00	31.57	9.000	N	OFF	9.7
2.7725	21.82	56.00	34.18	9.000	N	OFF	9.7
2.8085	24.37	56.00	31.63	9.000	N	OFF	9.7
2.8468	25.07	56.00	30.93	9.000	N	OFF	9.7
3.2698	23.01	56.00	32.99	9.000	N	OFF	9.7
12,0088	32.15	60.00	27.85	9.000	N	OFF	9.8
23.9855	35.80	60.00	24.20	9.000	N	OFF	9.9
23.9900	34.86	60.00	25.14	9.000	N	OFF	9.9
24.0103	30.37	60.00	29.63	9.000	N	OFF	9.9
24.0148	35.71	60.00	24.29	9.000	N	OFF	9.9
24.0418	31.40	60.00	28.60	9.000	N	OFF	9.9

2022-09-14

오후 7:43:42

2/2

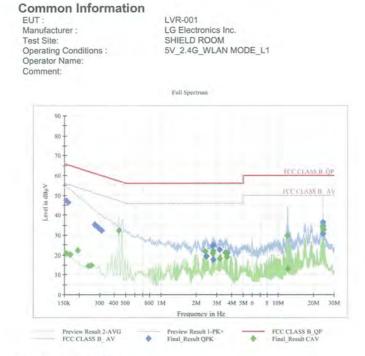
Test

Final Result CAV

Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	19.78	55.75	35.98	9.000	N	OFF	9.5
0.1703	19.13	54.95	35.82	9.000	N	OFF	9.6
0.1973	15.38	53.73	38.35	9.000	N	OFF	9.6
0.2130	13.33	53.09	39.75	9.000	N	OFF	9.6
0.2400	13.05	52.10	39.05	9,000	N	OFF	9.6
0.4650	31.76	46.60	14,84	9,000	N	OFF	9.6
2.4238	21.44	46.00	24.56	9.000	N	OFF	9.7
2,7680	21.87	46.00	24.13	9.000	N	OFF	9,7
2.8085	22.04	46.00	23.96	9.000	N	OFF	9.7
2.8468	21.60	46.00	24.40	9.000	N	OFF	9.7
3.2698	20.12	46.00	25.88	9.000	N	OFF	9.1
3.3080	20.02	46.00	25.98	9.000	N	OFF	9.7
12.0065	11.60	50.00	38.40	9.000	N	OFF	9.8
12.0448	11.90	50.00	38.10	9.000	N	OFF	9.8
23.9743	20.77	50.00	29.23	9.000	N	OFF	9.9
24.0125	29.79	50.00	20.21	9,000	N	OFF	9.9
24.0508	21.47	50.00	28,53	9,000	N	OFF	9,9
24.1273	29,82	50.00	20.18	9.000	N	OFF	9.9

2022-09-14

오후 7:43:42


Conducted Emissions (Line 2)

HCT

Test

1/2

Test Report

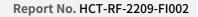
Final Result QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	47.36	65.75	18.40	9.000	L1	OFF	9.6
0.1613	46.58	65.40	18.81	9.000	L1	OFF	9.6
0.2738	35.09	61.00	25.91	9.000	L1	OFF	9.6
0.2895	33.90	60.54	26.64	9.000	L1	OFF	9.6
0.2963	33.35	60.35	27.00	9.000	L1	OFF	9.6
0.3120	32.38	59.92	27.54	9.000	L1	OFF	9.6
2.4283	19.19	56.00	36.81	9.000	L1	OFF	9.7
2.7703	24.53	56.00	31.47	9.000	L1	OFF	9.7
2.7793	17.70	56.00	38.30	9.000	L1	OFF	9.7
2.8085	24.69	56.00	31.32	9.000	L1	OFF	9.7
3.1528	22.58	56.00	33.42	9.000	L1	OFF	9.7
3.6568	20.67	56.00	35.33	9.000	L1	OFF	9.7
23.9585	30.51	60.00	29.49	9.000	L1	OFF	9.9
23.9788	34.17	60.00	25.83	9.000	L1	OFF	9.9
23.9833	36.06	60.00	23.94	9.000	L1	OFF	9.9
23.9878	36.28	60.00	23.72	9.000	L1	OFF	9.9
24.0125	33.71	60.00	26.29	9.000	L1	OFF	9.9
24.0193	34.59	60.00	25.41	9.000	L1	OFF	9.9

2022-09-14

오후 7:55:10

2/2


Test

Final Result CAV

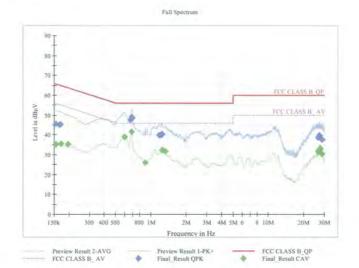
Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	20.68	55.75	35.07	9.000	L1	OFF	9.6
0.1680	20.27	55.06	34.78	9.000	L1	OFF	9.6
0.1950	22.29	53.82	31.53	9.000	L1	OFF	9.6
0.2400	14.49	52.10	37.61	9.000	L1	OFF	9.6
0.2535	14.61	51.64	37.03	9.000	L1	OFF	9.6
0.4358	32.44	47.14	14.70	9.000	L1	OFF	9.6
2.3855	21.68	46.00	24.32	9.000	L1	OFF	9.7
2,7680	20.86	46.00	25.14	9.000	L1	OFF	9.7
2.8085	22.01	46.00	23.99	9,000	L1	OFF	9.7
3.1528	18.10	46.00	27.90	9.000	L1	OFF	9.7
3.5375	21,19	46.00	24,81	9.000	L1	OFF	9.7
3.6545	18.92	46.00	27.08	9.000	L1	OFF	9.7
11.9930	29.68	50.00	20.32	9.000	L1	OFF	9.8
12.0313	12.97	50.00	37,03	9.000	L1	OFF	9,9
23.9450	33.63	50.00	16.37	9.000	L1	OFF	9,9
23.9833	33.94	50.00	16.06	9.000	L1	OFF	9.9
24.0215	33.90	50.00	16.10	9.000	L1	OFF	9.9
24.1003	32.58	50.00	17.42	9.000	L1	OFF	9.9

2022-09-14

오후 7:55:10

9.10 POWERLINE CONDUCTED EMISSIONS(12 V)

Conducted Emissions (Line 1)


Test

1/2

Test Report

Common Information

EUT : Manufacturer : Test Site: Operating Conditions : Operator Name: Comment: LVR-001 LG Electronics Inc. SHIELD ROOM 2.4G_WLAN MODE_L1_12V

Final Result QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	45.45	65.75	20.31	9.000	L1	OFF	9.6
0.1658	44.93	65.17	20.24	9.000	L1	OFF	9.6
0.1703	45.41	64.95	19.54	9.000	L1	OFF	9.6
0.6733	47.59	56.00	8.41	9.000	L1	OFF	9.6
0.6868	48.96	56.00	7.04	9.000	L1	OFF	9.6
0.6913	48.59	56.00	7.41	9.000	L1	OFF	9.6
1.1795	39.74	56.00	16.26	9.000	L1	OFF	9.6
1.2223	39.70	56.00	16.30	9.000	L1	OFF	9.6
1.2290	40.01	56.00	15.99	9.000	L1	OFF	9.6
1.2335	40.03	56.00	15.97	9.000	L1	OFF	9.6
1.2380	40.30	56.00	15.70	9.000	L1	OFF	9.6
1.2425	40.04	56.00	15.96	9,000	L1	OFF	9.6
26.3660	38.58	60.00	21.42	9.000	L1	OFF	9.9
27.0770	39.20	60.00	20.80	9.000	L1	OFF	9.9
27.1918	, 39.69	60.00	20.31	9.000	L1	OFF	9.9
27.1985	39.03	60.00	20.97	9.000	L1	OFF	9.9
27.5495	39.46	60.00	20.54	9.000	L1	OFF	9.9
28.6475	37.57	60.00	22.43	9.000	L1	OFF	9.9

2022-09-16

오후 1:20:29

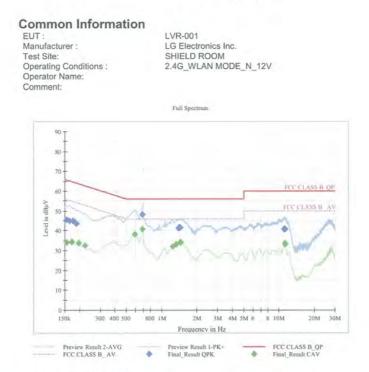
2/2

Test

Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	35.15	55.75	20.60	9.000	L1	OFF	9.6
0.1725	35.49	54.84	19.35	9.000	L1	OFF	9.6
0.1973	35.10	53.73	18.63	9.000	L1	OFF	9.6
0.5923	38.91	46.00	7.09	9.000	L1	OFF	9.6
0,6013	38.93	46.00	7.07	9.000	L1	OFF	9.6
0.6868	41.40	46.00	4.60	9.000	L1	OFF	9.6
0.8983	25.99	46.00	20.01	9.000	L1	OFF	9.6
1.2448	32.36	46.00	13.64	9.000	L1	OFF	9.6
1.2515	32.39	46.00	13.61	9.000	L1	OFF	9.6
1.2583	32.22	46.00	13.78	9.000	L1	OFF	9.6
1.3303	31.81	46.00	14.19	9.000	L1	OFF	9.6
1.3370	31.85	46.00	14.15	9.000	L1	OFF	9.7
26.3615	31.95	50.00	18.05	9,000	L1	OFF	9.9
26.6000	31.37	50.00	18.63	9.000	L1	OFF	9.9
27.4325	32.64	50.00	17.36	9.000	L1	OFF	9.9
27.5473	33.10	50.00	16.90	9.000	L1	OFF	9.9
27,6665	33.31	50.00	16.69	9.000	L1	OFF	9.9
28.6453	30.25	50.00	19.75	9.000	L1	OFF	9.9

2022-09-16

오후 1:20:29


Conducted Emissions (Line 2)

HCT

Test

1/2

Test Report

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	45.65	65.75	20.10	9.000	N	OFF	9.5
0.1635	45.11	65.28	20.18	9.000	N	OFF	9.5
0.1748	45.12	64.73	19.62	9.000	N	OFF	9.6
0.1815	44.33	64.42	20.09	9.000	N	OFF	9.6
0.1883	43.50	64.11	20.62	9.000	N	OFF	9.6
0.6868	48.13	56.00	7.87	9.000	N	OFF	9.6
1.3978	41.23	56.00	14.77	9.000	N	OFF	9.6
1.4090	41.40	56.00	14.60	9.000	N	OFF	9.6
1.4135	41.39	56.00	14.61	9.000	N	OFF	9.6
1.4180	41.43	56.00	14.57	9.000	N	OFF	9.6
1.4315	41.49	56.00	14.51	9.000	N	OFF	9.6
1.4360	41.54	56.00	14.46	9.000	N	OFF	9.6
11.0660	40.81	60.00	19.19	9.000	N	OFF	9.8
11.1538	40.90	60.00	19.10	9.000	N	OFF	9.8
11.1965	40.79	60.00	19.21	9.000	N	OFF	9.8
11.2190	40.60	60.00	19.40	9.000	N	OFF	9.8
11.2235	40.70	60.00	19.30	9.000	N	OFF	9.8
11.2460	40.67	60.00	19.33	9.000	N	OFF	9.8

2022-09-16

오후 1:05:36

2/2

Test

Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	34.16	55.75	21.60	9.000	N	OFF	9.5
0.1725	34.35	54.84	20.49	9.000	N	OFF	9.6
0.1973	33.73	53.73	19.99	9.000	N	OFF	9.6
0.2220	32.56	52.74	20.19	9.000	N	OFF	9.6
0.5923	38.20	46.00	7.80	9.000	N	OFF	9.6
0.6845	40.68	46.00	5.32	9.000	N	OFF	9.6
1.2448	32.09	46.00	13.91	9,000	N	OFF	9.6
1.3303	33.28	46.00	12.72	9,000	N	OFF	9.6
1.4383	34.04	46.00	11.96	9,000	N	OFF	9.6
1.4428	34.07	46.00	11.93	9,000	N	OFF	9.6
1.4518	34.03	46.00	11.97	9.000	N	OFF	9.6
1.4608	33.96	46.00	12.04	9.000	N	OFF	9.6
11.1358	33.46	50.00	16.54	9,000	N	OFF	9.8
11.1515	33.49	50.00	16.51	9.000	N	OFF	9.8
11.1605	33.51	50.00	16.49	9.000	N	OFF	9.8
11.1898	33.57	50.00	16.43	9.000	N	OFF	9.8
11.2235	33.37	50.00	16.63	9.000	N	OFF	9.8
11.2663	33.17	50.00	16.83	9,000	N	OFF	9.8

2022-09-16

오후 1:05:36

F-TP22-03 (Rev. 04)

10. LIST OF TEST EQUIPMENT

Conducted Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
LISN	ENV216	Rohde & Schwarz	102245	08/22/2023	Annual
EMI Test Receiver	ESR	Rohde & Schwarz	101910	06/07/2023	Annual
Temperature Chamber	SU-642	ESPEC	0093008124	03/04/2023	Annual
Signal Analyzer	N9030A	Keysight	MY55410508	09/06/2023	Annual
Power Meter	N1911A	Agilent	MY45100523	03/24/2023	Annual
Power Sensor	N1921A	Agilent	MY57820067	03/24/2023	Annual
Directional Coupler	87300B	Agilent	3116A03621	11/02/2022	Annual
Power Splitter	11667B	Hewlett Packard	10545	02/03/2023	Annual
DC Power Supply	E3646A	Agilent	MY40002937	12/14/2022	Annual
Attenuator(10 dB) (DC-26.5 GHz)	8493C-010	Agilent	08285	06/21/2023	Annual
Attenuator(20 dB)	18N-20dB	Rohde & Schwarz	8	03/07/2023	Annual
Software	EMC32	Rohde & Schwarz	N/A	N/A	N/A
FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	HCT CO., LTD.	N/A	N/A	N/A
Bluetooth Tester	CBT	Rohde & Schwarz	100808	02/22/2023	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the

calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Controller(Antenna mast) Antenna Position Tower Controller	CO3000		Serial No.	Calibration	Interval
		Innco system	CO3000-4p	N/A	N/A
Controller	MA4640/800-XP-EP	Innco system	N/A	N/A	N/A
Controller	EM2090	Emco	060520	N/A	N/A
Turn Table	N/A	Ets	N/A	N/A	N/A
Loop Antenna	FMZB 1513	Rohde & Schwarz	1513-333	03/17/2024	Biennial
Hybrid Antenna	VULB 9168	Schwarzbeck	9168-0895	08/16/2024	Biennial
Horn Antenna	BBHA 9120D	Schwarzbeck	9120D-1191	11/18/2023	Biennial
Horn Antenna (15 GHz ~ 40 GHz)	BBHA9170	Schwarzbeck	BBHA9170124	04/12/2023	Biennial
Amp & Filter Bank Switch Controller	FBSM-01A	TNM system	0	N/A	N/A
Band Reject Filter	WRCJV2400/2483.5- 2370/2520-60/12SS	Wainwright Instruments	2	01/06/2023	Annual
Band Reject Filter	WRCJV12-4900-5100- 5900-6100-50SS	Wainwright Instruments	5	06/13/2023	Annual
Band Reject Filter	WRCJV12-4900-5100- 5900-6100-50SS	Wainwright Instruments	6	06/13/2023	Annual
Band Reject Filter	WRCJV5100/5850- 40/50-8EEK	Wainwright Instruments	1	02/07/2023	Annual
ATT(3 dB) + LNA2(6~18 GHz)	18B-03, CBL06185030	WEINSCHEL CERNEX	N/A	12/22/2022	Annual
ATT(10 dB) + LNA1(0.1~18 GHz)	56-10, CBLU1183540B-01	Api tech, CERNEX	N/A	12/22/2022	Annual
High Pass Filter	WHKX10-2700-3000- 18000-40SS	Wainwright Instruments	N/A	12/22/2022	Annual
High Pass Filter	WHKX8-6090-7000- 18000-40SS	Wainwright Instruments	N/A	12/22/2022	Annual
Thru	COAXIAL ATTENUATOR	T&M SYSTEM	N/A	12/22/2022	Annual
Power Amplifier	CBL18265035	CERNEX	22966	12/02/2022	Annual
Power Amplifier	CBL26405040	CERNEX	25956	03/11/2023	Annual
Bluetooth Tester	TC-3000C	TESCOM	3000C000175	04/05/2023	Annual
Spectrum Analyzer	FSP(9 kHz ~ 30 GHz)	Rohde & Schwarz	836650/016	09/06/2023	Annual
Spectrum Analyzer	FSV40-N(9 kHz ~ 30 GHz)	Rohde & Schwarz	101068-SZ	09/06/2023	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2209-FI002-P