

FCC SAR TEST REPORT

Test File No : F690501-RF-SAR000050-A1

Equipment Under Test	Vacuum Cleaner
Model Name	A927KGMS
Applicant	LG Electronics Inc.
Address of Applicant	84, Wanam-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do, 51554, Rep. of Korea
FCC ID	BEJ-LCW007
Exposure Category	General Population/Uncontrolled Exposure
Standards	FCC 47 CFR Part 2 (2.1093)
	IEEE 1528, 2013
Receipt No.	GPWL2005000872SR
Date of Receipt	2020-05-13
Date of Test(s)	2020-05-15 ~ 2020-06-09
Date of Issue	2020-06-25
Test Result	Refer to the Page 04

In the configuration tested, the EUT complied with the standards specified above.

This test report does not assure KOLAS accreditation.

Remarks:

- 1) The results of this test report are effective only to the items tested.
- 2) The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received.

Report prepared by / James Kim Test Engineer

Approved by / Minhyuk Han Technical Manager

 Report File No :
 F690501-RF-SAR000050-A1
 Date of Issue :
 2020-06-25

 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)
 A4 (210)
 207

Page : 2 / 67

Revision history

Revision	Date of issue	Revisions	Revised By
-	June 12, 2020	Initial issue.	-
A1	June 25, 2020	Revision Update - SAR Table Title changed 'Body' to 'Extremity'	James Kim

Page : 3 / 67

Contents

1	Testing Laboratory	4
2	Details of Manufacturer	4
3	Description of EUT(s)	4
4	The Highest Reported SAR Values	4
5	Test Methodology	5
6	Test Environment	5
7	Specific Absorption Rate (SAR)	6
7.1	Introduction	6
7.2	SAR Definition	6
7.3	Test Standards and Limits	6
8	The SAR Measurement System	8
9	System Components	9
9.1	Probe	9
9.2	ELI Phantom	9
9.3	Device Holder	10
10	SAR Measurement Procedures	11
10.1	Normal SAR Measurement Procedure	11
11	SAR System Verification	13
12	Tissue Simulant Fluid for the Frequency Band	14
13	Instruments List	15
14	FCC Power Measurement Procedures	17
15	Measured and Reported SAR	17
16	Maximum Output Power Specifications	17
16.1	WLAN Maximum Output Power Specifications	17
17	RF Conducted Power Measurement	18
17.1	Conducted Power	18
18	Transmit Antenna Separation Distances	19
19	SAR Test Exclusion Applied	20
19.1	Vacuum Cleaner Device Type	20
20	SAR Data Summary	21
20.1	SAR Measurement	21
Appendi	ixes List	22
Appendi	ixes A.1	23
Appendi	ixes A 3	25
Appendi	ixes B.1	31
Appendixes C.1		
Appendi	ixes C.2	55
Appendi	ixes C.3	60
THE EN	ND	

1 Testing Laboratory

0 1	
Company Name	SGS Korea Co., Ltd.
Address	10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Republic of Korea 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Republic of Korea
Telephone	+82 +31 - 428 - 5700
FAX	+82 +31 - 427 - 2371

2 Details of Manufacturer

Applicant	LG Electronics Inc.
Address	84, Wanam-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do, 51554, Rep. of
	Korea
Email	Sunggun.cho@lge.com
Phone No.	+82-55-260-3966

3 Description of EUT(s)

- ····· F ····· ·· - · - (*)			
EUT Type	Vacuum Cleaner		
Model Name	A927KGMS		
Serial Number	#1		
Mode of Operation	WLAN		
Crest Factor	1 (WLAN)		
Body worn Accessory	None		
Tx Frequency Range	2412 MHz ~ 2462 MHz	(WLAN_802.11b/g/n)	
Additional Information	Manufacturer LG Electronics Inc.		
	Type PCB pattern antenna		
	Antenna Gain (dBi) 1.50		

4 The Highest Reported SAR Values

Equipment Class	Band	Highest Reported SAR 1g (W/kg)
DTS	2.4 GHz WLAN	0.10
Simultaneous SAR per KDB 690783 D01v01r03		N/A

5 Test Methodology

ANSI C95.1–2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment. Test tests documented in this report were performed in accordance with IEEE Standard 1528-2013 and the following published KDB procedures.

In additions;

\square	KDB 865664 D01v01r04 SAR Measurement Requirements for 100 MHz to 6 GHz			
\boxtimes	KDB 447498 D01v06	RF Exposure Procedures and Equipment Authorization Policies For Mobile And Portable Devices		
	KDB 447498 D02v02r01	SAR Measurement Procedures for USB Dongle Transmitters		
\boxtimes	KDB 248227 D01v02r02	SAR Guidance For IEEE 802.11 (Wi-Fi) Transmitters		
	KDB 615223 D01v01r01	802.16e/WiMax SAR Measurement Guidance		
	KDB 616217 D04v01r02	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers		
	KDB 643646 D01v01r03	SAR Test Reduction Considerations for Occupational PTT Radios		
	KDB 648474 D03v01r04	Evaluation and Approval Considerations for Handsets with Specific Wireless Charging Battery Covers		
	KDB 648474 D04v01r03	SAR Evaluation Considerations for Wireless Handsets		
	KDB 680106 D01v03	RF Exposure Considerations for Low Power Consumer Wireless Power Transfer Applications		
	KDB 941225 D01v03r01	3G SAR Measurement Procedures		
	KDB 941225 D05v02r05	SAR Evaluation Considerations for LTE Devices		
	KDB 941225 D06v02r01	SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities		
	KDB 941225 D07v01r02	SAR Evaluation Procedures for UMPC Mini-Tablet Devices		

6 Testing Environment

Ambient temperature	: 18°C ~ 25°C
Relative humidity	: 30% ~ 70%
Liquid temperature of during the test	:<± 2°C
Ambient noise & Reflection	: < 0.012 W/kg

Report File No : F690501-RF-SAR000050-A1 Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

7 **Specific Absorption Rate (SAR)**

7.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled

7.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7.3 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.3–2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting

source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

(1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

(2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

1. The spatial Peak value of the SAR averaged over any 1g gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8 The SAR Measurement System

A block diagram of the SAR measurement System is given in Fig. 1. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY professional system). The model EX3DV4 field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ ($|Ei|^2$)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

Fig 1. The microwave circuit arrangement used for SAR system verification

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows.
- DASY software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Verification dipole kits allowing to validate the proper functioning of the system.

Report File No : F690501-RF-SAR000050-A1 Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

9 System Components

9.1 Probe

Construction	:	Symmetrical design with triangular core. Built-in shielding against static charges.
		PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	:	Basic Broad Band Calibration in air Conversion Factors
		(CF) for HSL 835 and HSL1900.
		Additional CF-Calibration for other liquids and
		frequencies upon request.
Frequency	:	10 MHz to 6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	:	± 0.3 dB in HSL (rotation around probe axis)
		± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	e : 10μ W/g to > 100 m W/g;	
		Linearity: ± 0.2 dB(noise: typically < 1 μ W/g)
Dimensions	:	Overall length: 337 mm (Tip length: 20 mm)
		Tip diameter: 2.5 mm (Body diameter: 12 mm)
		Distance from probe tip to dipole centers: 1 mm
Application	:	High precision dosimetric measurements in any exposure
		scenario (e.g., very strong gradient fields). Only probe
		which enables compliance testing for frequencies up to 6
		Hz with precision of better 30%

EX3DV4 E-Field Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX C" for the Calibration Certification Report.

9.2 ELI Phantom

Construction	:	Phantom for compliance testing of handheld and body- mounted wireless devices in the frequency range of 30 Mz to 6 Gz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.	
		ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure	ELI Phantom
Shell Thickness	:	$2.0 \text{ mm} \pm 0.2 \text{ mm}$	
Dimensions	:	Major axis: 600 mm Minor axis: 400 mm	

9.3 SAM Phantom

Construction	:	The SAM Phantom is constructed of a fiberglass shell
		integrated in a wooden table. The shape of the shell is
		based on data from an anatomical study designed to
		determine the maximum exposure in at least 90 % of all
		users. It enables the dosimetric evaluation of left and right
		hand phone usage as well as body mounted usage at the
		flat phantom region. A cover prevents the evaporation of
		the liquid. Reference markings on the Phantom allow the
		complete setup of all predefined phantom positions and
		measurement grids by manually teaching three points in
		the robot
Shell Thickness	:	$2.0 \text{ mm} \pm 0.1 \text{ mm}$

: Approx. 25 liters

SAM Phantom

9.4 Device Holder

Construction:

Filling Volume

: In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

10 SAR Measurement Procedures

10.1 Normal SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 1.4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2 and 3: Area Scan & Zoom Scan Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1 g and 10 g.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

			\leq 3 GHz	> 3 GHz		
Maximum distance fro (geometric center of pr	m closest i obe sensoi	measurement point rs) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2}\cdot\delta\cdot\ln(2)\pm0.5$ mm		
Maximum probe angle surface normal at the n	from prob neasureme	e axis to phantom nt location	$30^{\circ} \pm 1^{\circ}$	20° ± 1°		
			\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan sp	oatial resol	ution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan s	spatial reso	blution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ $2-3 \text{ GHz:} \leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$		
	uniform	grid: Δz _{Zcom} (n)	≤ 5 mm	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤3 mm 4 – 5 GHz: ≤2.5 mm 5 – 6 GHz: ≤2 mm		
surface	grid	$\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		
Note: δ is the penetrati P1528-2011 for c^* When zoom scan is KDB 447498 is ≤ 1 .	on depth o letails. required a 4 W/kg, \leq	f a plane-wave at normand the <u>reported</u> SAR from 8 mm, ≤ 7 mm and ≤ 51	I incidence to the tissue mediu on the area scan based 1 -g SAR mm zoom scan resolution may	m; see draft standard IEEE estimation procedures of be applied, respectively, for		

< Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04 >

2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

11 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. 1. The daily system accuracy verification occurs within the flat section of the ELI phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 2450 MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1. (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was in the range (22 ± 2) ° C, the relative humidity was in the range (55 ± 5) % R.H and the liquid depth above the ear reference points was \geq 15 cm ± 5 mm (frequency \leq 3 GHz) or ≥ 10 cm ± 5 mm (frequency > 3 G Hz) in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Fig. 1. The microwave circuit arrangement used for SAR system verification

- A. R&S Model SMBV100A Vector Signal Generator
- B. BONN ELEKTRONIK Model BLMA1060-10 Amplifier
- C. Agilent Model N1914A Power Meter
- D. Agilent Model N8481A Power Sensor
- E. KEYSIGHT Model 772D Dual Directional Coupler
- F. Reference dipole Antenna

Photo of the dipole Antenna

Verification Kit	Probe S/N	Tissue	Target SAR 1 g from Calibration Certificate (1 W)	Measured SAR 1 g (0.1 W)	Normalized SAR 1 g (1 W)	Deviation (%)	Date	Liquid Temp. (°C)
D2450V2 SN:892	7413	2450 Head	52.60	5.10	51.00	-3.04	2020-05-15	22.1
D2450V2 SN:892	7413	2450 Head	52.60	5.18	51.80	-1.52	2020-06-09	22.0

Table1. Results system verification

Report File No : F690501-RF-SAR000050-A1

12 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the SPEAG Model DAKS-3.5 Dielectric

			Dielectric Parameters					
f (MHz)	Tissue type	Limits / Measured	Permittivity	Conductivity	Simulated Tissue Temp(℃)			
		Measured, 2020-05-15	39.29	1.79				
2450		Target Tissue Head	39.20	1.80				
	Head	Deviation (%)	<u>0.23</u>	<u>-0.56</u>	22.1			
		Measured, 2020-05-15	39.12	1.74				
2412		Deviation (%)	<u>-0.20</u>	-3.33				
		Measured, 2020-06-09	40.25	1.82				
2450		Target Tissue	39.20	1.80				
	Head	Deviation (%)	<u>2.68</u>	<u>1.01</u>	22.0			
2412		Measured, 2020-06-09	40.42	1.79				
		Deviation (%)	<u>3.11</u>	<u>-0.56</u>				

Probe in conjunction with SPEAG Vertor Network Analyzer (85 Mtz-14 GHz).

The composition of the brain & muscle tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)											
(% by weight)	4	50	83	35	900		1900		2450			
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body		
Water	38.91	46.21	40.29	50.75	40.29	50.75	55.24	70.17	55.00	68.64		
Salt (NaCl)	3.79	2.34	1.38	0.94	1.38	0.94	0.31	0.39	-	-		
Sugar	56.93	51.17	57.90	-	57.90	-	-	-	-	-		
HEC	0.25	0.15	0.24	0.10	0.24	0.10	-	-	-	-		
Bactericide	0.12	0.08	0.18	-	0.18	-	-	-	-	-		
Triton X-100	-	-	-	-	-	-	-	-	-	-		
DGBE	-	-	-	-	-	-	44.45	70.17	45.00	31.37		
Dielectric Constant	43.5	56.7	41.5	55.2	41.5	55.0	40.0	53.3	39.2	52.7		
Conductivity (S/m)	0.87	0.94	0.90	0.97	0.97	1.05	1.40	1.52	1.80	1.95		

Salt: 99 ⁺% Pure Sodium Chloride

Sugar: 98 ⁺% Pure Sucrose

HEC: Hydroxyethyl Cellulose

Water: De-ionized, 16 $M\Omega^+$ resistivity

DGBE: 99 ⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Report File No: F690501-RF-SAR000050-A1

Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page : 15 / 67

Test Platform	SPEAG DASY6 Professional									
Manufacture	SPEAG	SPEAG								
Description	SAR Test System (Fre	SAR Test System (Frequency range 300 MHz – 6 GHz)								
Software Reference	DASY52: 52.10.4(152	27) / SEMCAD X: 14.6.	14(7483)							
		Hardware Reference								
Equipment	Туре	Serial Number	Cal Date	Cal Interval	Cal Due					
Phantom	ELI Phantom	TP-1200	N/A	N/A	N/A					
Verification Dipole	D2450V2	892	2019-04-24	Biennial	2021-04-24					
Calibration of dielectric parameter Probes	DAKS-3.5	1068	2020-02-25	Annual	2021-02-25					
Performance Check for Vector Network Analyzer and Vector Reflectometer	DAKS_VNA R140	160115	2020-03-02	Annual	2021-03-02					
DAE	DAE4	1507	2019-09-18	Annual	2020-09-18					
E-Field Probe	EX3DV4	7413	2019-09-26	Annual	2020-09-26					
Power Meter	N1914A	MY56120017	2019-06-12	Annual	2020-06-12					
Power Sensor	N8481A	MY56120026	2019-06-12	Annual	2020-06-12					
Power Sensor	N8481A	MY56120030	2019-06-12	Annual	2020-06-12					
Vector Signal Generator	SMBV100A	262093	2019-06-10	Annual	2020-06-10					
Power Amplifier	BLMA1060-10	1711221	2019-06-12	Annual	2020-06-12					
Dual Directional Coupler	772D	MY52180259	2019-06-12	Annual	2020-06-12					
LP Filter	WLJ4-3000-5850- 8000-60EF	1	2019-06-12	Annual	2020-06-12					
Attenuator	RFHB1210NC2	A5	2019-12-04	Annual	2020-12-04					
Attenuator	RFHB1203NC2	A9	2019-12-04	Annual	2020-12-04					
Hygro-Thermometer	TE-201	TE-201-2	2019-06-12	Annual	2020-06-12					
Digital Thermometer	SDT25	16031500243	2019-06-12	Annual	2020-06-12					
Signal Analyzer	FSV7	103082	2020-03-03	Annual	2021-03-03					

13 Instruments List

2020-06-09					
Equipment	Туре	Serial Number	Cal Date	Cal Interval	Cal Due
Phantom	SAM Phantom	TP-1908	N/A	N/A	N/A
Verification Dipole	D2450V2	892	2019-04-24	Biennial	2021-04-24
Calibration of dielectric parameter Probes	DAKS-3.5	1068	2020-02-25	Annual	2021-02-25
Performance Check for Vector Network Analyzer and Vector Reflectometer	DAKS_VNA R140	0160115	2020-03-02	Annual	2021-03-02
DAE	DAE4	1507	2019-09-18	Annual	2020-09-18
E-Field Probe	EX3DV4	7413	2019-09-26	Annual	2020-09-26
Power Meter	N1914A	MY56120017	2020-06-05	Annual	2021-06-05
Power Sensor	N8481A	MY56120026	2020-06-05	Annual	2021-06-05
Power Sensor	N8481A	MY56120030	2020-06-05	Annual	2021-06-05
Signal Generator	SMBV100A	262093	2020-06-03	Annual	2021-06-03
Power Amplifier	BLMA1060-10	1711221	2020-06-05	Annual	2021-06-05
Dual Directional Coupler	772D	MY52180259	2020-06-05	Annual	2021-06-05
LP Filter	WLJ4-3000-5850- 8000-60EF	1-3.0	2020-06-05	Annual	2021-06-05
Attenuator	2	BY6201	2020-06-05	Annual	2021-06-05
Attenuator	2	CB6049	2020-06-05	Annual	2021-06-05
Digital Thermometer	SDT25	16031500243	2019-06-12	Annual	2020-06-12
Hygro-Thermometer	TE-201	TE-201-2	2020-06-04	Annual	2021-06-04
Spectrum Analyzer	FSV7	103082	2020-03-03	Annual	2021-03-03

14 FCC Power Measurement Procedures

The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5 % occurred, the tests were repeated.

15 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. Test highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

16 Maximum Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06

Average power for Production (dB m)								
Mode	Channel	Normal/Maximum	Main					
902 11h	All Channels	Maximum	17.00					
802.110	All Channels	Normal	15.00					
<u>802 11 a</u>	All Channels	Maximum	16.00					
802.11g	All Channels	Normal	14.00					
802.11n	All Channels	Maximum	15.00					
HT20	All Channels	Normal	13.00					
802.11n	All Channels	Maximum	14.00					
HT40	An Unannels	Normal	12.00					

16.1 WLAN Maximum Output Power Specifications

17 RF Conducted Power Measurement

17.1 Conducted Power

WLAN 2.4 GHz

Mode	Freq. (MHz)	Ch. #	Rate	Average Power [dB m]		
	2412	1	1	17.00		
802.11b	2437	6	1	16.70		
	2462	11	1	16.50		
	2412	1	6			
802.11g	2437	6	6			
	2462	11	6			
002 11	2412	1	MCS0			
802.11n HT20	2437	6	MCS0	Not Measured		
H120	2462	11	MCS0			
002 11	2422	3	MCS0			
802.11n	2437	6	MCS0			
п140	2452	9	MCS0			

Note. Justification for test configurations for WLAN per KDB Publication 248227 D01 Wi-Fi SAR v02r02:

1. Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.

2. For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.

3. For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.

4. For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For channels were measured.

18 Transmit Antenna Separation Distances

<The Distance information of Antenna to Edges of Vacuum Cleaner>

19 SAR Test Exclusion Applied

19.1 Vacuum Cleaner Device Type

Based on the maximum tune-up tolerance limit of WLAN and Bluetooth, and the antenna to use separation distance,

Table "EXEMPT" SAR was not required and Table "Measure" SAR was required.

Frequency	Output	t power	Separation distances (mm)								SAR E	remption		
(MHz)	dBm	mW	Front	Rear	Left Edge	Right Edg	Тор	Bottom	Front	Rear	Left Edge	Right Edge	Тор	Bottom
2462	17.00	50.00	30.2	52.0	4.5	4.5	85.2	36.5	EXEMPT	EXEMPT	15.69 Measure	15.69 Measure	EXEMPT	EXEMPT

Note

- 1. Maximum power is the source-based time-average power and represents the maximum RF output power among production units.
- 2. For distances < 5mm, a distance of 5mm is used to determine SAR exclusion and estimated SAR value.
- 3. Output power is the maximum rated power (including tune-up or manufacturing tolerances).
- 4. If the antenna separation distance is > 50mm then the value listed is the output power threshold, above which SAR measurement is required. For separation ≤ 50mm the value is the KDB 447498 D01v06 calculated value and must be less than 3 for SAR exemption.
- 5. Formulas round separation distance to nearest mm and power to nearest mW before calculating thresholds or exemption values.

20 SAR Data Summary

20.1 SAR measurement

WLAN 2.45 GHz Extremity SAR

FUT	EUT	Mode	Dista	Traffic Channel		Power(dBm)		Peak SAR of	10-g	Scaling	Scaling	10-g Seeled	Plo
Туре	EUT Type Position		nce (mm)	Frequency (Mtz)	Channel	Conduc ted Power	Tune-Up Limit	Area Scan (W/kg)	SAR (W/kg)	(Power)	Factor (Duty)	SAR (W/kg)	t No
Heat	Right Edge	802 11h	0	2412	1	17.00	17.00	0.203	0.070	1.000	1.012	0.071	A2
most	Left Edge	802.110	0	2412	1	17.00	17.00	0.278	0.097	1.000	1.012	0.098	A2
	Front		0	2412	1	17.00	17.00	14.80	1.860	1.000	1.012	1.882	A3
Mod	Rear	202 11h	0	2412	1	17.00	17.00	13.20	1.870	1.000	1.012	1.892	A3
ule	Right Edge	802.110	0	2412	1	17.00	17.00	5.80	1.230	1.000	1.012	1.245	A3
	Left Edge		0	2412	1	17.00	17.00	6.02	1.350	1.000	1.012	1.366	A3

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D01v06.
- 2. Liquid tissue depth was at least 15 cm for all frequencies.
- 3. All modes of operation were investigated, and worst-case results are reported.
- 4. The EUT is tested 2^{nd} hot-spot peak, if it is less than 2 dB below the highest peak.
- 5. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 6. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 7. Module SAR measurement is proceeded according to FCC inquiry requirement

Appendixes List Appendix A A.1 Verification

Appendix A	A.1 Verification Test Plots for 2450MHz					
	A.2 SAR Test Plots for WLAN 2450 MHz(Host)					
	A.3 SAR Test Plots for WLAN 2450 MHz(Module)					
Appendix B	B.1 Uncertainty Analysis					
Appendix C	C.1 Calibration certificate for Probe					
	C.2 Calibration certificate for DAE					
	C.3 Calibration certificate for Dipole					

Appendix A.1 Verification Test Plots for 2450 MHz

Date: 2020-05-15

Test Laboratory : SGS Korea (Gunpo Laboratory) File Name: 2450MHz Verification 2020_05_15.da53:0

Input Power: 100 mW

Ambient Temp: 23.4 °C Tissue Temp: 22.1 °C

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:892

Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.791$ S/m; $\epsilon_r = 39.292$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY52 Configuration:

- Probe: EX3DV4 SN7413; ConvF(7.33, 7.33, 7.33) @ 2450 MHz; Calibrated: 2019-09-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1507; Calibrated: 2019-09-18
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1200
- DASY52 52.10.4(1527)SEMCAD X 14.6.14(7483)

Verification/2450MHz Verification/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 8.54 W/kg

Verification/2450MHz Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 71.28 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 10.9 W/kg **SAR(1 g) = 5.1 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 46.5\% Maximum value of SAR (measured) = 8.71 W/kg**

Page : 24 / 67

Date: 2020-06-09

Test Laboratory : SGS Korea (Gunpo Laboratory) File Name: 2450MHz Verification 2020 06 09.da53:0

Input Power : 250 mW

Ambient Temp: 23.3 °C Tissue Temp: 22.0 °C

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:892

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.823 S/m; ϵ_r = 40.247; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY52 Configuration:

- Probe: EX3DV4 SN7413; ConvF(7.33, 7.33, 7.33) @ 2450 MHz; Calibrated: 2019-09-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1507; Calibrated: 2019-09-18
- Phantom: Twin-SAM V.5.0 SN:1908; Type: SN:1908; Serial: SN:1908
- DASY52 52.10.4(1527)SEMCAD X 14.6.14(7483)

Verification/2450MHz Verification/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 22.6 W/kg

Verification/2450MHz Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 113.5 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.7 W/kg **SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.41 W/kg** Smallest distance from peaks to all points 3 dB below = 9.6 mm Ratio of SAR at M2 to SAR at M1 = 48.9% Maximum value of SAR (measured) = 22.7 W/kg

Appendix A.2 SAR Test Plots for WLAN 2450 MHz(Host)

Date: 2020-05-15

Test Laboratory : SGS Korea (Gunpo Laboratory) File Name: <u>2.4GHz_WLAN_802.11b_Left Edge_CH1.da53:0</u>

Ambient Temp: 23.4 °C Tissue Temp: 22.1 °C

DUT: A927KGMS; Type: Vacuum Cleaner; Serial: #1

Communication System: UID 0, WLAN 2.45GHz (0); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; σ = 1.736 S/m; ϵ_r = 39.12; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY52 Configuration:

- Probe: EX3DV4 SN7413; ConvF(7.33, 7.33, 7.33) @ 2412 MHz; Calibrated: 2019-09-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1507; Calibrated: 2019-09-18
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1200
- DASY52 52.10.4(1527)SEMCAD X 14.6.14(7483)

Body/2.4GHz_WLAN_802.11b_Left Edge_CH1/Area Scan (231x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.278 W/kg

Body/2.4GHz_WLAN_802.11b_Left Edge_CH1/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 6.612 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.339 W/kg **SAR(1 g) = 0.182 W/kg; SAR(10 g) = 0.097 W/kg Smallest distance from peaks to all points 3 dB below = 13.6 mm Ratio of SAR at M2 to SAR at M1 = 52.4\% Maximum value of SAR (measured) = 0.279 W/kg**

Date: 2020-05-15

Test Laboratory : SGS Korea (Gunpo Laboratory) File Name: 2.4GHz_WLAN_802.11b_Right Edge_CH1.da53:0

Ambient Temp: 23.4 °C Tissue Temp: 22.1 °C

DUT: A927KGMS; Type: Vacuum Cleaner; Serial: #1

Communication System: UID 0, WLAN 2.45GHz (0); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.736$ S/m; $\epsilon_r = 39.12$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY52 Configuration:

- Probe: EX3DV4 - SN7413; ConvF(7.33, 7.33, 7.33) @ 2412 MHz; Calibrated: 2019-09-26

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1507; Calibrated: 2019-09-18

- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1200

- DASY52 52.10.4(1527)SEMCAD X 14.6.14(7483)

Body/2.4GHz_WLAN_802.11b_Right Edge_CH1/Area Scan (231x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.203 W/kg

Body/2.4GHz WLAN 802.11b Right Edge CH1/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 6.940 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.247 W/kg **SAR(1 g) = 0.132 W/kg; SAR(10 g) = 0.070 W/kg Smallest distance from peaks to all points 3 dB below = 13.6 mm Ratio of SAR at M2 to SAR at M1 = 52.9\% Maximum value of SAR (measured) = 0.204 W/kg**

Appendix A.3 SAR Test Plots for WLAN 2450 MHz(Module)

Date: 2020-06-09

Test Laboratory : SGS Korea (Gunpo Laboratory) File Name: 2.4GHz_WLAN_802.11b_Front_CH1.da53:0

Ambient Temp: 23.3 °C Tissue Temp: 22.0 °C

DUT: LCW-007; Type: WLAN Module; Serial: #1

Communication System: UID 0, WLAN 2.45GHz (0); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; σ = 1.785 S/m; ϵ_r = 40.416; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY52 Configuration:

- Probe: EX3DV4 SN7413; ConvF(7.33, 7.33, 7.33) @ 2412 MHz; Calibrated: 2019-09-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1507; Calibrated: 2019-09-18
- Phantom: Twin-SAM V.5.0 SN:1908; Type: SN:1908; Serial: SN:1908
- DASY52 52.10.4(1527)SEMCAD X 14.6.14(7483)

Body/2.4GHz_WLAN_802.11b_Front_CH1/Area Scan (71x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 14.8 W/kg

Body/2.4GHz_WLAN_802.11b_Front_CH1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.58 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 14.8 W/kg SAR(1 g) = 4.86 W/kg; SAR(10 g) = 1.86 W/kg Smallest distance from peaks to all points 3 dB below = 6.4 mm Ratio of SAR at M2 to SAR at M1 = 30.5%Maximum value of SAR (measured) = 9.76 W/kg

Date: 2020-06-09

Test Laboratory : SGS Korea (Gunpo Laboratory) File Name: <u>2.4GHz_WLAN_802.11b_Rear_CH1.da53:0</u>

Ambient Temp: 23.3 °C Tissue Temp: 22.0 °C

DUT: LCW-007; Type: WLAN Module; Serial: #1

Communication System: UID 0, WLAN 2.45GHz (0); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; σ = 1.785 S/m; ϵ_r = 40.416; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY52 Configuration:

- Probe: EX3DV4 - SN7413; ConvF(7.33, 7.33, 7.33) @ 2412 MHz; Calibrated: 2019-09-26

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1507; Calibrated: 2019-09-18
- Phantom: Twin-SAM V.5.0 SN:1908; Type: SN:1908; Serial: SN:1908
- DASY52 52.10.4(1527)SEMCAD X 14.6.14(7483)

Body/2.4GHz_WLAN_802.11b_Rear_CH1/Area Scan (71x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 13.2 W/kg

Body/2.4GHz_WLAN_802.11b_Rear_CH1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 47.85 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.6 W/kg **SAR(1 g) = 4.67 W/kg; SAR(10 g) = 1.87 W/kg** Smallest distance from peaks to all points 3 dB below = 5.4 mm Ratio of SAR at M2 to SAR at M1 = 25.8% Maximum value of SAR (measured) = 9.12 W/kg

Date: 2020-06-09

Test Laboratory : SGS Korea (Gunpo Laboratory) File Name: <u>2.4GHz_WLAN_802.11b_Right Edge_CH1.da53:0</u>

Ambient Temp: 23.3 °C Tissue Temp: 22.0 °C

DUT: LCW-007; Type: WLAN Module; Serial: #1

Communication System: UID 0, WLAN 2.45GHz (0); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; σ = 1.785 S/m; ϵ_r = 40.416; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY52 Configuration:

- Probe: EX3DV4 - SN7413; ConvF(7.33, 7.33, 7.33) @ 2412 MHz; Calibrated: 2019-09-26

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1507; Calibrated: 2019-09-18
- Phantom: Twin-SAM V.5.0 SN:1908; Type: SN:1908; Serial: SN:1908
- DASY52 52.10.4(1527)SEMCAD X 14.6.14(7483)

Body/2.4GHz_WLAN_802.11b_Right Edge_CH1/Area Scan (71x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 5.80 W/kg

Body/2.4GHz_WLAN_802.11b_Right Edge_CH1/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 55.44 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 8.58 W/kg **SAR(1 g) = 3.02 W/kg; SAR(10 g) = 1.23 W/kg Smallest distance from peaks to all points 3 dB below = 6 mm Ratio of SAR at M2 to SAR at M1 = 35.5\% Maximum value of SAR (measured) = 6.18 W/kg**

Date: 2020-06-09

Test Laboratory : SGS Korea (Gunpo Laboratory) File Name: 2.4GHz_WLAN_802.11b_Left Edge_CH1.da53:0

Ambient Temp: 23.3 °C Tissue Temp: 22.0 °C

DUT: LCW-007; Type: WLAN Module; Serial: #1

Communication System: UID 0, WLAN 2.45GHz (0); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; σ = 1.785 S/m; ϵ_r = 40.416; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY52 Configuration:

- Probe: EX3DV4 - SN7413; ConvF(7.33, 7.33, 7.33) @ 2412 MHz; Calibrated: 2019-09-26

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1507; Calibrated: 2019-09-18
- Phantom: Twin-SAM V.5.0 SN:1908; Type: SN:1908; Serial: SN:1908
- DASY52 52.10.4(1527)SEMCAD X 14.6.14(7483)

Body/2.4GHz_WLAN_802.11b_Left Edge_CH1/Area Scan (71x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 6.02 W/kg

Body/2.4GHz_WLAN_802.11b_Left Edge_CH1/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 60.70 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 8.38 W/kg **SAR(1 g) = 3.28 W/kg; SAR(10 g) = 1.35 W/kg Smallest distance from peaks to all points 3 dB below = 7 mm Ratio of SAR at M2 to SAR at M1 = 38.7\% Maximum value of SAR (measured) = 6.29 W/kg**

Page : 31 / 67

Appendix B.1 Uncertainty Analysis

		-t	a = f(d t)	£	~	h	i	1-
a	C	d	$e - I(d, \kappa)$	1	g	cxf/e	cxg/e	K
Uncertainty Component	Tol	Prob .	Div	Ci	Ci	1g	10g	Vi
Oncertainty Component	(%)	Dist.	DIV.	(1g)	(10g)	ui (%)	ui (%)	(Veff)
Probe calibration	6.55	Ν	1	1	1	6.55	6.55	∞
Axial Isotropy	4.70	R	1.73	0.71	0.71	1.92	1.92	∞
Hemispherical Isotropy	9.60	R	1.73	0.71	0.71	3.92	3.92	∞
Boundary Effects	2.00	R	1.73	1	1	1.15	1.15	∞
Linearity	4.70	R	1.73	1	1	2.71	2.71	∞
System Detection Limits	1.00	R	1.73	1	1	0.58	0.58	∞
Modulation Response	4.80	R	1.73	1	1	2.77	2.77	∞
Readout Electronics	0.30	Ν	1	1	1	0.30	0.30	∞
Response Time	0.80	R	1.73	1	1	0.46	0.46	∞
Integration Time	2.60	R	1.73	1	1	1.50	1.50	∞
RF Ambient Noise	3.00	R	1.73	1	1	1.73	1.73	∞
RF Ambient Reflections	3.00	R	1.73	1	1	1.73	1.73	∞
Probe Positiones	0.83	R	1.73	1	1	0.48	0.48	∞
Probe Positioning	6.67	R	1.73	1	1	3.85	3.85	∞
Max SAR evaluation	4.00	R	1.73	1	1	2.31	2.31	∞
Test sample positioning	2.61/2.20	Ν	1	1	1	2.61	2.20	24
Device holder uncertainty	1.43	N	1	1	1	1.43	1.43	3
Output power variation - SAR drift measurement	5.00	R	1.73	1	1	2.89	2.89	∞
Phantom uncertainty	6.60	R	1.73	1	1	3.81	3.81	∞
Liquid Conductivity - deviation from target values	5.00	R	1.73	0.64	0.43	1.85	1.24	8
Liquid Permittivity - deviation from target values	5.00	R	1.73	0.6	0.49	1.73	1.41	8
Liquid conductivity- measurement	1.20	N	1	0.78	0.71	0.94	0.85	5
Liquid permittivity- measurement	0.20	Ν	1	0.23	0.26	0.05	0.05	7
Liquid conductivity-temperature	1.27	R	1.73	0.78	0.71	0.57	0.52	21
Liquid permittivity – temperature	1.02	R	1.73	0.23	0.26	0.14	0.15	21
Combined standard uncertainty			RSS			12.11	11.90	∞
Expanded uncertainty (95% CONFIDENCE INTERVAL)			k=2			24.22	23.80	

Report File No : F690501-RF-SAR000050-A1

Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Appendix C.1 Calibration certificate for Probe(S/N: 7413)

Engineering AG eughausstrasse 43, 8004 Zi	urich, Switzerland	BECMEA O S	Schweizerischer Kalibrierdiens Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accre he Swiss Accreditation Ser	ditation Service (SAS) vice is one of the signatories	s to the EA	creditation No.: SCS 0108
Multilateral Agreement for th	e recognition of calibration of	certificates	
Client SGS Korea (Dymstec)	Certificate No	EX3-7413_Sep19
CALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:741	13	
Calibration procedure(s)	QA CAL-01.v9, Q Calibration proces	A CAL-14.v5, QA CAL-23.v5, QA dure for dosimetric E-field probes	CAL-25.v7 기술적입자
Calibration date:	September 26, 20)19	
The measurements and the un	certainties with confidence pro	obability are given on the following pages and	are part of the certificate.
All calibrations have been con	tucted in the elected inheritery	1	Carlo Carlo Carlo
All calibrations have been conc Calibration Equipment used (N	ducted in the closed laboratory	facility: environment temperature (22 \pm 3) $^{3}\mathrm{C}$ i	and humidity < 70%
All calibrations have been conc Calibration Equipment used (N Primary Standards	ducted in the closed laboratory 18TE critical for calibration)	r facility: environment temperature (22 ± 3)°C i	and humidity < 70%
All calibrations have been conc Calibration Equipment used (N Primary Standards Power meter NRP	ducted in the closed laboratory 1&TE critical for calibration) ID SN: 104778	Cal Date (Certificate No.)	scheduled Calibration
Il calibrations have been conv alibration Equipment used (N "rimary Standards "ower meter NRP "ower sensor NRP-291	ducted in the closed laboratory 18TE critical for calibration) ID SN: 104778 SN: 103244	r facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892)	Scheduled Calibration Apr-20
Il calibrations have been con Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291	ducted in the closed laboratory I&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245	r facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892)	Scheduled Calibration Apr-20 Apr-20 Apr-20
VII calibrations have been con- Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator	ducted in the closed laboratory 1&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x)	r facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894)	Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20
All calibrations have been conc Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4	ducted in the closed laboratory I&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 660	 Facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660, Dec18) 	Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19
All calibrations have been con Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2	ducted in the closed laboratory 1&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 660 SN: 3013	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 03-Apr-19 (No. 217-02893) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 03-Apr-19 (No. 217-02893) 03-Apr-19 (No. 217-02893) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 05-Apr-19 (No. 217-02893) 06-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19
All calibrations have been con- Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2	ducted in the closed laboratory 1&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 660 SN: 3013 ID	facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18) Chack Date (chack)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19
All calibrations have been conc Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter EA410B	ducted in the closed laboratory 18TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 65277 (20x) SN: 660 SN: 3013 ID SN: CB41393874	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 05-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. DE3-3013_Dec18) Check Date (in house) 05 Apr 16 (in house)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19 Dec-19
All calibrations have been conc Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A	ducted in the closed laboratory M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: GB41293874 SN: MV41498087	 Facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20
All calibrations have been conc Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A	ducted in the closed laboratory M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 30245 SN: 55277 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 900110210	 Facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. DAE4-660_Dec18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check; Jun-20
All calibrations have been conc Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ducted in the closed laboratory 18 TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: WY41498087 SN: 000110210 SN: US3642101700	 Facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19 Scheduled Check. In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
All calibrations have been conc Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Power sensor E4412A Fig generator HP 8648C Vetwork Analyzer E835BA	ducted in the closed laboratory 18TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: WY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 03-Apr-14 (in house check Jun-18)	Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19 Scheduled Check. In house check: Jun-20 In house check: Jun-20
All calibrations have been conc Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Power sensor E4412A Power sensor E4412A RF generator HP 8648C Vetwork Analyzer E8358A	ducted in the closed laboratory 18TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. DAE4-660_Dec18) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18)	Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check: Jun-20
All calibrations have been conc Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Reference F4412A Reference HP 8648C Network Analyzer E8358A	ducted in the closed laboratory M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: 00110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name Jeton Kastrati	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Apr-99 (in house check Jun-18) 05-Apr-16 (in house check Jun-18) 04-Apr-99 (in house check Jun-18) 05-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Oct-18)	Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 Signature
All calibrations have been conc Calibration Equipment used (N Primary Standards Power meter NRP Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Se generator HP 8648C Network Analyzer E8358A Calibrated by:	ducted in the closed laboratory M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name Jeton Kastrati Katja Pokovic	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. DAE4-660_Dec18) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-18 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 05-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 05-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 07-Aug-99 (in house check Jun-18) 08-Apr-18 (in house check Jun-18) 19-Apr-19 (in house check Jun	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check: Jun-2

Certificate No: EX3-7413_Sep19

Page 1 of 23

Calibration Laboratory of Schmid & Partner Engineering AG sstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

S

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center).
	i.e., 9 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-
- held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 C)
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664. "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz. R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax.y,z; Bx.y,z; Cx.y,z; Dx,y,z; VRx,y,z: A. B. C. D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip. (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7413_Sep19

Page 2 of 23

Report File No : F690501-RF-SAR000050-A1 Date of Issue : 2020-06-25

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

EX3DV4 - SN:7413

September 26, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7413

Basic Calibration Parameters

the second s	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m)2) ^A	0.60	0.67	0.42	± 10.1 %
DCP (mV) ^e	101.0	99.4	101.0	

Calibration Results for Modulation Response

סוט	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	135.4	± 3.0 %	± 4.7 %
	2.00	Y	0.00	0.00	1.00	2000	144.9	1	1 Carrier
		Z	0.00	0.00	1.00		145.4		
10352-	Pulse Waveform (200Hz, 10%)	X	15.00	89.48	20.85	10.00	60.0	± 3.3 %	±9.6 %
AAA		Y	15.00	88.49	20.19		60.0		
	A CONTRACTOR OF THE REAL OF TH	Z	15,00	89.15	20.66	· · · · · ·	60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	15.00	91.25	20.76	6.99	80.0	± 1.7 %	±9.6 %
AAA		Y	15.00	89.92	19.68		80.0		
	1	Z	15.00	91.59	20.68		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	96.37	22.01	3.98	95.0	± 1,2 %	±9.6 %
AAA		Y	15.00	94.41	20.36		95.0		
	the second se	Z	15.00	101.15	23.90		95.0	1	
10355-	Pulse Waveform (200Hz, 60%)	X	15.00	105.46	25.02	2.22	120.0	± 1.1 %	± 9.6 %
AAA	and the second sec	Y	15.00	96.14	19.62		120.0	211.1 70	
		Z	15.00	113.51	28.04	1.1.1.1	120.0	1	
10387-	QPSK Waveform, 1 MHz	X	1.12	67.48	12.68	0.00	150.0	±2.7 %	±96%
AAA	The second star second	Y	0.53	60.00	7.09		150.0		
	and the second sec	Z	0.70	62.35	9.31		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.71	71.73	17.77	0.00	150.0	±1.1%	±9.6 %
AAA		Y	2.08	67.43	15.36		150.0		
7 C	the second se	Z	2.37	69.65	16.67		150.0		1
10396-	64-QAM Waveform, 100 kHz	X	3.42	73.48	20.37	3.01	150.0	±0.7%	±9.6 %
AAA	A CONTRACT OF LOCAL PORT AND	Y	2.95	70.42	18.79		150.0		
		Z	3.59	74.37	20.58		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.65	68.11	16.48	0.00	150.0	±2.0 %	± 9.6 %
AAA	and the second se	Y	3.42	66.86	15.63		150.0		2.51
		Z	3.57	67.76	16.21	(150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.90	65.94	15.83	0.00	150.0	± 3.9 %	±9.6 %
AAA	house many mean property of	Y	4.76	65.54	15.50		150.0	C	
		Z	4.89	66.01	15.81	1	150.0	0	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X.Y.Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
^B Numerical linearization parameter: uncertainty not required.
^{II} Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the set of the square of the set of the square of the set o field value

Certificate No: EX3-7413_Sep19

Page 3 of 23

Report File No: F690501-RF-SAR000050-A1

EX3DV4- SN:7413

September 26, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7413

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
Х	47.5	351.63	35.22	17.80	0.21	5.10	0.88	0.35	1.01
Y	40.1	304.29	36.58	12.82	0.29	5.10	0.82	0.38	1.01
Z	43.0	320.46	35.53	12.09	0.29	5.09	1.73	0.23	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-23
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-7413_Sep19

Page 4 of 23

Report File No : F690501-RF-SAR000050-A1 Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

EX3DV4-SN:7413

September 26, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7413

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁰	Depth ^G (mm)	Unc (k=2)
835	41.5	0.90	9.57	9.57	9.57	0.62	0.80	± 12.0 %
900	41.5	0.97	9.24	9.24	9.24	0.48	0.88	± 12.0 %
1750	40.1	1,37	8.11	8.11	8.11	0.39	0.87	± 12.0 %
1900	40.0	1.40	7.76	7.76	7.76	0.37	0.87	± 12.0 %
2300	39.5	1.67	7.50	7.50	7.50	0.40	0.90	± 12.0 %
2450	39.2	1.80	7.33	7.33	7.33	0.30	0.95	± 12.0 %
2600	39.0	1.96	7.09	7.09	7.09	0.42	0.95	± 12.0 %
4800	36.4	4.25	5.82	5.82	5.82	0.40	1.80	± 13.1 %
4950	36.3	4.40	5.61	5.61	5.61	0.40	1,80	± 13,1 %
5200	36.0	4.66	5.51	5.51	5,51	0.40	1.80	± 13.1 %
5300	35.9	4.76	5.30	5.30	5.30	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.80	4.80	4.80	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.85	4.85	4.85	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Fréquency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. Frequencies below 3 GHz, the validity of tissue parameters (r and m) can be relaxed to ± 10% if liquid compensation formula is applied to

measured SAR values. At requencies above 3 GHz, the validity of issue parameters (is and o) can be relaxed to ± 10% in indud compensation formula is applied to the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-7413_Sep19

Page 5 of 23

Report File No : F690501-RF-SAR000050-A1 Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

EX3DV4-SN:7413

September 26, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7413

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
2450	52.7	1.95	7.46	7.46	7.46	0.30	0.98	± 12.0 %
5200	49.0	5.30	4.89	4.89	4.89	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.66	4.66	4.66	0.50	1,90	± 13.1 %
5600	48.5	5.77	4.31	4.31	4.31	0.50	1.90	± 13.1 %
5800	48.2	6.00	4,35	4.35	4.35	0.50	1.90	±13.1%

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10.25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively, Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.
^C Affrequencies below 3 GHz, the validity of tissue parameters (*i*: and *i*) can be relaxed to ± 10% if fuid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (*i*: and *i*) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
^C Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-7413_Sep19

Page 6 of 23

Report File No : F690501-RF-SAR000050-A1 Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

EX3DV4- SN:7413

September 26, 2019

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-7413_Sep19

Page 7 of 23

EX3DV4- SN:7413

September 26, 2019

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-7413_Sep19

Page 8 of 23

EX3DV4-SN:7413

September 26, 2019

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Certificate No: EX3-7413_Sep19

Page 9 of 23

September 26, 2019

Conversion Factor Assessment

Report File No :F690501-RF-SAR000050-A1Date of Issue :2020-06-25(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and
accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)RTT5041-76(2019.04.25) (4)A4 (210mm x 297mm)

EX3DV4- SN:7413

September 26, 2019

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^b (k=2)
0		CW	CW	0.00	1 147%
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	±9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802 11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6 %
0021	DAC	GSM-FDD (TDMA. GMSK)	GSM	9.39	±9.6 %
10023	DAG	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6 %
0025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6 %
0026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9,6 %
0027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6 %
0028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6 %
0029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6 %
0030	CAA	IEEE 802 15 1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	+9.6%
0031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	+96%
0032	CAA	IEEE 802 15 1 Bluetooth (GESK, DH5)	Bluetooth	1.16	+96%
0033	CAA	IEEE 802 15 1 Bluetooth (PI/4-DOPSK_DH1)	Bluetooth	7.74	+06%
0034	CAA	IEEE 802 15 1 Bluetooth (PI/4-DOPSK_DH3)	Bluetooth	1.53	+96%
0035	CAA	IEEE 802 15 1 Bluetooth (PI/A DOPSK, DHS)	Bluetooth	2.00	106%
0036	CAA	IEEE 802 15 1 Birelooth (P/PPOK DU1)	Bluetooth	0.00	1 9.0 %
0030	CAA	IEEE P02 15 1 Diublooth (0 DPSK, DH2)	Bluetooth	0.01	19.0%
0037	CAA	IEEE 002.10.1 Bibelooth (0-DPSK, DHS)	Bluetooth	4.11	19.0 %
0038	CAA	DELE 802.15.1 Bluetooth (8-DPSK, DFI5)	Bluetooth	4,10	±9.6 %
0039	CAB	CDMA2000 (1xR11, RC1)	CDMA2000	4,57	± 9.6 %
0042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6 %
0044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6 %
0048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6%
0049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6 %
0056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
0058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6 %
0059	CAB	IEEE 802 11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
0060	CAB	IEEE 802 11b WIFI 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6 %
0061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
0062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
0063	CAC	IEEE 802.11a/n WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6 %
0064	CAC	IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6 %
0065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6 %
0066	CAC	IEEE 802,11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6 %
0067	CAC	IEEE 802 11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6 %
0068	CAC	IEEE 802 11a/h WiFi 5 GHz (OFDM, 48 Mbos)	WLAN	10.24	+9.6%
0069	CAC	IEEE 802 11a/b WiFi 5 GHz (OFDM, 54 Mbos)	WLAN	10.56	+96%
0071	CAB	IEEE 802 11g WIEi 2 4 GHz (DSSS/OEDM 9 Mbps)	WI AN	9.83	+96%
0072	CAB	IEEE 802 11g WIEL2 & GHz (DSSS/OEDM, 12 Mbos)	WI AN	9.62	+96%
0073	CAB	IEEE 802 11g WIE 2 4 GHz (DSSS/OEDM 18 Mbos)	WLAN	9.94	+96%
0074	CAR	IEEE 802 11g WiFi 2.4 GHz (DSSS/OEDM 24 Mbps)	WI AN	10.30	106%
0075	CAR	IEEE 802 110 WIEL2 4 GHz (DSSS/OEDM 36 Mbps)	M/LAN	10.30	+06%
0076	CAR	1666 802 110 WIT 2.4 GH2 (DSSS/OFDM 30 Mbps)	INC AND	10.04	1060
0070	CAR	IEEE 802 11g WII 12.4 GH2 (DSSS/OFDM, 46 Mbps)	INVLANIN INVLANI	10.24	1060
0077	CAR	CDMA2000 (4-PTT_PO2)	VVLAIN CDAMA20000	2.07	19.0 %
0001	CAD	CDMA2000 (1XK11, KCS)	GDMA2000	3.97	± 9.0 %
1002	DAG	ODDO FOD (TDWAYFUM, PI/4-DQPSK, FUII/3(P)	AMPS	4.11	19.0 %
090	DAC	GPRS-FDD (10MA, GMSK, IN 0-4)	GSM	6.56	± 9.6 %
109/	CAB	UMIS-FDD (HSUPA)	WCDMA	3.98	± 9.6 %
8600	CAB	UM15-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6 %
1099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
0100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6 %
0101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
0102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6 %
0103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6%
)104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6 %
0105	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	±9.6%
0108	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6 %

Certificate No: EX3-7413_Sep19

Page 11 of 23

Report File No : F690501-RF-SAR000050-A1

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page : 43 / 67

EX3DV4-SN:7413

September 26, 2019

10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN.	8.10	± 9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN.	8.07	±9.6 %
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6 %
10119	CAC	IEEE 802 11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6%
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6%
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6%
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6 %
010100	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHZ, 64-QAM)	LIE-FDD	6.62	29.6%
10139	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHZ, 64-QAM)	LIE-FDD	0.56	19.6%
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHZ, QPSK)	LIE-FDD	0.82	19.0 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RD, 15 MHz, 10-QAM)	LIE-FDD	0.43	19.0%
10166	CAE	TE FOD (SC FDMA, 50% PR 1 A MU+ OPPK)	LIE-FUU	0.00	19.0 %
10167	CAF	TE EDD (SC EDMA 50% PB 1 A MUT 16 OAM)	LIE-FUD	6.04	19.0 %
10168	CAF	TE-EDD (SC-EDMA, 50% RB, 14 MHz, 10-QAM)	LTE-FUD	6.70	106%
10169	CAE	TEEDD (SCEDMA 1 PR 20 MH* OPSK)	LTE-FDD	6.73	19.0 %
10170	CAE	TE-EDD (SC-EDMA, TRB, 20 MHZ, 0F3K)	ITE-FDD	6.52	+96%
10171	AAF	LTE-EDD (SC-EDMA 1 RB 20 MHz 64-0AM)	LTE-FOD	6.40	+96%
10172	CAG	LTE-TOD (SC-FDMA 1 RB 20 MHz OPSK)	LTE-TOD	0.43	+96%
10173	CAG	LTE-TDD (SC-FDMA_1 RB_20 MHz_16-0AM)	LTE-TDD	9.48	+96%
10174	CAG	LTE-TOD (SC-EDMA, 1 RB, 20 MHz, 64-OAM)	LTE-TOD	10.25	+96%
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, OPSK)	LTE-FDD	5.72	+9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	I TE-EDD	6.52	+9.6%
0177	CAL	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, OPSK)	LTE-FDD	5.73	+96%
0178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	+9.6 %
0179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6%
0180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6 %
0181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	+9.6%
0182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6%
0183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6%
0184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6 %
0186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6 %
0187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
0189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6 %
0194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
0195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6 %
0196	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6%
0197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6 %
0198	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6%
0219	CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6%

Certificate No: EX3-7413_Sep19

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page 12 of 23

Report File No : F690501-RF-SAR000050-A1

Page : 44 / 67

EX3DV4-SN:7413

September 26, 2019

10220	CAC	JEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6 %
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6 %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6 %
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 %
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TOD	9.49	±9.6 %
10227	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 %
10228	GAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6 %
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9 48	±9.6 %
10230	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	29.6%
10231	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10200	CAG	LTE-TOD (SC-FDMA, 1 RB. 5 MHZ, 64-QAM)	LIE-TOD	10.25	±9.6 %
10234	CAG	LTE-TOD (SC-FDMA, TRB, 5 MHZ, QPSK)	LTE-TDD	9.21	± 9.6 %
10230	CAG	LTE-TOD (SC-FDMA, 1 RB, 10 MHZ, 16-QAM)	LIE-TOD	9.48	±9.6 %
10230	CAG	LTE-TOD (SC-FDMA, 1 KB, 10 MHZ, 64-QAM)	LTE-TOD	10.25	±9.6 %
10237	CAE	LTE TOD (SC FDMA, 1 RB, 10 MHZ, QPSK)	LIE-TOD	9.21	± 9.6 %
10230	CAF	LTE TOD (SC FDMA, J RB, 15 MHZ, 10-QAM)	LIE-IDD	9.48	±9.6%
10235	CAF	LTE TOD (SC FDMA, 1 RB, 15 MHZ, 04-QAM)	LIE-IDD	10.25	±9.6%
10240	CAR	LTE-TOD (SC-FDMA, TRB, 13 MHZ, UPSK)	LIE-TOD	9.21	19.6%
10242	CAB	TE-TOD (SC-FOMA 50% PB 14 MHz, 10-QAM)	LIE-IDD	9.82	±9.6 %
10242	CAB	LTE-TOD (SC-FDMA, 50% RD, 1.4 MHz, 04-QAW)	LIE-IDD	9.80	19.6%
10244	CAD	LTE-TOD (SC-EDMA 50% RB 3 MHz 16 OAM)	LIE-TOD	10.00	19.0 %
10245	CAD	LTE-TOD (SC-EDMA 50% RB 3 MHz 64-OAM)	LIE-TOD	10.06	19.0 %
10246	CAD	LTE-TOD (SC-EDMA 50% RB 3 MHz OPSK)	LIE-TOO	0.20	29.0 %
10247	CAG	LTE-TOD (SC-EDMA, 50% RB 5 MHz, 3F-OAM)	LTE-TOD	9.30	± 0.6 %
10248	CAG	LTE-TDD (SC-FDMA 50% RB 5 MHz 64-OAM)	LTE-TOD	10.09	+96%
10249	CAG	LTE-TDD (SC-EDMA 50% RB 5 MHz OPSK)	LTE-TOD	9.29	+96%
10250	CAG	LTE-TDD (SC-FDMA 50% RB 10 MHz 16-OAM)	I TE-TOD	9.81	+96%
10251	CAG	LTE-TDD (SC-FDMA 50% RB 10 MHz 54-OAM)	LTE-TOD	10.17	+96%
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, OPSK)	LTE-TDD	9.24	+96%
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TOD	9.90	+96%
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TOD	10.14	+96%
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, OPSK)	I TE-TOD	9.20	+96%
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	+96%
10257	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	+9.6 %
10258	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	+9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6 %
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10261	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9,92	±9.6%
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6 %
0274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6 %
0275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6 %
0277	CAA	PHS (QPSK)	PHS	11.81	±9.6 %
0278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	±9.6 %
0279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	±9.6 %
0290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6%
0292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6 %
0293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
0295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6 %
0297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE FDD	5.81	±9.6%
0298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6 %
0299	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6 %

Certificate No: EX3-7413_Sep19

Page 13 of 23

Report File No : F690501-RF-SAR000050-A1

Page : 45 / 67

EX3DV4- SN:7413

September 26, 2019

10301 AAA IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC) 10302 AAA IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC) 3 CTRL symbols) 10303 AAA IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) 10304 AAA IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) 10305 AAA IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) 10306 AAA IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC, 15 symbols) 10307 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols) 10307 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) 10308 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) 10308 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC) 10309 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	LTE-FDD	6.60	±9.6 %
10302 AAA IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols) 10303 AAA IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) 10304 AAA IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) 10305 AAA IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) 10306 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 15 symbols) 10306 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols) 10307 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols) 10308 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) 10309 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) 10309 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	WIMAX	12.03	±9.6 %
10303 AAA IEEE 802.16e WiMAX (31.15, 5ms, 10MHz, 64QAM, PUSC) 10304 AAA IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) 10305 AAA IEEE 802.16e WiMAX (31.15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols) 10306 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 15 symbols) 10307 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols) 10308 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) 10308 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) 10309 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 0PSK, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 0PSK, AMC 2x3, 18 symbols)	WIMAX	12.57	±9.6 %
10304 AAA IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) 10305 AAA IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols) 10306 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 15 symbols) 10307 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols) 10308 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) 10308 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) 10309 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 0PSK, AMC 2x3, 18 symbols)	WIMAX	12.52	±9.6%
10305 AAA IEEE 802.16e WiMAX (31.15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols) 10306 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols) 10307 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) 10308 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) 10309 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) 10309 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	WIMAX	11.86	+9.6 %
10306 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols) 10307 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) 10308 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) 10309 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) 10309 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	WIMAX	15.24	± 9.6 %
10307 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) 10308 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) 10309 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 02SK, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 02SK, AMC 2x3, 18 symbols)	WIMAX	14.67	±9.6 %
10308 AAA IEEE 802 16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) 10309 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	WIMAX	14.49	±9.6%
10309 AAA. IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) 10310 AAA IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	WIMAX	14.46	+96%
10310 AAA IEEE 802 16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	WiMAX	14.58	± 9.6 %
	WIMAX	14.57	± 9,6 %
10311 AAD LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6 %
10313 AAA IDEN 1:3	IDEN	10.51	+96%
10314 AAA IDEN 1/6	IDEN	13,48	+96%
10315 AAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6 %
10316 AAB IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6 %
10317 AAC IEEE 802.11a WIFI 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	+96%
10352 AAA Pulse Waveform (200Hz, 10%)	Generic	10.00	+9.6 %
10353 AAA Pulse Waveform (200Hz, 20%)	Generic	6.99	+9.6%
10354 AAA Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6 %
10355 AAA Pulse Waveform (200Hz, 60%)	Generic	2.22	+9.6%
10356 AAA Pulse Waveform (200Hz, 80%)	Generic	0.97	+9.6%
10387 AAA QPSK Waveform, 1 MHz	Generic	5.10	+9.6%
10388 AAA QPSK Waveform, 10 MHz	Generic	5.22	+9.6%
10396 AAA 64-QAM Waveform 100 kHz	Generic	6.27	+96%
10399 AAA 64-QAM Waveform, 40 MHz	Generic	6.27	+96%
10400 AAD IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±96%
10401 AAD IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	+9.6 %
10402 AAD IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6%
10403 AAB CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 %
10404 AAB CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6 %
10406 AAB CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6 %
10410 AAG LTE-TDD (SC-FDMA, 1 RB, 10 MHz, OPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	±9.6 %
10414 AAA WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	±9.6 %
10415 AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6 %
10416 AAA IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6 %
10417 AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6 %
10418 AAA IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	±9.6 %
10419 AAA IEEE 802,11g WiFi 2,4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	±9.6%
10422 AAB IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6 %
10423 AAB IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10424 AAB IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6 %
10425 AAB IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6 %
10426 AAB IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6 %
10427 AAB IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10430 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	± 9.6 %
10431 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±96%
10432 AAG L1E-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10433 AAG LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6 %
10434 AAA W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6 %
10435 AAF LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7,82	±9.6 %
10447 AAD LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7,56	±9.6%
10448 AAD LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7,53	± 9.6 %
18449 AAC LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6%
10450 AAC LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	± 9,6 %

Certificate No: EX3-7413_Sep19

Page 14 of 23

Page : 46 / 67

EX3DV4-SN:7413

September 26, 2019

10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6 %
10456	AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	± 9.6 %
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	± 9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B. 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6 %
10461	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10462	AAB	LTE-TDD (SC-FDMA, 1 RB, 1 4 MHz, 16-QAM, UL Subframe=2 3 4 7 8 9)	LTE-TDD	8.30	19.6 %
10463	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subranz 2.3.4 7.8.0)	LTE-TDD	8.56	± 9.6 %
10464	AAC	LTE-TDD (SC-FDM, 1 RB, 3 MHz, QPSK, UL Submer 23.4.7.9.0)	LTE-TDD	7.82	± 9.6 %
10465	AAC	LTE-TDD (SC-FDM, 1 RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9,6 %
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
10467	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL	LTE-TDD	7.82	±9.6 %
10468	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5 MHz. 16-QAM, UL	LTE-TDD	8.32	±9.6 %
10469	AAF	Subframe=2.3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.56	±9.6%
10470	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TDD	7.82	±96%
10471	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UI	LTE-TOD	8 32	+96%
10472	AAF	Subframe=2.3,4,7,8,9)		0.52	+0.0 %
10472	AAE	Subframe=2,3,4,7,8,9	LIE-IDD	0.07	19.0 %
10475	AME	Subframe = 2,3,4,7,8,9)	LIE-IDU	7.82	±9,6%
10474	AAE	Subframe=2.3,4,7,8,9)	LTE-TDD	8.32	±9.6%
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6 %
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe≈2,3,4,7,8,9)	LTE-TDD	8.57	1.9.6 %
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10480	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6 %
10481	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6 %
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2.3.4,7.8.9)	LTE-TDD	7,71	±9.6 %
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	±9.6 %
10484	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2 3.4 7.8 9)	LTE-TDD	8.47	± 9.6 %
10485	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subfame=2.3.4.7.8.9)	LTE-TDD	7.59	±9.6 %
10486	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8,38	±9.6 %
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.60	±96%
10488	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL	LTE-TDD	7.70	±9.6 %
10489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.31	±9.6%
10490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.54	±9.6%
	1000	Subframe=2,3,4,7,8,9)			10.00

Certificate No: EX3-7413_Sep19

Page 15 of 23

Report File No : F690501-RF-SAR000050-A1

47 / 67 Page :

EX3DV4-	-SN:741	13		Septemb	ber 26, 2019
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2 3.4.7.8.9)	LTE-TDD	8.41	± 9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.55	±9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2.3.4.7.8.9)	LTE-TDD	7.74	± 9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.37	±9.6 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.54	± 9,6 %
10497	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2.3.4.7.8.9)	LTE-TDD	7.67	±9.6 %
10498	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.40	± 9.6 %
10499	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2.3.4,7.8.9)	LTE-TDD	8.68	±9.6 %
10500	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2.3.4.7.8.9)	LTE-TDD	7.67	± 9.6 %
10501	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2 34 7 8 9)	LTE-TDD	8.44	±9.6 %
10502	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.52	±9.6 %
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2.34 7.8.9)	LTE-TDD	7.72	±9.6 %
10504	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2.347.8.9)	LTE-TDD	8.31	±9.6 %
10505	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.54	±9.6 %
10506	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2.34 7.8.9)	LTE-TDD	7.74	± 9,6 %
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8,36	±9.6%
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframo=2.34,7.8,9)	LTE-TDD	8.55	±9.6 %
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2.34 7.8.9)	LTE-TDD	7.99	±9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2.34, 7.8.9)	LTE-TDD	8.49	±9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL	LTE-TDD	8:51	±9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe-2.34 7.8.9)	LTE-TDD	7.74	±9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2.34 R 8.0	LTE-TDD	8.42	±9.6 %
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.45	±9.6 %
10515	AAA	IEEE 802 11b WiEi 2.4 GHz (DSSS 2 Mbos 99oc duty cycle)	WI AN	1.58	+96%
10516	AAA	IFEE 802 11b WIEI 2.4 GHz (DSSS 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	+96%
10517	AAA	IEEE 802 11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6 %
10518	AAB	IEEE 802.11a/h WIFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6 %
10519	AAB	IEEE 802 11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802 11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	±9.6%
10521	AAB	IEEE 802.11a/h WIFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	±9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6 %
10523	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	±9.6%
10524	AAB	JEEE 802.11a/h WIFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	± 9.6 %
10525	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.6 %
10526	AAB	IEEE 802,11ac WIFI (20MHz, MCS1, 99pc duty cycle)	WLAN	8.42	± 9,6 %
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.6%
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN	8.36	±9.6 %

Certificate No: EX3-7413_Sep19

AAB

AAB

AAB

AAB

Page 16 of 23

IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)

IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)

IEEE 802.11ac WIFI (40MHz, MCS0, 99pc duty cycle)

Report File No : F690501-RF-SAR000050-A1

10531

10532

10533

10534

Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

WLAN

WLAN

WLAN

WLAN

±9.6%

±9.6 %

±9.6 %

±9.6 %

8.43

8.29

8.38

8.45

Page : 48 / 67

EX3DV4-SN:7413

September 26, 2019

10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10000	AAD	IEEE 802.11ac WIFI (40MHz, MCS2, 99pc duty cycle)	WLAN	8.32	±9.6 %
10537	AAB	TEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	WLAN	8.44	± 9.6 %
10538	AAB	IEEE 802.11ac WIFI (40MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6 %
10540	AAB	IEEE 802.11ac WIFI (40MHz, MCS6, 99pc duty cycle)	WLAN	8.39	±9.6 %
10541	MAB	TEEE 802.11ac WiFI (40MHz, MCS7, 99pc duty cycle)	WLAN	8.46	± 9.6 %
10542	AAB	TEEE 802.11ac WIFI (40MHz, MCS8, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10543	AAB	TEEE 802, 11ac WIFI (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10544	AAB	IEEE 802.11ac WIFI (80MHz, MCS0, 99pc duty cycle)	WLAN	8.47	± 9.6 %
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	WLAN	8.35	± 9.6 %
10547	AAB	IEEE 802.11ac WIFI (80MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6 %
10548	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6 %
10550	AAB	IEEE 802.11ac WIFi (80MHz, MCS6, 99pc duty cycle)	WLAN	8.38	± 9.6 %
10551	AAB	IEEE 802 11ac WiFi (80MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6 %
10552	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10553	AAB	IEEE 802,11ac WiFi (80MHz, MCS9, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10554	AAC	IEEE 802,11ac WiFi (160MHz, MCS0, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	WLAN	8.47	+9.6 %
10556	AAC	IEEE 802.11ac WIFI (160MHz, MCS2, 99pc duty cycle)	WLAN	8.50	+96%
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	WLAN	8.52	+96%
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duly cycle)	WLAN	8.61	+96%
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	+96%
10561	AAC	IEEE 802 11ac WIEI (160MHz, MCS7, 99pc duty cycle)	JALLANI	8.56	+06%
10562	AAC	IFEE 802 11ac WIEI (160MHz, MCS8, 99ec duty cycle)	WILCON	0.00	13.0 %
10563	AAC	IEEE 802 11ac WIFI (160MHz MCS0, 95pc duty cycle)	WLAN	0.09	19.0 %
10564	AAA	IEEE 802 110 WIEL2 & CH2 (DSSS, OEDM, D Mbor, 9000 dub	WLAN	0.76	19.0%
10004	- CVVA	cycle)	WLAN	8.25	±9.6 %
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty	WLAN	8.45	±9.6 %
10566	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty	WLAN	8.13	±9.6%
10567	AAA	IEEE 802 11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty	WLAN	8.00	± 9.6 %
10568	AAA	IEEE 802 11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty	WLAN	8.37	±9.6 %
10569	AAA	cycle) IEEE 802 11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99nc duity	WIAN	8 10	+96%
10570	AAA	cycle) IEEE 802 116 WIEL2 4 GHz (DSSS-OEDM 54 Mbps, 99pc dolla	JAPLAN	0.20	-0.6%
10574		cycle)	YYLMIN	0,00	2,9,0 %
10570	AAA	IEEE 002.110 WIF12.4 GHZ (DSSS, 1 MDps, 90pc duty cycle)	WLAN	1.99	±9.6%
10572	AAA	IEEE 802/11b WIFI 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6 %
10573	AAA	IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6%
10574	AAA	IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN.	1.98	±9.6 %
105/5	AAA	IEEE 802,11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN.	8.59	±9.6 %
10576	AAA	IEEE 802:11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	± 9.6 %
10577	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cvcle)	WLAN	8,70	±9.6 %
10578	AAA	IEEE 802,11g WiFi 2:4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9,6 %
10579	AAA	IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty pycla)	WLAN	8.36	±9.6 %
10580	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty	WLAN	8.76	±9.6%
0581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty	WLAN	8.35	±9.6 %
0582	AAA	IEEE 802 11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty	WLAN	8.67	±9.6 %
0503	0.00		140 241	0.75	
0583	AAB	TEEE 802.1 Ta/n WIFI 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6 %
0584	AAB	IEEE 602.11a/n WIFI 5 GHZ (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±96%
0585	AAB	TEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6 %
0563	AAB	IEEE 802.11a/h WIFL5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	19.6 %
0587	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6 %
10585 10586 10587	AAB AAB AAB	IEEE 802.11a/n WIFI 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) IEEE 802.11a/n WIFI 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) IEEE 802.11a/n WIFI 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) IEEE 802.11a/n WIFI 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN WLAN WLAN WLAN	8.60 8.70 8.49 8.36	±9. ±9. ±9. ±9.

Certificate No: EX3-7413_Sep19

Page 17 of 23

Report File No : F690501-RF-SAR000050-A1

Page : 49 / 67

EX3DV4- SN:7413

September 26, 2019

10589 10590 10591 10592 10593 10594 10595 10596	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6 %
10590 10591 10592 10593 10594 10595 10595		IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	± 9.6 %
10591 10592 10593 10594 10595 10596	AAB	IEEE 802.11a/h WIFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6 %
0592 0593 0594 0595 0596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	WLAN	8.63	± 9.6 %
0593 0594 0595 0596	AAB	IEEE 802 11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	WLAN	8.79	± 9.6 %
0594 0595 0596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	WLAN	8.64	± 9.6 %
0595	AAB	IEEE 802 11n (HT Mixed, 20MHz, MCS3, 90nc duty cycle)	WLAN	8.74	+9.6%
0596	AAB	IEEE 802 11n (HT Mixed, 20MHz, MCS4, 90nc duty cycle)	WLAN	8.74	+96%
and the second se	AAB	IEEE 802 11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	WIAN	8.71	+9.6%
10597	AAB	IEEE 802 11n (HT Mixed 20MHz MCS6 900c duty cycle)	WLAN	8.72	+96%
10598	AAB	IEEE 802 11n (HT Mixed, 20MHz, MCS7, 90nc duty cycle)	WLAN	8.50	+96%
0599	AAB	IEEE 802 11n (HT Mixed 40MHz MCS0 90nc duty cycle)	WI AN	8.79	+96%
0600	AAR	IEEE 802 11n (HT Mixed, 40MHz, MOSt, 90pc duty cycle)	WI AN	8.88	+96%
0601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90nc duty cycle)	WI AN	8.82	+96%
0602	AAB	IEEE 802 11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	WLAN	8.04	= 0.6 %
0602	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 00ng duty cycle)	WLAN .	0.04	+0.6 0/
00000	AAB	IEEE 002.110 (HT Mixed, 40MHz, MCS4, 50pc duty cycle)	WILMN IN	9.00	2.0.0 %
0004	AAD	IEEE 802.110 (HT Mixed, 40MHz, MCSS, 90pc duty cycle)	VVLAN	0.70	19.0%
0605	AAD	IEEE 602.110 (H1 Mixed, 40MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9.6%
0000	AAB	TEEE 802.11h (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6 %
1000	AAB	TEEE OUZ.11ac WIFI (20MHz, MCSU, 90pc duty cycle)	WLAN	8.64	± 9.6 %
0608	AAB	TEEE 802 TTac WIFI (20MHz, MCS1, 90pc duty cycle)	WLAN	8.77	± 9.6 %
0609	AAB	TEEE 802 11ac WiFi (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	± 9.6 %
0610	AAB	IEEE 802.11ac WiFI (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6 %
0611	AAB	IEEE 802 11ac WIFI (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6 %
0612	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
0613	AAB	IEEE 802.11ac WiFi (20MHz. MCS6, 90pc duty cycle)	WLAN	8.94	± 9.6 %
0614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	WLAN	8.59	± 9.6 %
0615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.82	± 9.6 %
0616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	WLAN	8.82	± 9.6 %
0617	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	WLAN	8.81	±9.6 %
0618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	WLAN	8.58	±9.6 %
0619	AAB	IEEE 802.11ac WIFi (40MHz, MCS3, 90pc duty cycle)	WLAN	8.86	± 9.6 %
0620	AAB	IEEE 802,11ac WiFi (40MHz, MCS4, 90pc duty cycle)	WIAN	8.87	+96%
0621	AAB	IEEE 802 11ac WIFI (40MHz, MCS5, 90pc duty cycle)	WLAN	8.77	+96%
0622	AAB	IEEE 802 11ac WiFi (40MHz MCS6 90pc duty cycle)	WLAN	8 68	+96%
0623	AAR	IEEE 802 11ac WIEL40MHz_MCS7_90pc duby cycle)	WIAN	8.82	+96%
0624	AAB	IEEE 802 11ac WIEL (40MHz, MCS8, 90nc duty cycle)	WIAN	8.96	496%
0625	AAR	IEEE 802 11ac WIFI (40MHz, MCS9, 90pc duty cycle)	WIAN	8.96	+96%
0626	AAB	IEEE 802 11ac W/Ei (80MHz, MCS0, 90pc duty cyclo)		9.93	+05%
0627	AAB	IEEE 802 11ac WIFT (BOMH2, MOSt, BODG duty cycle)		0.00	+06%
0620	AAR	IEEE 802 11ac WIFI (BOMHY, MCS2, Blog duby cycle)	AVI ANT	0.00	1000
0020	AAD	IEEE 002.11ac WIFI (00MHz, MCS2, 90pc duty cycle)	WLAN	0.11	29.0 %
0029	AAB	IEEE 802.1 Tac WIFI (80MHz, MCS3, 90pc duty cycle)	WLAN	0.00	19.0%
0630	AAB	TEEE 802.11ac WIFI (80MHz, MCS4, 90pc duty cycle)	WLAN	8.72	19.6 %
1631	AAB	TEEE 802.11ac WiH (80MH2, MCS5, 90pc duty cycle)	WLAN	8.81	±9,6%
1632	AAB	TELE 802 TTac WIFT (80MHz, MCS6, 90pc duty cycle)	WLAN	8,74	±9.6 %
0633	AAB	IEEE 802 11ac WIFI (80MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6 %
1634	AAB	IEEE 802.11ac WiFi (60MHz, MCS8, 90pc duty cycle)	WLAN	8.80	± 9.6 %
0635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6 %
0636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	WLAN	8.83	± 9.6 %
0637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6 %
	AAC	IEEE 802.11ac WIFi (160MHz, MCS2, 90pc duty cycle)	WLAN	8.86	±9.6 %
638	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6 %
638 639	AAC	IEEE 802 1 tac WiFi (160MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6 %
638 639 640	AAC	IEEE 802 11ac WiFi (160MHz, MCS5, 90pc duty cycle)	WLAN	9.06	± 9.6 %
638 639 640 641	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6 %
638 639 640 641 642	1010	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	W/LAN	8 89	+96%
638 639 640 641 642 643	AAC		VVL/NIN	0.00	
0638 0639 0640 0641 0642 0643 0643	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6%
0638 0639 0640 0641 0642 0643 0643 0644	AAC AAC AAC	IEEE 802.11ac WIFI (160MHz, MCS8, 90pc duty cycle) IEEE 802.11ac WIFI (160MHz, MCS9, 90pc duty cycle)	WLAN	9.05	±9.6%
0638 0639 0640 0641 0642 0643 0643 0644 0645 0646	AAC AAC AAC AAG	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle) IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle) ITE-TDD (SC-FDMA, 1, BB, 5, MHz, OPSK, UL, Subframe=2,7)	WLAN WLAN	9.05 9.11 11.96	±9.6% ±9.6%
0638 0639 0640 0641 0642 0643 0643 0644 0645 0645 0646	AAC AAC AAC AAC AAG	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle) IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 0PSK, UL Subframe=2.7) TE-TDD (SC-FDMA, 1 RB, 20 MHz, 0PSK, UL Subframe=2.7)	WLAN WLAN LTE-TDD	9.05 9.11 11.96	±9.6% ±9.6% ±9.6%
0638 0639 0640 0641 0642 0643 0644 0645 0645 0646 0647	AAC AAC AAC AAG AAG AAF	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle) IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) CDMA2000 (1x Advanced)	WLAN WLAN LTE-TDD LTE-TDD CDMA2000	9.05 9.11 11.96 11.96 3.45	±9.6% ±9.6% ±9.6% ±9.6%
0638 0639 0640 0641 0642 0643 0643 0644 0645 0646 0647 0648 0652	AAC AAC AAC AAC AAG AAF AAA	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle) IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) CDMA2000 (1x Advanced) LTE-TDD (OEDMA 5 MHz, ETM 3.1 Clipping A4%)	WLAN WLAN LTE-TDD LTE-TDD CDMA2000	9.05 9.11 11.96 11.96 3.45 6.91	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
0638 0639 0640 0642 0643 0643 0643 0644 0645 0646 0646 0647 0648 0652	AAC AAC AAC AAG AAF AAA AAE	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle) IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) CDMA2000 (1x Advanced) LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 1 MHz, E-TM 3.1, Clipping 44%)	WLAN WLAN LTE-TDD LTE-TDD CDMA2000 LTE-TDD	9.05 9.11 11.96 11.96 3.45 6.91 7.42	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %

Certificate No: EX3-7413_Sep19

Page 18 of 23

Page : 50/67

EX3DV4- SN:7413

September 26, 2019

10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	6,99	± 9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	2.22	±96%
10662	AAA	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6 %
10671	AAA	IEEE 802.11ax (20MHz, MCS0, 90pc duty cycle)	WLAN	9.09	± 9.6 %
10672	AAA	IEEE 802 11ax (20MHz, MCS1, 90pc duty cycle)	WLAN	8.57	±9.6 %
10673	AAA	IEEE 802,11ax (20MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.6 %
10674	AAA	IEEE 802.11ax (20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6 %
10675	AAA	IEEE 802 11ax (20MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.6 %
100/0	AAA	IEEE 802 11ax (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6 %
10077	AAA	IEEE 802.11ax (20MHz, MCS6, 90pc duty cycle)	WLAN	8.73	±9.6 %
10678	AAA	IEEE 802.11ax (20MHz, MCS7, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10679	AAA	IEEE 802.11ax (20MHz, MGS8, 90pc duty cycle)	WLAN	8.89	±9.6 %
10680	AAA	IEEE 802.11ax (20MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6 %
10081	AAA	TIEEE 802 T1ax (20MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6 %
10082	AAA	TEEE 802.11ax (20MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6 %
10083	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6 %
10685	AAA.	IEEE 802.11ax (20MHz, MCS1, 99pc duty cycle)	WLAN	8.26	19.6%
10000	AAA	IEEE 802.11ax (20MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6 %
10000	AAA	IEEE 002, ITax (20MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.6%
10007	AAA	IEEE BUZ 1 Tax (20MHz, MCS4, 99pc duty cycle)	WLAN	8,45	19.6%
10000	AAA	IEEE BUZ 11ax (20MHz, MCSS, 99pc duty cycle)	WLAN	8.29	±9.6 %
10009	AAA	IEEE 802.11ax (20MHz, MCS6, 99pc duty cycle)	WLAN	8.55	±9.6 %
10090	AAA	IEEE 802.11ax (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6 %
10602	000	IEEE 802 11ax (20MHz, MCS8, 99pc duty cycle)	WLAN	8.25	19.6%
10602	0.0.0	IEEE 002.11ax (20MHz, MCS9, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10683	000	IEEE 802 Trax (20MHz, MCS10, 99pc duty cycle)	WLAN	8.25	29.6%
10695	000	IEEE 802 Trax (20MHz, MCS) 1, 99pc duty cycle)	WLAN	8.5/	19.6 %
10695	000	IEEE 802.11ax (40MHz, MCSJ, 90pc duty cycle)	WLAN	8.78	±9.6 %
10690	AAA	IEEE 802 11ax (40MHz, MCS1, 90pc duty cycle)	WLAN	8.91	19.6%
10608	AAA	IEEE 802 11ax (40MHz, MCS2, 50pc duty cycle)	VVLAN	0.01	±9.0 %
10600	000	IEEE 802 11 ax (40MHz, MCS3, 90pc duty cycle)	VVLAN	6.69	19.0%
10700	000	IEEE 802.11ax (40MHz, MCS5, 90pc duty cycle)	VVLAN	8.62	19.6%
10701	000	IEEE 802.11ax (40MHz, MCSS, 50pc duby cycle)	VVLAN	0.73	19.0%
10702	444	IEEE 802 11ax (40MHz, MCS7, 90pc duty cycle)	VVLAIN	0.00	19.0%
10702	444	IEEE 802 11ax (40MHz, MCSP, 50pc duty cycle)	VVLAN	0.70	19.0%
10704	AAA	IEEE 802 11ax (40MHz MCS9, 90pc duby cycle)	INLAN	0.02	±0.0 %
10705	AAA	IEEE 802 11ax (40MHz, MCS10, 90pc duty cycle)	WLAN	0.00	19.0 %
10706	AAA	IEEE 802 11ax (40MHz MCS11 90pc duty cycle)	WLAN	8.66	+96%
10707	AAA	IEEE 802 11ax (40MHz, MCS0, 99nc duty cycle)	WLAN	8 32	10.0 %
10708	AAA	IEEE 802 11ax (40MHz, MCS1, 99oc duty cycle)	WLAN	8.55	+96%
10709	AAA	IEEE 802 11ax (40MHz_MCS2_99nc duty cycle)	WLAN	8 33	+96%
10710	AAA	IEEE 802 11ax (40MHz, MCS3, 99pc duty cycle)	WLAN	8 29	+96%
10711	AAA	(EEE 802.11ax (40MHz_MCS4_99pc duty cycle)	WLAN	8.39	+9.6%
10712	AAA	(EEE 802 11ax (40MHz_MCS5_99pc duty cycle)	WIAN	8.67	+96%
10713	AAA	IEEE 802 11ax (40MHz, MCS6, 99nc duty cycle)	WIAN	833	+96%
10714	AAA	IEEE 802.11ax (40MHz, MCS7, 99nc duty cycle)	WLAN	8.26	+96%
10715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc duty cycle)	WLAN	8 45	+96%
10716	AAA	IEEE 802.11ax (40MHz, MCS9, 99pc duty cycle)	WLAN	8.30	+96%
10717	AAA	IEEE 802.11ax (40MHz, MCS10, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10718	AAA	IEEE 802.11ax (40MHz, MCS11, 99pc duty cycle)	WLAN	8.24	+9.6 %
10719	AAA	IEEE 802,11ax (80MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6 %
10720	AAA	IEEE 802 11ax (80MHz, MCS1, 90pc duty cycle)	WLAN	8.87	+96%
10721	AAA	IEEE 802.11ax (80MHz, MCS2, 90pc duty cycle)	WIAN	8.76	+96%
10722	AAA	IEEE 802.11ax (80MHz, MCS3, 90pc duty cycle)	WLAN	8,55	±96%
10723	AAA	IEEE 802.11ax (80MHz, MCS4, 90pc duty cycle)	WLAN	8.70	+9.6 %
10724	AAA	IEEE 802.11ax (80MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.6 %
10725	AAA	IEEE 802.11ax (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	+9.6 %
10726	AAA	IEEE 802.11ax (80MHz, MCS7, 90pc duty cycle)	WLAN	8.72	*96%
10727	AAA	(EEE 802.11ax (80MHz, MCS8, 90pc duty cycle)	WLAN	8,66	+9.6%
And in case which the			1		

Certificate No: EX3-7413_Sep19

Page 19 of 23

Report File No : F690501-RF-SAR000050-A1

Page : 51/67

EX3DV4- SN:7413

September 26, 2019

10728	AAA	IEEE 802.11ax (80MHz, MCS9, 90pc duty cycle)	WLAN	8.65	± 9.6 %
10729	AAA	IEEE 802.11ax (80MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6 %
10/30	AAA	IEEE 802.11ax (80MHz, MCS11, 90pc duty cycle)	WLAN	8.67	±9.6%
10/31	AAA	IEEE 802.11ax (80MHz, MCSU, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10732	AAA	IEEE 802.11ax (80MHz, MCS1, 99pc duty cycle)	WLAN	8.46	±9.6 %
10733	AAA	IEEE 802.11ax (80MHz, MCS2, 99pc duty cycle)	WLAN	8 40	±9.6%
10734	AAA	IEEE 802.11ax (60MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9,6 %
10735	AAA	IEEE 802.11ax (80MHz, MCS4, 99pc duty cycle)	WLAN	8.33	±9.6 %
10736	AAA	IEEE 802.11ax (80MHz, MCS5, 99pc duty cycle)	WLAN	8.27	± 9.6 %
10737	AAA	IEEE 802.11ax (80MHz, MCS6, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10738	AAA	IEEE 802.11ax (80MHz, MCS7, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10739	AAA	IEEE 802.11ax (80MHz, MCS8, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10740	AAA	IEEE 802.11ax (80MHz, MCS9, 99pc duty cycle)	WLAN	8.48	29.6 %
10741	AAA	IEEE 802.11ax (80MHz, MCS10, 99pc duty cycle)	WLAN	8.40	± 9.6 %
10742	AAA	IEEE 802.11ax (80MHz, MCS11, 99pc duty cycle)	WLAN	8.43	±9.6%
10743	AAA	IEEE 802.11ax (160MHz, MCS0, 90pc duty cycle)	WLAN	8.94	± 9.6 %
10744	AAA	JEEE 802 11ax (160MHz, MCS1, 90pc duty cycle)	WLAN	9.16	±9.6%
0745	AAA	IEEE 802 11ax (160MHz, MCS2, 90pc duty cycle)	WLAN	8.93	± 9.6 %
0746	AAA	IEEE 802 11ax (160MHz, MCS3, 90pc duty cycle)	WLAN	9.11	±9.6 %
10747	AAA	IEEE 802.11ax (160MHz, MCS4, 90pc duty cycle)	WLAN	9.04	± 9.6 %
0748	AAA	IEEE 802.11ax (160MHz, MCS5, 90pc duty cycle)	WLAN	8.93	± 9.6 %
0749	AAA	IEEE 802.11ax (160MHz, MCS6, 90pc duty cycle)	WLAN	8.90	±9.6 %
0750	AAA	IEEE 802.11ax (160MHz, MCS7, 90pc duty cycle)	WLAN	8.79	±9.6 %
10751	AAA	IEEE 802.11ax (160MHz, MCS8, 90pc duty cycle)	WLAN	8.82	+ 9.6 %
10752	AAA	IEEE 802 11ax (160MHz_MCS9, 90pc duty cycle)	WLAN	8.81	+9.6 %
0753	AAA	IEEE 802 11ax (160MHz_MCS10_90pc duty cycle)	WLAN	9.00	+9.6 %
0754		IEEE 802 11ax (160MHz MCS11 90pc duty cycle)	WLAN	8 94	+96%
0755	444	IEEE 802 11ax (160MHz, MCSD, 99nc duty cycla)	WLAN	8.64	+96%
0756	AAA	IEEE 802 11ax (160MHz, MCS1, 99pc duty cycle)	WLAN	8.77	+96%
0757	000	IEEE 802 11ax (160MHz, MCS2, 99pc duty cycle)	WLAN	8.77	+96%
0759	000	IEEE 802 11ax (160MHz MCS2 800c duty cycle)	WI AN	8.60	+06%
10750	1000	IEEE 802 11 ax (160MHz, MCS4, 60ps duty cycle)	IA/L AAL	0.00	10.0 %
10760	000	IEEE 002.110x (100MHz, MCSE, 80pc duty cycle)	WILLAN	9.40	20.0 %
10764	AAA	IEEE 002.118X (160MHz, MCS6, 99pc duty cycle)	WLAN	0.49	29.0 %
0701	AAA	IEEE 802.11ax (160MHz, MCS6, 99pc duty cycle)	VYLAN MALAN	8.08	19.0 %
0762	AAA	TEEE 602.11ax (160MHz, MCS7, 99pc outy cycle)	VVLAN	0.49	29.0 %
0763	AAA	TEEE 802.1 Tax (160MHz, MCS6, 99pc duty cycle)	WLAN	0.03	19.0 %
0764	AAA	TEEE 802.11ax (160MHz, MCS9, 99pc duty cycle)	WLAN	8,54	±9.0 %
0/65	AAA	TEEE 802.11ax (160MHz, MCS10, 99pc duty cycle)	WLAN	8.54	19.6 %
10/86	AAA	IEEE 802.11ax (160MHz, MCS11, 99pc duty cycle)	WLAN	8.51	±9.6 %
0767	AAA	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1	7.99	± 9.6 %
10768	AAA	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1	8.01	±9.6 %
	1.1.7		TDD	0.01	1000
0769	AAA	5G NR (CP-OFDM, 1 RB, 15 MHz, OPSK, 15 KHz)	5G NR FR1 TDD	8.01	± 9.6 %
0770	AAA	5G NK (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8,02	± 9.6 %
0771	AAA	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8,02	±9.6 %
0772	AAA	SO NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 KHz)	TDD	8.23	±9.6 %
0773	AAA	SO NR (GP-OFDM, 1 RB, 40 MHZ, QPSK, 10 KHZ)	TDD	0.03	19.0 %
0774	AAA	SO NR (CP-OFDM, 1 KB, 50 MHZ, QPSK, 15 KHZ)	TDD	0.02	19.0 %
0776	AAA	SC NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 KHz)	TDD	8.30	19,0 %
0783	AAA	SC NR (CP-OFDM, 50% RB, 20 MHZ, GPSK, 15 KHZ)	TDD	0.04	130%
0780	AAA	SO NR (CR OFDM, 50% RD, 40 MILE, ODDU, 45 MILE)	TDD	0.30	19,0 %
0781	AAA	50 NR (CP-OFDM, 50% RB, 40 MHZ, GP5K, 15 KHZ)	TDD	0.30	29.0 %
10782	AVAA	1 30 INR (CP-UPUNI, 20% KD. 20 MM2, QPSN. 13 KM2)	TDD	0.43	29.0 %

Certificate No: EX3-7413_Sep19

Page 20 of 23

Report File No : F690501-RF-SAR000050-A1

EX3DV4-	SN:7413	

September 26, 2019

10783	AAA	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1	8.31	± 9.6 %
10784	000	50 NR (CR. OEDM 100% RB 10 MHz ORSK 15 (Hz)	TDD	0.20	+0.6%
107.04	AAA	SGINR (CP-OPDM, 100% RB, 10 MHZ, QPSK, 15 KHZ)	TDD	8.29	±9.6 %
10785	AAA	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	± 9.6 %
10786	AAA	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1	8.35	± 9.6 %
10787	AAA	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1	8.44	±9.6 %
10788	AAA	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1	8.39	± 9.6 %
10789	AAA	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1	8.37	± 9.6 %
10790	AAA	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1	8.39	± 9.6 %
10791	AAA	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1	7.83	± 9.6 %
10792	AAA	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1	7.92	± 9.6 %
10793	AAA	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1	7,95	± 9.6 %
10794	AAA	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1	7.82	±9.6 %
10795	AAA	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	TDD 5G NR FR1	7.84	±9.6 %
10706	0.0.0	50 ND (CD OEDM 1 DD 30 MHz ODSK 30 MHz)	TDD	7.02	1067
10730		SO WR (CF-OFDW, TRB, 30 WIRZ, QFSR, 30 RRZ)	TDD	1.02	19,0 %
10797	AAA	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	±9.6 %
10798	AAA	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1	7.89	±9.6 %
10799	AAA	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1	7.93	±9.6 %
10801	AAA	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1	7.89	±9.6 %
10802	AAA	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1	7.87	±9.6 %
10803	AAA	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1	7.93	±9.6 %
10805	AAA	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 KHz)	5G NR FR1	8.34	± 9.6 %
10806	AAA	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1	8.37	±9.6 %
10809	AAA	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
10810	AAA	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
10812	AAA	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1	8.35	± 9.6 %
10817	AAA	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1	8.35	±9.6 %
10818	AAA	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1	8.34	± 9.6 %
10819	AAA	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1	8.33	±9.6 %
10820	AAA	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	TDD 5G NR FR1	8.30	± 9.6 %
10824	0.00	SC NP (CP.OEDM 100% PR 25 MH- ODCK 20 MH-	TDD SO NID ED1	R.44	+0.00
10021	AAA	33 NR (CF-OFDM, 100% RD, 23 MILZ, GFSR, 30 KHZ)	TDD	0.41	19.0 %
10822	AAA	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6 %
10823	AAA	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8,36	±9.6 %
10824	AAA	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	±9.6 %

Certificate No: EX3-7413_Sep19

Page 21 of 23

Report File No : F690501-RF-SAR000050-A1

Page : 53 / 67

EX3DV4-	SN:7413
	0.11.1.1.0

September 26, 2019

1-1.4			0.41	I 9 0 70
AAA	5G NR (CP-OEDM, 100% RB, 80 MHz, OPSK, 30 kHz)	TDD 5G NR FR1	8 4 2	+96%
		TDD	0.42	1 3,0 %
AAA	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
AAA	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1	8.40	± 9.6 %
AAA	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1	7.63	± 9.6 %
AAA	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1	7.73	±9.6 %
AAA	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1	7.74	± 9.6 %
AAA	5G NR (CP-OEDM 1 RB 25 MHz OPSK 60 kHz)	TDD 5G NR ER1	7.70	+0.6%
		TDD	1.10	2 3.0 76
AAA	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7,75	±9.6 %
AAA	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1	7,70	± 9.6 %
AAA	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1	7.66	± 9.6 %
AAA	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1	7.68	±9.6 %
ΔΔΔ	5G NR (CP-OEDM 1 RB 80 MHz OPSK 60 kHz)	TOD SC NP EP1	7 70	+96%
10.01	00 (11 (01 01 01), 11 (0, 00 minz, 01 01, 00 minz)	TDD	ning	1 3.0 10
AAA	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1	7.67	± 9.6 %
AAA	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1	7.71	±9.6 %
AAA	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1	8.49	±9,6 %
AAA.	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1	8,34	±9.6 %
AAA	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	TDD 5G NR FR1	8.41	±9.6 %
000	SC NR (CR.OEDM 100% RR 10 MH- CRSK 80 HH-)	TDD	0.24	+0.0%
~~~	33 NR (CF-OFDIN, 100% RB, 10 NH2, QFSR, 80 KH2)	TDD	0.34	19.0 %
AAA	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
AAA	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1	8.37	± 9.6 %
AAA	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1	8.35	±9.6 %
AAA	5G NR (CP-OFDM, 100% RB, 30 MHz, OPSK, 60 kHz)	5G NR FR1	8.36	+9.6%
	50 ND (00 05011 (000) 20 (010) 0000 00000	TDD		
AAA	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 KHz)	TDD	8.34	± 9.6 %
AAA	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 KHz)	5G NR FR1	B.41	± 9.6 %
AAA	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1	8.40	± 9.6 %
AAA	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1	8.41	± 9.6 %
AAA	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1	8.37	±9.6 %
AAA	5G NR (CP-OEDM 100% RB 100 MHz OPSK 60 kHz)	TDD 5C NP EP1	8.41	+06%
10.01		TDD	0.40	2.3.0 10
AAA	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6 %
AAA	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1	5.89	±9.6 %
AAA	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2	5.75	± 9.6 %
0.0.0	5G NB (DET-s-OEDM 100% BB 100 MHz OPSK 120 kHz)	5G NR FR2	5.86	±9.6 %
	AAA         A	AAA         SG NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)           AAA         SG NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 00 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)           AAA         SG NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) <td>AAA         SG NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 KHz)         JSG NR FR1           AAA         SG NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)         JSG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)         SG G NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)         SG NR FR1</td> <td>AAA         SG NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 KHz)         SG NR FR1 TDD         8 43 TDD           AAA         SG NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 KHz)         SG NR FR1 SG NR FR1         8.40 TDD           AAA         SG NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 KHz)         SG NR FR1 SG NR FR1         7.73 TDD           AAA         SG NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 KHz)         SG NR FR1 SG NR FR1         7.74 TDD           AAA         SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz)         SG NR FR1 TD         7.74 TDD           AAA         SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz)         SG NR FR1 TD         7.70 TDD           AAA         SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 KHz)         SG NR FR1 TDD         7.76 TDD           AAA         SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz)         SG NR FR1 TDD         7.66 TDD           AAA         SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz)         SG NR FR1 TDD         7.66 TDD           AAA         SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz)         SG NR FR1 TDD         7.67 TDD           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz)         SG NR FR1 TDD         7.67 TDD           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz)         SG NR FR1 TD         7.67 TDD           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz)         SG NR FR1 TD</td>	AAA         SG NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 KHz)         JSG NR FR1           AAA         SG NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)         JSG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)         SG G NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)         SG NR FR1           AAA         SG NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)         SG NR FR1	AAA         SG NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 KHz)         SG NR FR1 TDD         8 43 TDD           AAA         SG NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 KHz)         SG NR FR1 SG NR FR1         8.40 TDD           AAA         SG NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 KHz)         SG NR FR1 SG NR FR1         7.73 TDD           AAA         SG NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 KHz)         SG NR FR1 SG NR FR1         7.74 TDD           AAA         SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz)         SG NR FR1 TD         7.74 TDD           AAA         SG NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 KHz)         SG NR FR1 TD         7.70 TDD           AAA         SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 KHz)         SG NR FR1 TDD         7.76 TDD           AAA         SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz)         SG NR FR1 TDD         7.66 TDD           AAA         SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz)         SG NR FR1 TDD         7.66 TDD           AAA         SG NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 KHz)         SG NR FR1 TDD         7.67 TDD           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz)         SG NR FR1 TDD         7.67 TDD           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz)         SG NR FR1 TD         7.67 TDD           AAA         SG NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 KHz)         SG NR FR1 TD

Certificate No: EX3-7413_Sep19

Page 22 of 23

Report File No : F690501-RF-SAR000050-A1

Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)



Page : 54 / 67

EX3DV4	SN:7413

### September 26, 2019

10071	1.444		Tatista		1
10871	AAA	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6 %
10872	AAA	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6 %
10873	AAA	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6 %
10874	AAA	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6 %
10875	AAA	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6 %
10876	AAA	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6 %
10877	AAA	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	±9.6 %
10878	AAA	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6 %
10879	AAA	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880	AAA	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6 %
10881	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6 %
10882	AAA	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
10883	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6 %
10884	AAA	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9,6 %
10885	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6 %
10886	AAA	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6 %
10887	AAA	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7,78	±9.6 %
10888	AAA	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	±9,6 %
10889	AAA	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	±9.6 %
10890	AAA	5G NR (CP-OFDM, 100% RB, 50 MHz, 160AM, 120 kHz)	5G NR FR2 TDD	8.40	± 9.6 %
10891	AAA	5G NR (CP-OFDM, 1 RB, 50 MHz, 640AM, 120 kHz)	5G NR FR2 TDD	8.13	±9.6 %
10892	AAA.	5G NR (CP-OFDM, 100% RB, 50 MHz, 640AM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6 %

⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-7413_Sep19

Page 23 of 23



# Appendix C.2 Calibration certificate for DAE(S/N: 1507)

eugnaussitasse 45, 0004 2011	ich, Switzerland		<ul> <li>Service suisse d'étalonnage</li> <li>Servizio svizzero di taratura</li> <li>Swiss Calibration Service</li> </ul>
Accredited by the Swiss Accredit The Swiss Accreditation Servi Multilateral Agreement for the	tation Service (SAS) ce is one of the signatorie recognition of calibration	Accreditati s to the EA certificates	on No.: SCS 0108
Client SGS (Dymstee		Certificate	No: DAE4-1507_Sep19
CALIBRATION	CERTIFICATE		
Object	DAE4 - SD 000 L	004 BM - SN: 1507	
Calibration procedure(s)	QA CAL-06.v29 Calibration proce	dure for the data acquisition ele	ectronics (DAE)
Calibration date:	September 18, 20	019	-99 10 PP-
The measurements and the unco All calibrations have been condu	ertainties with confidence pr	obability are given on the following pages $\epsilon$ y facility: environment temperature (22 $\pm$ 3)	and are part of the certificate. °C and humidity < 70%.
The measurements and the unco All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence pr incled in the closed laboratory TE critical for calibration)	obability are given on the following pages a $y$ (acility: environment temperature (22 $\pm$ 3)	and are part of the certificate. °C and humidity < 70%.
The measurements and the unco All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001	ertainties with confidence pr incled in the closed laboration TE critical for calibration)	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 03-Sep-19 (No:25949)	end are part of the certificate. °C and humidity < 70%. Scheduled Calibration Sep-20
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID #	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 03-Sep-19 (No:25949) Chool: Date (Certificate No.)	and are part of the certificate. °C and humidity < 70%. Scheduled Calibration Sep-20 Scheduled Chertin
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ertainties with confidence pr incled in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UWS 006 AA 1002	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 03-Sep-19 (No:25949) Check Date (in house) 07-Jan-19 (in house check) 07-Jan-19 (in house check)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Sep-20 Scheduled Check In house check: Jan-20 In house check: Jan-20
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 Name	obability are given on the following pages a (facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 03-Sep-19 (No:25949) Check Date (in house) 07-Jan-19 (in house check) 07-Jan-19 (in house check) Function	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Sep-20 Scheduled Check In house check: Jan-20 In house check: Jan-20 Signature
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Ceithley Multimeter Type 2001 Secondary Standards Juto DAE Calibration Unit Calibrator Box V2.1	Arranties with confidence print of the closed laboration of the closed laboration of the calibration of the	obability are given on the following pages a (actility: environment temperature (22 ± 3) Cal Date (Certificate No.) 03-Sep-19 (No:25949) Check Date (in house) 07-Jan-19 (in house check) 07-Jan-19 (in house check) 07-Jan-19 (in house check) Function Laboratory Technician	and are part of the cartificate. *C and humidity < 70%. Scheduled Calibration Sep-20 Scheduled Check In house check: Jan-20 In house check: Jan-20 Signature
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # ID # SN: 0810278 ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	obability are given on the following pages a (actility: environment temperature (22 ± 3) Cal Date (Certificate No.) 03-Sep-19 (No:25949) Check Date (in house) 07-Jan-19 (in house check) 07-Jan-19 (in house check) 07-Jan-19 (in house check) Function Laboratory Technician Deputy Manager	and are part of the cartificate. *C and humidity < 70%. Scheduled Calibration Sep-20 Scheduled Check In house check: Jan-20 In house check: Jan-20 Signature Signature
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # ID # SN: 0810278 ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UWS 006 AA 1002	obability are given on the following pages a (facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 03-Sep-19 (No:25949) Check Date (in house) 07-Jan-19 (in house check) 07-Jan-19 (in house check) 07-Jan-19 (in house check) Function Laboratory Technician Deputy Manager	Signature



56/67 Page :

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S С S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

### Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an . input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter . corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector. during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1507_Sep19

Page 2 of 5

Report File No: F690501-RF-SAR000050-A1

Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)



Page : 57 / 67

### **DC Voltage Measurement**

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV .	full range =	-1+3mV

Calibration Factors	x	Y	Z
High Range	404.411 ± 0.02% (k=2)	404.383 ± 0.02% (k=2)	404.124 ± 0.02% (k=2)
Low Range	3.98016 ± 1.50% (k=2)	3.99107 ± 1.50% (k=2)	3.98581 ± 1.50% (k=2)

### **Connector Angle**

Connector Angle to be used in DASY system	105.0 ° ± 1 °
-------------------------------------------	---------------

Certificate No: DAE4-1507_Sep19

Page 3 of 5

 Report File No :
 F690501-RF-SAR000050-A1
 Date of Issue :
 2020-06-25

 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)
 Date of Issue :
 2020-06-25



### Appendix (Additional assessments outside the scope of SCS0108)

### 1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199995.80	-0.62	-0.00
Channel X + Input	20002.61	0.51	0.00
Channel X - Input	-19999.44	1.91	-0.01
Channel Y + Input	199995.45	-1.19	-0.00
Channel Y + Input	20001.41	-0.69	-0.00
Channel Y - Input	-20000.77	0.63	-0.00
Channel Z + Input	199996.55	0.34	0.00
Channel Z + Input	20000.79	-1.20	-0.01
Channel Z - Input	-20000.40	1.27	-0.01

	Reading (µV)	Difference (µV)	Error (%)
+ Input	2001.16	-0.22	-0.01
+ Input	201.67	-0.02	-0.01
- Input	-198.83	-0.65	0.33
+ Input	2001.20	-0.10	-0.00
+ Input	201.18	-0.41	-0.21
- Input	-198.45	-0.18	0.09
+ Input	2000.80	-0.50	-0.02
+ Input	200.21	-1.37	-0.68
- Input	-199.06	-0.82	0.41
	+ Input + Input - Input + Input + Input - Input + Input + Input - Input	Reading (μV)           + Input         2001.16           + Input         201.67           - Input         -198.83           + Input         2001.20           + Input         201.18           - Input         -198.45           + Input         2000.80           + Input         200.21           - Input         -199.06	Reading (μV)         Difference (μV)           + Input         2001.16         -0.22           + Input         201.67         -0.02           - Input         -198.83         -0.65           + Input         2001.20         -0.10           + Input         201.18         -0.41           - Input         -198.45         -0.18           + Input         2000.80         -0.50           + Input         200.21         -1.37           - Input         -199.06         -0.82

### 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)	
Channel X	200	0.69	-1.05	
	- 200	1.38	-0.23	
Channel Y	200	8.04	7.96	
	- 200	-8.44	-9.15	
Channel Z	200	-19.51	-19.76	
	- 200	19.18	18.88	

### 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		-0.19	-3.55
Channel Y	200	7.60	-	0.87
Channel Z	200	10.14	5.44	-

Certificate No: DAE4-1507_Sep19

Page 4 of 5

Report File No: F690501-RF-SAR000050-A1

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)



# 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16190	13110
Channel Y	15644	16407
Channel Z	15482	13875

### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-0.28	-1,14	0,99	0.44
Channel Y	0.40	-1.15	1.60	0.56
Channel Z	-0.03	-1.77	1.18	0.55

### 6. Input Offset Current

Nominal Input circuitry offset current on all channels; <25iA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

# 8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

### 9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1507_Sep19

Page 5 of 5

Report File No: F690501-RF-SAR000050-A1

Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)



# Appendix C.3 Calibration certificate for Dipole

eughausstrasse 43, 8004 Zurich	n, Switzerland		Servizio suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredital The Swiss Accreditation Service Aultilateral Agreement for the re	tion Service (SAS) is one of the signatori cognition of calibration	ies to the EA	Accreditation No.: SCS 0108
Client SGS Korea (Dy	mstec)	Certificate N	No: D2450V2-892_Apr19
CALIBRATION C	ERTIFICAT	E	
Object	D2450V2 - SN:8	392	기술:
Calibration procedure(s)	QA CAL-05.v11 Calibration Proc	edure for SAR Validation Source	s between 0.7-3 GHz
Calibration date:	April 24, 2019		
All collibrations have been such at	and has the set of the second first and the		
All calibrations have been conduct Calibration Equipment used (M&TI	ed in the closed laborato	bry facility: environment temperature $(22\pm3)^{\circ}$	² C and humidity < 70%,
All calibrations have been conduct Calibration Equipment used (M&T) Primary Standards	ed in the closed laborato	Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
All calibrations have been conduct Calibration Equipment used (M&T) Primary Standards 20wer meter NRP	ed in the closed laborato	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893)	² C and humidity < 70%. Scheduled Calibration Apr-20
All calibrations have been conduct Calibration Equipment used (M&T) Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892)	² C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20
All calibrations have been conduct Calibration Equipment used (M&T1 Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894)	² C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fyse-N mismatch combination	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5042 / 05327	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	² C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02895) 31-Dec-18 (No. EX3-7349 Dec18)	² C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 05327 SN: 5047.2 / 05327 SN: 5047.2 / 05327 SN: 504	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02895) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18)	² C and humidity < 70%. <u>Scheduled Calibration</u> Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19
All calibrations have been conduct Calibration Equipment used (M&T) Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in houro)	C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 Scheduled Charle
All calibrations have been conduct Calibration Equipment used (M&T) Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: 6830512475	Cal Date (Certificate No.)           03-Apr-19 (No. 217-02892/02893)           03-Apr-19 (No. 217-02892)           03-Apr-19 (No. 217-02892)           04-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02894)           04-Apr-19 (No. 217-02895)           31-Dec-18 (No. EX3-7349_Dec18)           04-Oct-18 (No. DAE4-601_Oct18)           Check Date (in house)           02-Oct-15 (in bouse check Eab. 10)	*C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 Oct-19 Scheduled Check
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: 6B39512475 SN: US37292783	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Feb-19)	*C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 05327 SN: 5047.2 / 05327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WS37292783	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02895) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Cet-18)	² C and humidity < 70%. <u>Scheduled Calibration</u> Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 <u>Scheduled Check</u> In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 601 ID # SN: 6B39512475 SN: US37292783 SN: MY41092317 SN: 10972	Cal Date (Certificate No.)           03-Apr-19 (No. 217-02892/02893)           03-Apr-19 (No. 217-02892)           03-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02895)           31-Dec-18 (No. EX3-7349_Dec18)           04-Oct-18 (No. DAE4-601_Oct18)           Check Date (in house)           07-Oct-15 (in house check Feb-19)           07-Oct-15 (in house check Oct-18)           07-Oct-15 (in house check Oct-18)           05-Jun-15 (in house check Oct-18)	*C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 601 ID # SN: 6B39512475 SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	Cal Date (Certificate No.)           03-Apr-19 (No. 217-02892/02893)           03-Apr-19 (No. 217-02892)           03-Apr-19 (No. 217-02892)           03-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02895)           31-Dec-18 (No. EX3-7349_Dec18)           04-Oct-18 (No. DAE4-601_Oct18)           Check Date (in house)           07-Oct-15 (in house check Feb-19)           07-Oct-15 (in house check Oct-18)           15-Jun-15 (in house check Oct-18)           15-Jun-15 (in house check Oct-18)	*C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20
All calibrations have been conduct Calibration Equipment used (M&T) Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Aglient E8358A	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41092317 SN: US31080477 SN: US41080477 Name	Cal Date (Certificate No.)           03-Apr-19 (No. 217-02892/02893)           03-Apr-19 (No. 217-02892)           03-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02894)           04-Apr-19 (No. 217-02895)           31-Dec-18 (No. EX3-7349_Dec18)           04-Oct-18 (No. EX3-7349_Dec18)           04-Oct-18 (No. DAE4-601_Oct18)           Check Date (in house)           07-Oct-15 (in house check Feb-19)           07-Oct-15 (in house check Oct-18)           15-Jun-15 (in house check Oct-18)           31-Mar-14 (in house check Oct-18)	C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 Oct-19 Scheduled Check In house check: Oct-20 In hous
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ed in the closed laborato E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41092317 SN: US37292783 SN: WY41092317 SN: 100972 SN: US41080477 Name Claudio Loudier	Cal Date (Certificate No.)           03-Apr-19 (No. 217-02892/02893)           03-Apr-19 (No. 217-02892)           03-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02894)           04-Apr-19 (No. 217-02894)           04-Apr-19 (No. 217-02895)           31-Dec-18 (No. EX3-7349_Dec18)           04-Oct-18 (No. EX3-7349_Dec18)           04-Oct-18 (No. DAE4-601_Oct18)           Check Date (in house)           07-Oct-15 (in house check Feb-19)           07-Oct-15 (in house check Oct-18)           15-Jun-15 (in house check Oct-18)           15-Jun-15 (in house check Oct-18)           31-Mar-14 (in house check Oct-18)           Function           Laboratory Tarcholician	*C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 Oct-19 Scheduled Check In house check: Oct-20 In house check In
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	ed in the closed laborato E critical for calibration) 10 # SN: 104778 SN: 103244 SN: 103245 SN: 50472 / 06327 SN: 50472 / 06327 SN: 50472 / 06327 SN: 601 10 # SN: 6B39512475 SN: US37292783 SN: WY41092317 SN: US37292783 SN: WY41092317 SN: 103972 SN: US41080477 Name Claudio Leubler	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician	C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In house check:
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	ed in the closed laborato E critical for calibration) 10 # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 1D # SN: GB39512475 SN: US37292783 SN: WY41092317 SN: US37292783 SN: WY41092317 SN: US41080477 Name Claudio Leubler Katja Pokovic	Cal Date (Certificate No.)           03-Apr-19 (No. 217-02892/02893)           03-Apr-19 (No. 217-02892)           03-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02894)           04-Apr-19 (No. 217-02895)           31-Dec-18 (No. EX3-7349_Dec18)           04-Oct-18 (No. EX3-7349_Dec18)           04-Oct-18 (No. DAE4-601_Oct18)           O7-Oct-15 (in house check Feb-19)           07-Oct-15 (in house check Cot-18)           07-Oct-15 (in house check Cot-18)           15-Jun-15 (in house check Cot-18)           31-Mar-14 (in house check Cot-18)           Function           Laboratory Technician           Technical Manager	C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 Oct-19 Scheduled Check In house check: Oct-20 In hous
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Calibrated by:	ed in the closed laborato E critical for calibration) 1D # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 601 ID # SN: 601 ID # SN: 6039512475 SN: US37292783 SN: MY41092317 SN: US370927 SN: US41080477 Name Claudio Leubler Katja Pokovic	Cal Date (Certificate No.)           03-Apr-19 (No. 217-02892/02893)           03-Apr-19 (No. 217-02892)           03-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02895)           31-Dec-18 (No. EX3-7349_Dec18)           04-0ct-18 (No. DAE4-601_Oct18)           Check Date (in house)           07-Oct-15 (in house check Feb-19)           07-Oct-15 (in house check Oct-18)           15-Jun-15 (in house check Oct-18)           15-Jun-15 (in house check Oct-18)           31-Mar-14 (in house check Oct-18)           Function           Laboratory Technician	C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In hous
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A Calibrated by:	ed in the closed laborato E critical for calibration) 1D # SN: 104778 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 601 ID # SN: 6B39512475 SN: US37292783 SN: WY41092317 SN: US37292783 SN: WY41092317 SN: US41080477 Name Claudio Leubler Katja Pokovic	Cal Date (Certificate No.)           03-Apr-19 (No. 217-02892/02893)           03-Apr-19 (No. 217-02892)           03-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02893)           04-Apr-19 (No. 217-02894)           04-Apr-19 (No. 217-02895)           31-Dec-18 (No. EX3-7349. Dec18)           04-0ct-18 (No. DAE4-601_Oct18)           Check Date (in house)           07-Oct-15 (in house check Feb-19)           07-Oct-15 (in house check Oct-18)           15-Jun-15 (in house check Oct-18)           15-Jun-15 (in house check Oct-18)           31-Mar-14 (in house check Oct-18)           State of the theorem           Function           Laboratory Technician           Technical Manager	C and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In hous

Report File No : F690501-RF-SAR000050-A1



61/67Page :

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

Service suisse d'étalonnage C Servizio svizzero di taratura

S Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary

arossary.	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Additional Documentation:

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end è. of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-892_Apr19

Page 2 of 8

Report File No: F690501-RF-SAR000050-A1

Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)



### Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52,10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

### **Head TSL parameters**

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

### SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.24 W/kg

### **Body TSL parameters**

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.1 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

### SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.98 W/kg

Certificate No: D2450V2-892_Apr19

Page 3 of 8

### Report File No: F690501-RF-SAR000050-A1

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)



### Appendix (Additional assessments outside the scope of SCS 0108)

### Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.6 Ω + 3.6 jΩ	
Return Loss	- 25.1 dB	

### Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7 Ω + 6.2 JΩ	
Return Loss	- 24.2 dB	

### General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns
11	( (GE 1) G

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### **Additional EUT Data**

Manufactured by

SPEAG

Certificate No: D2450V2-892_Apr19

Page 4 of 8



### **DASY5 Validation Report for Head TSL**

Date: 24.04.2019

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:892

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma = 1.87 \text{ S/m}$ ;  $\varepsilon_r = 37.8$ ;  $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018 .
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.0 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.24 W/kg Maximum value of SAR (measured) = 21.8 W/kg



Certificate No: D2450V2-892_Apr19

Page 5 of 8

Report File No: F690501-RF-SAR000050-A1

Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)



# Impedance Measurement Plot for Head TSL



Certificate No: D2450V2-892_Apr19

Page 6 of 8

Date of Issue : 2020-06-25

Report File No: F690501-RF-SAR000050-A1 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)



### **DASY5 Validation Report for Body TSL**

Date: 24.04.2019

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:892

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma = 2.03 \text{ S/m}$ ;  $\epsilon_r = 51.1$ ;  $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.09, 8.09, 8.09) @ 2450 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.1 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 25.5 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.98 W/kg Maximum value of SAR (measured) = 21.1 W/kg



Certificate No: D2450V2-892_Apr19

Page 7 of 8

Report File No: F690501-RF-SAR000050-A1

Date of Issue : 2020-06-25 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)



Impedance Measurement Plot for Body TSL



Certificate No: D2450V2-892_Apr19

Page 8 of 8

# -THE END-

Report File No :F690501-RF-SAR000050-A1Date of Issue :2020-06-25(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and<br/>accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a>.)RTT5041-76(2019.04.25) (4)A4 (210mm x 297mm)