On your side

TEST REPORT

FCC/ISED DTS Test for LCWB-002 Certification

APPLICANT LG Electronics Inc.

REPORT NO. HCT-RF-2107-FI013

DATE OF ISSUE July 29, 2021

> Tested by Jin Gwan Lee

Mary -

Technical Manager Jong Seok Lee

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD. Bonejai Huh BongJai Huh / CEO

HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401 The report shall not be reproduced except in full(only partly) without approval of the laboratory.

F-TP22-03(Rev.04)

1/75

HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeor Tel. +82 31 634 6300 Fax. +82 31 645 6401	n, Icheon-si, Gyeonggi-do, 17383 KOREA
TEST REPORT FCC/ISED DTS Test for LCWB-002	REPORT NO. HCT-RF-2107-FI013 DATE OF ISSUE July 29, 2021 Additional Model
Applicant	LG Electronics Inc. 170, Seongsanpaechong-ro, Seongsan-gu, Changwon-si, Gyeongsangnam- do, 51533, Republic of Korea
Eut Type Model Name	RF Module LCWB-002
FCC ID IC	BEJ-LCWB002 2703N-LCWB002

CCK/DSSS/OFDM

Part 15.247

Digital Transmission System(DTS)

Modulation type

FCC Classification

FCC Rule Part(s)

ISED Rule Part(s) RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5_Amendment 2 (February 2021)

The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test results were applied only to the test methods required by the standard.

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	July 29, 2021	Initial Release

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / ISED Rules under normal use and maintenance.

KOLAS Statement:

The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA. (KOLAS Accreditation No. KT197)

If this report is required to confirmation of authenticity, please contact to www.hct.co.kr

Report No. HCT-RF-2107-FI013

CONTENTS

1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	6
GENERAL TEST PROCEDURES	6
DESCRIPTION OF TEST MODES	7
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS	7
FACILITIES	7
EQUIPMENT	7
5. ANTENNA REQUIREMENTS	8
6. MEASUREMENT UNCERTAINTY	8
7. DESCRIPTION OF TESTS	9
8. SUMMARY TEST OF RESULTS	29
9. TEST RESULT	31
9.1 DUTY CYCLE	31
9.2 6 dB BANDWIDTH & 99 % BANDWIDTH	32
9.3 OUTPUT POWER	38
9.4 POWER SPECTRAL DENSITY	40
9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	43
9.6 RADIATED SPURIOUS EMISSIONS	61
9.7 RADIATED RESTRICTED BAND EDGES	65
9.8 RECEIVER SPURIOUS EMISSIONS	68
9.9 POWERLINE CONDUCTED EMISSIONS	69
10. LIST OF TEST EQUIPMENT	73
11. ANNEX A_ TEST SETUP PHOTO	75

1. EUT DESCRIPTION

Model	LCWB-002
Additional Model	-
EUT Type	RF Module
Power Supply	DC 5.0 V / 12.0 V
Frequency Range	802.11b, g, n(HT20): 2 412 MHz – 2 462 MHz
	LG Innotek Indonesia PT
Factory	BEKASI INTERNATIONAL INDUSTRIAL ESTATE BLOCK C8 NO. 12-12A DESA
	CIBATU, CIKARANG INDONESIA
	LG Electronics Inc.
Manufacturer	170, Seongsanpaechong-ro, Seongsan-gu, Changwon-si, Gyeongsangna
	m-do, 51533, Republic of Korea
Max. RF Output Power Modulation Type Number of Channels	Peak Power 802.11b : 23.53 dBm 802.11g : 23.74 dBm 802.11n(HT20) : 22.57 dBm Average Power 802.11b: 17.83 dBm 802.11g: 15.50 dBm 802.11n(HT20): 14.55 dBm DSSS/CCK : 802.11b OFDM : 802.11g, 802.11n 11 Channels
Antenna Specification	Antenna type: PCB Printed Antenna Peak Gain : 1.58 dBi
Date(s) of Tests	July 13, 2021 ~ July 27, 2021
PMN (Product Marketing Number)	RF Module
HVIN (Hardware Version Identification Number)	LCWB-002
FVIN (Firmware Version Identification Number)	V1.0
HMN (Host Marketing Name)	N/A
EUT serial numbers	Radiated: ETWCARIC01_FE Conducted : ETWCARIC01_80

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C. / RSS-Gen issue 5, RSS-247 issue 2.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radi ated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of A NSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

For ISED, test facility was accepted dated January 26, 2021 (CAB identifier: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

(1) The antennas of this E.U.T are permanently attached.

(2) The E.U.T Complies with the requirement of § 15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of

ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

EUT Coax cable	Spectrum Analyzer
-------------------	-------------------

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to the zero-span measurement method.

The largest available value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (\geq RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10log(1/Duty Cycle)

7.2. 6 dB Bandwidth & 99 % Bandwidth

Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 11.8.1 in ANSI 63.10-2013)

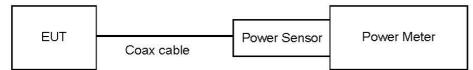
- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = Max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Test Procedure (99 % Bandwidth for ISED)

The transmitter output is connected to the spectrum analyzer.

RBW = 1 % ~ 5 % of the occupied bandwidth VBW ≒ 3 x RBW Detector = Peak Trace mode = Max hold Sweep = auto couple Allow the trace to stabilize

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.



7.3. Output Power

Limit

The maximum permissible conducted output power is 1 Watt.

Test Configuration

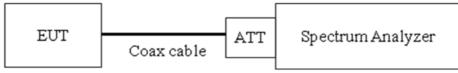
Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.
- Average Power (Procedure 11.9.2.3 in ANSI 63.10-2013)
 - 1) Measure the duty cycle.
 - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3) Add 10 $\log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Measured Level + ATT loss + Cable loss
- Conducted Output Power(Average) = Measured Level + ATT loss + Cable loss + Duty Cycle Factor



7.4. Power Spectral Density

Limit

The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3kHz BW.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

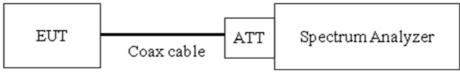
We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10.2 in ANSI 63.10-2013.

The spectrum analyzer is set to :

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Span = 1.5 times the DTS channel bandwidth.
- 3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple
- 6) Detector = peak
- 7) Trace Mode = Max hold
- 8) Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
 If Measured Level exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

Power Spectral Density = Measured Level + ATT loss + Cable loss



7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions

Limit

The maximum conducted (Average) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz. [Conducted > 20 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = Max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points $\geq 2 \times \text{Span/RBW}$
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

Report No. HCT-RF-2107-FI013

Factors for frequency

Freq(MHz)	Factor(dB)
30	10.05
100	10.10
200	10.14
300	10.19
400	10.25
500	10.25
600	10.26
700	10.27
800	10.28
900	10.30
1 000	10.35
2 000	10.50
2 400	10.53
2 412	10.55
2 437	10.55
2 462	10.55
2 500	10.54
3 000	10.64
4 000	10.72
5 000	10.79
5 700	10.80
5 800	10.87
6 000	10.88
7 000	11.01
8 000	11.01
9 000	11.09
10 000	11.19
11 000	11.28
12 000	11.37
13 000	11.38
14 000	11.41
15 000	11.51
16 000	11.59
17 000	11.80
18 000	11.93
19 000	11.85
20 000	11.52
21 000	11.65
22 000	11.64
23 000	11.65
24 000	11.66
25 000	11.76

Note : 1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Attenuator loss + Cable loss

7.6. Radiated Test

Limit

FCC

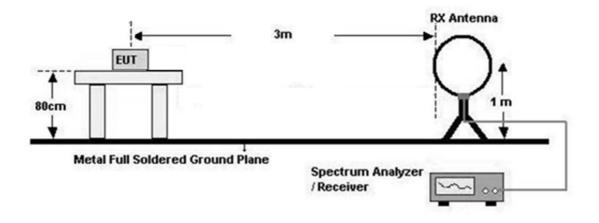
Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30

ISED

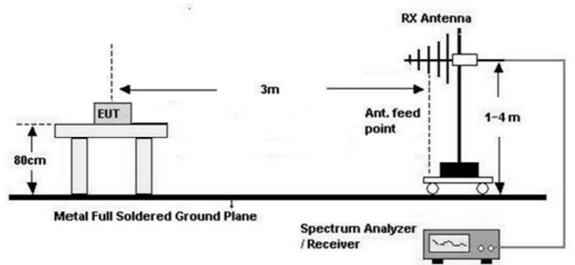
Frequency (MHz)	Field Strength (uA/m)	Measurement Distance (m)
0.009 – 0.490	6.37/F(kHz)	300
0.490 – 1.705	63.7/F(kHz)	30
1.705 – 30	0.08	30

FCC&ISED

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

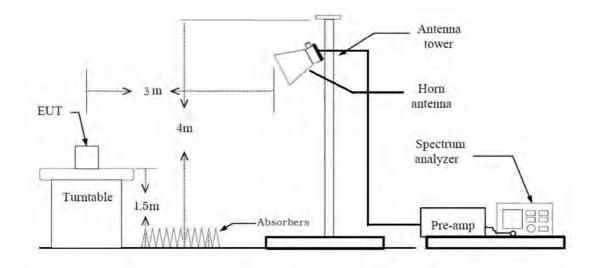


밀



Test Configuration

Below 30 MHz


30 MHz - 1 GHz

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3 m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB
 - Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = $40\log(3 \text{ m}/30 \text{ m})$ = 40 dB

```
Measurement Distance : 3 m
```

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW
- 9. Total = Measured Level + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1 GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - %In general, (1) is used mainly
- 7. Total = Measured Level + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.

- 8. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average): Duty cycle \geq 98 %
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).

(3) Measurement Type(Average): Duty cycle < 98 %, duty cycle variations are less than ± 2 %

- Measured Frequency Range : 1 GHz 25 GHz
- Detector = RMS
- Averaging type = power (*i.e.*, RMS)
- RBW = 1 MHz
- VBW \geq 3 x RBW
- Sweep time = auto.
- Trace mode = average (at least 100 traces).
- Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total(Measurement Type : Peak)
 - = Measured Level + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

- Total(Measurement Type : Average, Duty cycle \geq 98 %)
- = Measured Level + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle < 98 %)

- = Measured Level + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)
- + Duty Cycle Factor

Test Procedure of Radiated Restricted Band Edge

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 2310 MHz \sim 2390 MHz/ 2483.5 MHz \sim 2500 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average): Duty cycle \geq 98 %,
 - Measured Frequency Range : 2310 MHz \sim 2390 MHz/ 2483.5 MHz \sim 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - (3) Measurement Type(Average): Duty cycle < 98 %, duty cycle variations are less than \pm 2 %

- Measured Frequency Range : 2310 MHz \sim 2390 MHz/ 2483.5 MHz \sim 2500 MHz
- Detector = RMS
- Averaging type = power (*i.e.*, RMS)
- RBW = 1 MHz
- VBW \geq 3 x RBW
- Sweep time = auto.
- Trace mode = average (at least 100 traces).
- Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total(Measurement Type : Peak)
 - = Measured Level + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle \geq 98 %)

= Measured Level + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle < 98 %)

= Measured Level + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F) + Duty Cycle Factor

7.7. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)	
Frequency Range (MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)
0.50 to 5	56	46
5 to 30	60	50

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

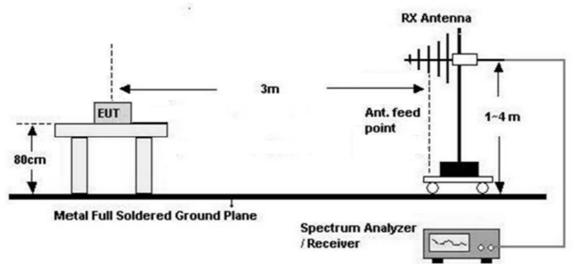
- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Measured Level + Correction Factor

7.8. Receiver Spurious Emissions

Limit


Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note:

Measurements for compliance with the limits in table may be performed at distances other than 3 metres.

Test Configuration

30 MHz - 1 GHz

고 객 비 밀 CUSTOMER SECRET

Test Procedure of Receiver Spurious Emissions (Below 1 GHz)

1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.

2. The EUT is placed on a turntable, which is 0.8 m above ground plane.

3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1 m to 4 m to find out the highest emissions.

4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
- 7. Total = Measured Level + Antenna Factor(A.F) + Cable Loss(C.L)

Report No. HCT-RF-2107-FI013

Above 1 GHz Antenna tower Horn 3 m < antenna EUT 4m Spectrum analyzer Turntable 1.5m 38 Absorbers Pre-amp

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW

- (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 11. Total = Measured Level + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G)

7.9. Worst case configuration and mode

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone (DC 5V), Stand alone (DC 12V)
- Worstcase : Stand alone (DC 5V)
- 2. EUT Axis
 - Radiated Spurious Emissions : Z-V
 - Radiated Restricted Band Edge : X-H
- 3. All data rate of operation were investigated and the worst case data rate results are reported
 - -802.11b:1 Mbps
 - 802.11g : 6 Mbps
 - 802.11n : MCS0
- 4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
- Position : Horizontal, Vertical, Parallel to the ground plane

AC Power line Conducted Emissions

- 1. All modes of operation were investigated and the worst case configuration results are reported.
- Mode : Stand alone + External accessories (Notebook)

Conducted test

1. The EUT was configured with data rate of highest power.

8. SUMMARY TEST OF RESULTS

FCC Part

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§ 15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Output Power	§ 15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§ 15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§ 15.207	cf. Section 7.7		PASS
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Dediated	PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS

Report No. HCT-RF-2107-FI013

ISED Part

Test Description	ISED Part	Test Limit	Test Condition	Test
	Section(s)			Result
6 dB Bandwidth	RSS-247, 5.2	> 500 kHz		PASS
99 % Bandwidth	RSS-GEN, 6.7	N/A		PASS
Conducted Maximum Peak Output Power And e.i.r.p.	RSS-247, 5.4.	< 1 Watt <4 Watt(e.i.r.p.)	Conducted	PASS
Power Spectral Density	RSS-247, 5.2	< 8 dBm / 3 kHz Band		PASS
Band Edge(Out of Band Emissions)	RSS-247, 5.5	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	RSS-GEN, 8.8	cf. Section 7.7		PASS
Radiated Spurious Emissions	RSS-GEN, 8.9	cf. Section 7.6		PASS
Receiver Spurious Emissions	RSS-GEN, 7	cf. Section 7.8	Radiated	PASS
Radiated Restricted Band Edge	RSS-GEN, 8.10	cf. Section 7.6		PASS

9. TEST RESULT

9.1 DUTY CYCLE

Mode	Ton (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor (dB)
802.11b	-	-	-	-
802.11g	-	-	-	-
802.11n (HT20)	-	-	-	-

Note:

1. Duty Cycle Factor = 10Xlog(1/Duty Cycle). where, Duty Cycle = T_{on} / T_{total}

2. Test was performed with continuous Tx.

9.2 6 dB BANDWIDTH & 99 % BANDWIDTH

FCC

802.11	o Mode	— Measured Bandwidth [MHz] Minimum Bandwidth [MH	Minimum Donduidth [MU]
Frequency [MHz]	Channel No.	Measured Bandwidth [MH2]	Minimum Bandwidth [MH2]
2412	1	9.128	> 0.5
2437	6	9.108	> 0.5
2462	11	9.128	> 0.5

802.11	g Mode	Massured Pandwidth [MH]	Minimum Bandwidth [MHz]
Frequency [MHz]	Channel No.	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	16.58	> 0.5
2437	6	16.58	> 0.5
2462	11	16.56	> 0.5

802.11n(H	T20) Mode	Massured Dandwidth [MH]	Minimum Bandwidth [MHz]
Frequency [MHz]	Channel No.	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	17.77	> 0.5
2437	6	17.78	> 0.5
2462	11	17.77	> 0.5

Report No. HCT-RF-2107-FI013

Test Plots

6 dB Bandwidth plot (802.11b-CH 6)

6 dB Bandwidth plot (802.11g-CH 11)

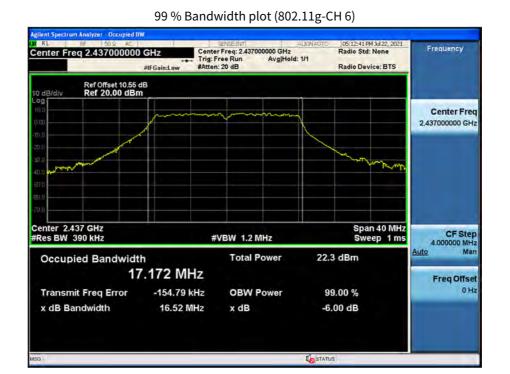
Agilent Spectrum Analyzer - Occupied E RL RF 500 AC Center Freq 2.462000000	GHz Cente	SENSE INT r Freq: 2.452000000 GHz Free Run Avg Ho h: 20 dB		05:04:56 PM Radio Std: N Radio Devic	lone	Frequency
Ref Offset 10.55 10 dB/div Ref 20.00 dBr						
Log 10.0 		· · · · · · · · · · · · · · · · · · ·	-	mungungu	Note And the second	Center Freq 2.462000000 GHz
Center 2.462 GHz #Res BW 100 kHz	#	VBW 300 kHz		Span Sweep 3	40 MHz .867 ms	CF Step 4.000000 MHz
Occupied Bandwidt	^{.h} 6.472 MHz	Total Power	21.5	dBm		<u>Auto</u> Man
Transmit Freq Error x dB Bandwidth	-20.119 kHz 16.56 MHz	OBW Power x dB		.00 % 00 dB		Freq Offset 0 Hz
MSG			STATUS			

Report No. HCT-RF-2107-FI013

RL RF 50.9 AC Center Freq 2.462000000	GHz Co	SENSE INT enter Freq: 2,462000000 GHz ig: Free Run Avg Hol tten: 20 dB	d: 1/1	08:23:21 AM 3ul 23, 2021 Radio Std: None Radio Device: BTS	Frequency
o dB/div Ref Offset 10.55 Ref 20.00 dBr					
00 (60) (70) (70)	Julian and a second	and the second	Am		Center Free 2.462000000 GH
29.0 20.0 20.0 20.0 20.0 20.0				Marine Marine	
Center 2.462 GHz Res BW 100 kHz		#VBW 300 kHz		Span 40 MH: Sweep 3.867 m	4.000000 MH
Occupied Bandwidt	th 7.697 MHz	Total Power	20.	9 dBm	Auto Ma Freq Offse
Transmit Freq Error x dB Bandwidth	-899 Hz 17.77 MHz	OBW Power x dB		9.00 % .00 dB	0 H
SG			STATU	5	

6 dB Bandwidth plot (802.11n_HT20-CH 11)

Note:


In order to simplify the report, attached plots were only the most narrow 6 dB BW channel.

802.11b Mode		OBW	Linait
Frequency [MHz]	Channel No.	Bandwidth [MHz]	Limit [MHz]
2412	1	14.074	N/A
2437	6	14.081	N/A
2462	11	14.089	N/A
802.11g Mode Frequency [MHz]	Channel No.	OBW Bandwidth [MHz]	Limit [MHz]
2412	1	17.167	N/A
2437	6	17.172	N/A
2462	11	17.107	N/A
802.11n(HT20) Mc Frequency [MHz]	channel No.	OBW Bandwidth [MHz]	Limit [MHz]
2412	1	18.139	N/A
2437	6	18.162	N/A
2462	11	18.141	N/A

F-TP22-03 (Rev. 04)

99 % Bandwidth plot (802.11b-CH 11)

Center Free Run Avg|Hold: 1/1 #Atten: 20 dB

#VBW 1.2 MHz

x dB

Total Power

OBW Power

04:57:12 PM 3ul 22, 2021 Radio Std: None

> Span 40 MHz Sweep 1 ms

21.1 dBm

99.00 %

-6.00 dB

TATUS

Radio Device: BTS

Frequency

Center Freq 2.462000000 GHz

> CF Step 4.000000 MHz Man

Freq Offset

Auto

Test Plots

RI

Center Freq 2.462000000 GHz

Center 2.462 GHz #Res BW 390 kHz

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

Ref Offset 10.55 dB Ref 25.00 dBm

#IFGain:Low

14.089 MHz

-7.466 kHz

9.285 MHz

Center Freq 2.437000000	GHz Cent	SENSE:INT ter Freq: 2,437000000 GHz Free Run Avg Hold en: 20 dB	1411GN AUTO	Radio Sto	AM 3J/23, 2021 d: None vice: BTS	Frequency
o dB/div Ref Offset 10.55 Ref 20.00 dBr						
	Juminor	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Center Fred 2.437000000 GHz
20 0 30 0 40,0				and the second	and the second	
20 0						
Center 2.437 GHz #Res BW 390 kHz		#VBW 1.2 MHz			an 40 MHz eep 1 ms	CF Step 4.000000 MHz
Occupied Bandwidt	^h 3. 162 MH z	Total Power	21.	5 dBm		Auto Man
Transmit Freq Error x dB Bandwidth	-31.220 kHz 17.69 MHz	OBW Power x dB		9.00 % 00 dB		Freq Offset 0 Hz
SG /			STATU	Ś		-

99 % Bandwidth plot (802.11n_HT20-CH 6)

Note:

In order to simplify the report, attached plots were only the most wide 99 % Bandwidth channel.

9.3 OUTPUT POWER

Peak Power

1. Power Meter offset = Attenuator loss+ Cable loss

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.55 dB is offset for 2.4 GHz Band

802.11b	Mode	Worst Data	Measured	Limit
Frequency[MHz]	Channel No.	rate	Power(dBm)	(dBm)
2412	1	11 Mbps	23.18	30
2437	6	11 Mbps	23.36	30
2462	11	11 Mbps	23.53	30

802.11g	Mode	Worst Data	Measured	Limit	
Frequency[MHz]	Channel No.	rate	Power(dBm)	(dBm)	
2412	1	24 Mbps	23.57	30	
2437	6	24 Mbps	23.74	30	
2462	11	54 Mbps	23.37	30	

802.11n(HT20) Mode		Worst Data	Measured	Limit
Frequency[MHz]	Channel No.	rate	Power(dBm)	(dBm)
2412	1	58.5 Mbps	22.19	30
2437	6	58.5 Mbps	22.57	30
2462	11	58.5 Mbps	22.52	30

Average Power

- 1. Power Meter offset = Attenuator loss + Cable loss
- 2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.
- So, 10.55 dB is offset for 2.4 GHz Band.

802.11b	Mode	Worst Measured		Measured Power(dBm)		
Frequency [MHz]	Channel No.	Data rate	Power (dBm)	Duty Cycle Factor	+ Duty Cycle Factor	Limit (dBm)
2412	1	1 Mbps	17.52	0.000	17.52	30
2437	6	1 Mbps	17.65	0.000	17.65	30
2462	11	1 Mbps	17.83	0.000	17.83	30

802.11g	Mode	Worst	Measured		Measured Power(dBm)	
Frequency [MHz]	Channel No.	Data rate	Power (dBm)	Duty Cycle Factor	+ Duty Cycle Factor	Limit (dBm)
2412	1	6 Mbps	15.49	0.000	15.49	30
2437	6	18 Mbps	15.50	0.000	15.50	30
2462	11	18 Mbps	15.18	0.000	15.18	30

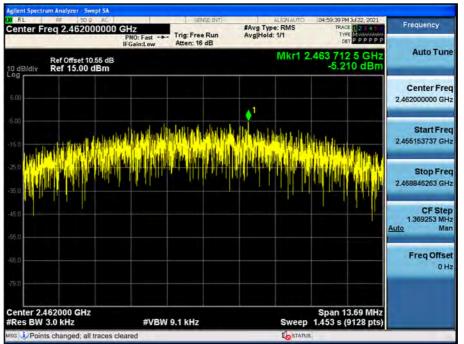
802.11n(HT	02.11n(HT20) Mode		Measured		Measured Power(dBm)	
Frequency [MHz]	Channel No.	Worst Data rate	Power (dBm)	Duty Cycle Factor	+ Duty Cycle Factor	Limit (dBm)
2412	1	6.5 Mbps	14.25	0.000	14.25	30
2437	6	6.5 Mbps	14.55	0.000	14.55	30
2462	11	19.5 Mbps	14.51	0.000	14.51	30

9.4 POWER SPECTRAL DENSITY

	F		Test	Result
Mode	Frequency (MHz)		Measured PSD (dBm)	Limit (dBm)
	2412	1	-5.519	8
802.11b	2437 6		-5.285	8
	2462	11	-5.210	8
	2412	1	-10.363	8
802.11g	2437	6	-10.120	8
	2462	11	-11.187	8
802.11n(HT20)	2412	1	-11.154	8
	2437	6	-10.804	8
	2462	11	-10.791	8

Note :

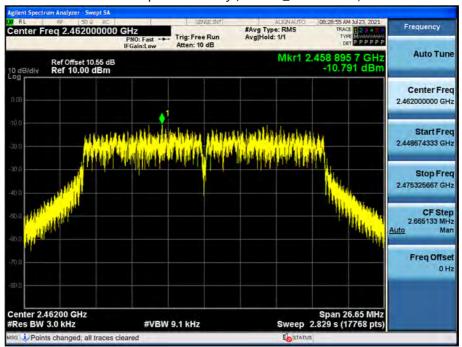
1. Spectrum Measured Levels are not plot data.


The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.

- 2. Spectrum offset = Attenuator loss(20 dB) + Cable loss(1ea)
 - 3. 10.55 dB is offset for 2.4 GHz Band.



Test Plots



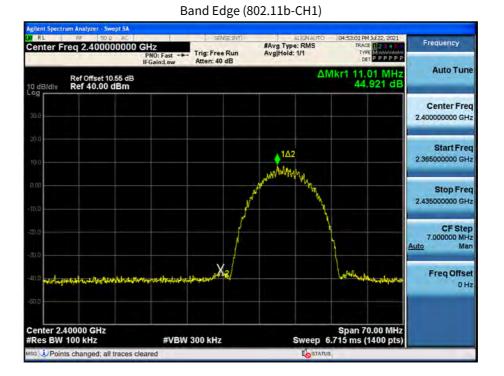
Power Spectral Density (802.11b-CH 11)

Power Spectral Density (802.11g-CH 6)

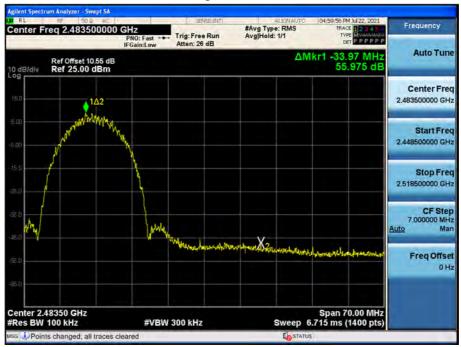
Power Spectral Density (802.11n_HT20 -CH11)

Note :

In order to simplify the report, attached plots were only the worst case PSD channel.


고 객 비 밀 CUSTOMER SECRET

9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS


Test Result : please refer to the plot below. In order to simplify the report, attached plots were only the worst case channel and data rate.

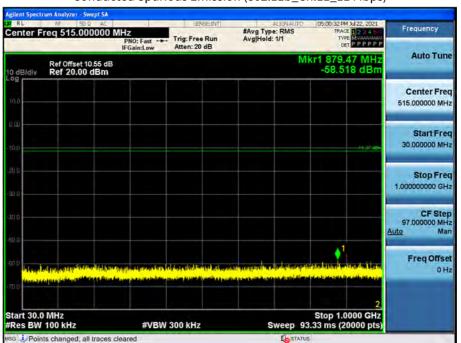
Test Plots(BandEdge)

Band Edge (802.11b-CH11)

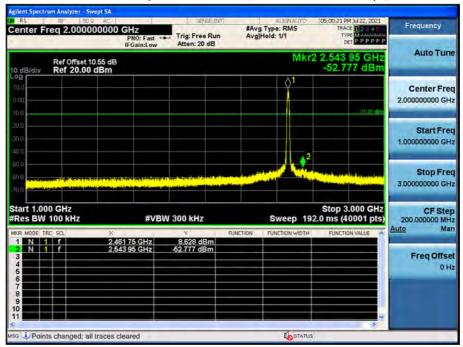
Band Edge (802.11g-CH1)

Band Edge (802.11g-CH11)

Band Edge (802.11n_HT20 -CH1)

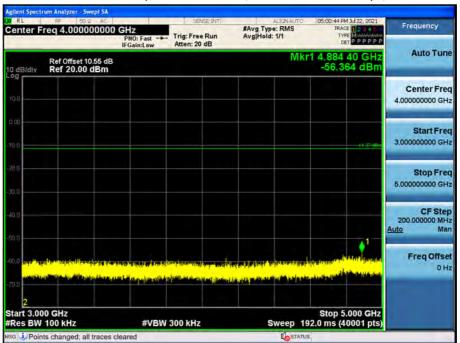

Band Edge (802.11n_HT20 -CH11)

Test Plots(Conducted Spurious Emission)


$30 \text{ MHz} \sim 1 \text{ GHz}$

Conducted Spurious Emission (802.11b_Ch.11_11 Mbps)

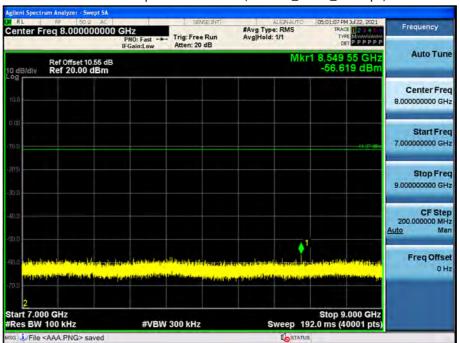
1 GHz ~ 3 GHz


Conducted Spurious Emission (802.11b_Ch.11_11 Mbps)

3 GHz ~ 5 GHz

Conducted Spurious Emission (802.11b_Ch.11_11 Mbps)

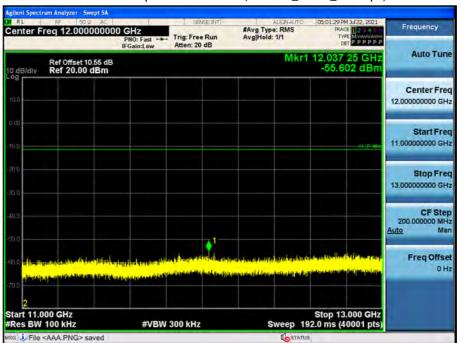
5 GHz ~ 7 GHz

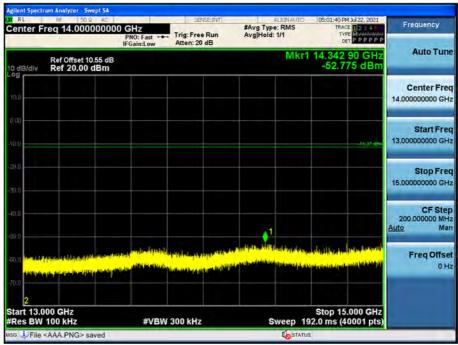



7 GHz ~ 9 GHz

Conducted Spurious Emission (802.11b_Ch.11_11 Mbps)

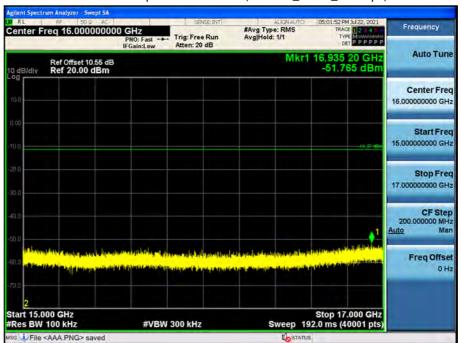
9 GHz ~ 11 GHz

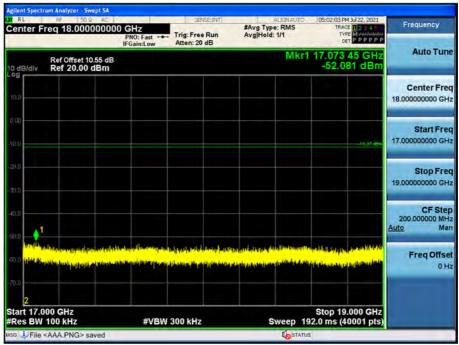



11 GHz ~ 13 GHz

Conducted Spurious Emission (802.11b_Ch.11_11 Mbps)

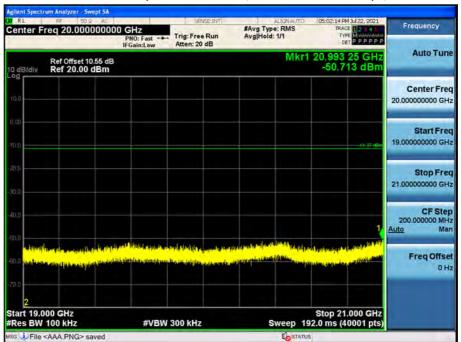
13 GHz ~ 15 GHz

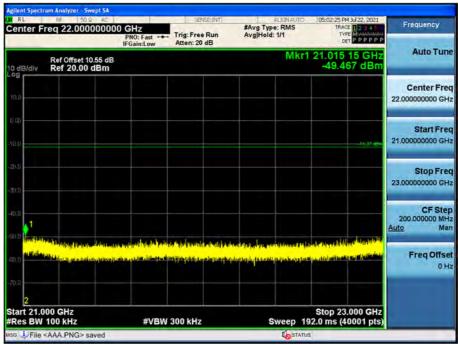



15 GHz ~ 17 GHz

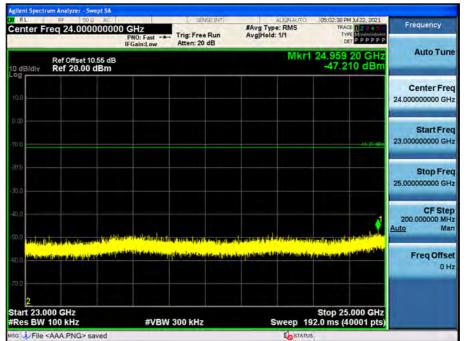
Conducted Spurious Emission (802.11b_Ch.11_11 Mbps)

17 GHz ~ 19 GHz



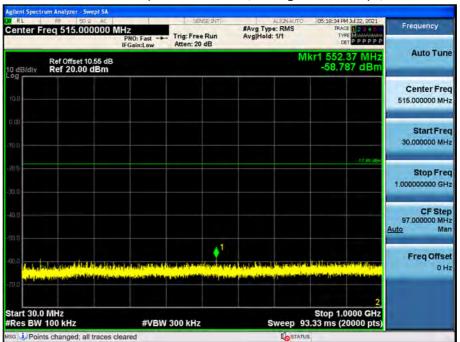

19 GHz ~ 21 GHz

Conducted Spurious Emission (802.11b_Ch.11_11 Mbps)

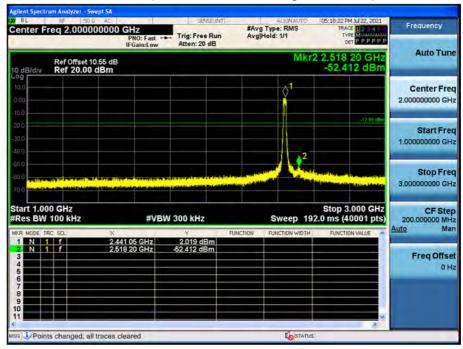

21 GHz ~ 23 GHz

23 GHz ~ 25 GHz

Conducted Spurious Emission (802.11b_Ch.11_11 Mbps)

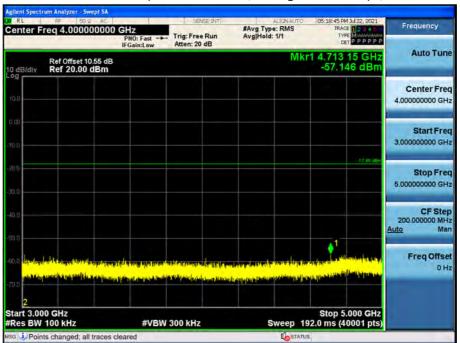

Note:

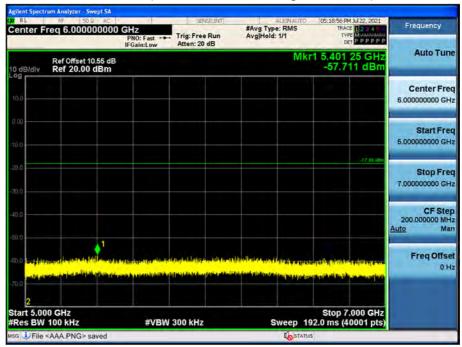
Limit : -11.37 dBm


30 MHz ~ 1 GHz

Conducted Spurious Emission (802.11g_Ch.6_24 mbps)

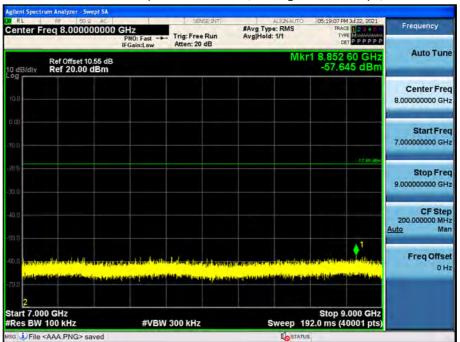
1 GHz ~ 3 GHz

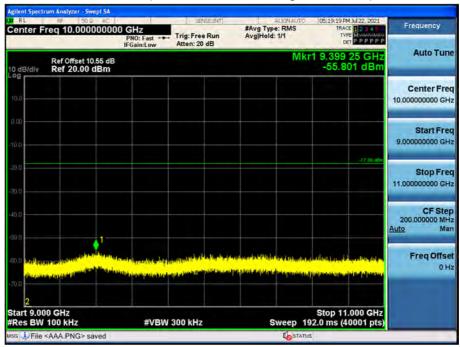

Conducted Spurious Emission (802.11g_Ch.6_24 mbps)


3 GHz ~ 5 GHz

Conducted Spurious Emission (802.11g_Ch.6_24 mbps)

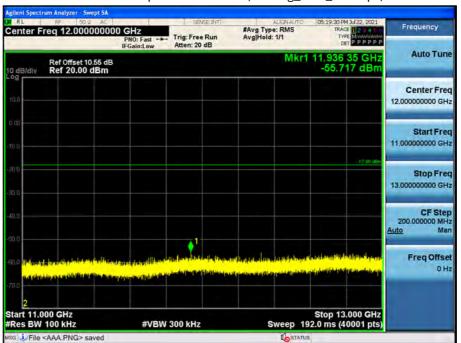
5 GHz ~ 7 GHz

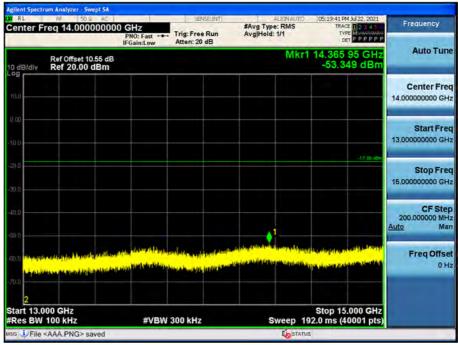

Conducted Spurious Emission (802.11g_Ch.6_24 mbps)


7 GHz ~ 9 GHz

Conducted Spurious Emission (802.11g_Ch.6_24 mbps)

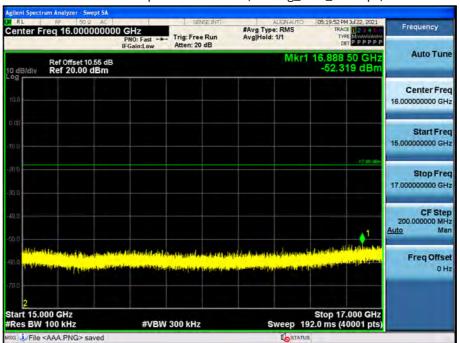
9 GHz ~ 11 GHz

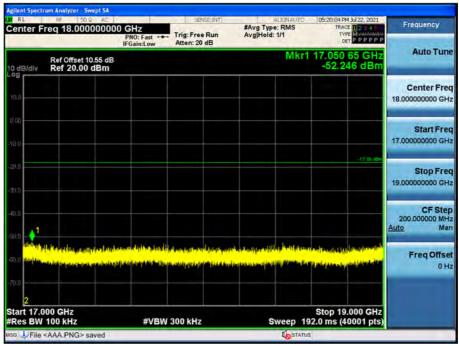

Conducted Spurious Emission (802.11g_Ch.6_24 mbps)


11 GHz ~ 13 GHz

Conducted Spurious Emission (802.11g_Ch.6_24 mbps)

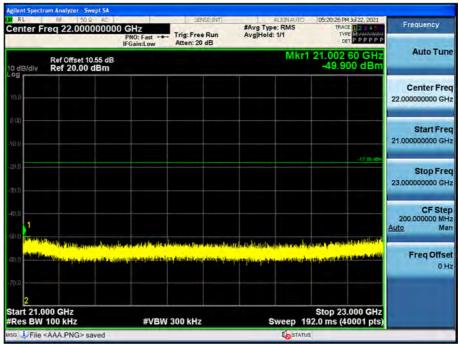
13 GHz ~ 15 GHz



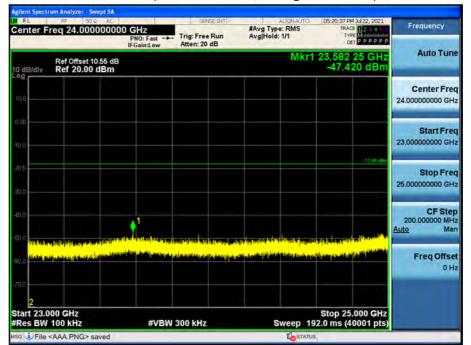

15 GHz ~ 17 GHz

Conducted Spurious Emission (802.11g_Ch.6_24 mbps)

17 GHz ~ 19 GHz


19 GHz ~ 21 GHz

Conducted Spurious Emission (802.11g_Ch.6_24 mbps)


21 GHz ~ 23 GHz

23 GHz ~ 25 GHz

Conducted Spurious Emission (802.11g_Ch.6_24 mbps)

Note:

Limit : -17.98 dBm

9.6 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30 MHz

Frequency	Measured Level	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBµV/m	dBm/m	dBm	(H/V)	dBµV/m	dBµV/m	dB
		No Cr	itical peaks fo	ound			

Note:

1. The Measured Level of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits ($dB\mu V$) + Distance extrapolation factor

Frequency	Measured Level	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	dBµV/m	dBm/m	dBm	(H/V)	dBµV/m	dBµV/m	dB		
	No Critical peaks found								

Frequency Range : Below 1 GHz

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

Operation Mode:	802.11b	
Transfer Rate:	1 Mbps	
Operating Frequency	2412	
Channel No.	01 Ch	

Frequency	Measured Level	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4824	50.13	3.62	V	53.75	73.98	20.23	PK
4824	44.78	3.62	V	48.40	53.98	5.58	AV
7236	46.45	9.26	V	55.71	73.98	18.27	PK
7236	38.21	9.26	V	47.47	53.98	6.51	AV
4824	50.16	3.62	Н	53.78	73.98	20.20	PK
4824	45.40	3.62	Н	49.02	53.98	4.96	AV
7236	44.88	9.26	Н	54.14	73.98	19.84	PK
7236	36.29	9.26	Н	45.55	53.98	8.43	AV

Operation Mode:	802.11b
Transfer Rate:	1 Mbps
Operating Frequency	2437
Channel No.	06 Ch

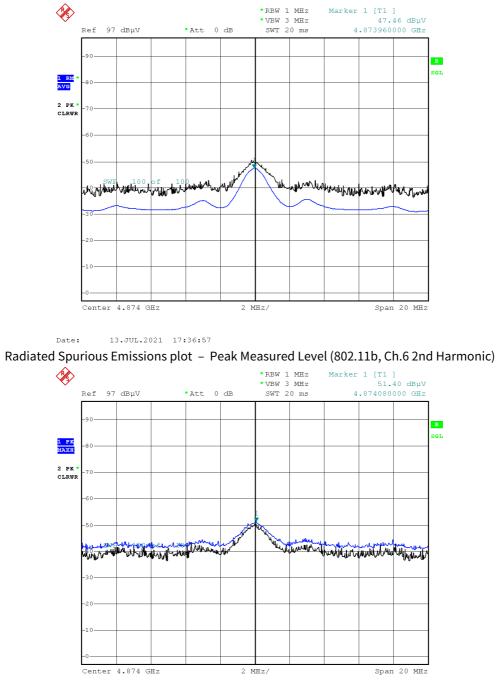
Frequency	Measured Level	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4874	47.85	3.36	V	51.21	73.98	22.77	PK
4874	43.56	3.36	V	46.92	53.98	7.06	AV
7311	46.10	10.27	V	56.37	73.98	17.61	PK
7311	37.99	10.27	V	48.26	53.98	5.72	AV
4874	51.40	3.36	Н	54.76	73.98	19.22	PK
4874	47.46	3.36	Н	50.82	53.98	3.16	AV
7311	41.85	10.27	Н	52.12	73.98	21.86	PK
7311	32.68	10.27	Н	42.95	53.98	11.03	AV

Operation Mode:	802.11b
Transfer MCS Index:	1 Mbps
Operating Frequency	2462
Channel No.	11 Ch

Frequency	Measured Level	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4924	42.22	2.80	V	45.02	73.98	28.96	PK
4924	41.05	2.80	V	43.85	53.98	10.13	AV
7386	44.70	11.07	V	55.77	73.98	18.21	PK
7386	36.24	11.07	V	47.31	53.98	6.67	AV
4924	48.69	2.80	Н	51.49	73.98	22.49	PK
4924	43.50	2.80	Н	46.30	53.98	7.68	AV
7386	40.86	11.07	Н	51.93	73.98	22.05	PK
7386	31.11	11.07	Н	42.18	53.98	11.80	AV

Note:

All Modes of operation were investigated and the worst case configuration results are reported.


[Worst case]

- Worstcase : 802.11b

Test Plots (Worst case : Z-H)

Radiated Spurious Emissions plot – Average Measured Level (802.11b, Ch.6 2nd Harmonic)

Date: 13.JUL.2021 17:37:06

Note:

Plot of worst case are only reported.

9.7 RADIATED RESTRICTED BAND EDGES

Operation Mode:	802.11b		
Transfer Rate:	1 Mbps		
Operating Frequency	2412 MHz, 2462 MHz		
Channel No.	01 Ch, 11 Ch		

Frequency	Measured Level	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
2390.0	24.64	35.16	Н	59.80	73.98	14.18	PK
2390.0	15.59	35.16	Н	50.75	53.98	3.23	AV
2390.0	22.05	35.16	V	57.21	73.98	16.77	PK
2390.0	14.65	35.16	V	49.81	53.98	4.17	AV
# 2483.5~2484.5	25.20	35.36	Н	60.56	73.98	13.42	PK
# 2483.5~2484.5	15.26	35.36	Н	50.62	53.98	3.36	AV
# 2483.5~2484.5	24.59	35.36	V	59.95	73.98	14.03	PK
# 2483.5~2484.5	14.38	35.36	V	49.73	53.98	4.25	AV

Note : integration method Used (ANSI C63.10 Section11.13.3)

Operation Mode:	802.11g		
Transfer Rate:	6 Mbps		
Operating Frequency	2412 MHz, 2462 MHz		
Channel No.	01 Ch, 11 Ch		

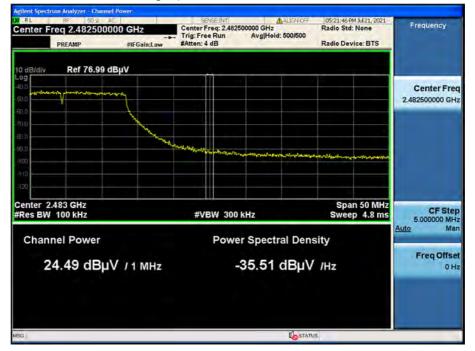
Frequency	Measured Level	Duty Cycle Factor	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB]	[dB]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	
2390.0	22.89	0.00	35.16	Н	58.05	73.98	15.93	PK
2390.0	13.67	0.00	35.16	Н	48.83	53.98	5.15	AV
2390.0	20.87	0.00	35.16	V	56.03	73.98	17.95	PK
2390.0	11.85	0.00	35.16	V	47.01	53.98	6.97	AV
# 2483.5~2484.5	25.23	0.00	35.36	Н	60.59	73.98	13.39	PK
# 2483.5~2484.5	15.44	0.00	35.36	Н	50.80	53.98	3.18	AV
# 2483.5~2484.5	24.37	0.00	35.36	V	59.73	73.98	14.25	PK
# 2483.5~2484.5	15.26	0.00	35.36	V	50.62	53.98	3.36	AV

Note : integration method Used (ANSI C63.10 Section11.13.3)

Operation Mode:	802.11n (HT20)		
Transfer Rate:	MCS0		
Operating Frequency	2412 MHz, 2462 MHz		
Channel No.	01 Ch, 11 Ch		

Frequency	Measured Level	Duty Cycle Factor	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB]	[dB]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	
2390.0	23.28	0.00	35.16	Н	58.44	73.98	15.54	PK
2390.0	13.07	0.00	35.16	Н	48.23	53.98	5.75	AV
2390.0	20.94	0.00	35.16	V	56.10	73.98	17.88	PK
2390.0	11.85	0.00	35.16	V	47.01	53.98	6.97	AV
# 2483.5~2484.5	24.49	0.00	35.36	Н	59.85	73.98	14.13	PK
# 2483.5~2484.5	15.45	0.00	35.36	Н	50.81	53.98	3.17	AV
# 2483.5~2484.5	24.41	0.00	35.36	V	59.77	73.98	14.21	PK
# 2483.5~2484.5	15.27	0.00	35.36	V	50.63	53.98	3.35	AV

Note : integration method Used (ANSI C63.10 Section11.13.3)



Test Plots

Radiated Restricted Band Edges plot - Average Measured Level (802.11n(20M) Ch.11, X-H)

Radiated Restricted Band Edges plot - Peak Measured Level (802.11n(20M) Ch.11, X-H)

Note:

Plot of worst case are only reported.

9.8 RECEIVER SPURIOUS EMISSIONS

Frequency Range : Below 1 GHz

Frequency	Measured Level	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	dBµV/m	dBm/m	dBm	(H/V)	dBµV/m	dBµV/m	dB		
No Critical peaks found									

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

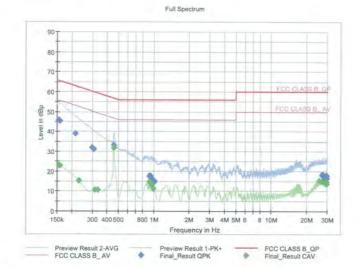
Frequency Range : Above 1 GHz

Frequency	Measured Level	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBµV/m	dBm/m	dBm	(H/V)	dBµV/m	dBµV/m	dB			
	No Critical peaks found									

9.9 POWERLINE CONDUCTED EMISSIONS

Conducted Emissions (Line 1)

Test


1/2

Test Report

Common Information

EUT : Manufacturer : Test Site: Operating Conditions : Operator Name: Comment:

LCWB-002 LG SHIELD ROOM 2.4G_N

Final_Result_QPK

Frequency (MHz)	QuasiPea k	Limit (dBuV	Margi n	Bandwidt h	Line	Filter	Corr. (dB)
0,1545	45.96	65.75	19.80	9.000	N	OFF	9.6
0.1590	45.42	65.52	20.10	9.000	N	OFF	9.6
0.2153	38.91	63.00	24.09	9.000	N	OFF	9.6
0.2985	31.96	60.28	28.32	9.000	N	OFF	9.6
0.3098	31.20	59.98	28.77	9.000	N	OFF	9.6
0.4583	33.27	56.72	23.46	9.000	N	OFF	9.6
0.9163	17.51	56.00	38.49	9.000	N	OFF	9.6
0.9433	17.53	56.00	38.47	9.000	N	OFF	9.6
0.9635	16.56	56.00	39.44	9.000	N	OFF	9.6
0.9793	15.72	56.00	40.28	9.000	N	OFF	9.6
1.0018	15.17	56.00	40.83	9.000	N	OFF	9.6
1.0108	14.67	56.00	41.33	9.000	N	OFF	9.6
27.1175	18.13	60.00	41.87	9.000	N	OFF	10.0
27.6260	18.24	60.00	41.76	9.000	N	OFF	10.0
27.8915	17.81	60.00	42.19	9.000	N	OFF	10.0
29.5273	17.86	60.00	42.14	9.000	N	OFF	10.1
29.5408	17.63	60.00	42.37	9.000	N	OFF	10.1
29.7095	16.49	60.00	43.51	9.000	N	OFF	10.1

2021-07-20

오후 6:10:31

F-TP22-03 (Rev. 04)

CUSTOMER SECRET Report No. HCT-RF-2107-FI013

객 비

밀

Test

Final_Result_CAV

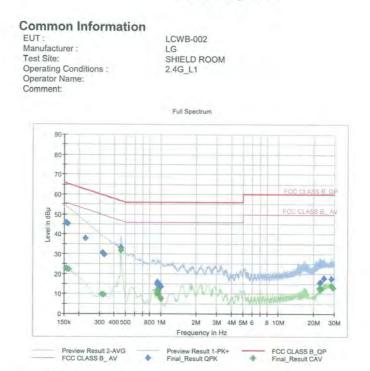
Frequency (MHz)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	23.17	55.75	32.59	9,000	N	OFF	9.6
0.1590	22.67	55.52	32.84	9,000	N	OFF	9.6
0.2310	15.32	52.41	37.09	9.000	N	OFF	9.6
0.3165	10.72	49.80	39.08	9.000	N	OFF	9.6
0.3323	10.78	49.40	38.61	9.000	N	OFF	9.6
0.4583	31.67	46.72	15.05	9.000	N	OFF	9.6
0.9163	14.70	46.00	31.30	9.000	N	OFF	9.6
0.9298	14.30	46.00	31,70	9.000	N	OFF	9.6
0.9365	14.16	46.00	31.84	9.000	N	OFF	9.6
0.9500	14.14	46.00	31.86	9.000	N	OFF	9,6
0.9635	13.11	46.00	32.89	9.000	N	OFF	9,6
0.9950	11.18	46.00	34.82	9.000	N	OFF	9.6
25.6460	15.39	50.00	34.61	9.000	N	OFF	10.0
27.2233	15.15	50.00	34.85	9.000	N	OFF	10.0
27.6238	15.00	50.00	35.00	9.000	N	OFF	10.0
29.2010	14.51	50.00	35.49	9.000	N	OFF	10,1
29,5408	14.67	50.00	35.33	9.000	N	OFF	10.1
29,6105	13.61	50.00	36.39	9.000	N	OFF	10.1

2021-07-20

오후 6:10:31

2/2

ъ



1/2

Conducted Emissions (Line 2)

Test

Test Report

Final_Result_QPK

Frequency (MHz)	QuasiPea k	Limit (dBuV	Margi	Bandwidt h	Line	Filter	Corr. (dB)
0.1545	45.95	65.75	19.81	9.000	L1	OFF	9.6
0.1613	45.15	65.40	20.25	9.000	L1	OFF	9.6
0.2265	37.85	62.58	24.72	9.000	L1	OFF	9.6
0.3188	30.51	59.74	29.23	9.000	L1	OFF	9.6
0.3300	29.72	59.45	29.73	9.000	L1	OFF	9.6
0.4583	33.12	56.72	23.61	9.000	L1	OFF	9.6
0.9275	15.04	56.00	40.96	9.000	L1	OFF	9.6
0.9365	15.78	56.00	40.22	9.000	L1	OFF	9.6
0.9500	15.04	56.00	40.96	9.000	L1	OFF	9.6
0.9725	14.64	56.00	41.36	9.000	L1	OFF	9.6
0.9815	13.75	56.00	42.25	9.000	L1	OFF	9.6
0.9995	13.51	56.00	42.49	9.000	L1	OFF	9.6
22.7593	15.57	60.00	44.43	9.000	L1	OFF	10.0
22.7998	15.82	60.00	44.18	9.000	L1	OFF	10.0
22.8088	15.79	60.00	44.21	9.000	L1	OFF	10.0
22.8560	15.77	60.00	44.23	9.000	L1	OFF	10.0
24.3815	17.77	60.00	42.23	9.000	L1	OFF	10.0
28.4698	17.60	60.00	42.40	9.000	L1	OFF	10.0

2021-07-20

오후 6:21:03

Test

HCT

i	Final Res	ult CAV			
	Frequency (MHz)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	ł
1	0.1545	22.85	55.75	32.90	
1	0.1590	22.47	55.52	33.04	
1	0.1635	22.15	55.28	33.14	

Frequency (MHz)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1545	22.85	55.75	32.90	9.000	L1	OFF	9.6
0.1590	22.47	55,52	33.04	9.000	L1	OFF	9.6
0.1635	22.15	55.28	33.14	9.000	L1	OFF	9.6
0.3143	9.78	49.86	40.07	9.000	L1	OFF	9.6
0.3278	9.63	49.51	39.88	9.000	L1	OFF	9.6
0.4560	31.70	46.77	15.06	9.000	L1	OFF	9.6
0.9298	10.07	46.00	35.93	9.000	L1	OFF	9.6
0.9343	12.25	46.00	33.75	9.000	L1	OFF	9.6
0.9478	11.63	46.00	34.37	9.000	L1	OFF	9.6
0.9613	9.87	46.00	36.13	9.000	L1	OFF	9.6
0.9905	8.22	46.00	37.78	9.000	L1	OFF	9.6
1.0018	7.60	46.00	38.40	9.000	L1	OFF	9.6
22.4713	12.65	50.00	37,35	9.000	L1	OFF	10.0
22.8200	12.96	50.00	37.04	9.000	L1	OFF	10.0
22.8403	12.25	50.00	37.75	9.000	L1	OFF	10.0
22.8515	12.48	50.00	37.52	9.000	L1	OFF	10.0
28.4720	14.18	50.00	35.82	9.000	L1	OFF	10.0
29.2775	12.89	50.00	37.11	9.000	L1	OFF	10.0

2021-07-20

오후 6:21:03

10. LIST OF TEST EQUIPMENT

Conducted Test

Model / Equipment	Calibration Date	Calibration Interval	Serial No.
ENV216 / LISN	09/04/2020	Annual	102245
ESCI / Test Receiver	09/16/2020	Annual	101910
SU-642 /Temperature Chamber	03/15/2021	Annual	0093008124
N9020A / Signal Analyzer	01/28/2021	Annual	MY47380318
N1911A / Power Meter	04/08/2021	Annual	MY45100523
N1921A / Power Sensor	04/08/2021	Annual	MY57820067
87300B / Directional Coupler	11/10/2020	Annual	3116A03621
11667B / Power Splitter	02/09/2021	Annual	10545
E3632A / DC Power Supply	06/10/2021	Annual	KR75303960
8493C-010 / Attenuator(10 dB)	06/28/2021	Annual	08285
EMC32 / Software	N/A	N/A	N/A
FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	N/A	N/A
CBT / Bluetooth Tester	05/04/2021	Annual	100422
	ENV216 / LISN ESCI / Test Receiver SU-642 /Temperature Chamber N9020A / Signal Analyzer N1911A / Power Meter N1921A / Power Meter N1921A / Power Sensor 87300B / Directional Coupler 11667B / Power Splitter E3632A / DC Power Supply 8493C-010 / Attenuator(10 dB) EMC32 / Software FCC WLAN&BT&BLE Conducted Test Software v3.0	Model / EquipmentDateENV216 / LISN09/04/2020ESCI / Test Receiver09/16/2020SU-642 /Temperature Chamber03/15/2021N9020A / Signal Analyzer01/28/2021N1911A / Power Meter04/08/2021N1921A / Power Sensor04/08/202187300B / Directional Coupler11/10/202011667B / Power Splitter02/09/2021E3632A / DC Power Supply06/10/20218493C-010 / Attenuator(10 dB)06/28/2021EMC32 / SoftwareN/AFCC WLAN&BT&BLE Conducted Test Software v3.0N/A	Model / EquipmentDateIntervalENV216 / LISN09/04/2020AnnualESCI / Test Receiver09/16/2020AnnualSU-642 /Temperature Chamber03/15/2021AnnualN9020A / Signal Analyzer01/28/2021AnnualN1911A / Power Meter04/08/2021AnnualN1921A / Power Sensor04/08/2021Annual87300B / Directional Coupler11/10/2020Annual11667B / Power Splitter02/09/2021AnnualE3632A / DC Power Supply06/10/2021Annual8493C-010 / Attenuator(10 dB)06/28/2021AnnualEMC32 / SoftwareN/AN/AFCC WLAN&BT&BLE Conducted Test Software v3.0N/AN/A

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Radiated Test				
Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Emco	2090 / Controller	N/A	N/A	060520
Ets	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	03/19/2020	Biennial	1513-333
Schwarzbeck	VULB 9168 / Hybrid Antenna	09/04/2020	Biennial	9168-0895
Schwarzbeck	BBHA 9120D / Horn Antenna	11/18/2019	Biennial	9120D-1191
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	11/29/2019	Biennial	BBHA9170541
Rohde & Schwarz	FSP(9 kHz ~ 30 GHz) / Spectrum Analyzer	09/14/2020	Annual	836650/016
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	09/22/2020	Annual	101068-SZ
Wainwright Instruments	WRCJV2400/2483.5-2370/2520- 60/12SS / Band Reject Filter	01/06/2021	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	02/08/2021	Annual	1
CERNEX WEINSCHEL	CBLU1183540B-01/Broadband Bench Top LNA 56-10 / Attenuator(10 dB)	12/23/2020	Annual	N/A
CERNEX Api tech.	CBL06185030 / Broadband Low Noise Amplifier 18B-03 / Attenuator (3 dB)	12/23/2020	Annual	N/A
Wainwright Instruments	WHKX10-2700-3000-18000-40SS / High Pass Filter	12/23/2020	Annual	N/A
Wainwright Instruments	WHKX8-6090-7000-18000-40SS / High Pass Filter	12/23/2020	Annual	N/A
T&M SYSTEM	COAXIAL ATTENUATOR / Thru	12/23/2020	Annual	N/A
CERNEX	CBL18265035 / Power Amplifier	12/04/2020	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	03/23/2021	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/09/2021	Annual	3000C000276

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2107-FI013-P