On your side

TEST REPORT

FCC/IC DTS Test for LCWB-001 Certification

APPLICANT LG Electronics Inc.

REPORT NO. HCT-RF-2009-FI009

DATE OF ISSUE 15 September 2020

> **Tested by** Jeong Ho Kim

(12 /:

Technical Manager Jong Seok Lee

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD. Soo Chan Lee / CEO

HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 F ax. +82 31 645 6401

HCT Co., Ltd.

LUCALANDA ACCREDITATION OF

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

TEST REPORT FCC/IC DTS Test for LCWB-001	REPORT NO. HCT-RF-2009-FI009 DATE OF ISSUE September 15, 2020 Additional Model -	
Applicant	LG Electronics Inc. 170, Seongsanpaechong-ro, Seongsan-gu, Changwon-si, Gyeongsangnam- do, 51533, Republic of Korea	
Eut Type Model Name	RF Module LCWB-001	
FCC ID IC	BEJ-LCWB001 2703N-LCWB001	
Modulation type	CCK/DSSS/OFDM	
FCC Classification	Digital Transmission System(DTS)	
FCC Rule Part(s)	Part 15.247	
IC Rule Part(s)	RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5_Amendment 1 (March 2019)	
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated.	

This test results were applied only to the test methods required by the standard.

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	September 15, 2020	Initial Release

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC / IC Rules under normal use and maintenance.

This laboratory is not accredited for the test results marked *.

The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA.(HCT Accreditation No.: KT197)

* The report shall not be reproduced except in full(only partly) without approval of the laboratory.

CONTENTS

1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	6
GENERAL TEST PROCEDURES	6
DESCRIPTION OF TEST MODES	7
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS	7
FACILITIES	7
EQUIPMENT	7
5. ANTENNA REQUIREMENTS	8
6. MEASUREMENT UNCERTAINTY	8
7. DESCRIPTION OF TESTS	9
8. SUMMARY TEST OF RESULTS	29
9. TEST RESULT	31
9.1 DUTY CYCLE	31
9.2 6dB BANDWIDTH & 99 % BANDWIDTH	34
9.3 OUTPUT POWER	40
9.4 POWER SPECTRAL DENSITY	46
9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	49
9.6 RADIATED SPURIOUS EMISSIONS	60
9.7 RADIATED RESTRICTED BAND EDGES	68
9.8 RECEIVER SPURIOUS EMISSIONS	74
9.9 POWERLINE CONDUCTED EMISSIONS	75
10. LIST OF TEST EQUIPMENT	79
11. ANNEX A_ TEST SETUP PHOTO	81

1. EUT DESCRIPTION

Model	LCWB-001		
Additional Model	-		
EUT Type	RF Module		
Power Supply	DC 5V / 12V		
Frequency Range	2412 MHz - 2462	MHz	
Max. RF Output Power	Peak Power	802.11b: 22.84 dBm 802.11g: 23.36 dBm 802.11n(HT20): 22.31 dBm	
	Average Power	802.11b: 16.89 dBm 802.11g: 15.54 dBm 802.11n(HT20): 14.46 dBm	
Modulation Type	DSSS/CCK: 802.11b OFDM: 802.11g, 802.11n		
Number of Channels	11 Channels		
Antenna type	PCB pattern Antenna		
Antenna Peak Gain	1.5 dBi		
Date(s) of Tests	August 03, 2020 ~ September 15, 2020		
PMN (Product Marketing Number)	RF Module		
HVIN (Hardware Version Identification Number)	LCWB-001		
FVIN (Firmware Version Identification Number)	V1.0		
HMN (Host Marketing Name)	N/A		
EUT serial numbers	LCWB-001-H01, LCWB-001-H02		

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpse of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C. / RSS-Gen issue 5, RSS-247 issue 2.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10.

Report No. HCT-RF-2009-FI009

(Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radi ated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of A NSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated Apri l 02, 2018 (Registration Number: KR0032).

For ISED, test facility was accepted dated February 14, 2019 (CAB identifier: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

(1) The antennas of this E.U.T are permanently attached.

(2) The E.U.T Complies with the requirement of § 15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of

ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (\pm dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

EUT	Coax cable	Spectrum Analyzer
	Coax cable	

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to the zero-span measurement method.

The largest availble value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (\geq RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/ T_{total} and Duty Cycle Factor = 10log(1/Duty Cycle)

7.2. 6dB Bandwidth & 99 % Bandwidth

Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 11.8.1 in ANSI 63.10-2013)

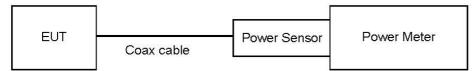
- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Test Procedure (99 % Bandwidth for IC)

The transmitter output is connected to the spectrum analyzer.

RBW = $1\% \sim 5\%$ of the occupied bandwidth VBW $\Rightarrow 3 \times$ RBW Detector = Peak Trace mode = max hold Sweep = auto couple Allow the trace to stabilize

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.



7.3. Output Power

Limit

The maximum permissible conducted output power is 1 Watt.

Test Configuration

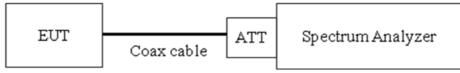
Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.
- Average Power (Procedure 11.9.2.3 in ANSI 63.10-2013)
 - 1) Measure the duty cycle.
 - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Reading Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Reading Value + ATT loss + Cable loss + Duty Cycle Factor



7.4. Power Spectral Density

Limit

The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3kHz BW.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

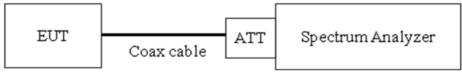
We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10.2 in ANSI 63.10-2013.

The spectrum analyzer is set to :

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Span = 1.5 times the DTS channel bandwidth.
- 3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple
- 6) Detector = peak
- 7) Trace Mode = max hold
- 8) Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
 If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

Power Spectral Density = Reading Value + ATT loss + Cable loss



7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions

Limit

The maximum conducted (Average) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz. [Conducted > 20 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points $\geq 2 \times \text{Span/RBW}$
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

Factors for	frequency
-------------	-----------

Freq(MHz)	Factor(dB)
30	10.09
100	10.12
200	10.17
300	10.22
400	10.25
500	10.26
600	10.26
700	10.28
800	10.29
900	10.31
1000	10.32
2000	10.46
2400	10.50
2480	10.52
2500	10.52
3000	10.57
4000	10.65
5000	10.76
6000	10.78
7000	10.85
8000	10.90
9000	10.96
10000	11.02
11000	11.07
12000	11.15
13000	11.24
14000	11.21
15000	11.26
16000	11.27
17000	11.30
18000	11.35
19000	11.37
20000	11.41
21000	11.53
22000	11.60
23000	11.60
24000	11.64
25000	11.73
26000	11.74

Note : 1. 2400 ~ 2500 MHz is fundamental frequency range.

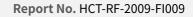
2. Factor = Attenuator loss(10dB) + Cable loss

7.6. Radiated Test

Limit

FCC

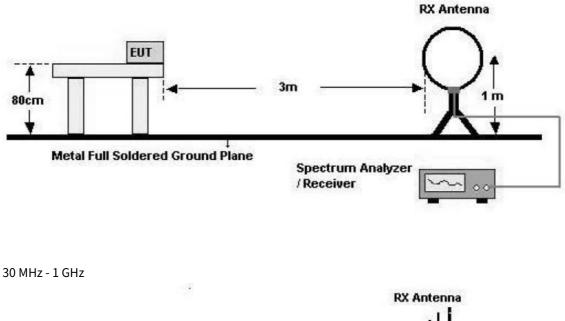
Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30

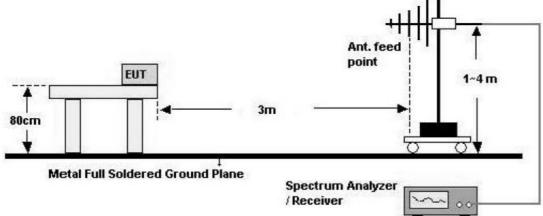

IC

Frequency (MHz)	Field Strength (uA/m)	Measurement Distance (m)
0.009 – 0.490	6.37/F(kHz)	300
0.490 – 1.705	63.7/F(kHz)	30
1.705 - 30	0.08	30

FCC&IC

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

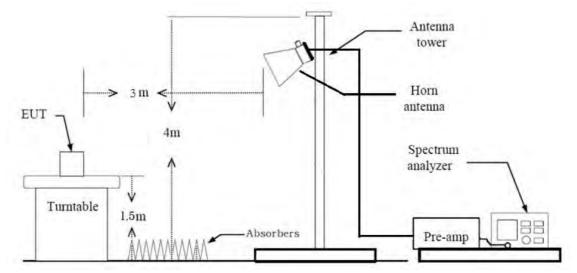

객 밀 ٦ 비 CUSTOMER SECRET



HCT

Test Configuration

Below 30 MHz



객 л 비 밀 CUSTOMER SECRET

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

6. Distance Correction Factor(0.009 MHz – 0.490 MHz) = $40\log(3 \text{ m}/300 \text{ m})$ = - 80 dB

Measurement Distance : 3 m

7. Distance Correction Factor(0.490 MHz - 30 MHz) = 40log(3 m/30 m) = - 40 dB

Measurement Distance : 3 m

- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW
- 9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered

that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - %In general, (1) is used mainly
- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with DC Power supply.

- 8. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average): Duty cycle \geq 98%
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - (3) Measurement Type(Average): Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
 - Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total(Measurement Type : Peak)
 - = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

- Total(Measurement Type : Average, Duty cycle \geq 98%)
- = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle < 98%)

- = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)
- + Duty Cycle Factor

Test Procedure of Radiated Restricted Band Edge

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with DC Power supply..
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 2310 MHz \sim 2390 MHz/ 2483.5 MHz \sim 2500 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average): Duty cycle \geq 98%,
 - Measured Frequency Range : 2310 MHz \sim 2390 MHz/ 2483.5 MHz \sim 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - (3) Measurement Type(Average): Duty cycle < 98%, duty cycle variations are less than $\pm 2\%$

- Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
- Detector = RMS
- Averaging type = power (*i.e.*, RMS)
- RBW = 1 MHz
- VBW \geq 3 x RBW
- Sweep time = auto.
- Trace mode = average (at least 100 traces).
- Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total(Measurement Type : Peak)
 - = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle \geq 98%)

= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle < 98%)

= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F) + Duty Cycle Factor

7.7. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \,\mu$ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)	
Frequency Range (MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)
0.50 to 5	56	46
5 to 30	60	50

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

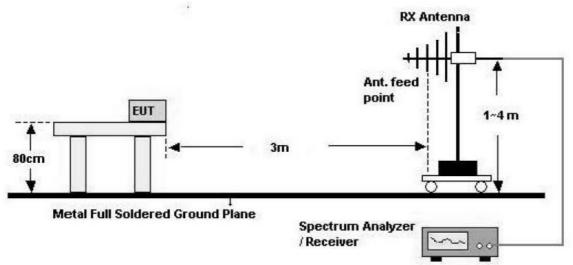
- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

7.8. Receiver Spurious Emissions

٠				٠	
	۲	Y	٦	ı	t
		L		L	ι


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Note:

Measurements for compliance with the limits in table may be performed at distances other than 3 metres.

Test Configuration

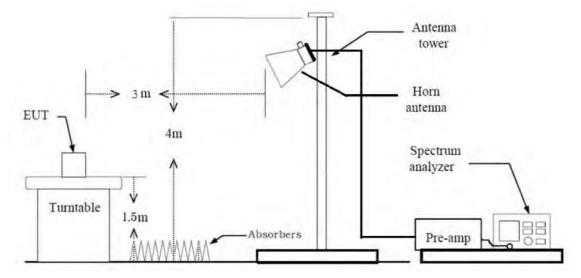
Test Procedure of Receiver Spurious Emissions (Below 1GHz)

1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.

2. The EUT is placed on a turntable, which is 0.8m above ground plane.

3. The Hybrid antenna was placed at a location 3m from the EUT, which is varied from 1m to 4m to find out the highest emissions.

4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.


5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

객 밀 л 비 CUSTOMER SECRET

Above 1 GHz

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with DC Power supply.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):

- We performed using a reduced video BW method was done with the analyzer in linear mode

객 ٦ 비 밀 CUSTOMER SECRET

- Measured Frequency Range : 1 GHz 25 GHz
- Detector = Average
- Trace = RMS
- RBW = 1 MHz
- VBW \geq 3 x RBW
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

11. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G)

고	객	비	밀
CUS	TOMER	S E C	CRET

7.9. Worst case configuration and mode

Radiated & Conducted Worst case Voltage 5[V]

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

2. All configurations of antenna were investigated and the worst case configuration results are reported.

- Mode : Stand alone + Shark Antenna
- Worstcase : Stand alone + Shark Antenna
- 3. EUT Axis
 - Radiated Spurious Emissions : Z
 - Radiated Restricted Band Edge : X
- 4. Duty cycle factor applies only 802.11g/n (Duty cycle < 98%).
- 5. All datarate of operation were investigated and the worst case datarate results are reported
 - 802.11b : 1Mbps
 - 802.11g : 6Mbps
 - 802.11n : MCS0
- 6. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
- Position : Horizontal, Vertical, Parallel to the ground plane

AC Power line Conducted Emissions

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone + Notebook
- Worstcase : Stand alone + Notebook

Conducted test

1. The EUT was configured with data rate of highest power.

8. SUMMARY TEST OF RESULTS

FCC Part

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§ 15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Output Power	§ 15.247(b)(3)	< 1 Watt	-	PASS
Power Spectral Density	§ 15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§ 15.207	cf. Section 7.7		PASS
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Dediated	PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS

Report No. HCT-RF-2009-FI009

IC Part

				1
Test Description	IC Part Section(s)	Test Limit	Test Condition	Test
				Result
6 dB Bandwidth	RSS-247, 5.2	> 500 kHz		PASS
99% Bandwidth	RSS-GEN, 6.7	N/A		PASS
Conducted Maximum Peak Output Power And e.i.r.p.	RSS-247, 5.4.	< 1 Watt <4 Watt(e.i.r.p.)	Conducted	PASS
Power Spectral Density	RSS-247, 5.2	< 8 dBm / 3 kHz Band		PASS
Band Edge(Out of Band Emissions)	RSS-247, 5.5	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	RSS-GEN, 8.8	cf. Section 7.7		N/A (Note1)
Radiated Spurious Emissions	RSS-GEN, 8.9	cf. Section 7.6		PASS
Receiver Spurious Emissions	RSS-GEN, 7	cf. Section 7.8	Radiated	PASS
Radiated Restricted Band Edge	RSS-GEN, 8.10	cf. Section 7.6		PASS

9. TEST RESULT

9.1 DUTY CYCLE

Mode	Data Rate	Ton	T_{total}	Duty Cycle	Duty Cycle Factor
моде	(Mbps)	(ms)	(ms)	Duty Cycle	(dB)
	1	12.420	12.560	0.989	0.049
802.11b	2	6.300	6.435	0.979	0.092
802.110	5.5	2.420	2.550	0.949	0.227
	11	1.305	1.434	0.910	0.409
	6	2.065	2.195	0.941	0.265
	9	1.383	1.512	0.915	0.387
	12	1.044	1.174	0.889	0.510
002.11~	18	0.704	0.834	0.844	0.738
802.11g	24	0.532	0.662	0.803	0.951
	36	0.364	0.494	0.737	1.326
	48	0.276	0.406	0.680	1.676
	54	0.248	0.378	0.655	1.835
	6.5 (MCS0)	1.920	2.050	0.937	0.285
	13 (MCS1)	0.980	1.110	0.883	0.541
	19.5 (MCS2)	0.664	0.794	0.836	0.779
802.11n	26 (MCS3)	0.508	0.638	0.796	0.993
(HT20)	39 (MCS4)	0.352	0.482	0.730	1.365
	52 (MCS5)	0.272	0.402	0.676	1.701
	58.5 (MCS6)	0.247	0.378	0.655	1.840
	65 (MCS7)	0.228	0.358	0.636	1.964

Note:

1. Duty Cycle Factor = 10Xlog(1/Duty Cycle). where, Duty Cycle = T_{on} / T_{total}

2. Test was performed with continuous Tx.

Test Plots

Trace/Detector	57:24 PM Sep 04, 2020 TRACE 2 2 3 4 5 5 TYPE WANNING		Type: Log-P		Free Run m: 30 dB	Tr	2 0: Fast ++ ain:Low		2.4120	req	ter F	en
1	3 12.56 ms 0.59 dB	ΔMk							Offset 1 5 30.52		B/div	0 di
Clear Writ		Δ4							X	-		og 20.5
_												
Trace Averag												
Max Hol									1			
Min Hol	Span 0 Hz ms (1001 pts)	20.00	Sweep		Hz	8.01	VBW	GHz	00000 z		ter 2. BW 8	en
Case of the	FUNCTION VALUE	н	FUNCTION WID	FUNCTION	0.56 dB		2 ms (Δ)	× 1	(Δ)	t	MODE T	1
View Blank Trace On		0 0 0 0 0 0			27 dBm 0.59 dB 27 dBm		0 ms 6 ms (Δ) 0 ms	1:	(Δ)	t	F 1 <u>0</u> 4 F 1	3
Mor 1 of												7 8 9

Duty cycle plot (802.11b(1Mbps))

Duty cycle plot (802.11g(6Mbps))

RL RF 500 AC		ALIGNAUTO 06:05:19PM Sep 04, 202 Avg Type: Log-Pwr TRACE 2, 4 5 TVPE W	Trace/Detector
	iO: Fast +++ Trig: Free Run Sain:Low #Atten: 30 dB	TYPE W DET P NNNN	Select Trace
Ref Offset 10.52 dB dB/div Ref 30.52 dBm		ΔMkr3 2.195 m -0.39 dE	
9 15 ministration of the second	X2ndrendrendrendrendered	normalized in the standard and the standard	Clear Write
10			Trace Averag
5			Max Hol
enter 2.412000000 GHz es BW 8 MHz	VBW 8.0 MHz	Span 0 H: Sweep 5.000 ms (1001 pts	Z Min Hol
	65 ms (Δ) 0.01 dB	CTION FUNCTION WIDTH FUNCTION VALUE	
Δ4 1 t (Δ) 2.19	05 ms 17.41 dBm 95 ms (Δ) -0.39 dB 05 ms 17.41 dBm		View Blank Trace On
			Mor 1 of
		3	

Trace/Detector	06:16:16 PM Sep 04, 2020 TRACE 1 2 4 5 TYPE WARMAN	Lign AUTO	Avg Ty		Free Run		PNO: Fast		41200	q 2	Fre		en
Select Trace	kr3 2.050 ms -0.77 dB	Δ			en: 30 aB	y 24	IFGain:Lov		offset 10 30.52			3/div	0 dE
Clear Wri	normalisterrestoreretation	falmen vera	1 300 1 200	Logiconte	ntan yangkata	*****	n state for the state of the st	1	n ata lah)				og 30.5 10.5
Trace Avera													520 348 19.5 29.5
Max Ho			h					urur					195 195 195
Min Ho	Span 0 Hz 00 ms (1001 pts) FUNCTION VALUE	Sweep 5.0	IN F	FUNCT		SW 8.0	and a	Hz ×	0000 (AH2	18 I	BW	IKR I
View Blank Trace Or					6.47 dB 98 dBm 0.77 dB 98 dBm	(Δ) (Δ)	1.920 ms 1.145 ms 2.050 ms 1.145 ms			***	1	Δ2 F Δ4 F	2
Mo 1 of													78901

Duty cycle plot (802.11n(MCS0))

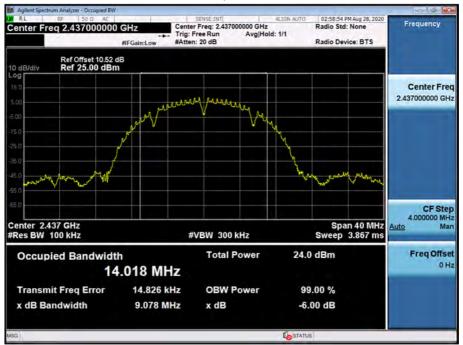
Note:

In order to simplify the report, attached plots were only the most lowest data rate.

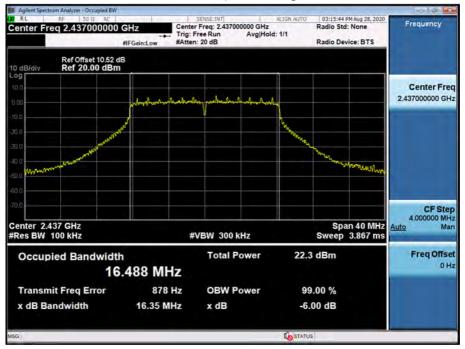
9.2 6dB BANDWIDTH & 99 % BANDWIDTH

FCC

802.11	b Mode	Manager and Dandwidth [MU]	Minimum Dondwidth [MU-]	
Frequency [MHz]	Channel No.	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	
2412	1	9.083	> 0.5	
2437	6	9.078	> 0.5	
2462 11		9.099	> 0.5	


802.11	g Mode	Management Damphy inthe [MU]		
Frequency [MHz]	Channel No.	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	
2412	1	16.36	> 0.5	
2437	6	16.35	> 0.5	
2462	11	16.36	> 0.5	

802.11n(H	T20) Mode	Measured Denduidth [MU]	Minimum Dondwidth [MU-]	
Frequency [MHz]	Channel No.	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	
2412	1	17.54	> 0.5	
2437	6	17.59	> 0.5	
2462	11	17.39	> 0.5	


Test Plots

HCT

6dB Bandwidth plot (802.11b-CH 6)

6dB Bandwidth plot (802.11g-CH 6)

Report No. HCT-RF-2009-FI009

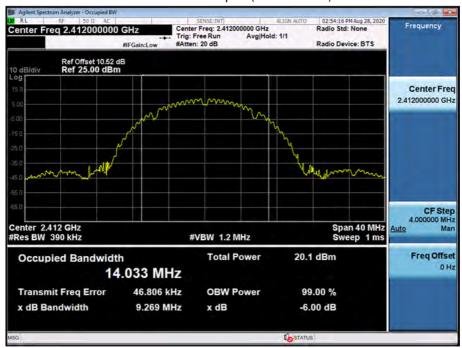
RL RF 50.0. AC Center Freq 2.462000000	Trig:	SENSE:INT] r Freq: 2.462000000 GHz Free Run Avg Hold h: 20 dB	ALIGN AUTO 05:16:44 PM Aug Radio Std: Nor i: 1/1 Radio Device: 1	Frequency
Ref Offset 10.52				
10.0 0.0	montheaterstand	by perhadration that the stand		Center Free 2.462000000 GH:
-10.0				
40 0 50 0 HWWWWWWWWWWW				
Center 2.462 GHz #Res BW 100 kHz		VBW 300 kHz	Span 4 Sweep 3.8	CF Step 4.000000 MH 0 MHz 67 mc
Occupied Bandwidth 17.661 MHz		Total Power	21.3 dBm	Freq Offse
Transmit Freq Error x dB Bandwidth	10.986 kHz 17.39 MHz	OBW Power x dB	99.00 % -6.00 dB	
MSG			STATUS	

6dB Bandwidth plot (802.11n_HT20-CH 11)

Note:

In order to simplify the report, attached plots were only the most narrow 6 dB BW channel.

99% Bandwidth Measurements(IC)


802.11b Mode	OBW	Limit	
Frequency [MHz]	cy Channel No.		[MHz]
2412	1	14.033	N/A
2437	6	14.028	N/A
2462	11	14.026	N/A

802.11g Mode	OBW	Limit	
Frequency [MHz]	(nannel No		[MHz]
2412	1	17.330	N/A
2437	6	17.168	N/A
2462	11	17.232	N/A

802.11n(HT20) Mode	OBW	Limit	
Frequency [MHz]	Channel No.	Bandwidth [MHz]	[MHz]
2412	1	18.263	N/A
2437	6	18.299	N/A
2462	11	18.359	N/A



Test Plots

99% Bandwidth plot (802.11b-CH 1)

99% Bandwidth plot (802.11g-CH 1)

Agilent Spectrum Analyzer - Occupied B	W	SCHOOL IN T			0 8 3
Center Freq 2.46200000	Trig:	SENSE:INT] er Freq: 2.462000000 GHz Free Run Avg Hold n: 20 dB	Radio S	4 PM Aug 28, 2020 td: None evice: BTS	Frequency
Ref Offset 10.52 10 dB/div Ref 20.00 dB					
	Junnam				Center Free 2.462000000 GH
-20.0			- And	Non Marine	
-40.0 Aggreenteenteenteenteenteenteenteenteenteen					
Center 2.462 GHz #Res BW 390 kHz	#	≠VBW 1.2 MHz		oan 40 MHz weep 1 ms	CF Ste 4.000000 MH <u>Auto</u> Ma
Occupied Bandwid	^{ith} 8.359 MHz	Total Power	21.4 dBm		Freq Offse 0 H
Transmit Freq Error x dB Bandwidth	104.16 kHz 17.75 MHz	OBW Power x dB	99.00 % -6.00 dB		
MSG			STATUS		-

99% Bandwidth plot (802.11n_HT20-CH 11)

Note:

In order to simplify the report, attached plots were only the most wide 99% Bandwidth channel.

9.3 OUTPUT POWER

Peak Power

1. Power Meter offset = Attenuator loss+ Cable loss

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

So, 10.52 dB is offset for 2.4 GHz Band

802.11b	Mode		Measured	Limit
Frequency[MHz]	Channel No.	Rate (Mbps)	Power(dBm)	(dBm)
		1	19.54	30
2412	1	2	19.57	30
2412	1	5.5	21.27	30
		11	22.84	30
		1	19.23	30
2427		2	19.69	30
2437	6	5.5	21.02	30
		No. Rate (Mbps) Power(dBm) 1 19.54 2 19.57 5.5 21.27 11 22.84 1 19.23 2 19.69	30	
		1	19.46	30
2462	11	2	19.70	30
2402	11	5.5	21.23	30
		11	22.81	30

802.11g	Mode		Measured	Limit
Frequency[MHz]	Channel No.	Rate (Mbps)	Power(dBm)	(dBm)
		6	23.24	30
		9	23.30	30
		12	Power(dBm) 6 23.24 9 23.30 12 23.09 12 23.09 18 22.71 24 23.36 36 23.36 48 23.27 54 23.12 6 23.15 9 23.10 12 22.60 18 22.58 24 23.07 48 22.94 36 23.07 48 22.93 54 22.55 6 23.12 9 23.13 12 22.93 18 22.93 18 22.60 24 23.23 36 23.12 9 23.13 12 22.93 18 22.60 24 23.23 36 22.96 24 23.23 36 22.95	30
2412	1	18	22.71	30
2412	T	24	23.36	30
		9 23.30 12 23.09 18 22.71 24 23.36 36 23.36 48 23.27 54 23.12 6 23.15 9 23.10 12 22.60 18 22.58 24 22.94 36 23.07 48 22.55 6 23.12	30	
		48	23.27	30
		54	23.12	30
	6	6	23.15	30
		9	23.10	30
		12	22.60	30
2437		18	22.58	30
2431	0	24	22.94	30
		36	23.07	30
		48	23.24 23.30 23.09 22.71 23.36 23.36 23.27 23.12 23.12 23.15 23.10 22.58 22.94 23.07 22.94 23.07 22.93 22.93 22.93 23.12 23.13 22.93 22.93 22.93 23.12 23.13 22.94 23.23	30
		54	22.55	30
		6	23.12	30
		9	23.13	30
		12	22.93	30
2462	11	18	22.60	30
2702	11	24	23.23	30
		36	22.96	30
		48	22.95	30
		54	22.96	30

802.11n(HT	20) Mode		Measured	Limit
Frequency[MHz]	Channel No.	MCS Index	Power(dBm)	(dBm)
		0	22.26	30
		1	21.80	30
		2	21.87	30
2412	1	3	22.22	30
2712	T	4	22.11	30
		5	22.13	30
		6	21.89	30
		7	22.01	30
		0	22.16	30
	6	1	22.05	30
		2	21.65	30
2437		3	22.13	30
2431		4	22.18	30
		5	21.89	30
		6	21.70	30
		7	21.89	30
		0	22.03	30
		1	21.95	30
		2	21.32	30
2462	11	3	22.31	30
2402	11	4	22.09	30
		5	21.54	30
		6	21.93	30
		7	21.83	30

Average Power

- 1. Power Meter offset = Attenuator loss + Cable loss
- 2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.52 dB is offset for 2.4 GHz Band.

802.11k	Mode		Measured		Measured Power(dBm)	
Frequency [MHz]	Channel No.	Rate (Mbps)	Power		+ Duty Cycle Factor	Limit (dBm)
		1	16.81	0.049	16.86	30
2412	1	2	16.80	0.092	16.89	30
2412	1	5.5	16.53	0.227	16.76	30
		11	16.40	0.409	16.81	30
		1	16.70	0.049	16.75	30
2427	6	2	16.65	0.092	16.74	30
2437	0	5.5	16.38	0.227	16.61	30
		11	16.28	0.409	16.69	30
		1	16.72	0.049	16.77	30
2462	11	2	16.65	0.092	16.74	30
2462	11	5.5	16.48	0.227	16.70	30
		11	16.35	0.409	16.76	30

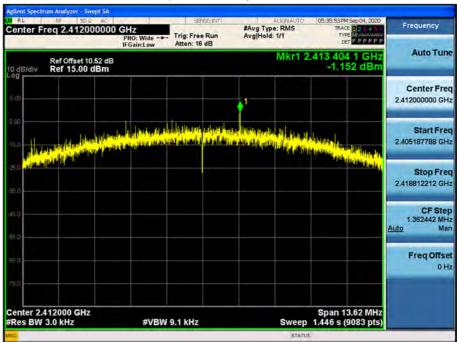
802.11g	g Mode				Measured	
Frequency [MHz]	Channel No.	Rate (Mbps)	Measured Power (dBm)	Duty Cycle Factor	Power(dBm) + Duty Cycle Factor	Limit (dBm)
		6	15.11	0.265	15.37	30
		9	15.03	0.387	15.41	30
		12	14.95	0.510	15.46	30
2412	1	18	14.74	0.738	15.48	30
2412	T	24	14.58	0.951	15.54	30
		36	14.12	1.326	15.45	30
		48	13.71	1.676	15.39	30
		54	13.67	1.835	15.51	30
		6	14.95	0.265	15.22	30
		9	14.86	0.387	15.24	30
		12	14.78	0.510	15.29	30
2437	6	18	14.48	0.738	15.22	30
2437	0	24	14.19	0.951	15.14	30
		36	13.81	1.326	15.14	30
		48	13.26	1.676	14.93	30
		54	13.10	1.835	14.93	30
		6	14.99	0.265	15.25	30
		9	14.89	0.387	15.27	30
		12	14.56	0.510	15.07	30
2462	11	18	14.61	0.738	15.35	30
2462	11	24	14.18	0.951	15.13	30
		36	13.95	1.326	15.27	30
		48	13.42	1.676	15.10	30
		54	13.29	1.835	15.12	30

802.11n(H	۲20) Mode				Measured	
Frequency [MHz]	Channel No.	MCS Index	Measured Power (dBm)	Duty Cycle Factor	Power(dBm) + Duty Cycle Factor	Limit (dBm)
		0	14.09	0.285	14.37	30
		1	13.85	0.541	14.39	30
		2	13.59	0.779	14.37	30
2412	1	3	13.22	0.993	14.22	30
2412	1	4	13.10	1.365	14.46	30
		5	12.51	1.701	14.21	30
		6	12.35	1.840	14.19	30
		7	12.30	1.964	14.27	30
		0	14.04	0.285	14.33	30
		1	13.84	0.541	14.39	30
		2	13.43	0.779	14.21	30
2437	6	3	13.22	0.993	14.21	30
2437	0	4	12.88	1.365	14.24	30
		5	12.41	1.701	14.11	30
		6	12.11	1.840	13.95	30
		7	12.19	1.964	14.16	30
		0	13.93	0.285	14.21	30
		1	13.69	0.541	14.23	30
		2	12.98	0.779	13.76	30
2462	11	3	13.38	0.993	14.37	30
2462	11	4	12.83	1.365	14.19	30
		5	12.53	1.701	14.23	30
		6	12.38	1.840	14.22	30
		7	12.44	1.964	14.40	30

9.4 POWER SPECTRAL DENSITY

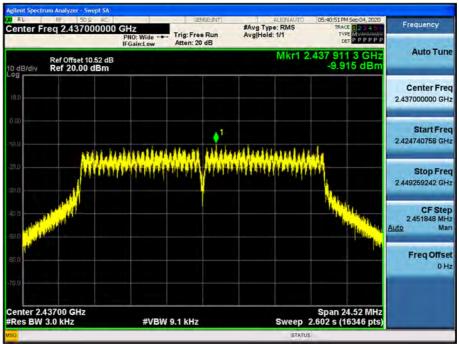
	F *********	Te		Result
Mode	Frequency (MHz)	Channel No.	Measured PSD (dBm)	Limit (dBm)
	2412	1	-1.152	
802.11b	2437	6	-3.479	
	2462	11	-5.790	
	2412	1	-10.104	
802.11g	2437	6	-9.915	8
	2462	11	-10.737	
802.11n(HT20)	2412	1	-10.034	
	2437	6	-10.573	
	2462	11	-11.229	

Note :


1. Spectrum reading values are not plot data.

The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.

- 2. Spectrum offset = Attenuator loss(20 dB) + Cable loss(1ea)
- 3. 10.52 dB is offset for 2.4 GHz Band.



Test Plots

Power Spectral Density (802.11b-CH 1)

Power Spectral Density (802.11g-CH 1)

Center Freq 2.412000000 GHz PNO: Wide → IFGaint.ow	Trig: Free Run Atten: 10 dB	#Avg Type: RMS Avg[Hold: 1/1	05:43:47 PM Sep 04, 2020 TRACE 2 3 4 5 TYPE MUSACOMUS DET P P P P P P	Frequency	
Ref Offset 10.52 dB 0 dB/div Ref 10.00 dBm	Ref Offset 10.52 dB Mkr1 2.406 980 8 GHz 0 dB/div Ref 10.00 dBm -10.034 dBm				
0.00				Center Fre 2.412000000 GH	
	uhanaki jahana		<u> </u>	Start Fre 2.398847489 GH	
30 G			Nu litration	Stop Fre 2.425152511 GH	
				CF Ste 2.630502 MH Auto Ma	
75.0				Freq Offso 0 F	
200 Center 2.41200 GHz Res BW 3.0 kHz #VBW	9.1 kHz	Sweep 2	Span 26.31 MHz 792 s (17537 pts)		

Power Spectral Density (802.11n_HT20 -CH 6)

Note :

In order to simplify the report, attached plots were only the worstcase PSD channel.

9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS

Test Result : please refer to the plot below. In order to simplify the report, attached plots were only the worst case channel and data rate.

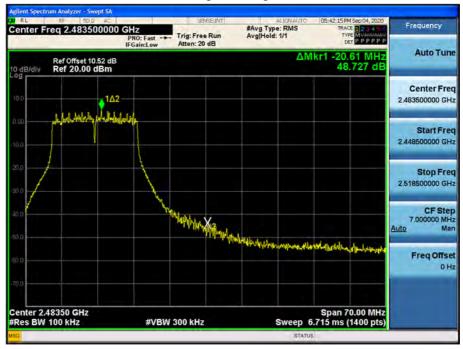
Page 50 of 81

Test Plots(BandEdge)

X Auto ih. dillo Span 70.00 MHz Sweep 6.715 ms (1400 pts) #VBW 300 kHz

Band Edge (802.11b-CH11)

Band Edge (802.11b-CH1)



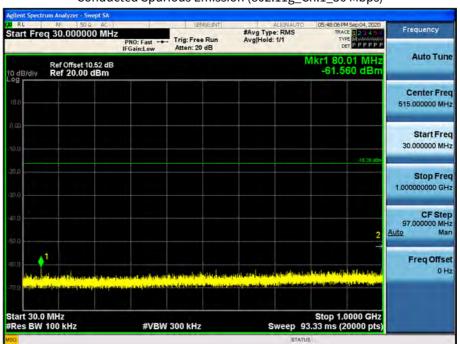
GHZ PNO: Fast Trig: F	ree Run		05:39:48 PM Sep 04, 2020 TRACE 2 2 4 5 TYPE MUMANNA DET P P P P P P	Frequency
i comizor		Δι	/kr1 13.26 MHz 35.723 dB	Auto Tun
		142		Center Fre 2.400000000 GH
	philule	ALL INCLAS		Start Fre 2.365000000 GH
				Stop Fre 2.435000000 GH
1	X2		The Millered	CF Ste 7.000000 MH Auto Ma
Parta and a part of the second				Freq Offs 0 H
			Span 70.00 MHz	
	GHz PNO: Fast Trig: F IFGain:Low	GHz PNO: Fast ↔ Trig: Free Run Atten: 26 dB	GH2 PHO: Fast → Trig: Free Run Atten: 26 dB Atten: 46	GHz PRO: Fast Trig: Free Run Atten: 26 dB Avg Type: RMS Avg Held: 1/1 There: D2 at the pppppp ΔMkr1 13.26 MHz 35.723 dB ΔMkr1 13.26 MHz 35.723 dB

Band Edge (802.11g-CH1)

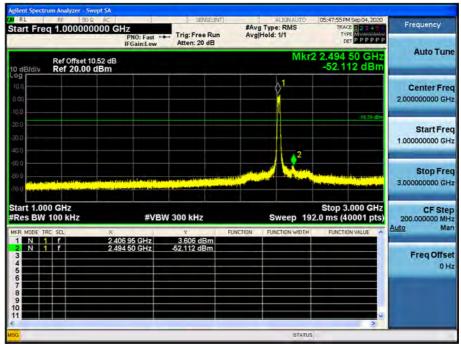
Band Edge (802.11g-CH11)

Frequency	05:44:04 PM Sep 04, 2020 TRACE 2 2 4 5 TYPE MWAAAAAA DET P P P P P P	#Avg Type: RMS Avg Hold: 1/1	sense INT g: Free Run en: 20 dB	PNO: Fast	req 2.400000000	Center F
Auto Tun	/kr1 13.21 MHz 33.619 dB	ΔΝ		IF Gain:Low	Ref Offset 10.52 dB Ref 20.00 dBm	10 dB/div
Center Fre 2.400000000 GH		142				10.0
Start Fre 2.365000000 GH		akalahu printsi sininginaka	ehrber -			0,00 -10,0
Stop Fre 2.435000000 GH			X2			-28)8
CF Ste 7.000000 MH Auto Ma	A State State And State And State			1 Adapta March Martin		-40,0
Freq Offse 0 H				Aparta Maria and	steria, maarstaas on fahrindak	-60,0
	Span 70.00 MHz				10000 GHz	
	.715 ms (1400 pts)	Sweep 6	KHZ	#VBW 3	100 KH2	#Res BW

Band Edge (802.11n_HT20 -CH1)


Band Edge (802.11n_HT20 -CH11)

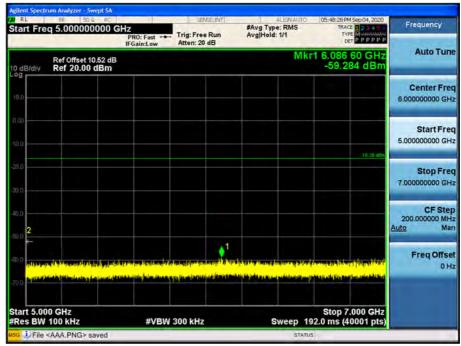
객 밀 ъ Ы CUSTOMER SECRET


Test Plots(Conducted Spurious Emission)

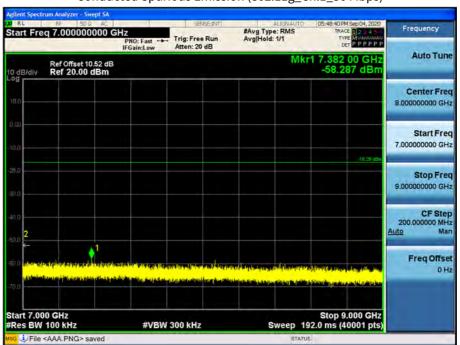
30 MHz ~ 1 GHz

Conducted Spurious Emission (802.11g_Ch.1_36 Mbps)

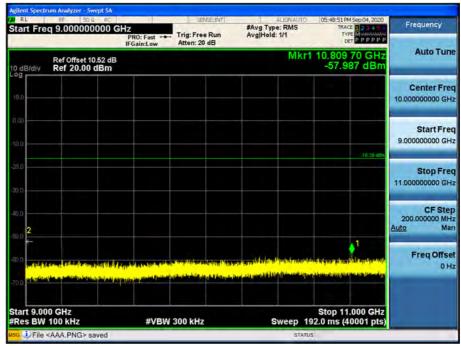
1 GHz ~ 3 GHz



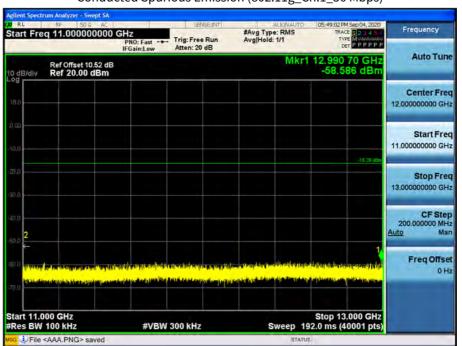
3 GHz ~ 5 GHz


Conducted Spurious Emission (802.11g_Ch.1_36 Mbps)

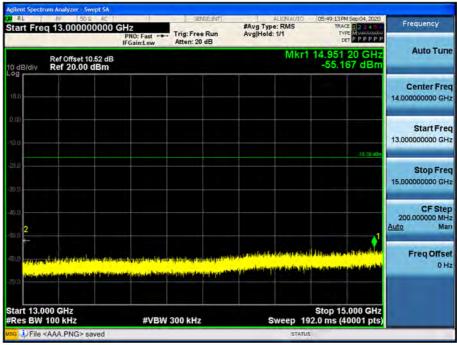
5 GHz ~ 7 GHz



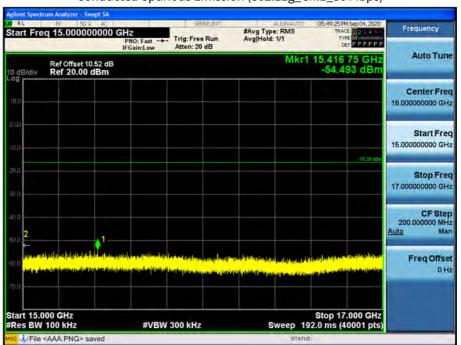
7 GHz ~ 9 GHz

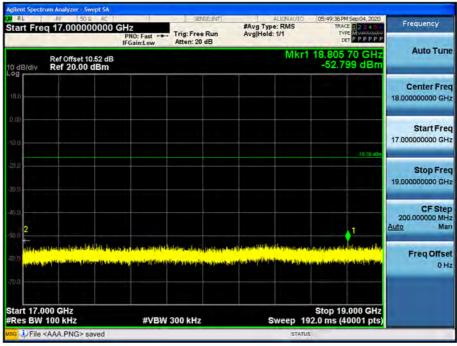

Conducted Spurious Emission (802.11g_Ch.1_36 Mbps)

9 GHz ~ 11 GHz

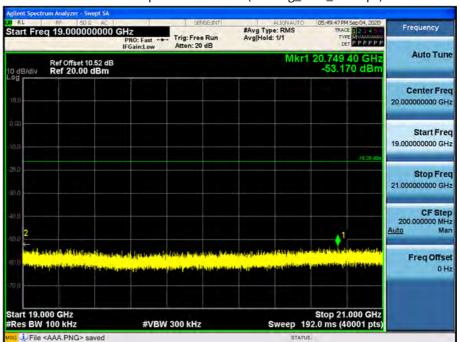

11 GHz ~ 13 GHz

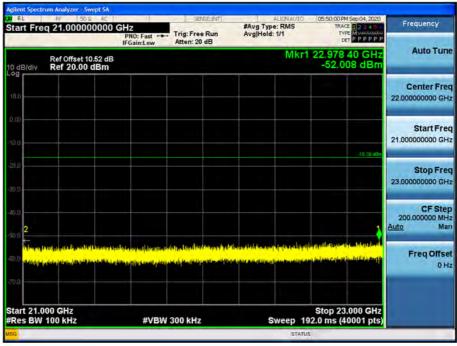
Conducted Spurious Emission (802.11g_Ch.1_36 Mbps)


13 GHz ~ 15 GHz


15 GHz ~ 17 GHz

Conducted Spurious Emission (802.11g_Ch.1_36 Mbps)


17 GHz ~ 19 GHz


19 GHz ~ 21 GHz

Conducted Spurious Emission (802.11g_Ch.1_36 Mbps)

21 GHz ~ 23 GHz

23 GHz ~ 25 GHz

RL RF SOR AC	SENSE:INT	ALIGNAUTO	05:50:13 PM Sep 04, 2020	Frequency
Start Freq 23.000000000 G	PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 20 dB	#Avg Type: RMS Avg Hold: 1/1	TYPE MUMUUUU DET P P P P P P	
Ref Offset 10.52 dB		Mkr1	24.875 00 GHz -47.365 dBm	Auto Tune
10.0				Center Freq 24.000000000 GHz
0.00			J 6 25 dBr.	Start Free 23.000000000 GH:
20.0				Stop Free 25.00000000 GH
	lin heling a sea fra stirt i nigensia di bili si	ter beskipter verseg sjoe verset de beerdij in	1 1	CF Step 200.000000 MH Auto Mar
60.0		ladel nomb _{en} ous expectiven	nya ampirina pinina ani	Freq Offse 0 Hi
70.0 Start 23.000 GHz Res BW 100 kHz	#VBW 300 kHz	Sween 1	Stop 25.000 GHz 92.0 ms (40001 pts)	

9.6 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30MHz

Frequenc	Reading	Ant.	Cable	Ant. POL	Total	Limit	Margin
у	Redding	factor	loss	/	rotat	Linit	margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)

3. Limit line = specific Limits (dBuV) + Distance extrapolation factor

Frequency Range : Below 1 GHz

Frequenc y	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

F-TP22-03 (Rev. 03)

고 객 비 밀 CUSTOMER SECRET

Frequency Range : Above 1 GHz

Operation Mode:	802.11b
Transfer Rate:	1 Mbps
Operating Frequency	2412
Channel No.	01 Ch

Frequency	Reading	A.F+C.L-AMP+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4824	47.62	4.31	V	51.93	73.98	22.05	PK
4824	42.34	4.31	V	46.65	53.98	7.33	AV
7236	40.13	12.35	V	52.48	73.98	21.50	PK
7236	29.62	12.35	V	41.97	53.98	12.01	AV
4824	48.53	4.31	Н	52.84	73.98	21.14	PK
4824	44.19	4.31	Н	48.50	53.98	5.48	AV
7236	39.92	12.35	Н	52.27	73.98	21.71	PK
7236	29.59	12.35	Н	41.94	53.98	12.04	AV

Operation Mode:	802.11b
Transfer Rate:	1 Mbps
Operating Frequency	2437
Channel No.	06 Ch

Frequency	Reading	A.F+C.L-AMP+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4874	47.83	4.40	V	52.23	73.98	21.75	PK
4874	42.59	4.40	V	46.99	53.98	6.99	AV
7311	40.64	12.37	V	53.01	73.98	20.97	PK
7311	29.56	12.37	V	41.93	53.98	12.05	AV
4874	49.05	4.40	Н	53.45	73.98	20.53	PK
4874	44.71	4.40	Н	49.11	53.98	4.87	AV
7311	40.27	12.37	Н	52.64	73.98	21.34	PK
7311	28.15	12.37	Н	40.52	53.98	13.46	AV

Operation Mode:	802.11b
Transfer Rate:	1 Mbps
Operating Frequency	2462
Channel No.	11 Ch

Frequency	Reading	A.F+C.L-AMP+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4924	48.77	4.51	V	53.28	73.98	20.70	PK
4924	44.21	4.51	V	48.72	53.98	5.26	AV
7386	40.29	12.31	V	52.60	73.98	21.38	PK
7386	29.29	12.31	V	41.60	53.98	12.38	AV
4924	49.31	4.51	Н	53.82	73.98	20.16	PK
4924	45.40	4.51	Н	49.91	53.98	4.07	AV
7386	39.81	12.31	Н	52.12	73.98	21.86	PK
7386	28.67	12.31	Н	40.98	53.98	13.00	AV

Operation Mode:	802.11g
Transfer Rate:	6 Mbps
Operating Frequency	2412
Channel No.	01 Ch

Frequenc y	Readin g	Duty Cycle Factor	A.F+C.L- AMP+D.F	ANT. POL	Total	Limit	Margin [dB]	Measure ment
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[ив]	Туре
4824	43.69	0.00	4.31	V	48.00	73.98	25.98	PK
4824	31.19	0.27	4.31	V	35.77	53.98	18.22	AV
7236	39.62	0.00	12.35	V	51.97	73.98	22.01	PK
7236	27.02	0.27	12.35	V	39.64	53.98	14.35	AV
4824	44.76	0.00	4.31	Н	49.07	73.98	24.91	PK
4824	32.26	0.27	4.31	Н	36.84	53.98	17.15	AV
7236	38.36	0.00	12.35	Н	50.71	73.98	23.27	PK
7236	26.34	0.27	12.35	Н	38.96	53.98	15.03	AV

Operation Mode:	802.11g
Transfer Rate:	6 Mbps
Operating Frequency	2437
Channel No.	06 Ch

Frequency	Reading	Duty Cycle Factor	A.F+C.L- AMP+D.F	ANT. POL	Total	Limit	Margin [dB]	Measure ment
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]		Туре
4874	44.95	0.00	4.40	V	49.35	73.98	24.63	PK
4874	31.04	0.27	4.40	V	35.71	53.98	18.28	AV
7311	40.18	0.00	12.37	V	52.55	73.98	21.43	PK
7311	27.67	0.27	12.37	V	40.31	53.98	13.68	AV
4874	45.58	0.00	4.40	Н	49.98	73.98	24.00	PK
4874	32.91	0.27	4.40	Н	37.58	53.98	16.41	AV
7311	39.06	0.00	12.37	Н	51.43	73.98	22.55	PK
7311	26.45	0.27	12.37	Н	39.09	53.98	14.90	AV

Operation Mode:	802.11g
Transfer Rate:	6 Mbps
Operating Frequency	2462
Channel No.	11 Ch

Frequenc y	Readin g	Duty Cycle Factor	A.F+C.L- AMP+D.F	ANT. POL	Total	Limit	Margin	Measure ment
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4924	45.12	0.00	4.51	V	49.63	73.98	24.35	PK
4924	32.57	0.27	4.51	V	37.35	53.98	16.64	AV
7386	40.52	0.00	12.31	V	52.83	73.98	21.15	PK
7386	27.52	0.27	12.31	V	40.10	53.98	13.89	AV
4924	46.28	0.00	4.51	Н	50.79	73.98	23.19	PK
4924	33.95	0.27	4.51	Н	38.73	53.98	15.26	AV
7386	39.23	0.00	12.31	Н	51.54	73.98	22.44	PK
7386	26.67	0.27	12.31	Н	39.25	53.98	14.74	AV

Operation Mode:	802.11n (HT20)		
Transfer MCS Index:	6.5 Mbps		
Operating Frequency	2412		
Channel No.	01 Ch		

Frequenc y	Readin g	Duty Cycle Factor	A.F+C.L- AMP+D.F	ANT. POL	Total	Limit	Margin	Measure ment
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4824	43.68	0.00	4.31	V	47.99	73.98	25.99	PK
4824	30.20	0.29	4.31	V	34.80	53.98	19.19	AV
7236	39.30	0.00	12.35	V	51.65	73.98	22.33	PK
7236	26.61	0.29	12.35	V	39.25	53.98	14.74	AV
4824	44.73	0.00	4.31	Н	49.04	73.98	24.94	PK
4824	31.55	0.29	4.31	Н	36.15	53.98	17.84	AV
7236	37.57	0.00	12.35	Н	49.92	73.98	24.06	PK
7236	25.14	0.29	12.35	Н	37.78	53.98	16.21	AV

Operation Mode:

Transfer MCS Index:

Operating Frequency

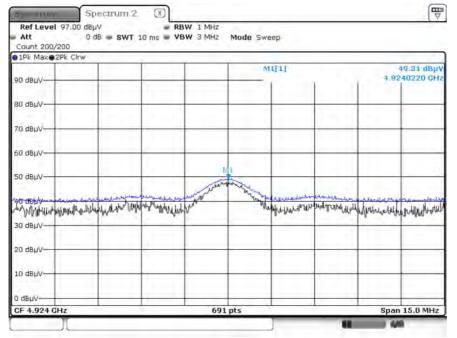
Channel No.

802.11n (HT20)	
6.5 Mbps	
2437	
06 Ch	

Frequenc y	Readin g	Duty Cycle Factor	A.F+C.L- AMP+D.F	ANT. POL	Total	Limit	Margin [dB]	Measure ment Type
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]		туре
4874	44.75	0.00	4.40	V	49.15	73.98	24.83	PK
4874	31.36	0.29	4.40	V	36.05	53.98	17.94	AV
7311	39.79	0.00	12.37	V	52.16	73.98	21.82	PK
7311	27.25	0.29	12.37	V	39.91	53.98	14.08	AV
4874	45.40	0.00	4.40	н	49.80	73.98	24.18	PK
4874	32.21	0.29	4.40	н	36.90	53.98	17.09	AV
7311	38.48	0.00	12.37	Н	50.85	73.98	23.13	PK
7311	26.69	0.29	12.37	Н	39.35	53.98	14.64	AV

Operation Mode:	802.11n (HT20)		
Transfer MCS Index:	6.5 Mbps		
Operating Frequency	2462		
Channel No.	11 Ch		

Frequenc y	Readin g	Duty Cycle Factor	A.F+C.L- AMP+D.F	ANT. POL	Total	Limit	Margin [dB]	Measure ment
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	լսԵյ	Туре
4924	44.28	0.00	4.51	V	48.79	73.98	25.19	PK
4924	31.54	0.29	4.51	V	36.34	53.98	17.65	AV
7386	39.91	0.00	12.31	V	52.22	73.98	21.76	PK
7386	27.44	0.29	12.31	V	40.04	53.98	13.95	AV
4924	45.63	0.00	4.51	Н	50.14	73.98	23.84	PK
4924	32.89	0.29	4.51	Н	37.69	53.98	16.30	AV
7386	38.70	0.00	12.31	Н	51.01	73.98	22.97	PK
7386	26.21	0.29	12.31	Н	38.81	53.98	15.18	AV



Test Plots (Worst case : Z-H)

Radiated Spurious Emissions plot – Average Reading (802.11b, Ch.11 2nd Harmonic)

Spectrum 2 (\mathbf{X}) Ref Level 97.00 dBµV RBW 1 MHz Att 0 dB - SWT 10 ms - VBW 3 MHz Mode Sweep Count 200/200 1Rm AvgPwre2Pk Cirv M1[1] 45.40 dBµ 4.9239780 CH 90 dBuV BO GBUV 70 dBuV 60 dBuV 50 dBµV 40 40 man har when the same way when the same alt more water frank the men in which the terrate 90 dBuV 20 dBµV-10 dBuV 0 dBuV Span 15.0 MHz CF 4.924 GHz 691 pts 1.1

Radiated Spurious Emissions plot - Peak Reading (802.11b, Ch.11 2nd Harmonic)

Note:

Plot of worst case are only reported.

9.7 RADIATED RESTRICTED BAND EDGES

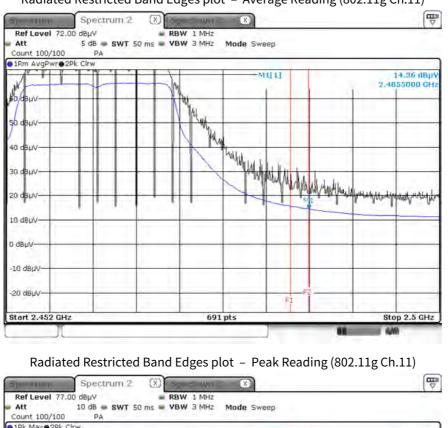
Operation Mode:	802.11b		
Transfer Rate:	1 Mbps		
Operating Frequency	2412 MHz, 2462 MHz		
Channel No.	01 Ch, 11 Ch		

Frequency	Reading	※ A.F+C.L+D.F	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	28.04	35.62	Н	63.66	73.98	10.32	PK
2390.0	14.48	35.62	Н	50.10	53.98	3.88	AV
2390.0	27.39	35.62	V	63.01	73.98	10.97	PK
2390.0	13.79	35.62	V	49.41	53.98	4.57	AV
2483.5	27.98	35.74	Н	63.72	73.98	10.26	PK
2483.5	14.75	35.74	Н	50.49	53.98	3.49	AV
2483.5	25.86	35.74	V	61.60	73.98	12.38	PK
2483.5	13.85	35.74	V	49.59	53.98	4.39	AV

Operation Mode:	802.11g		
Transfer Rate:	6 Mbps		
Operating Frequency	2412 MHz, 2462 MHz		
Channel No.	01 Ch, 11 Ch		

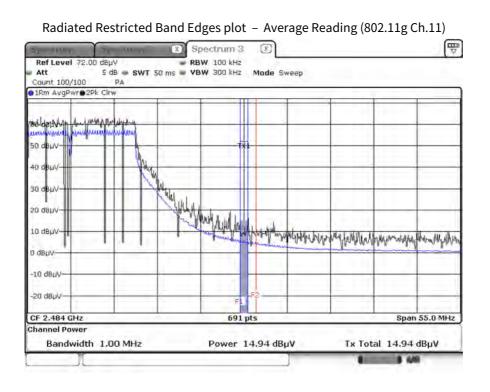
Frequency	Reading	Duty Cycle Factor	※ A.F+C.L+D.F	ANT. POL	Total	Limit	Margin	Measurement Type
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	28.54	0.00	35.62	Н	64.16	73.98	9.82	PK
2390.0	14.42	0.27	35.62	н	50.31	53.98	3.68	AV
2390.0	27.96	0.00	35.62	V	63.58	73.98	10.40	PK
2390.0	14.05	0.27	35.62	V	49.94	53.98	4.04	AV
2483.5*(2484)	27.89	0.00	35.74	Н	63.63	73.98	10.35	PK
2483.5*(2484)	14.94	0.27	35.74	Н	50.95	53.98	3.04	AV
2483.5*(2485)	26.37	0.00	35.74	Н	62.11	73.98	11.87	PK
2483.5*(2485)	14.33	0.27	35.74	Н	50.34	53.98	3.65	AV
2485.5~2500	32.25	0.00	35.74	Н	67.99	73.98	5.99	PK
2485.5~2500	14.36	0.27	35.74	Н	50.37	53.98	3.61	AV

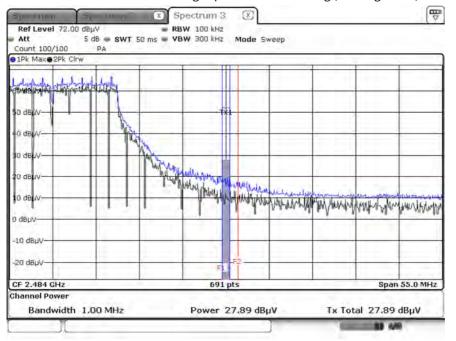
Note : integration method Used (ANSI C63.10 Section11.13.3)



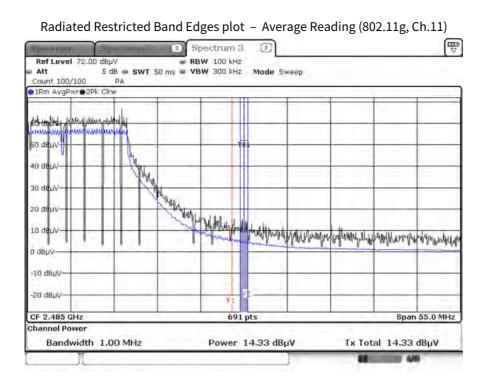
Operation Mode:	802.11n (HT20)
Transfer Rate:	6.5 Mbps
Operating Frequency	2412 MHz, 2462 MHz
Channel No.	01 Ch, 11 Ch

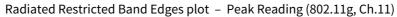
Frequency	Reading	Duty Cycle Factor	※ A.F+C.L+D.F	ANT. POL	Total	Limit	Margin	Measurement Type
[MHz]	[dBuV]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	
2390.0	28.29	0.00	35.62	Н	63.91	73.98	10.07	PK
2390.0	13.36	0.29	35.62	Н	49.27	53.98	4.72	AV
2390.0	27.06	0.00	35.62	V	62.68	73.98	11.30	PK
2390.0	12.69	0.29	35.62	V	48.60	53.98	5.39	AV
2483.5	27.70	0.00	35.74	Н	63.44	73.98	10.54	PK
2483.5	12.53	0.29	35.74	Н	48.56	53.98	5.43	AV
2483.5	26.38	0.00	35.74	V	62.12	73.98	11.86	PK
2483.5	12.09	0.29	35.74	V	48.12	53.98	5.86	AV

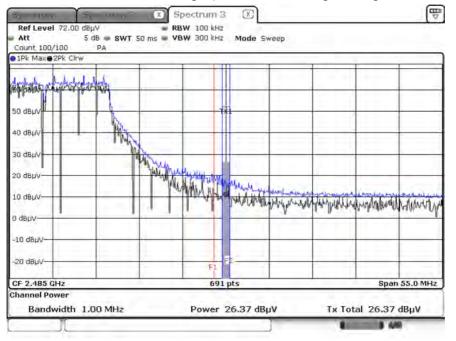

Test Plots


Radiated Restricted Band Edges plot - Average Reading (802.11g Ch.11)

● 1Pk Max●2Pk Clrw 70 BLU TO BUT TO THE TO T M1[1] 32.25 dBµV 2.4859170 CHz 60 dBL Walter 50 dBu 40 dBµ William Harris What they the provide a stranger of the start of the stranger of the start of the s 30 dBµ 20 dBuV 10 dBuV 0 dBµV 10 dBuV -20 dBuV-Stop 2.5 GHz Start 2.452 GHz 691 pts




Radiated Restricted Band Edges plot - Peak Reading (802.11g Ch.11)



Note:

Plot of worst case are only reported.

9.8 RECEIVER SPURIOUS EMISSIONS

Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

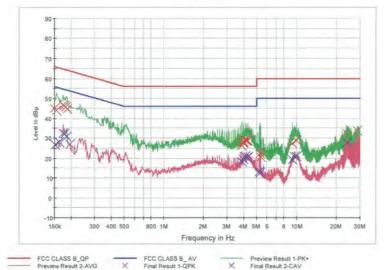
Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB	
No Critical peaks found								

9.9 POWERLINE CONDUCTED EMISSIONS

Conducted Emissions (Line 1)

Test

1/2


HCT TEST Report

Common Information EUT: LCWB-001

EUT: Manufacturer: Test Site: Operating Conditions:

LG SHIELD ROOM WLAN 2.4G MODE_N

Final Result 1

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	44.8	9.000	On	N	9.7	21.2	66.0
0.156000	44.0	9.000	On	N	9.7	21.7	65.7
0.174000	46.5	9.000	On	N	9.7	18.3	64.8
0.178000	46.3	9.000	On	N	9.7	18.3	64.6
0.184000	45.5	9.000	On	N	9.7	18.8	64.3
0.188000	44.7	9.000	On	N	9.7	19.4	64.1
3.880000	26.3	9.000	On	N	9.8	29.7	56.0
3.984000	27.5	9.000	On	N	9.8	28.5	56.0
3.988000	28.2	9,000	On	N	9.8	27.8	56.0
4.088000	28.8	9,000	On	N	9.8	27.2	56.0
4.190000	28.6	9,000	On	N	9.8	27.4	56.0
4.294000	28.6	9.000	On	N	9.8	27.4	56.0
5.342000	22.2	9,000	On	N	9,8	37.8	60.0
5.346000	20.4	9.000	On	N	9.8	39.6	60.0
9.282000	27.1	9.000	On	N	9.9	32.9	60.0
10.010000	28.7	9.000	On	N	9.9	31.3	60.0
23.850000	32.3	9.000	On	N	10.0	27.7	60.0
28.570000	33.7	9.000	On	N	10.0	26.3	60.0

2020-08-06

오전 11:05:11

ъ 객 비 밀 CUSTOMER SECRET

2/2

Test

Final Result 2

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.152000	26,5	9.000	On	N	9.7	29.4	55.9
0.162000	27.8	9.000	On	N	9.7	27.5	55.4
0.174000	32.4	9.000	On	N	9.7	22.4	54.8
0.178000	32.0	9,000	On	N	9.7	22.6	54.6
0.186000	30.8	9,000	On	N	9.7	23.4	54.2
0.196000	26.9	9,000	On	N	9.7	26.9	53.8
3.880000	18.3	9.000	On	N	9,8	27.7	46.0
3.984000	19.6	9.000	On	N	9.8	26.4	46.0
3.988000	19.5	9.000	On	N	9.8	26.5	46.0
4.088000	20,9	9.000	On	N	9.8	25.1	46.0
4.190000	20.2	9,000	On	N	9.8	25.8	46.0
4.294000	20.4	9,000	On	N	9.8	25.6	46.0
5.240000	13.1	9,000	On	N	9.8	36.9	50.0
5.342000	12.5	9,000	On	N	9,8	37.5	50.0
9.282000	19.3	9.000	On	N	9,9	30.7	50.0
9.594000	20.7	9.000	On	N	9,9	29.3	50,0
10.010000	20.9	9.000	On	N	9,9	29.1	50.0
23.976000	27.6	9.000	On	N	10.0	22.4	50.0

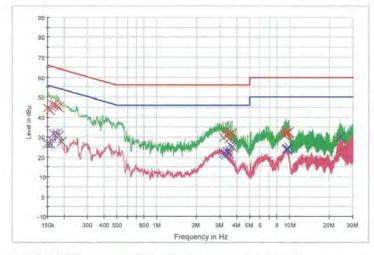
2020-08-06

요전 11:05:11

Conducted Emissions (Line 2)

HCT

Test

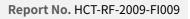

1/2

HCT TEST Report

Test Site: Operating Conditions:

FCC CLASS B

FCC CLASS B_QP Preview Result 2-AVG FCC CLASS B_AV Final Result 1-QPK Preview Result 1-PK+ Final Result 2-CAV × ×


Final Result 1

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	44.5	9.000	On	L1	9.7	21.5	66.0
0.158000	43.5	9.000	On	L1	9.7	22.1	65.6
0.164000	46.3	9.000	On	L1	9.7	18.9	65.3
0.170000	46.2	9.000	On	L1	9.7	18.8	65.0
0.176000	45.6	9.000	On	L1	9.7	19.1	64.7
0.182000	44.9	9.000	On	L1	9.7	19.5	64.4
3.178000	29.8	9.000	On	L1	9.8	26.2	56.0
3.282000	33.1	9.000	On	L1	9.8	22.9	56.0
3.390000	30.6	9.000	On	L1	9.8	25.4	56.0
3.490000	29.1	9.000	On	L1	9.8	26.9	56.0
3.596000	32.2	9,000	On	L1	9.8	23.8	56.0
3.694000	31.9	9,000	On	L1	9,8	24.2	56,0
9.150000	31.1	9.000	On	L1	9,9	28.9	60.0
9.350000	33.2	9,000	On	L1	9,9	26,8	60.0
9.404000	31.3	9.000	On	L1	9,9	28.7	60.0
9.446000	32.0	9.000	On	L1	9.9	28.0	60.0
9.720000	31.9	9.000	On	L1	9.9	28.1	60.0
9.822000	32.5	9.000	On	L1	9.9	27.5	60.0

2020-08-06

오전 11:15:18

고 객 비 밀 CUSTOMER SECRET

2/2

Test

Final Result 2

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	26.6	9.000	On	L1	9.7	29.4	56.0
0.158000	26.8	9.000	On	L1	9.7	28.8	55.6
0.166000	31.6	9.000	On	L1	9.7	23.6	55.2
0.176000	31.8	9.000	On	L1	9.7	22.9	54.7
0.184000	30.8	9.000	On	L1	9.7	23.5	54.3
0.192000	27.6	9.000	On	L1	9,7	26.4	53.9
3.178000	21.4	9.000	On	L1	9.8	24.6	46.0
3.282000	21.0	9.000	On	L1	9,8	25.0	46.0
3.390000	22.9	9.000	On	L1	9,8	23.1	46.0
3.490000	21.5	9.000	On	L1	9.8	24.5	46.0
3.596000	25.9	9.000	On	L1	9.8	20.1	46.0
3.694000	24.8	9.000	On	L1	9.8	21.2	46.0
9.404000	23.9	9.000	On	L1	9,9	26.1	50.0
9,446000	23.9	9.000	On	L1	9.9	26.1	50.0
9.508000	24.2	9.000	On	L1	9,9	25.8	50,0
9.614000	23.6	9.000	Оп	L1	9.9	26.4	50,0
9.822000	24.8	9.000	On	L1	9,9	25.2	50,0
23.882000	30.1	9.000	On	L1	10.0	19.9	50,0

2020-08-06

오전 11:15:18

10. LIST OF TEST EQUIPMENT

Conducted Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	04/09/2020	Annual	102245
Rohde & Schwarz	ESCI / Test Receiver	06/10/2020	Annual	100584
ESPEC	SU-642 /Temperature Chamber	07/30/2020	Annual	0093000718
Agilent	N9030A / Signal Analyzer	03/23/2020	Annual	MY49432108
Agilent	N1911A / Power Meter	04/07/2020	Annual	MY45100523
Agilent	N1921A / Power Sensor	06/08/2020	Annual	MY57820067
Agilent	87300B / Directional Coupler	11/11/2019	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	02/14/2020	Annual	10545
HP	E3632A / DC Power Supply	09/27/2019	Annual	MY40004427
HP	8493C / Attenuator(10 dB)(DC- 26.5 GHz)	06/26/2020	Annual	07560
HP	8493C / Attenuator(10 dB)(DC- 26.5 GHz)	07/03/2020	Annual	08285
Rohde & Schwarz	18N-20dB / Attenuator(20 dB)	03/23/2020	Annual	8
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

	_
-	

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
TNM system	FBSM-01B / Amp & Filter Bank Switch Controller	N/A	N/A	N/A
Schwarzbeck	Loop Antenna	05/18/2020	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	08/02/2019	Biennial	01039
Schwarzbeck	BBHA 9120D / Horn Antenna	06/28/2019	Biennial	1300
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	04/29/2019	Biennial	BBHA9170342
Rohde & Schwarz	FSP(10 Hz ~ 40 GHz) / Spectrum Analyzer	05/13/2020	Annual	101055
Wainwright Instruments	WRCJV2400/2483.5-2370/2520- 60/12SS / Band Reject Filter	01/21/2020	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	02/10/2020	Annual	1
CERNEX	CBL18265035 / Power Amplifier	12/26/2019	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	03/23/2020	Annual	25956
TNM system	FBSM-05B / HPF(3~18GHz) + LNA1(1~18GHz)	01/21/2020	Annual	F6
TNM system	FBSM-05B / ATT(10dB) + LNA1(1~18GHz)	01/21/2020	Annual	None
TNM system	FBSM-05B / ATT(3dB) + LNA1(1~18GHz)	01/21/2020	Annual	None
TNM system	FBSM-05B / LNA1(1~18GHz)	01/21/2020	Annual	25540
TNM system	FBSM-05B / HPF(7~18GHz) + LNA2(6~18GHz)	01/21/2020	Annual	28550
TNM system	FBSM-05B / Thru(30MHz ~ 18GHz)	01/21/2020	Annual	None

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2009-FI009-P